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A B S T R A C T 

Time-domain astrophysics continues to grow rapidly, with the inception of new surv e ys drastically increasing data volumes. 

Democratized, distributed approaches to training sets for machine learning classifiers are crucial to make the most of this torrent 

of disco v ery – with citizen science approaches pro ving ef fecti ve at meeting these requirements. In this paper, we describe the 

creation of and the initial results from the Kilonova Seekers citizen science project, built to find transient phenomena from 

the GOTO telescopes in near real-time. Kilonova Seekers launched in 2023 July and received over 600 000 classifications 

from approximately 2000 volunteers o v er the course of the LIGO-Virgo-KAGRA O4a observing run. During this time, the 

project has yielded 20 disco v eries, generated a ‘gold-standard’ training set of 17 682 detections for augmenting deep-learned 

classifiers, and measured the performance and biases of Zooniverse volunteers on real-bogus classification. This project will 

continue throughout the lifetime of GOTO, pushing candidates at ever-greater cadence, and directly facilitate the next-generation 

classification algorithms currently in development. 

Key words: techniques: miscellaneous – surv e ys – supernovae: general. 

1  I N T RO D U C T I O N  

In the current era of time-domain astronomy, we are operating close to 

the limit of human validation of transient phenomena due to the vast 

numbers of observations being taken on a daily basis. The e xpansiv e 

data volumes (TB per night) of current all-sk y surv e ys such as 

the Gra vitational-wa v e Optical Transient Observ er (GOTO; Stee ghs 

et al. 2022 ), Zwicky Transient Facility (ZTF; Bellm et al. 2019 ), 

Asteroid Terrestrial-impact Last Alert System (ATLAS; Tonry et al. 

2018 ), and All-Sky Automated Survey for Supernovae (ASAS-SN; 

Kochanek et al. 2017 ), and the impending era of the Vera C. Rubin 

Observatory’s Le gac y Surv e y of Space and Time (LSST; Iv ezi ́c et al. 

2019 ) highlight the continuing need for no v el, automated, machine- 

learned approaches of source classification in order to triage and 

follow-up candidates in a timely manner. 

⋆ E-mail: thomas.killestein@utu.fi (TLK); lisa.kelsey@port.ac.uk (LK) 

† Joint first authorship. 

Modern transient disco v ery is predominantly based on difference 

imaging (e.g. Alard & Lupton 1998 ; Zackay, Ofek & Gal-Yam 

2016 ). In this technique, ‘template’, ‘reference’, or ‘background’ 

images are subtracted from new ‘science’ images in order to remo v e 

non-varying sources from the image. These reference images are 

of the same part of the sky as the science image, but were taken 

at a prior time during the optimal sky conditions (dark moon 

phases, good seeing). Typically they are also of longer exposure than 

the science images, meaning that fainter sources can be detected. 

Subtracting the reference image from the new science image, after 

correcting for differential background and PSF mis-matches, results 

in a ‘difference’ image. This difference image may contain residual 

flux indicating that something has changed between the reference 

and science images – a potential transient or variable source has 

appeared. The photometry can then be extracted from the difference 

image, to measure positions and fluxes free of contamination from 

surrounding sources (e.g. Wozniak et al. 2002 ) or host galaxy light. 

The majority of detections (referred to as candidates herein) in 

difference images detected via source extraction are artefacts, known 

as ‘bogus’ sources following the real-bogus paradigm introduced 

© 2024 The Author(s). 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative 

Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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in Bloom et al. ( 2012 ). These artefacts broadly arise from bright 

star residuals, point-spread-function (PSF) mis-match, and/or mis- 

alignment. A vast literature has emerged to tackle this challenge –

transitioning from traditional machine learning (ML) approaches 

(Bailey et al. 2007 ; Goldstein et al. 2015 ; Wright et al. 2015 ; 

Mong et al. 2020 ), through to deep learned classifiers (Cabrera- 

Vives et al. 2017 ; Duev et al. 2019 ; Killestein et al. 2021 ; Corbett 

et al. 2023 ; Mong et al. 2023 ) – with ever increasing performance. 

Naturally ho we v er, as surv e ys grow larger, more performant source 

classification algorithms are required to ensure that the number of 

(inevitable) false positives do not overwhelm human vetters. To 

achieve this goal, larger and larger data volumes are required to 

ef fecti vely train these algorithms, and fully sample the diversity of 

detections seen in surv e y data. As surv e ys get bigger, the method for 

dealing with these data volumes needs to impro v e. Such surv e ys 

quickly outstrip the capacity of individuals or small teams of 

scientists to ef fecti vely label. A complementary approach, which 

can be used to create a human-labelled data set for training machine- 

learning based classifiers, is to use citizen science. 

Citizen science enables collaboration between researchers and 

members of the public, by engaging the public to participate in 

research tasks and help make scientific disco v eries. F or tasks such as 

vetting of candidate transients, the person-power increase of opening 

this task up to the public is highly significant. Transient astronomy 

projects on the Zooniverse citizen science platform 
1 such as Galaxy 

Zoo Supernovae (Smith et al. 2011 ) and Supernova Hunters (Wright 

et al. 2017 ), using data from the Palomar Transient Factory (PTF; 

Law et al. 2009 ; Rau et al. 2009 ) and Pan-STARRS1 (Chambers 

et al. 2016 ) respectiv ely, hav e had great success involving the public 

in this way. In both cases, volunteers were provided with a set of 

target, reference, and difference images for a candidate transient that 

had been flagged as interesting by a computer algorithm, and were 

asked a simple question to determine if the observation was real 

or bogus. This facilitates disco v ery of transient events, and creates 

a binary-labelled training set for ML algorithms to augment their 

performance in future iterations. 

Alongside the direct benefits for scientific analysis, citizen sci- 

ence provides an excellent opportunity for public engagement and 

outreach by enabling members of the public to help in key scientific 

disco v ery, and to achiev e e xperiential learning (Bruner 1961 ; Kolb 

1984 ). The Zooniverse platform was originally created for the 

flagship Galaxy Zoo project (Lintott et al. 2008 ), and has since 

become the predominant online platform for facilitating citizen 

science (Marshall, Lintott & Fletcher 2015 ). At the time of writing, 

the Zooniverse platform has 91 active projects on offer, with topics 

ranging from history, language, and literature to climate, nature, 

physics, and space; meaning that there is something of interest for 

everyone. Citizen science approaches have led to tangible scientific 

disco v eries: In astronomy, the Galaxy Zoo project led to the disco v ery 

of ‘green pea’ galaxies, a new class of compact, star-forming galaxies 

(Cardamone et al. 2009 ). Similarly, the Planet Hunters project 

enabled the disco v ery of PH1b, the first known planet in a quadruple 

star system (Schwamb et al. 2013 ). 

We hav e dev eloped the Kilono va Seek er s citizen science project 2 

on the Zooniv erse platform, pro viding an opportunity for members 

of the public to help the GOTO collaboration in the disco v ery of 

transient events that may have been otherwise missed or overlooked, 

1 https:// www.zooniverse.org/ 
2 http:// kilonova-seekers.org/ 

and enabling them to participate in cutting-edge science in near real- 

time. 

In this paper, we report findings from the launch of Kilonova 

Seek er s on 2023 July 11, o v er a ∼ 6 month period until the end of the 

O4a observing run of the LIGO-Virgo-KAGRA (LVK) gravitational- 

wave detectors, on 2024 January 16. As the primary aim of GOTO 

is to follow up gra vitational-wa ve alerts from LVK, the timeframes 

for Kilono va Seek er s are strongly driven by the schedules of these 

observing windows. In Section 2 we begin by introducing GOTO 

and the need for a citizen science project. In Section 3 we discuss the 

Kilono va Seek er s project in terms of the data used, the workflow, 

and interface the volunteers interact with, the behind-the-scenes 

machinery, and the alerting and reporting mechanisms. We present 

in Section 4 statistics about volunteer classifications, demographics, 

and engagement, with a particular focus on the valuable contribution 

of our ‘power users’. In Section 5 we highlight the key scientific 

results and disco v eries from the project, the o v erall performance 

of volunteers, and measure the selection function of the volunteers 

compared to the GOTO real-bogus classifier. Finally in Section 6 we 

summarize the project so far and our key findings, noting our future 

plans for the project throughout the lifetime of the GOTO surv e y. 

