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A plasma protein-based risk score to predict 
hip fractures

Thomas R. Austin1,36, Maria Nethander    2,3,36, Howard A. Fink    4,5,36, 
Anna E. Törnqvist    2, Diana I. Jalal6,7, Petra Buzkova8, Joshua I. Barzilay9, 
Laura Carbone    10,11, Maiken E. Gabrielsen12, Louise Grahnemo    2, 
Tianyuan Lu    13,14,15, Kristian Hveem12,16,17, Christian Jonasson    12, 
Jorge R. Kizer18,19, Arnulf Langhammer16,17, Kenneth J. Mukamal    20, 
Robert E. Gerszten    20, Bruce M. Psaty    1,21, John A. Robbins22, Yan V. Sun    23, 
Anne Heidi Skogholt    12, John A. Kanis24,25, Helena Johansson2,25, 
Bjørn Olav Åsvold    12,26, Rodrigo J. Valderrabano    27, Jie Zheng    28,29,30, 
J. Brent Richards    13,14,31,32,33,34, Eivind Coward12 & Claes Ohlsson    2,35 

As there are effective treatments to reduce hip fractures, identification 

of patients at high risk of hip fracture is important to inform efficient 

intervention strategies. To obtain a new tool for hip fracture prediction, 

we developed a protein-based risk score in the Cardiovascular Health 

Study using an aptamer-based proteomic platform. The proteomic 

risk score predicted incident hip fractures and improved hip fracture 

discrimination in two Trøndelag Health Study validation cohorts using the 

same aptamer-based platform. When transferred to an antibody-based 

proteomic platform in a UK Biobank validation cohort, the proteomic 

risk score was strongly associated with hip fractures (hazard ratio per s.d. 

increase, 1.64; 95% confidence interval 1.53–1.77). The proteomic risk score, 

but not available polygenic risk scores for fractures or bone mineral density, 

improved the C-index beyond the fracture risk assessment tool (FRAX), 

which integrates information from clinical risk factors (C-index, FRAX 0.735 

v er sus F RA X + proteomic risk score 0.776). The developed proteomic risk 

score constitutes a new tool for stratifying patients according to hip fracture 

risk; however, its improvement in hip fracture discrimination is modest 

and its clinical utility beyond FRAX with information on femoral neck bone 

mineral density remains to be determined.

Osteoporosis is a disease related to aging, leading to an increased risk 

of fractures. Hip fractures are associated with significant disability 

and the highest mortality risk of all fracture types, with up to 20% of 

the patients dying in the first year following hip fracture1,2. By 2050, 

the worldwide annual number of hip fractures is expected to reach 

4.5–6.3 million2–6.

As there are effective treatments to reduce hip fractures, identi-

fication of patients at high risk of hip fractures is important to inform 

efficient intervention strategies. Current available hip fracture risk 

calculators, such as the commonly clinically used FRAX, are algorithms 

that integrate the fracture risks associated with clinical risk factors with 

or without information on bone mineral density (BMD). According to 

the national guidelines in many countries, FRAX should be used to aid 

in fracture risk prediction to select the individuals most likely to ben-

efit from osteoporosis treatment7; however, fracture risk tools such 

as FRAX may be improved by the addition of new biomarkers of hip 
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causal association with hip fractures (Supplementary Table 6), but the 

hip fracture genome-wide association studies (GWAS), used as source 

for the outcome analyses in the MR, was of limited size5.

Validation of the proteomic risk score in two HUNT cohorts
The effect sizes of this weighted proteomic risk score for hip fracture 

prediction were similar in the HUNT-SomaScan-5K validation cohort 

(Table 1), analyzed using the aptamer-based SomaScan 5K platform 

and in an independent HUNT validation cohort, analyzed using a later 

expanded version of the SomaScan platform (the SomaScan 7K plat-

form; HUNT-SomaScan-7K cohort; Table 1, Fig. 2a and Supplementary 

Tables 1, 5 and 7). Next, we compared the hip fracture prediction for 

the proteomic risk score and available fracture/BMD-related PRSs in 

the two HUNT validation cohorts. Both for the two separate HUNT 

validation cohorts and when combined, the proteomic risk score (com-

bined, hazard ratio (HR) 1.56; 95% confidence interval (CI) 1.36–1.79 

per s.d. higher risk score) predicted hip fractures considerably more 

strongly than available PRSs for fractures (PRS-Fracture, HR 1.06; 95% 

CI 0.95–1.18), FN-BMD (PRS-FN-BMD, HR 1.20; 95% CI 1.07–1.34) and the 

bone mass-related parameter speed of sound in the heel (PRS-gSOS, 

HR 1.14; 95% CI 1.02–1.28; Table 1). In addition, the proteomic risk score, 

but not any of the PRSs, improved hip fracture discrimination as deter-

mined by C-index increase, starting from an age- and sex-adjusted base 

model, in the two HUNT validation cohorts (Supplementary Table 8).