A full list of the citizen scientists who were involved with Kilonova 

Seek er s can be found in Appendix A . 

2  T H E  G R A  VI TATI ONA L-WA  V E  O P T I C A L  

TRANSI ENT  OBSERV ER  ( G OTO )  

GOTO (Dyer et al. 2022 ; Steeghs et al. 2022 ) is a multisite, wide-field 

telescope array designed to observe electromagnetic counterparts to 

gra vitational wa v e ev ents – specifically the afterglow of compact 

binary mergers involving a neutron star, known as kilonovae. GOTO 

operates in two distinct observing modes: ‘triggered follow-up’ and 

‘all-sk y surv e y’ (see Dyer et al. 2020 ), to rapidly target and tile o v er 

the regions associated with incoming alerts, such as gravitational- 

wave alerts from the LIGO-Virgo-KAGRA (LVK) detectors. While 

other transients, such as supernovae, take a few weeks on a ver - 

age to reach their optical peak brightness (Anderson et al. 2014 ; 

Taubenberger 2017 ; Perley et al. 2020 ), kilonovae peak around 1 d 

after merger (e.g. Li & Paczy ́nski 1998 ; Kasen, Badnell & Barnes 

2013 ; Arcavi et al. 2017 ). Surv e ys optimized to find kilonovae must 

have quick responses to alert triggers, fast surv e y cadence, and 

efficient transient identification methods. GOTO’s o v erall field of 

view is larger than the localization skymap of GW 170 817 (Abbott 

et al. 2017 ), the only gravitational wave (GW) event with a detected 

electromagnetic (EM) counterpart, and can co v er the whole sky in 

2–3 d – so is ideally suited for these types of searches. 

Due to a combination of the large sky coverage and fast cadence 

in all-sky survey mode, GOTO collects and generates large volumes 

of data (500 GB/24 h raw, 2–5 TB/24 h dataproducts) that make 

unfiltered human vetting challenging. To address these data volumes, 

GOTO uses a real-bogus classifier ( GOTORB ) based on a convolutional 

neural network (CNN) to classify candidate transients in difference 

imaging (for more information, see Killestein et al. 2021 ). Each 

classification is given a probability of being real, and an associated 

confidence level between 0 and 1. This classifier is effective at 

filtering out bogus detections, with a 97 per cent reco v ery rate of real 

transients for a fixed false positive rate of 1 per cent. As seen with 

other citizen science projects such as Supernova Hunters (Wright 

et al. 2017 ), CNNs and human classifiers have different strengths, 

which when combined can make a more efficient process than only 

using one. CNNs are very good at processing large volumes of data, 

and human classifiers perform better than CNNs when the image is 
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more ambiguous, and when there are not many examples to compare 

it to. 

3  T H E  CITIZEN  SCIENCE  PLATFORM  

Given the significant volumes of detections generated, only the 

highest scoring candidates from a gra vitational-wa ve follow-up can 

be prioritized for eyeballing by the GOTO collaboration. By the 

imperfect nature of classification algorithms, a number of false neg- 

atives will al w ays exist below the chosen score threshold, potentially 

being astrophysically interesting. By lowering the score threshold, 

we can impro v e reco v ery rates, although naturally with increased 

false positives. 

Beyond the real-time necessity for fast transient searches, increas- 

ing the possible size of human-labelled data sets is important for 

training impro v ed classification algorithms. The presence of label 

noise (inaccurate labelling, see e.g. Fr ́enay & Verleysen 2013 ) is 

a strong limiting factor in pushing accuracies from 99 per cent to 

99.9 per cent (and beyond) and can likely only be mitigated via 

grouping of labels, weighting by quality of data item, and clipping 

of bad or unrepresentative examples. 

Citizen science provides a methodology to scale data labelling 

tasks from small teams of expert scientists, up to thousands of 

individuals. Calibrated uncertainty quantification is also a crucial 

missing link in many current astronomical classifiers (e.g. Abdar et al. 

2020 ). Although strides with Bayesian neural networks (e.g. Valentin 

Jospin et al. 2020 ) have neatly quantified uncertainties associated 

with choice of model, this often does not represent the uncertainty 

(or confidence) a human would assign to their prediction. The true 

nature of uncertainties in ML is a complex issue, ho we ver, nominal 

estimates are useful in active learning (where models may suggest 

which data are most informative to be labelled by a human, e.g. Ren 

et al. 2020 ), anomaly detection, and decision making rules under 

uncertainty. 

Given these challenges, a citizen science approach is well-suited 

to generating the scale (and quality) of labelled data sets required 

to train impro v ed classifiers, and drive searches for candidates that 

may otherwise be missed in real-time. Kilonova Seekers launched 

in 2023 July, after a short beta-testing period with live volunteers. 

At its core, Kilonova Seekers streams uncurated difference image 

detections (referred to as ‘candidates’ herein) meeting certain cuts 

from the GOTO real-time pipeline (see Lyman et al., in preparation) 

to the Zooniverse platform, populating a workflow with pre-baked 

data visualizations (known as subjects) to receive annotations and 

classification from citizen scientist volunteers. Through custom 

infrastructure (see Section 3.2 ), we listen to the classification stream 

from Zooniverse in real-time, and use this to trigger alerts according 

to set rules on consensus. We elaborate further on the specifics of 

this process in the following sections. 

3.1 Data extraction, pr e-pr ocessing, and presentation 

Kilono va Seek er s ingests candidates as part of a scheduled task –

e x ecuted on a daily cadence during project launch, and increased to 

every three hours during the O4a observing run. Given the multisite 

nature of GOTO, this leads to eight uploads of data per day (weather- 

permitting). A candidate corresponds to a single difference image 

detection – analogous to the concept of alerts in other transient 

surv e ys. F or logistical reasons, Kilonova Seekers does not take into 

account multiple candidates at the same location being associated 

(i.e. operating at a source level) – which would require more complex 

logic to de-duplicate candidates, adding additional o v erhead. This is 

intentionally decoupled from how candidates are handled internally, 

to provide an independent dataflow. 

The numbers of real transients and artefacts are heavily imbalanced 

(Bloom et al. 2012 ), thus we sample difference image detections 

uniformly in their real-bogus score (with values between 0 and 1 

inclusive, see Killestein et al. 2021 ) through a process of histogram 

equalization – selecting a uniform number of candidates per real- 

bogus bin, with typical equal bin-size of 0.1. Although these choices 

necessarily bias the data set generated, there still exists sufficient 

diversity to re-balance (and thus train classifiers on) the final data 

set. 

Candidates are queried from the main difference photometry 

table generated by GOTO’s KADMILOS data processing pipeline (see 

Lyman et al., in preparation), up to a user-specified maximum to 

a v oid flooding v olunteers with candidates in the case of rich fields. 

A number of operational considerations drive the exact query used 

to ingest candidates – with our selection cuts being: 

(i) Signal-to-noise greater than 10: to minimize the number of 

false alarm detections due to correlated noise in the initial stages. 

(ii) Avoidance of the Galactic plane ( | b| < 10 ◦): to minimize the 

number of variable sources being uploaded to Kilono va Seek er s –

both for practical rate-limiting purposes, as well as data set imbalance 

considerations. 

(iii) Exclusion of specific GOTO unit telescopes (UTs): owing 

to ongoing hardware issues, one specific UT was disabled in the 

Kilono va Seek er s live w orkflow to minimize impact on volunteers. 

(iv) Cuts on images with extremely high numbers of difference 

image detections: after excluding the plane, these are likely to be 

poor subtractions which affect class balance. We impose that number 

of detections in each difference image must be less than the 90th 

percentile number of detections across all difference images. 

(v) Real-bogus score: for the purposes of fast disco v ery, we adopt 

a real-bogus score of 0.7 or greater. This is slightly below the normal 

score threshold of 0.8 used internally, and corresponds approximately 

to the equality point between false positive rate and false ne gativ e 

rate, a common choice in ML contexts. 

We extract a set of stamps, sized approximately 3 × 3 arcmin, from 

the science, reference, and difference images, small cutouts of the 

main images centred on each candidate detection. The science and 

reference images are derived from stacked data products, a sigma- 

clipped combination of a number of individual sub-frames, to reject 

single-image outliers such as cosmic rays. Stamps are extracted 

at nativ e GOTO pix el scale (1.4 arcsec pix el −1 ). Pix el thresholds 

are set using the IRAF ZSCALE algorithm (Tody 1986 , 1993 ), per- 

channel to span their full range. In a break from the norm of 

other transient disco v ery projects on Zooniv erse, we use colourized 

images: specifically the MATPLOTLIB ’bone’ colourmap. The tasteful 

blue shading is intended to minimize visual stress. To generate and 

upload a subject to Zooniverse, we construct a pre-baked layout that 

we populate with stamps and metadata for a given candidate. We 

prominently display the detection time into each stamp, to reinforce 

the real-time nature of uploads to the volunteers, and write which 

surv e y each image comes from: to alert volunteers to any images 

from gra vitational-wa ve (GW), gamma-ray b urst (GRB), or neutrino 

follow-up. The o v erplotted cross-hairs dra w attention to the centre 

of the frame, and the box shows the field-of-view that the GOTO 

real-bogus classifier sees, providing important context. We illustrate 

a subject in Fig. 1 . 

Early in Gen. 1 Kilonova Seekers , we noticed volunteers o v er- 

whelmingly classifying cosmic rays (CRs) as real detections, in spite 

of their often non-PSF-like appearance and documentation on the 
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Figure 1. Example subjects from Kilonova Seekers . The science, reference, 

and difference images are plotted, along with subframes and event informa- 

tion. The top layout shows SN2024gy, a Type Ia supernova in the nearby 

galaxy (13.5 Mpc) NGC 4216 flagged by volunteers. The bottom layout 

shows a cosmic ray artefact that was flagged by volunteers, visible in only 

one of the four sub-frames, and unfortuitously projected on top of a galaxy. 

field guide for these objects. This moti v ated the addition of the 

subframes panel for Gen. 2 – in which we display the individual 

images that compose the stack – to identify single-frame artefacts 

such as CRs that propagate into the stack. These are visible in Fig. 1 , 

and are 32 × 32 pixels each, with a faint circle added to aid the user 

in identifying potential moving targets. 

Based on feedback from the volunteers, we added labels to show 

the volunteers which GOTO site the data originates from, and an 

event tag to explain which mode GOTO was in when the image was 

taken. As GOTO is focused on transient follo w-up, dri ven by triggers 

from external facilities – the types of images that the volunteers are 

presented with may change on a daily basis. For example, in survey 

mode many galaxies may be present in the images, whereas if GOTO 

is following a specific alert, the telescopes may be pointed towards 

regions of greater source density, with images being dominated by 

nearby variable stars in our galaxy. To explain this clearly to our 

volunteers, we use the follo wing e vent labels and provide links to 

the individual instruments listed here so that they can find more 

information if they are interested in learning more: 

(i) All-sky survey – GOTO is scanning the sky systemati- 

cally to find new sources. 

(ii) LVK alert [alert number] – GOTO is following a 

specific gra vitational-wa ve alert from the LIGO-Virgo-KAGRA 

(LVK) detectors, searching for the potential optical counterpart. 3 

(iii) Fermi alert – GOTO is following a GRB alert from the 

Fermi Space Telescope . 4 

(iv) Swift alert – GOTO is following a GRB alert from the 

Swift Space Telescope . 5 

3 https:// emfollow.docs.ligo.org/ userguide/ 
4 https:// fermi.gsfc.nasa.gov/ 
5 https:// swift.gsfc.nasa.gov/ 

(v) IceCube alert – GOTO is following a neutrino alert from 

the IceCube detector. 6 

(vi) Supplemental survey – GOTO is doing something else 

that is not co v ered by the other event tags. 

Some metadata is deliberately censored from the volunteers, 

such as the sky location of each candidate, and exact discovery 

time. This is predominantly to prevent volunteers from seeking 

additional contextual information outside of the image, that would 

e.g. confirm a given detection is a minor planet and thus real, as 

well as for operational reasons to prev ent an y disco v eries being 

correlated with GW event skymaps, or reported without scrutiny 

on TNS or social media channels. This policy will naturally evolve 

with workflow requirements, with in-development workflows (see 

Section 6 ) providing additional (albeit carefully chosen) contextual 

information for classifications. 

3.2 Workflow and ingestion 

Kilono va Seek er s presents one unified workflow to the user, tailored 

to the real-bogus paradigm for source classification. Subjects are 

shown to volunteers randomly, from the pool of data that has not 

reached retirement (when voted upon by 15 volunteers). Volunteers 

are asked if a real source exists at the centre of the crosshairs in the 

science and difference images. Initial beta tests including a fuzzy 

maybe option showed volunteers o v erwhelmingly ( � 50 per cent ) 

selected this option, hindering consensus estimates and making 

uncertainty estimation impossible. 

The web workflow is depicted in Fig. 2 . Kilono va Seek er s also 

has a companion mobile workflo w, deli vered via the Zooniverse app. 

This has the same layout as the web workflow, but with the addition 

of an intuitive ‘swipe left and right’ interface familiar from other 

popular mobile apps. We defer a full discussion of the workflows 

and their utilization to Section 4.2 . 

3.3 Alerting and reporting 

Alerts are intended to flag an object for further follow-up once a given 

candidate (subject) reaches a configurable consensus threshold. For 

Kilono va Seek er s this is set at a threshold of 80 per cent agreement, 

and a minimum of eight votes for the majority option set through 

empirical testing during beta. The high minimum vote threshold is 

crucial to a v oid false consensus, where the wrong answer may be 

locked in by an early run of votes. This was determined empirically, 

but is further moti v ated statistically by ensuring an error of ∼10 

per cent in the derived agreement fraction. 

Alerting to the collaboration is delivered via Slack 7 (the communi- 

cation platform used by the GOTO collaboration), using the Incoming 

Webhook API to post an alert card to a dedicated #knseekers- 

alerts channel for rapid triaging of candidates. One such alert 

card is displayed in Fig. 3 – with action links to direct the vetter 

to the internal GOTO Marshall (see Lyman et al, in preparation), a 

web interface for further analysis of transients and reporting, or to 

the Kilono va Seek er s Talk pages to check discussion on the object. 

Collecting key information via a collaborative platform provides a 

way to centralize discussion about candidates in a maintainable, open 

way. Real extragalactic transients are reported to the Transient Name 

Server (TNS 
8 ) through the existing GOTO Marshall architecture. 

6 https:// icecube.wisc.edu/ science/ icecube/ 
7 https://slack.com 
8 https://wis-tns.org 
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Figure 2. Screenshot of the live Kilonova Seekers main workflow. 

To credit volunteers for their work, we append the names of 

five randomly selected classifiers of a given transient to the TNS 

remarks section, subject to integrity checks (see Section 4 ). This 

randomization occurs at point of consensus, and is done in this way 

to more fairly assign credit, rather than just the first (who may be 

in a more fa v ourable time-zone, for e xample). Re gardless of this 

prompt report, all volunteers who correctly identify a given transient 

are credited on the project results page. 

3.4 Implementation details 

To power the real-time nature of Kilono va Seek er s , we developed a 

web service to receive classifications from Zooniverse in low-latency 

(typically in ∼s), combine them with contextual information from 

the GOTO Marshall, and generate alerts for promising transients. 

We use Zooniverse’s Caesar 9 tool to generate a stream of clas- 

sifications, pushed into a PostgreSQL database hosted locally via a 

HTTP POST endpoint, exposed on the database machine. The web 

endpoints for Kilonova Seekers are write-only by design, delivered 

via Apache2 backed by the Python DJANGO framework. Schema 

validation via PYDANTIC ensures only POST requests containing 

valid classifications are ingested, and enforces strong type safety 

by checking and enforcing that ingested data are of the right type, 

enhancing reliability. As Zooniverse predominantly use NoSQL 

databases internally and make heavy use of free-form JSON data 

throughout their APIs, we make no attempt to normalize these at 

ingest and instead use PostgreSQL’s excellent native support for 

JSON(B) datatypes, despite it being a relational database at heart. 

This was largely driven by the requirement for the database to 

host ingests from multiple projects, including the internal GOTOzoo 

9 https:// github.com/ zooniverse/ caesar

project used for GOTO template v etting. Giv en that different projects 

may have different metadata (provided as JSON strings), we create 

project-specific database views for each project, to ensure queries 

can be written in simpler, more user-friendly ways, without having 

to parse the JSON strings each time. The full Kilonova Seekers 

database and real-time stack is hosted on lo w-po wer commodity 

hardware, specifically a cloud-hosted Raspberry Pi Model 4B. 