Validation of the proteomic risk score in UK Biobank
Besides the large-scale aptamer-based proteomics platform used in 

the CHS derivation cohort and the two HUNT validation cohorts, the 

Olink double antibody proximity extension assay is an alternative 

large-scale proteomics platform. To avoid platform bias and enhance 

external validity and clinical utility, it is important to determine the 

transferability of proteomic risk scores between proteomic platforms.

fracture risk. Although it is reported that some polygenic risk scores 

(PRSs) for fractures and different BMD-related parameters predict hip 

fracture risk, none of the evaluated PRSs has yet been shown to improve 

hip fracture discrimination8–11. Furthermore, a limitation with PRSs is 

that these do not transfer well between different ancestral groups12,13.

Circulating proteins may be an alternative source of hip fracture 

biomarkers. Protein profiles are dynamic and may integrate informa-

tion on genetic variations and environmental factors. They also reflect 

ongoing biological processes and may, thereby, reflect current health 

status and disease risk12. Different platforms for large-scale meas-

urements of circulating proteins are continuously being developed 

to include more proteins in their analyses, including the SomaScan 

aptamer-based platform and the Olink double antibody proximity 

extension platform. Protein-based risk scores derived from either of 

these two platforms have recently been shown to improve prediction 

of some diseases of major public health importance12,14; however, to our 

knowledge, there is no report of a successful transfer of a proteomic 

risk score for any health condition developed using one large-scale 

proteomic platform to an independent validation cohort using a dif-

ferent proteomic platform12. Therefore, the present study aimed to 

develop a proteomic risk score to predict hip fractures, validate its 

performance and clinical utility in several validation cohorts and com-

pare its performance for hip fracture prediction when using alternative 

proteomic platforms.

Results
Summary of the study design
A proteomic risk score was developed in the Cardiovascular Health 

Study (CHS; proteomics determined using the aptamer-based Soma-

Scan 5K platform; 3,171 participants, 456 incident hip fractures, 39% 

men, mean age 74.4 years; Fig. 1 and Supplementary Table 1). The pro-

teomic risk score was validated in two Trøndelag Health Study (HUNT) 

cohorts (proteomics determined using SomaScan 5K platform (3,259 

participants, 187 incident hip fractures, 61% men, mean age 64.5 years) 

or 7K platform (1,988 participants, 155 incident hip fractures, 54% men, 

mean age 63.9 years); Fig. 1 and Supplementary Table 1). In addition, the 

proteomic risk score was also validated in a subset of the UK Biobank 

(proteomics determined using the Olink double antibody proximity 

extension platform; 50,876 participants, 686 incident hip fractures, 

46% men, mean age 57.0 years; Fig. 1 and Supplementary Table 1). The 

hip fracture prediction of the developed proteomic risk score was also 

compared to the hip fracture prediction of earlier developed PRSs for 

fractures (PRS-Fracture15), femoral neck-BMD (PRS-FN-BMD16) and the 

bone mass-related parameter speed of sound in the heel (PRS-gSOS8).

Development of the proteomic risk score in the CHS cohort
We developed three different proteomic risk scores for incident hip 

fractures in the CHS derivation cohort: one weighted risk score and 

two risk scores using the machine-learning techniques, LASSO (least 

absolute shrinkage and selection operator) and Elastic net, respec-

tively (Methods and Supplementary Tables 2–4). Based on C-index 

improvements, the weighted proteomic risk score performed bet-

ter for hip fracture prediction than the two proteomic risk scores 

derived by machine-learning techniques, when evaluated in two inde-

pendent HUNT validation cohorts (Supplementary Tables 2–5). The 

weighted proteomic risk score includes 18 proteins that passed the 

Bonferroni-adjusted P value threshold of P < 1.0 × 10−5 for the associa-

tion of the aptamer with incident hip fractures in the CHS cohort. The 

weights of the included proteins are the estimated β values from a 

Cox regression.

We next used Mendelian randomization (MR) to investigate if the 

proteins included in the proteomic risk score were causally related to 

hip fractures. We identified valid genetic instruments for 15 of the 18 cir-

culating proteins included in the proteomic risk score17. None of these 

15 circulating proteins displayed statistically significant evidence of a 

Derivation

CHS-SomaScan-5K

3,171 participants

456 hip fractures

Proteomic risk score

Validation

HUNT-SomaScan-5K

3,259 participants

187 hip fractures

HUNT-SomaScan-7K

1,988 participants

155 hip fractures

UK Biobank-Olink

50,876 participants

686 hip fractures

Fig. 1 | Overall design of the present study. A proteomic risk score was 

developed in the CHS (proteomics determined using the aptamer-based 

SomaScan 5K platform; 3,171 participants, 456 incident hip fractures, 39% 

men, mean age 74.4 years; Fig. 1 and Supplementary Table 1). The developed 

proteomic risk score was validated in two independent Trøndelag Health Study 

(HUNT) cohorts (proteomics determined using SomaScan 5K platform (3,259 

participants, 187 incident hip fractures, 61% men, mean age 64.5 years) or 7K 

platform (1,988 participants, 155 incident hip fractures, 54% men, mean age  

63.9 years)). In addition, the proteomic risk score was also validated in a subset 

of the UK Biobank (proteomics determined using the Olink double antibody 

proximity extension platform; all participants: 50,876 participants, 686 incident 

hip fractures, 46% men, mean age 57.0 years; randomly selected participants: 

44,817 participants, 504 incident hip fractures, 46% men, mean age 56.7 years).  