Although comparativ ely tin y, we found this hardware performed ably 

throughout the first six months of the project with o v er a 99.9 per cent 

uptime – proving highly capable and handling peak throughputs of 

∼100 classifications per second during the initial launch rush phase. 

We are currently in the process of migrating Kilono va Seek er s to 

more powerful hardware, as we introduce active learning and online 

ML estimators to our workflows, though this is predominantly for 

operational stability and could easily remain in situ. To provide 

monitoring of the health of the project, Grafana 10 and Prometheus 11 

are used to construct real-time dashboards to visualize the rates, 

ratios of real-bogus, and bulk properties of incoming classifications. 

Metrics such as the daily number of active users and classification 

rate are crucial for informing ongoing engagement strategies and 

thus are prominent in the design. 

We anticipate open-sourcing various aspects of the real-time flows 

of Kilonova Seekers in the near future, to enable the community to 

make use of pre-built utilities for real-time citizen science projects –

especially in light of new transient surv e ys coming online in the near 

future that aim to deliver citizen science components, for example 

the Vera C. Rubin Observatory (e.g. Higgs 2023 ). 

10 https:// grafana.com/ 
11 https:// prometheus.io/ 
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Figure 3. Alert card for a Kilonova Seekers candidate that has reached 

consensus, published via Slack. Visible on the alert card are the consensus 

level for the candidate, links to both internal GOTO webpages and the 

Kilono va Seek er s discussion forum, and the candidate itself. 

4  VO LUNTEER S  

As a citizen science project, our Zooniverse volunteers are the key to 

the success of Kilonova Seekers . For us, it is not only important 

that the project provide useful classifications for improving the 

GO TO real-bogus classifier , b ut that the v olunteers contrib ute to 

meaningful scientific disco v ery, engage with our collaboration and 

the other volunteers, learn from the project, and most crucially, enjoy 

participating in the science of GOTO. 

In this section we discuss the volunteer classifications, highlighting 

the valuable contribution of our most prolific users (in the top 25, 

herein power users); before exploring the volunteer demographics, 

engagement, and the speed and efficiency of their classifications. 

4.1 Volunteer classifications 

Kilono va Seek er s launched publicly on Zooniverse on 2023 July 11 

at 14:30 UTC, achieving 1000 classifications within the first 30 min. 

Coinciding with the project launch, Kilonova Seekers was featured in 

press releases from the GOTO partner institutions and social media, 

and the Kilonova Seekers leads (T.L.K and L.K) were interviewed 

about the project on the radio for BBC Radio Solent 12 and on the 

‘Missing Links’ show on Dublin City FM. 13 This period of active 

publicity is highlighted in blue in Fig. 4 , where the impact of this 

can be seen by a steep gradient in the rate of classifications. 

After the initial launch rush, classifications settled down to an 

average of ∼ 4000 classifications per day o v er the course of the 

first three months of operations. We consider this time to be ‘Gen. 

1’ of Kilono va Seek er s . During this time, only GOTO-North was 

included, and we were operating the Kilono va Seek er s project with 

a once-per-day upload cadence, along with the Gen. 1 image style 

that did not contain the subframes for easier detection of cosmic 

12 https:// www.bbc.co.uk/ sounds/ play/ live:bbc radio solent
13 https:// www.dublincityfm.ie/ shows/ missing-links/ 

Figure 4. Cumulative classifications per day on Kilonova Seekers from 

launch until the end of O4a (2024 January 16). The first (blue) shaded 

region corresponds to the dates of press releases, and active media coverage 

of the project during the launch period. The second (red) shaded region 

towards the end of September shows the maintenance period after three 

months of operations, when we temporarily paused the scheduled uploads and 

implemented the Gen. 2 subjects based on feedback from the volunteers. The 

third (green) shaded region highlights the increase in rate of classifications 

o v er the winter holiday period and the subsequent return to work. The 

solid vertical line corresponds to the date of an email newsletter sent out 

to registered volunteers, leading to a clear increase in classifications. The 

dashed line is the date we increased the data upload cadence from twice per 

day to every three hours. 

rays (as discussed in Section 3.1 ). As illustrated in Fig. 4 by the 

red shaded region, we paused the scheduled uploads for a week to 

rapidly implement the Gen. 2 subjects based on feedback from the 

volunteers, and to upgrade the behind-the-scenes infrastructure ready 

for ingesting subjects from GOTO-South and the planned increase 

in upload cadence. We announced our new Gen. 2 subjects in an 

email newsletter once the maintenance was complete, as indicated in 

Fig. 4 by a solid red line. Classifications quickly increased again to 

an average of ∼ 3100 classifications per day after this maintenance 

period. 

GOTO-South at Siding Spring Observatory was integrated suc- 

cessfully into our upload pipeline, and we mo v ed to a three-hour 

upload cadence on 2023 October 11, as indicated by the dashed line 

in Fig. 4 . Classification rates did slow after this period to an average 

of ∼ 1700 per day, ho we ver this was largely due to poor weather at 

both sites due to the changing seasons, meaning there were fewer 

data to upload to the project. 

A particularly interesting feature of Fig. 4 is highlighted by the 

green shaded region. This indicates the Christmas holiday period 

(December 24–Jan 1), when many people are off work for around 

a week. We found a significant increase in classifications during 

this time, suggesting that our users may have had more free time to 

engage with Kilonova Seekers – as evidenced by an increase in Talk 

posts from many of our users during this period. 

In total, o v er the course of this initial run of Kilono va Seek er s , 

between launch and the end of O4a, our volunteers achieved 643 124 

classifications of 42 936 subjects. 

By focusing in on the first 100 d post launch, we can compare the 

classification curve of Kilonova Seekers (Fig. 5 ) with other projects 

on the Zooniverse. As discussed in Spiers et al. ( 2019 ), the majority 

of projects on Zooniverse show high classifications on project launch 

that rapidly declines after the initial launch rush. Occasional peaks 
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Figure 5. Classifications per day on Kilono va Seek er s for the first 100 d 

after launch. This distinct classification curve shows that volunteers regularly 

classify on the project with the release of new data. 

Figure 6. The distribution in classifications among users from launch until 

the end of O4a. The median number of classifications is 11; ho we v er, we hav e 

a strong core user-base, with a number of users completing more than 10 000 

classifications each. 

in activity may be seen after periods of project promotion, press 

co v erage, or further data release. Other projects such as Supernova 

Hunters show a dramatically different classification curve (see fig. 4 

in Spiers et al. 2019 ), with more regular spikes in classification 

indicative of recurring activity. For Supernova Hunters , these spikes 

were on a weekly cadence, resulting from the weekly data upload and 

newsletter cadence of the project. Kilono va Seek er s f alls somewhere 

in-between these two trends. The project shows a clear initial launch 

peak and rapid decline, with smaller regular spikes in activity, likely 

corresponding to our regular daily upload cadence (barring any 

weather restrictions). 

4.1.1 Power users 

As shown in Fig. 6 , which shows the distribution in classifications 

among users, many Kilonova Seekers volunteers only undertake a 

few classifications. Similarly to those for Galaxy Zoo (Lintott et al. 

2008 ) and Bursts from Space: MeerKAT (Andersson et al. 2023 ), the 

distribution follows a power law, where the majority of volunteers 

complete between 1 and 10 classifications on the project, with the 

Figure 7. Pareto plot of the cumulative fraction of Kilonova Seekers partic- 

ipants from launch until the end of O4a, plotted against cumulative fraction 

of classifications. The dashed diagonal line represents perfect parity/equality 

in classification effort per participant. The Gini index is annotated, providing 

a quantitative measure of the inequality in contribution. 

number of volunteers declining for larger numbers of classifications. 

Additionally, this plot clearly shows the significant impact of our 

‘power users’ who have each contributed thousands of classifications 

to the project. An alternati ve frame work to look at this is via the 

Pareto-like (e.g. Lorenz 1905 ; Cowell 2011 ) plot in Fig. 7 , where 

the cumulative fraction of classifiers, and their cumulative share 

of the classification effort is depicted. Around 90 per cent of the 

classifications are performed by 10 per cent of the volunteers, with a 

Gini index (Gini 1912 ) of 0.9, in line with other Zooniverse projects 

of a similar nature (e.g. table 3 of Spiers et al. 2019 ). 

The majority of these power users are the most active participants 

on the Talk pages, regularly asking questions about the project, 

sharing their experiences, and providing their thoughts and insights to 

help others. For the next generation of Kilonova Seekers we anticipate 

appointing and training some of these individuals as moderators to 

aid in the day-to-day running of the project. 

To better understand the classification patterns of the volunteers, 

we present in Fig. 8 the average daily classifications for the power 

user group (the 25 users with the greatest number of classifications 

between launch and the end of O4a), displayed in 15 min windows 

to see trends in volunteer classifications throughout an average day, 

calculated by dividing the total number of classifications per user per 

window by the window length in days. We split this into two based 

on initial daily upload schedule in Fig. 8 (a) and based on the later 

change to upload new data every three hours in Fig. 8 (b). For the 92 d 

when we were uploading data every day at 12:00 UT , our most active 

users were predominantly doing their classifications immediately 

after the daily data upload. Whilst it is encouraging that volunteers 

were keen to classify the data immediately, and to be included on the 

disco v ery reports, these reports were quickly becoming dominated 

by the same few volunteers, and others were missing out. This gave 

further moti v ation to mo v e to a more frequent data upload – alongside 

a more real-time data stream being beneficial for classification speed 

and distributing the work more fairly. Uploading data more frequently 

enables volunteers across different timezones to see the data first: 

allowing them to participate in disco v ery, and be acknowledged 

on disco v ery reports. As illustrated in Fig. 8 (b), during the period 

where the data were uploaded every three hours, whilst the times 

that specific volunteers made no classifications remained consistent, 
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Figure 8. Average classifications over the course of a day for our top 25 users (as defined by the 25 users with the highest number of classifications between 

launch and the end of O4a), divided into 15 min windows. Each row corresponds to a unique user, in descending order to the total classifications o v er the initial 

phase of this project, i.e. the top row is the volunteer with the most classifications. 

there were no longer clear times when the most prolific volunteers did 

the majority of their classifications. In spite of these changes, some 

volunteers still seem to consistently work non-stop on the project, 

with gaps in Fig. 8 (b) likely arising from binning/finite sampling. 

4.2 Volunteer demographics 

To date, Kilono va Seek er s has attracted roughly 2000 volunteers, in 

o v er 20 distinct time zones, across 105 different countries. Fig. 9 

displays the geographical distribution of volunteers on Kilonova 

Seek er s , shaded according to classifiers per capita. Based on data 

obtained from Google Analytics, we have participants from every 

continent (except Antarctica). The wide accessibility of Zooniverse 

projects enables us to reach countries that may be traditionally 

underrepresented in astronomical communities. 

Based on the number of users per country, the United States is by 

far the largest contributor to Kilonova Seekers , with a total of 1284 

users. At approximately half this value with a total of 615 users is 

the United Kingdom. Ho we v er, considering av erage page views per 

user for individual countries in the time between launch and the end 

of O4a, we find that Portugal contains the most prolific Kilonova 

Seek er s , with o v er 2750 views per user on average. 

Kilono va Seek er s is available to all users who can access the Zooni- 

verse platform on the internet, which is available to computer, tablet, 

and mobile users. Alongside the classic in-browser mode, Kilonova 

Seek er s is available via the Zooniverse mobile app, available on 

both iOS and Android devices. The majority of classifications are 

done via a computer, indicated by Fig. 10 , but roughly a third of 

classifications are done via mobile phones (inferred via user agent 

strings). As displayed in Fig. 11 , the fraction of mobile classifications 

per user is bimodal, with the vast majority of volunteers either not 

using a mobile phone at all or solely using their mobile phone 

to engage with Kilonova Seekers . Owing to this clear split in our 

user-base, it is important that future iterations of Kilonova Seekers 

(and other Zooniverse projects) do not contain too many images 

per page, to ensure continued readability on smaller mobile phone 

screens. Although the number of classifications specifically done via 

the mobile app is relatively small compared to those who use an 

internet browser (as indicated by the smaller pie chart in Fig. 10 ), it 

represents a non-negligible proportion of participants, necessitating 

that Kilono va Seek er s remains compatible with the app, regardless 

of future updates, so that it remains accessible to all users. 

As GOTO is a global collaboration with members from all across 

the w orld, it w as important to offer Kilono va Seek er s in the variety 

of languages that are spoken by the collaboration. At time of 

writing, Kilono va Seek er s is available in English, Dutch, Spanish, and 

Indonesian. We were the first project on the Zooniverse platform to 

offer Indonesian, and are currently working on the Finnish, Japanese, 

Polish, and Swedish translations, to be released in the near future. 

Ho we ver, discussions on the Talk boards predominantly occur in 

English. These localizations are a volunteer effort driven by GOTO 

collaboration members, and thus we aim to scale up to support more 

languages as capacity/enthusiasm allows. 

4.3 Volunteer engagement 

The Kilonova Seekers team and the wider GOTO collaboration 

interact with the volunteers via the project ‘Talk’ boards, a series 

of forum pages separated into categories and threads for different 

discussions. We encourage the volunteers to discuss subjects that they 

may be unsure of on their individual talk pages, and to ask the GOTO 

scientists questions by creating their own discussion threads. We use 

this platform as a key page for announcements to the volunteers from 

the Kilono va Seek er s team, including details about new disco v eries 

that the y hav e made and updates about the project or status of the 

GOTO telescopes. Volunteers can ‘@’ members of the Kilonova 

Seek er s team on the Talk pages in the same way as popular social 

media platforms to alert them if they have a question or need help, 

and can also send pri v ate messages to the team and other volunteers. 

Through this, volunteers have told us how they have shared Kilonova 
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Figure 9. Geographical distribution of volunteers on the Kilonova Seekers project. The intensity of a given country corresponds to the classifiers per capita, 

using information from Natural Earth, 14 log-normalized for visualization purposes. 

Figure 10. Pie charts illustrating the different ways classifications are made 

on Kilono va Seek er s . The larger pie chart indicates the percentages of 

classifications during O4a that were completed on computers, mobiles, and 

tablets. The smaller, nested pie chart indicates the percentage of mobile 

classifications done via a mobile browser or the Zooniverse mobile app. 

Figure 11. Distribution of the fraction of the total classifications per user 

performed on a mobile phone. This takes into account both mobile browser 

and mobile app classifications. 

Seek er s with their families, friends, amateur astronomy groups, and 

have discussed the project in blogs and at conferences, widening the 

o v erall participation of the project. 

On the project Talk pages, volunteers are able to tag their 

comments. Without any prompting from the team, volunteers started 

using very similar or the same hashtags as each other. Most of 

these indicate potential transients with tags such as #real or 

#transient , or highlight other astronomically interesting objects 

that are not part of the aims of the project e.g. #comet . The 

volunteers also use these tags to indicate common artefacts from the 

field guide, e.g. #badsubtraction and #satellite , along 

with artefacts the y hav e encountered from prior similar citizen 

science projects, amateur astronomy, and e ven ne w ones of their 

own naming, which we have been able to use not only in our regular 

field guide updates, but also to update the GOTO hardware team on 

potential issues. For the next generation of Kilonova Seekers , we plan 

to implement a new multiclass workflow, and these tags will form 

the basis for the different labels we will include. 

Alongside the Talk pages, we engage our volunteers using newslet- 

ters. These provide an opportunity to update the volunteers on the 

status of the project, announce key findings, inform volunteers of 

changes to the project, and generally share our enthusiasm with the 

citizen scientists. We have found these to be particularly useful for 

re-engaging volunteers who may have lost interest in the project o v er 

time, as can be seen in the upturn in classifications after a newsletter 

in Fig. 4 . 

To ensure that volunteers are credited appropriately for their 

contributions, disco v eries are reported via a dedicated Kilonova 

Seek er s results page, including the names or usernames of all of 

the volunteers who marked a candidate as ‘real’. Furthermore, we 

randomly select a subset of five names from the ‘real’ list to add in a 

dedicated acknowledgement in the remarks section of the Transient 

Name Server (TNS) page for the object. In order to receive credit, 

volunteers must be logged into their Zooniverse account when they 

make the disco v ery, so that the y can be identified. When volunteers 

sign up to the Zooniverse platform, they have the option to give 
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their real name. If the y hav e chosen to provide this, their real name 

will be used for credits, otherwise we use their public username. We 

automatically filter out email addresses and web links from these text 

strings. 