Pink, cohorts (CHS and two HUNT cohorts) analyzed by aptamer-based 

SomaScan platform. Blue, cohort (UK Biobank) analyzed by the double antibody 

proximity extension Olink platform.

http://www.nature.com/nataging


Nature Aging | Volume 4 | August 2024 | 1064–1075 1066

Letter https://doi.org/10.1038/s43587-024-00639-7

The Olink platform was used to analyze 1,463 proteins in a 

subset of the UK Biobank cohort. Of the 18 proteins used in the 

SomaLogic-derived proteomic risk score, 13 were available and also 

analyzed in the UK Biobank. The majority of the participants (44,817, 

88%) with proteomics data in the UK Biobank used in our analyses were 

selected from a randomized subset within the UK Biobank (randomly 

selected participants), while the remaining participants (6,059, 12%) 

were selected by 13 biopharmaceutical companies18. In the two HUNT 

validation cohorts, a proteomic risk score restricted to these 13 proteins 

predicted hip fractures similarly as the proteomic risk score including 

all 18 proteins (combined, HR 1.56; 95% CI 1.35–1.80; Table 1). Notably, 

this proteomic risk score predicted hip fractures also in the UK Biobank, 

when all available participants (50,876) were included, with a HR of 

1.63 (95% CI 1.52–1.76) per s.d. higher risk score (Table 1). A similar 

effect estimate was observed when the analysis was restricted to the 

randomly selected participants in the UK Biobank (HR 1.64; 95% CI 

1.49–1.80; Table 1). When meta-analyzing the results of the hip fracture 

prediction in the three validation cohorts (56,123 participants and 1,028 

incident hip fracture cases), one s.d. higher proteomic risk score was 

associated with an HR of 1.63 (95% CI 1.52–1.74) for hip fractures (Fig. 2a 

and Supplementary Table 9).

The large dataset of the UK Biobank validation cohort, including a 

high number of incident hip fracture cases, enabled detailed analyses 

of hip fracture prediction. Sex- and age-stratified analyses in the UK 

Biobank revealed that the proteomic risk score was associated with 

incident hip fractures in both men and women and in both young 

and old participants (Supplementary Table 10). Analyses stratified 

on the median follow-up time of the hip fracture cases revealed that 

Table 1 | Comparison of the incident hip fracture associations for the weighted proteomic risk score and polygenic risk 
scores in the two HUNT cohorts and in the UK Biobank