5  SCIENTIFIC  H I G H L I G H T S  

In the six months between launch and the end of O4a, the Kilonova 

Seek er s project reported a total of 29 objects to the Transient Name 

Server, which are listed in Table 1 , where 20 of these were official 

disco v eries, first made by Kilonova Seekers . 

At present, the candidates that are flagged as interesting by 

the volunteers require cross-checking by the GOTO collaboration 

via the Slack alert cards (see Section 3.3 ). Real disco v eries are 

then reported through the TNS via the GOTO Marshall. Anything 

that is a new disco v ery and has not appeared yet on the TNS 

with another group is immediately reported, but Kilonova Seekers 

candidates first identified by other groups are not yet routinely 

reported owing to limited person-power – something planned to 

impro v e via automation in future updates. 

To date, 6 of the 20 transients first disco v ered by Kilonova Seekers 

during O4a have been classified spectroscopically. The first, AT 

2023rob, was classified as a cataclysmic variable star (CV) by 

the Spectroscopic Classification of Astronomical Transients (SCAT; 

Tucker et al. 2022 ) surv e y (Hinkle 2023 ). The remaining were all 

classified as Type Ia supernovae (Davis, Foley & Jacobson-Galan 

2023 ; Do 2023 ; Kopsacheili et al. 2023 ; Fremling, Neill & Sharma 

2024 ) by SCAT, the extended Public ESO Spectroscopic Survey of 

Transient Objects (ePESSTO + ; Smartt et al. 2015 ), and the Young 

Supernova Experiment (YSE; Jones et al. 2021 ). 

In total o v er the period discussed in this paper, 1037 spectroscop- 

ically confirmed supernovae were reported to the TNS, of which 

354 subjects associated with these known SNe were generated for 

Kilono va Seek er s , assuming the subjects are associated with SNe 

using a narrow 1 arcsec cross-match radius. Of these, 259 reached 

the consensus threshold of 80 per cent agreement and 8 or more 

positive votes. This implies a recovery fraction of 72 per cent across 

this sample, broadly in line with more in-depth estimates presented 

in Section 5.2 . A large number of these transients are detected at 

lo w SNR, dri ving the lo wer reco v ery than perhaps anticipated – this 

figure increases rapidly with SNR, moving to 82 per cent at SNR = 

20, 95 per cent at SNR = 50, and 100 per cent at SNR = 70. In 

the following subsections, we discuss in depth some of these early 

results from the Kilonova Seekers project. 

5.1 Rapid reporting 

One of the key accomplishments to highlight from Kilonova Seekers 

is the speed of classification and consensus from the volunteers. As 

we ha ve v olunteers from around the world, there is almost al w ays 

someone online looking at the data in real-time, whether uploaded to 

Kilono va Seek er s (e.g. Fig. 8 ), or internally within the collaboration. 

Between 2023 September 11 and the end of O4a, we changed the 

data upload cadence to the Zooniverse platform to every three hours, 

and found that the majority of new subjects uploaded were classified 

before the next data upload just three hours later. 

We display in Fig. 12 the average classification speeds of the 

Kilono va Seek er s volunteers per subject. We clip the maximum time 

per classification to 2 min to measure the actual attention paid to 

the classification – there were cases where classifications took on 

the order of 18 h, which we interpret as situations where a volunteer 

stepped away from their device and submitted the classification at 

a later time. As shown in Fig. 12 (a), our power users typically take 

less time to classify a subject than the remainder of users, who 

have a wider range of classification times. Ho we ver, the median 

classification time for both groups is roughly 5 s, meaning that if 

we take our total classifications for the period (see Section 4.1 ), our 

v olunteers ha ve dedicated at least 893 h of classification time to the 

project during O4a. 

In Fig. 12 (b), we break down the power-user classification times 

per user, and explore the distributions. There are clear differences 

here, with some users routinely taking under 10 s for every single 

classification they do, whilst others take substantially longer. This 

behaviour is unclear, and no conclusive explanation exists. Some 

power users may be reading and investigating the metadata for 

the subjects to find more insights that may help them make a 

classification – since these attributes are mentioned on the Talk 

boards by a small subset of volunteers. The final user on the plot is an 

extreme outlier – upon detailed inspection this user’s classification 

times show a remarkable bimodality, with a similar ‘early’ peak to 

the other participants, but with a strong peak around 20 s, skewing 

their quartiles on this plot. 

A particularly significant scientific highlight for Kilonova Seekers 

was the disco v ery of AT 2023xqy (the Zooniverse subject for this 

disco v ery is displayed in Fig. 13 ). This object was observed by 

GOTO-South on 2023 No v ember 13 at 11:06:02.592, and was 

reported to the TNS at 14:27:36 on the same day. It was observed, 

the data were reduced and uploaded to Zooniverse, the candidate 

was flagged as interesting, cross-checked and confirmed as real, and 

reported to the TNS within approximately 3 h and 20 min of data 

being taken. This transient had a rapid rise in brightness. The last 

GOTO non-detection was 24 h prior at a L -band magnitude of 20.8. 

The transient was disco v ered 1 d later at a magnitude of 19.2 –

suggesting this object rose in brightness by 1.6 mag per 24 h, and 

implying the transient was caught early post-explosion. This finding 

was later confirmed by ATLAS on 2023 No v ember 17. This speed 

of human vetting is simply not sustainable without the dedication of 

our citizen scientists. 

5.2 Validation data set, detection efficiency, and volunteer 

benchmarking 

Outside of the real-time transient disco v ery w orkflow, Kilono va 

Seek er s provides a framework for generating a number of human 

benchmarks, and gold-standard data sets for training machine learn- 

ing solutions, as a natural byproduct of the transient search workflow. 

We elaborate on a few ongoing analyses that provide substantial 

insights into the abilities of our volunteers, and map out the ‘human 

factor’ present in transient follow-up, that few time-domain projects 

hav e previously e xplored in detail (e.g. Goldstein et al. 2015 ; Hayden 

et al. 2021 ). To measure the intrinsic performance of volunteers, and 

determine sensible classification baselines, we inject a number of 

validation data sets (both intentionally, and intrinsically via known 

objects) with known answers into the live project: 

(i) Hand-labelled validation data set: 300 examples, sampled 

uniformly in real-bogus score from detections prior to project launch, 

and hand-labelled by the Authors to ensure high accuracy. 

(ii) Minor planets: given the ingest pipeline is agnostic to con- 

textual information, these detections with high real-bogus score 

naturally enter into Kilonova Seekers as part of the transient search 

workflo w. We kno w a priori that these are real detections, and the 

spatial association enables us to retrieve high confidence low-signal- 

to-noise detections for testing. 
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Table 1. Kilonova Seekers disco v eries reported to the TNS, which were observed by GOTO between Kilonova Seekers launch (2023 July 11) and the end of O4a (2024 January 16). We present the TNS name, 

internal GO TO name, GO TO disco v ery date, Kilonova Seekers associated subject id(s) on Zooniverse, TNS reporting group, transient location, and if known, the classified type and redshift. Redshifts are taken 

directly from the TNS classification report, but rounded where appropriate. 