Cox regression

Predictor Number of markers HR 95% CI P n nevent

HUNT-SomaScan-5K cohort

 Proteomic risk score 18 1.49 (1.24–1.80) 2.3 × 10−5 3,188 181

 Proteomic risk score 13 1.44 (1.18–1.75) 2.4 × 10−4 3,188 181

 PRS-Fracture 15 0.95 (0.82–1.10) 5.1 × 10−1 3,188 181

 PRS-gSOS 21,716 1.09 (0.94–1.26) 2.7 × 10−1 3,188 181

PRS-FN-BMD 47 1.14 (0.98–1.32) 8.2 × 10−2 3,188 181

HUNT-SomaScan-7K cohort

 Proteomic risk score 18 1.66 (1.35–2.03) 9.6 × 10−7 1,939 153

 Proteomic risk score 13 1.71 (1.38–2.12) 7.5 × 10−7 1,939 153

 PRS-Fracture 15 1.20 (1.03–1.40) 2.2 × 10−2 1,939 153

 PRS-gSOS 21,716 1.22 (1.04–1.44) 1.8 × 10−2 1,939 153

 PRS-FN-BMD 47 1.28 (1.08–1.51) 3.4 × 10−3 1,939 153

HUNT-SomaScan combined cohorts

 Proteomic risk score 18 1.56 (1.36–1.79) 1.3 × 10−10 5,127 334

 Proteomic risk score 13 1.56 (1.35–1.80) 1.5 × 10−9 5,127 334

 PRS-Fracture 15 1.06 (0.95–1.18) 2.7 × 10−1 5,127 334

 PRS-gSOS 21,716 1.14 (1.02–1.28) 1.7 × 10−2 5,127 334

 PRS-FN-BMD 47 1.20 (1.07–1.34) 1.1 × 10−3 5,127 334

UK Biobank-Olink, all participants

 Proteomic risk score 13 1.63 (1.52–1.76) 7.1 × 10−39 50,450 679

 PRS-Fracture 15 1.14 (1.05–1.23) 1.0 × 10−3 50,450 679

 PRS-gSOSa 21,716 NA NA NA NA NA

 PRS-FN-BMD 47 1.21 (1.12–1.31) 1.1 × 10−6 50,450 679

UK Biobank-Olink, randomly selected

 Proteomic risk score 13 1.64 (1.49–1.80) 1.6 × 10−4 44,428 501

 PRS-Fracture 15 1.15 (1.05–1.26) 1.9 × 10−3 44,428 501

 PRS-gSOSa 21,716 NA NA NA NA NA

 PRS-FN-BMD 47 1.24 (1.13–1.35) 3.1 × 10−6 44,428 501

Base models were adjusted for age, sex and cohort specific factors. Associations with incident hip fractures were determined by Cox proportional regression models. A weighted proteomic 
risk score, including 18 proteins was developed in CHS. All 18 proteins were available in the two HUNT cohorts analyzed by the SomaScan platform, and 13 of these were available in the UK 
Biobank analyzed by the Olink platform. To test the replication between proteomic platforms, we also created a weighted proteomic score using the 13 proteins and evaluated its performance 
in the two HUNT cohorts and in the UK Biobank (using either all available participants or only the randomly selected participants). HRs and 95% CIs are given per s.d. higher risk score. 
Non-adjusted P values are derived using two-sided z-tests. For the analyses in Table 1, genetic analyses and proteomic analyses were required and the total number of participants and the 
number of incident hip fracture cases are given in Table 1. The results from the two HUNT-SomaScan cohorts were combined using fixed effects inverse-variance weighted meta-analysis. 
PRS-Fracture, weighted polygenic risk score based on independent GWAS significant signals for fractures at any bone site derived from Trajanoska et al.15. PRS-gSOS, polygenic risk score 
developed by the machine-learning technique LASSO for the bone mass-related parameter speed of sound in the heel determined by ultrasound in the UK Biobank, Lu et al.9. PRS-FN-BMD, 
weighted polygenic risk score based on independent GWAS significant signals for FN-BMD derived from Estrada et al.16. aThe PRS-gSOS was not feasible to use in the UK Biobank as this PRS was 
developed in the UK Biobank. NA, not available.

http://www.nature.com/nataging
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the proteomic risk score predicted both early and late hip fractures 

(Supplementary Table 10). Furthermore, the associations between 

the proteomic risk score and incident hip fractures were essentially 

unaltered by adjustment for grip strength or self-reported falls at 

baseline and only modestly attenuated by adjustment for estimated 

BMD in the heel using ultrasound (Supplementary Table 10). Sensi-

tivity analyses revealed that the strength of the association was not 

affected by adjustment for self-reported health rating at baseline or 

blood sample storage time (Supplementary Table 10). Furthermore, 

the association remained mainly unaffected by further adjustment for 

body mass index (BMI), smoking, diabetes and alcohol consumption 

(Supplementary Table 10). Most of the participants in the UK Biobank 

proteomic validation cohort were self-reported as white (94%; Supple-

mentary Table 10) and the proteomic risk score predicted hip fractures 

in this large group. The group of self-reported non-white participants 

was heterogenous and few had hip fractures (Supplementary Table 10). 

Exploratory analysis with limited statistical power suggested that 

the proteomic risk score also may predict incident hip fractures in 

non-white participants (Supplementary Table 10), but future larger 

studies are required to determine whether the developed proteomic 

risk score can be transferred to non-white groups.

In the UK Biobank, participants in the top 10% of proteomic risk 

score had an HR of 2.58 (95% CI 2.01–3.30) compared to participants with 

an average proteomic risk score (40–60%; Fig. 2b and Supplementary 

Table 11). Kaplan–Meier curves for non-hip fracture survival (Extended 

Data Fig. 1) and hip fracture survival probability curves (Extended Data 

Fig. 2) adjusted for age and sex illustrate the time dependency of the 

clear difference in hip fracture risk according to proteomic risk score 

quartiles. After 12 years, 288 participants in the highest proteomic risk 

score quartile but only 25 participants in the lowest proteomic risk score 

quartile had suffered an incident hip fracture (Extended Data Fig. 1).

Similarly, as observed in the two HUNT validation cohorts, the 

proteomic risk score predicted hip fracture risk more strongly than 

available PRSs in the UK Biobank validation cohort (Tables 1 and 2). The 

Pearson correlations for the proteomic risk score with PRS-Fracture 

(r = 0.013) and PRS-FN-BMD (r = 0.036) were low in the UK Biobank.

Finally, we determined whether the proteomic risk score added 

information for hip fracture prediction in the UK Biobank validation 

cohort beyond the clinically used fracture algorithm FRAX, which inte-

grates information from clinical risk factors. The proteomic risk score 

improved fracture prediction in models adjusted for FRAX with or 

without addition of estimated BMD (eBMD) (Supplementary Table 12). 

Discriminative analyses revealed that the proteomic risk score improved 

the C-index beyond FRAX, both with and without adding information 

on eBMD (Table 2). The proteomic risk score improved hip fracture 

discrimination beyond FRAX also when hip fracture discrimination was 

determined by the area under the curve (AUC) (Table 2 and Extended 

Data Fig. 3). Similar findings of improved hip fracture prediction beyond 

FRAX, as determined by C-index and AUC, were observed when the 

follow-up time was restricted to 10 years (Supplementary Table 13). 

In contrast, neither a PRS for fractures (PRS-Fracture) nor a PRS for 

FN-BMD (PRS-FN-BMD) improved hip fracture discrimination beyond 

FRAX (Table 2, Supplementary Table 13 and Extended Data Fig. 3). 

Furthermore, the proteomic risk score improved hip fracture reclassi-

fication indexes (integrated discrimination improvement, categorical 

net reclassification index (NRI) and categorical-free NRI) beyond a base 

model including FRAX or FRAX + eBMD (Supplementary Table 14). It 

should be emphasized that the combined NRI weights the events and 

non-events equally19. Therefore, one should rather consider the NRI 

results from events and non-events separately (shown in Supplementary 

Tables 14 and 15), showing that the improvements were mainly observed 

for events. Using an established clinical cutoff of 3% for hip fracture risk, 

above which pharmacological treatment is recommended by the Bone 

Health and Osteoporosis Foundation20, the base FRAX model correctly 

identified 106 true incident hip fracture cases, while the addition of the 

developed proteomic risk score correctly identified 198 (+87%) true 

incident hip fracture cases in the UK Biobank cohort (Supplementary 

Table 15a). A Similar magnitude of improvement in identification of true 

incident hip fractures was observed when the analyses were restricted 

to the randomly selected participants in the UK Biobank (+90%; Sup-

plementary Table 15b). These improvements were due to improved 

sensitivity (Supplementary Table 15c,d).

In contrast, minor improvements of the different reclassifica-

tion indexes were observed for PRS-FN-BMD when starting from a 

base FRAX model but not when starting from a base FRAX + eBMD 

model (Supplementary Table 14). PRS-Fracture did not improve frac-

ture reclassification starting from a base model including FRAX or 

FRAX + eBMD (Supplementary Table 14).

Association with fractures at different bone sites
Next, we evaluated the performance of the developed hip fracture 

proteomic risk score for prediction of fractures at other bone sites 
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Fig. 2 | Association between the proteomic risk score and incident hip 

fractures. a, Association between the proteomic risk score and incident hip 

fractures in three separate validation cohorts. Base models are adjusted for 

age, sex and cohort-specific factors. Association with incident hip fractures 

is determined by Cox proportional regression models. Data are given as HRs 

and 95% CIs per s.d. higher risk score. The HUNT-SomaScan-5K cohort includes 

n = 3,259 participants and 187 incident hip fracture cases. The HUNT-SomaScan-

7K cohort includes n = 1,988 participants and 155 incident hip fracture cases. The 

UK Biobank-Olink cohort includes n = 50,876 participants and 686 incident hip 

fracture cases. The results from the proteomic risk score were combined using 

fixed effects inverse-variance weighted meta-analysis with a total of n = 56,123 

participants and 1,028 incident hip fracture cases. b, Associations between 

seven total population percentile bins of the proteomic risk score and risk of 

incident hip fractures in the UK Biobank. Association with incident hip fractures 

is determined by Cox proportional regression models adjusted for age, sex, 

proteomic batch, ethnicity and UK Biobank center (50,876 participants and 686 

incident hip fracture cases). Data are given as HRs and 95% CIs with the 40–60% 

bin as reference group.
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besides hip fractures in the UK Biobank. Although, the proteomic risk 

score was associated with incident fractures at all bone sites evaluated, 

the association of the proteomic risk score was substantially stronger 

with hip fractures (HR 1.64, 95% CI 1.50–1.81) than with non-hip fractures 

such as forearm fractures (HR 1.18, 95% CI 1.08–1.29) and lower leg 

fractures (HR 1.20, 95% CI 1.08–1.33; Supplementary Table 16).

Discussion
Patients at high risk of fractures at the hip, the clinically most important 

fracture site, are important to identify early to start effective interven-

tions. We developed a proteomic risk score that improved hip fracture 

prediction and discrimination in three independent validation cohorts, 

analyzed by two substantially different proteomic platforms. The devel-

oped proteomic risk score predicted hip fractures similarly in both 

young and old participants, and in both men and women. Finally, when 

added to FRAX with or without information on eBMD, the proteomic 

risk score, but not available PRSs, improved hip fracture discrimination. 

These results show that the proteomic risk score is strongly predictive 

of incident hip fractures in multiple independent populations.