TNS Name GOTO Name GOTO Disco v ery date (UT) Kilono va seek er s subject/s TNS Reporting group RA/Dec Type Redshift 

Kilonova Seekers disco v eries 

AT2023pmm GOTO23yt 2023-08-05 04:48:55 91 259 701 GOTO: Kilonova Seekers 02:44:18.422 + 14:23:27.51 – –

AT2023pof GOTO23vt 2023-08-08 02:55:13 91223502, 91 282 780 GOTO: Kilonova Seekers 19:48:39.623 + 00:40:25.99 – –

AT2023rob GOTO23aja 2023-09-05 21:56:05 91 624 786 GOTO: Kilonova Seekers 18:55:04.878 −25:42:41.94 CV –

AT2023wbu GOTO23bbl 2023-10-28 06:09:44 92 889 863 GOTO: Kilonova Seekers 10:48:51.594 + 17:37:33.02 – –

AT2023xnj GOTO23bia 2023-11-11 10:45:19 93 524 342 GOTO: Kilonova Seekers 00:21:31.492 −32:48:20.18 – –

AT2023xqf GOTO23biq 2023-11-10 10:40:28 93 597 712 GOTO: Kilonova Seekers 00:03:55.159 −29:35:38.95 – –

AT2023xqg GOTO23bip 2023-11-12 17:07:37 93 615 033 GOTO: Kilonova Seekers 10:39:28.016 −39:31:33.69 – –

AT2023xqy GOTO23bjh 2023-11-13 11:06:02 93 671 156 GOTO: Kilonova Seekers 23:41:43.058 −34:12:06.46 – –

AT2023ydt GOTO23blc 2023-11-18 12:16:31 93 953 774 GOTO: Kilonova Seekers 02:19:40.742 −48:15:32.90 – –

SN2023yer GOTO23blj 2023-11-18 20:45:07 93 965 156 GOTO: Kilonova Seekers 01:21:16.700 + 17:12:55.98 SN Ia 0.06 

AT2023yox GOTO23bms 2023-11-28 04:54:34 94 193 252 GOTO: Kilonova Seekers 11:55:51.573 + 44:08:05.40 – –

AT2023yqr GOTO23bno 2023-12-02 10:25:06 94 310 806 GOTO: Kilonova Seekers 01:14:48.773 −20:59:41.45 – –

AT2023yqs GOTO23bnn 2023-11-30 11:15:33 94 310 814 GOTO: Kilonova Seekers 02:08:23.440 −35:04:23.95 – –

SN2023yrs GOTO23bnt 2023-12-03 13:47:40 94 322 374 GOTO: Kilonova Seekers 06:26:52.896 −24:36:53.01 SN Ia-91-bg-like 0.02331 

SN2023ysp GOTO23bnz 2023-12-03 13:29:44 94 332 759 GOTO: Kilonova Seekers 06:19:37.294 −29:49:16.56 SN Ia 0.09 

AT2023aagc GOTO23bus 2023-12-15 12:28:26 94 836 562 GOTO: Kilonova Seekers 05:29:37.658 −35:55:16.98 – –

SN2023aajf GOTO23bwl 2023-12-17 12:01:54 94 862 495 GOTO: Kilonova Seekers 04:22:41.484 −51:29:15.63 SN Ia 0.0428 

AT2023abdm GOTO23bzu 2023-12-17 11:31:43 95 035 983 GOTO: Kilonova Seekers 03:41:14.308 −48:51:18.08 – –

AT2023abdn GOTO23bzs 2023-12-24 11:49:37 95 035 974 GOTO: Kilonova Seekers 05:48:49.179 −24:15:21.60 – –

SN2023acla GOTO24P 2023-12-26 04:17:46 95 128 349 GOTO: Kilonova Seekers 12:05:02.450 + 01:10:32.95 SN Ia 0.06565 

Reported 

SN2023oxc GOTO23uh 2023-08-04 22:12:26 91 273 350 ATLAS 16:04:31.469 + 36:19:00.59 SN 0.0434 

SN2023ver GOTO23bbc 2023-10-26 00:45:31 92 809 761 Pan-STARRS 03:51:40.274 −00:30:38.95 SN Ia-91T-like 0.03 

SN2023vqn GOTO23bcc 2023-10-27 21:31:28 92 889 737 ATLAS 22:52:31.726 + 18:14:06.46 SN Ia 0.07 

AT2023xig GOTO23bhy 2023-11-10 13:39:34 93 464 849 ATLAS 04:30:41.258 −39:17:55.73 – –

AT2023acdo GOTO23caa 2023-12-24 11:59:58 95134996, 95 190 835 ZTF 06:04:40.410 −26:38:41.64 – –

SN2024gy GOTO24J 2024-01-06 05:00:18 95 413 590 Koichi Itagaki 12:15:51.290 + 13:06:56.12 SN Ia 0.00118 

SN2024hm GOTO24Q 2024-01-06 10:25:10 95 430 426 ATLAS 03:24:06.521 −38:43:59.42 SN Ia 0.067 

AT2024kh GOTO24X 2024-01-06 05:33:21 95 601 222 ATLAS 13:16:52.136 + 28:06:32.66 – –

AT2024agm GOTO24fq 2024-01-06 05:14:39 95 974 795 ATLAS 12:57:38.772 + 40:11:57.38 – –

Downloaded from https://academic.oup.com/mnras/article/533/2/2113/7735340 by University of Sheffield user on 29 August 2024
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Figure 12. Boxplots showing the classification times of the Kilonova Seekers volunteers. Maximum time per classification has been clipped to 2 min to remo v e 

those classifications where someone paused mid-classification and submitted at a much later time. The lines inside the bars represent the median classification 

time, the boxes show the upper ( Q 3) and lower ( Q 1) quartile values, with width corresponding to the interquartile range (IQR) and the whiskers represent 

Q 1 − 1 . 5 × IQR and Q 3 + 1 . 5 × IQR, respectively. 

Figure 13. Kilono va Seek er s subject for AT2023xqy. This transient was 

flagged by the volunteers as real and reported to the TNS within 3 h and 20 

min of data being taken by GOTO. 

The hand-labelled validation data set is given an arbitrarily high 

retirement limit to ensure as many volunteers as possible see them 

for comparative analyses. For the analyses that follow, we neglect 

the possibility of label noise (inaccurate labelling by the team) in 

the validation data sets. For the hand-labelled set, these data were 

vetted by the Authors with both knowledge of the co-ordinates, and 

additional contextual information (historical variability, source cross- 

matches) to guide the labelling. For the minor planet data set, we 

select only detections with high-confidence ( ≤4 arcsec) matches 

to catalogued objects from the Minor Planet Centre, following 

Killestein et al. ( 2021 ). 

Through analysis of the validation data set, and binary classifi- 

cation labels from volunteers, we can assess both the cohort and 

individual performance of volunteers in a real-world setting. To 

ensure low sampling noise in our estimations of precision, we only 

consider volunteers who have completed 100 validation subjects or 

more, yielding noise of O(1 per cent). We suspect the validation set 

size is sufficient to mitigate data-driven scatter in metrics. 

As shown in Fig. 14 , we plot the precision (PR) and recall (RC) 

for each volunteer e v aluated on the hand-labelled validation data set. 

Figure 14. Precision-recall plot for the validation set, computed per volun- 

teer with o v er 100 classifications. The dashed lines partition the precision- 

recall space into quadrants, corresponding to the 50 per cent precision/recall 

boundary. The size of the plot markers is proportional to the number of 

classifications performed by that user. 

PR = 
TP 

TP + FP 
(1) 

RC = 
TP 

TP + FN 
, (2) 

where TP is the number of real transients correctly labelled as such 

by the volunteer, FP is the number of bogus transients incorrectly 
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Figure 15. Fraction of positive votes per subject, binned by the SNR of 

the detection, derived from all live Kilonova Seekers minor planet detec- 

tions. Uncertainties are estimated by the one-sided binomial score interval 

approximation, with error bars representing 2 sigma. The 50 per cent reco v ery 

threshold sits around signal-to-noise 6. The harmonic mean of the real-bogus 

classifier score (Killestein et al. 2021 ) per bin is o v erplotted abo v e the bars 

in orange, for illustration. 

labelled as real, and FN is the number of real transients labelled as 

bogus. The F 1 score is a convenient metric derived as the harmonic 

mean of these quantities, given as 

F 1 = 
2 · PR · RC 

PR + RC 
, (3) 

where the precision and recall are defined as abo v e. The volunteers 

broadly perform well on the validation data set, achieving a median 

(class-weighted, 1 σ uncertainty) F 1 score of 78 + 13 
−35 per cent and lie 

in a cluster in the upper right quadrant (precision and recall abo v e 

50 per cent). and represents a class-balanced accuracy, weighting 

precision, and recall equally. 

There are a notable minority (20 per cent) of volunteers who 

lie in the lower right quadrant (high precision, but low recall) –

whom we interpret as ‘underconfident’ volunteers. When they mark 

objects as real transients, they are likely to be correct, but they mark 

very few objects as real transients – perhaps owing to not fully 

trusting their own predictions. Reassuringly, very few volunteers 

lie in the low precision region of the plot, characterized by poor 

discriminative performance – we associate the upper left quadrant 

with ‘o v erconfident’ volunteers, who reco v er the majority of real 

transients but mark many artefacts as real. We hope that, over time, 

volunteers precision-recall scores will flow towards the upper right 

corner as they gain performance and familiarity with the workflow 

and project. 