Several PRSs have been developed that primarily predict different 

measures of BMD and some of these also predict hip fracture risk8–11; 

however, none of these PRSs has been shown to improve hip fracture 

discrimination as determined by C-index or AUC beyond FRAX esti-

mates, limiting their clinical utility8–11. Similarly, none of the available 

fracture or BMD-related PRSs improved hip fracture discrimination 

in any of the three validation cohorts in the present study. In contrast, 

the proteomic risk score improved hip fracture discrimination, and the 

associations with incident hip fractures were substantially stronger 

for the proteomic risk score than for the different available fracture 

and BMD-related PRSs.

Similar to a recent study evaluating risk of coronary artery disease, 

weak correlation was found between available PRS and proteomic 

risk score in the present study evaluating hip fracture risk21. The low 

correlation between proteomic risk score and PRS in both studies 

suggests that genetics and proteomics may contribute independent 

information for prediction of outcomes. In the recent study on coro-

nary artery disease, genetics and proteomics added complementary 

information to the clinical risk factors for prediction of coronary artery 

disease21. In contrast, the developed proteomic risk score, but not avail-

able PRSs, improved hip fracture discrimination beyond clinical risk 

factors in the present study. As proteins integrate the effects of genes 

with effects caused by the environment, age, comorbidities, behaviors 

and drugs, the circulatory proteomic profile can provide information 

about health status and disease risk22,23, most likely explaining why 

the proteomic risk score improved hip fracture discrimination more 

efficiently than available PRSs. We also note that current PRSs are 

based on relatively small samples of fractures, most of which occur at 

an age when the heritability of fracture is reduced24. This is supported 

by previous studies demonstrating that the available PRSs display 

rather modest performances for hip fracture discrimination8–11. One 

of the proteins, CD14, included in our proteomic risk score (Supple-

mentary Table 2) has previously been reported to be associated with 

incident hip fractures in the MrOS cohort25. We recently performed 

a large-scale meta-analysis of the association between circulating 

proteins, measured by the aptamer-based technique, and hip fracture 

risk and identified 23 hip fracture signals26. Fifteen of these signals cor-

respond to proteins included in the proteomic risk score developed in 

the present study.

As proteins integrate the effects of genes with effects caused by 

the environment, age, comorbidities, behaviors and drugs, the circu-

latory proteomic profile can provide information about health status 

and disease risk, most likely explaining why the proteomic risk score 

improved hip fracture discrimination more efficiently than available 

PRSs. We believe that many of the circulating proteins included in the 

identified proteomic risk score may be markers of current health status 

and the biological age, which in turn has an impact on hip fracture risk.  

Table 2 | Hip fracture discrimination for the weighted proteomic risk score and polygenic risk scores beyond CRF-FRAX and 
CRF-FRAX + eBMD in the UK Biobank

Base modela Predictor C-index AUC

Model Model

Base Base + predictor P Base Base + predictor P

UK Biobank-Olink, all participants

 FRAX-CRF Proteomic risk score 0.735 0.776 5.4 × 10−9 0.732 0.765 1.4 × 10−7

 FRAX-CRF PRS-Fracture 0.735 0.736 5.2 × 10−1 0.732 0.733 6.0 × 10−1

 FRAX-CRF PRS-FN-BMD 0.735 0.734 7.2 × 10−1 0.732 0.731 8.7 × 10−1

 FRAX -CRF + eBMD Proteomic risk score 0.759 0.793 8.0 × 10−11 0.753 0.782 9.7 × 10−10

 FRAX -CRF + eBMD PRS-Fracture 0.759 0.759 4.5 × 10−1 0.753 0.753 5.1 × 10−1

 FRAX -CRF + eBMD PRS-FN-BMD 0.759 0.760 5.0 × 10−1 0.753 0.754 4.6 × 10−1

UK Biobank-Olink, randomly selected

 FRAX-CRF Proteomic risk score 0.740 0.769 2.9E × 10−4 0.736 0.758 1.2 × 10−3

 FRAX-CRF PRS-Fracture 0.740 0.742 4.3 × 10−1 0.736 0.738 4.5 × 10−1

 FRAX-CRF PRS-FN-BMD 0.740 0.738 7.0 × 10−1 0.736 0.734 6.8 × 10−1

 FRAX -CRF + eBMD Proteomic risk score 0.758 0.786 6.0 × 10−6 0.752 0.775 1.8 × 10−5

 FRAX -CRF + eBMD PRS-Fracture 0.758 0.759 1.7 × 10−1 0.752 0.753 1.9 × 10−1

 FRAX -CRF + eBMD PRS-FN-BMD 0.758 0.760 3.8 × 10−1 0.752 0.754 4.0 × 10−1

Fracture discrimination (C-index from Cox regression models and AUC from logistic regression models) beyond FRAX-CRF and/or eBMD using ultrasound in the UK Biobank. Comparisons 
of different AUCs were based on DeLong’s test66. Comparisons of different C-index were based on Kang et al.67. Non-adjusted P values are derived using two-sided z-tests. Genetic analyses, 
proteomic analyses and eBMD were required (in total 49,087 participants and 663 incident hip fractures for all participants and 43,286 participants and 487 incident hip fractures in the 
randomly selected participants). Results for max available follow-up time are given in this table, whereas results for follow-up time restricted to 10 years are shown in Supplementary Table 13. 
FRAX-CRF, FRAX score for estimation of incident hip fracture risk using all available clinical risk factors in the UK Biobank. PRS-Fracture, weighted polygenic risk score based on independent 
GWAS significant signals for fractures at any bone site derived from Trajanoska et al.15. PRS-FN-BMD, weighted polygenic risk score based on independent GWAS significant signals for FN-BMD 
derived from Estrada et al.16. aBase model also adjusted for sex, proteomic batch, ethnicity and UK Biobank center.
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This notion is supported by a recent report demonstrating that four 

of the circulating proteins in our proteomic risk score (GDF15, MMP12, 

EGFR and WFDC2) also are included in a proteomic aging clock score 

that predicts accelerated biological aging and several age-related 

outcomes after adjusting for chronological age27. Based on these find-

ings, we propose that these four proteins predict hip fracture risk 

because they are general markers of biological aging and hip fracture 

risk increases when biological age increases. Future studies are war-

ranted to determine what proportion of the plasma proteins included 

in the proteomic risk score are causally related to hip fractures and 

their underlying mechanism. Nevertheless, the clinical utility of a 

protein-based risk score for hip fracture prediction does not depend 

on whether the included proteins are causally related to hip fractures.

It is not only important to validate the performance of a developed 

proteomic risk score in independent validation cohorts, but also that 

it can be transferred to alternative proteomic platforms. Currently, 

there are two main proteomic platforms used in biomedical research: 

the SomaScan aptamer-based platform and the Olink double antibody 

proximity extension platform. We developed the proteomic risk score 

using the aptamer-based platform in CHS and successfully validated 

its performance to predict hip fractures in two independent HUNT 

cohorts, using two different versions of the SomaScan aptamer-based 

platform. Notably, the proteomic risk score was also validated in the 

UK Biobank where the circulating proteome was analyzed using the 

substantially different Olink double antibody proximity extension 

platform. To our knowledge, the present study is the first to report of 

a successful transfer of a proteomic risk score for disease prediction 

from one large-scale proteomic platform to an independent validation 

cohort analyzed by an alternative proteomic platform12.

As clinically used hip fracture risk tools such as FRAX may be 

improved by the addition of validated new biomarkers, we determined 

the clinical utility of the proteomic risk score beyond FRAX with or with-

out information on eBMD in the large UK Biobank validation cohort. 

The proteomic risk score significantly improved the hip fracture dis-

crimination and reclassification indexes beyond a base model, includ-

ing both FRAX without and with addition of eBMD. Based on these 

findings, we propose that the proteomic risk score is a biomarker 

candidate to be included as a new risk marker in future updates of 

FRAX28. Notably, the proteins included in the proteomic risk score can 

either be analyzed by the SomaScan aptamer-based platform or by the 

Olink double antibody proximity extension platform using the same 

proteomic risk score as described in Supplementary Table 2, yielding 

similar performance for hip fracture prediction. This enhances the 

accessibility of the proteomic risk score for clinical use.

Among the three developed proteomic risk scores in CHS, the 

weighted proteomic risk score version, predicted hip fractures 

best when evaluated in two HUNT validation cohorts. The inferior 

performance of the two proteomic risk scores developed using the 

machine-learning techniques LASSO and Elastic net may be due to 

overfitting of these proteomic risk scores in the CHS derivation cohort.

The average baseline age and average age of incident hip fracture 

for the participants in the CHS derivation cohort were higher than for 

the participants in the three validation cohorts. The participants in 

the UK Biobank validation cohort were younger than the participants 

of the two HUNT validation cohorts. For the validation cohorts, the 

average ages at incident hip fractures were slightly lower compared to 

the average age of hip fracture cases in the general population29. As the 

effect estimates for the association between the developed proteomic 

risk score and incident hip fractures were similar for the different 

evaluated cohorts, the proteomic risk score seems robust to use for 

hip fracture prediction within a wide age range. This notion is further 

supported by the similar effect estimates observed for the younger 

and older participants in our age-stratified analyses in UK Biobank; 

however, further studies are required to validate the performance of 

the proteomic risk score in older people.

Although the proteomic risk score was associated with incident 

fractures at all bone sites evaluated, the association of the proteomic 

risk score was substantially stronger with hip fractures than with 

non-hip fractures such as forearm fractures and fractures at the lower 

leg. This bone-site specificity is probably due to the fact that the pro-

teomic risk score was developed to predict hip fractures and that the 

risk factors for fractures at different bone sites partly differ.

The strengths of the present study include the high number of inci-

dent hip fractures (n = 456 in the derivation cohort and n = 1,028 com-

bined in the three validation cohorts) and the use of three independent 

validation cohorts analyzed by two different proteomic platforms.