In Fig. 15 , we compare the reco v ery of minor planets by 

the volunteers compared to the GOTO real-bogus classifier (see 

Killestein et al. 2021 ) as a function of the signal-to-noise of the 

detection. We cross-match all uploaded Kilonova Seekers subjects 

with Minor Planet Centre 15 ephemerides, and in total retrieve 92 640 

classifications – which we know a priori are good transient detections. 

We compute the fraction of positive votes per signal-to-noise bin, 

chosen approximately to linearly span the range 3 to 20, where the 

majority of detections typically lie. Uncertainties are estimated from 

the normal approximation (Wald 1943 ) to the one-sided binomial 

15 https://www.minorplanetcenter.net

proportion confidence interval: 

σ ˆ p = 

√ 
ˆ p (1 − ˆ p ) 

N 
(4) 

which is an adequate and asymptotically correct estimator, given the 

typically large N per bin, and lack of bins with ˆ p close to zero or 

one. 

F or comparison, we o v erplot the harmonic mean of real-bogus 

classifier scores – the closest analogy to the fraction of votes positive 

approach we use for volunteer labels. This is given as 

P = 
1 

N 

N 
∑ 

i= 1 

1 

p i 
, (5) 

where p i is the i- th classifier score in each bin, and N is the total 

number of subjects per signal-to-noise bin. This plot highlights 

facets of the performance of both human vetters and the real- 

bogus classifier. The classifier score remains high across the SNR 

distribution, as expected. The marked bump at low ( ∼ 7) signal-to- 

noise in the classifier score is likely a result of the steep power- 

law slope in the magnitude distribution of minor planets – with 

many times more small bodies than larger in the training set (see 

Killestein et al. 2021 ). The human classifier scores show a smooth 

sigmoid curve, passing 50 per cent recovery around a SNR of 6. 

Uncertainties (given by the error bar) are largely driven by sample 

size per bin, rather than human-derived uncertainty. The real-bogus 

classifier score comfortably exceeds the human true positive rate, 

markedly so at lower signal-to-noise. It is perhaps not surprising 

that a classifier explicitly trained on minor planets outperforms a 

naive ensembling of human predictors – yet to our knowledge this is 

among the first validations of deep-learned classifiers outperforming 

human annotators in time-domain astronomy. We caution that the 

human-derived fraction of positive votes may not be well-calibrated 

probabilistically, taking into account discussions on variable preci- 

sion and recall of volunteers abo v e – nevertheless via thresholding 

and consensus these issues may be mitigated. 

Optimal schemes for thresholding or weighting (e.g. Marshall et al. 

2016 ; O’Brien et al. 2024 ) are left to future publications, though 

we note that the uncertainty is a crucial component of our science 

aims, and so fraction of positive votes is diagnostic here. With priors 

on the true/false positive rates per volunteer from the validation set, 

Bayesian models of annotation (e.g. Paun et al. 2018 ) are a promising 

avenue for deriving well-calibrated and optimal inferences on how 

likely an object is to be real from volunteer labelling. 

Nevertheless, this result underscores that classifier scores alone 

are not sufficient to fully capture the uncertainty associated with a 

classification. Subjects that are genuinely challenging in a statistical 

sense, such as those at low signal-to-noise, should be treated with 

nuance to a v oid o v erinterpretation. This underscores the necessity of 

uncertainty quantification in classification 

Although early in the project’s lifetime, these validation data 

sets have enabled a number of interesting scientific (and socio- 

logical) insights into the way volunteers approach classification 

tasks, their intrinsic efficiency at recovering transient objects, and 

the different dispositions of the volunteers to classification. More 

adv anced v alidation experiments are currently underway – including 

injecting augmented variants of the validation set to track the 

evolving performance of the volunteers between Kilonova Seekers 

generations. One remaining, potentially insightful task is to re-run 

our v alidation workflo w with GOTO team members to compare and 

contrast Figs 14 and 15 , and measure the selection function of project 

scientists (similar to the investigation of Wardlaw et al. 2018 , for 
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Martian surface feature detection and classification) – which could 

feed into downstream analyses to derive more informed recovery 

estimates/drive second-looks on more challenging data. 

Based on cuts inferred from the validation data set, we define our 

gold-standard data set as subjects with > 80 per cent agreement, 

and more than eight positiv e/ne gativ e votes from volunteers. Based 

on these cuts, we find a gold-standard data set of 17 682 detections 

across O4a. This gold-standard data set is informing the development 

of the next real-bogus classifier within GOTO, with a more detailed 

discussion of nuances associated with crowd-sourced training of 

transient classification models deferred to a future publication. 

6  C O N C L U S I O N S  

In this paper, we have presented the first stage of Kilonova Seekers , 

a citizen science project designed specifically for real-time transient 

disco v ery, complementing the unique capabilities of the GOTO 

surv e y for gra vitational-wa ve follow-up. 

In the period from 2023 July to 2024 January, Kilonova Seekers : 

(i) Achieved 643 124 classifications of 42 936 subjects. 

(ii) Attracted roughly 2000 volunteers, in o v er 20 distinct time 

zones, across 105 different countries. 

(iii) Reported 29 objects to the TNS, where 20 of these are 

disco v eries first reported by the project. Six of these disco v eries 

have been classified spectroscopically by other teams. 

(iv) Achieved turn-around times of as quick as 3 h and 20 min 

between observation and TNS report, for candidates flagged as 

interesting by the volunteers. 

(v) Created a gold-standard training set of 17 682 subjects for 

machine learning, with o v er 80 per cent agreement among volunteers. 

(vi) Measured the detection efficiency of the volunteers at recov- 

ering transient sources, and compared this with the existing GOTO 

real-bogs classifier. 

With this initial phase of Kilono va Seek er s , we have demonstrated 

concretely that citizen science can work both in real time and low 

latency – driving decision-making and discovery on large data- 

streams. 

6.1 Recent updates and future work 

For the O4b observing run which is now underw ay, Kilono va Seek er s 

has continued to grow rapidly and transitioned to an augmented 

hourly cadence upload, to further reduce the latency between discov- 

ery, upload, and consensus. This has led to a number of citizen science 

disco v eries within 2 h of images being taken. We intend to keep 

shortening this cadence towards zero-delay (uploads simultaneous 

with pipeline completion), as surv e y and platform capacity allow. 

A new injection of unbiased (spanning the full real-bogus range) 

candidates, which aggressively sample real-bogus scores across the 

whole range are proving an excellent seed data set for novel deep- 

learned classifiers in development. In the time taken to prepare 

this publication, Kilonova Seekers has now reached 31 disco v eries 

and achiev ed o v er 1 million classifications from volunteers. A full 

discussion of this second phase and ongoing disco v ery is deferred to 

future works. 

Development of the Kilono va Seek er s w orkflows continue, with 

multiclass, context-augmented workflows planned to be released 

later in 2024. This will enable volunteers to not only classify if a 

source is real or bogus, but to subdivide each of these classes into 

morphological types (e.g. supernova, nuclear transient, variable star). 

This workflow will further support the training of next-generation 

machine learning classifiers, and enable uncertainty-aware con- 

textual classification. The introduction of this Kilonova Seekers 

multiclass will mark Gen. 3 of the project, and be accompanied 

with a re-launch. This development is, of course, in addition to the 

original fast disco v ery workflow, to ensure continuity for volunteers 

and maintain compatibility with mobile app users. 

Based on the keen engagement with Kilonova Seekers , a number 

of parallel companion outreach and public engagement projects are 

under active development: empowering volunteers to do their own 

transient follo w-up ef forts with professional telescopes, learn about 

time-domain astrophysics through observing objects themselves, and 

generate meaningful scientific outcomes and publications on the 

objects they have discovered. 

The time-domain community are eagerly following up alerts dur- 

ing the LIGO-Virgo-KAGRA O4b observing run, hoping these GW 

triggers will facilitate disco v ery of new electromagnetic counterparts. 

With the growth of the Kilonova Seekers project, this community is 

now markedly larger. 
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Zooniverse User Agreement and Privac y Polic y –https://www.zoon 

i verse.org/priv acy . 
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