The present study has several limitations. The group of non-white 

individuals in the UK Biobank was heterogenous, defined using 

self-reported information and had few hip fractures. Although our 

exploratory analyses suggested that the proteomic risk score may pre-

dict incident hip fractures in non-white participants, future larger studies 

are required to determine if the developed proteomic risk score can 

be transferred to non-white groups. Thus, we call for caution on gen-

eralizing the findings beyond the populations studied in the present 

study. In addition, we did not adjust our analyses for kidney function, 

which could serve as a confounder in our analyses; however, we used 

median-normalized data across all aptamers, which attenuates kidney 

function associations and thus partly resembles adjustment for eGFR30,31. 

Another limitation is that information on FN-BMD was not available for 

the included participants at the time of the proteomic baseline sample 

in the UK Biobank; however, information on eBMD in the heel, a strong 

predictor of hip fractures32,33, was available for most of the included 

participants at the time of the baseline samples used for proteomic analy-

ses. Therefore, eBMD was used as a hip fracture-related BMD measure 

in some of the models determining the clinical utility of the proteomic 

risk score beyond FRAX. Further studies in cohorts with information 

on circulating proteomics, FRAX estimates, and FN-BMD measures at 

baseline are warranted to determine the clinical utility of the developed 

proteomic risk score beyond FRAX with information on FN-BMD. Finally, 

it should be emphasized that the current costs for running the complete 

SomaScan or Olink proteomic assays, used in the present study, are 

substantial. Presently, it is not established that the magnitude of excess 

hip fracture risk predicted by the proteomic risk score is great enough to 

distinguish between individual patients for treatment decisions that will 

be cost-effective; however, future targeted hip fracture proteomics pan-

els, based on the present findings, may be cheaper and add cost-effective 

information to future improved updates of FRAX28.

In conclusion, the developed proteomic risk score enhanced hip 

fracture prediction and discrimination in three separate validation 

cohorts analyzed by two substantially different proteomic platforms. 

When added to FRAX with or without information on eBMD, the prot-

eomic risk score, but not available PRSs, improved fracture discrimina-

tion. We propose that the developed proteomic risk score is a biomarker 

candidate to be included as a new risk marker in future updates of the 

fracture prediction tool FRAX28. The developed proteomic risk score 

constitutes a new tool for stratifying patients according to hip fracture 

risk; however, its improvement in hip fracture discrimination is mod-

est and its clinical utility beyond FRAX with information on FN-BMD 

remains to be determined.

Methods
Cohorts
The CHS was used to derive proteomic risk scores for hip fractures 

whereas two subcohorts within the HUNT study and a subsample of 

the UK Biobank were used for validation of the identified proteomic 

risk scores (Fig. 1).

The Cardiovascular Health Study
The CHS is a population-based longitudinal study of cardiovascu-

lar disease in older people (>65 years of age) recruited from four US 
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communities26,34. Fasting EDTA-plasma was collected in 1992–1993 and 

was stored at −70 °C until used for proteomic profiling26. Incident hip 

fractures after the 1992–1993 study visit through 2015 were identified 

from hospital discharge diagnosis codes. The 1992–1993 exam was 

attended by 5,265 participants26. Of those participants, all 3,171 with 

unthawed plasma available in 2020, had such plasma used for prot-

eomic profiling using a SomaScan aptamer-based platform (5K SomaS-

can v.4.0 assay)35,36. The CHS study was approved by institutional review 

boards at each of the four field centers and the Coordinating Center. 

The CHS is currently under a single institutional review board at the 

University of Washington (current approval no. MODCR00000825). 

All CHS participants provided written informed consent. No compensa-

tion was provided to participants.

The Trøndelag Health Study
HUNT is a longitudinal health study in the Norwegian county of Trøn-

delag and it includes data from four visits between 1984 and 2019 

(refs. 26,37,38).

The HUNT-SomaScan-5K cohort is a subcohort consisting of 3,259 

participants from a HUNT cardiovascular project, including 1,270 par-

ticipants with incident cardiovascular events and 1,989 participants 

without incident cardiovascular events26. Therefore, we adjusted all 

HUNT-SomaScan-5K association analyses for incident cardiovascular 

disease (yes/no). The HUNT-SomaScan-7K cohort is a subcohort con-

sisting of 1,988 new participants from two more recent studies, focus-

ing on venous thromboembolism39 and abdominal aortic aneurysm40. 

We adjusted HUNT-SomaScan-7K association analyses for incident 

venous thromboembolism (802 cases) and incident abdominal aortic 

aneurysm (232 cases). The HUNT study has ethical approval from the 

Regional Committee for Medical and Health Research Ethics (REK 

Central Norway 2015/615) and informed consent was obtained from 

all participants26. No compensation was provided to participants.

Previously unthawed, non-fasting, EDTA-plasma samples from 

the HUNT3 visit (2006–2008; stored at −80 °C) were used for pro-

teomic profiling. For the HUNT-SomaScan-5K cohort (using the 

same aptamer-based SomaScan platform as used in CHS) proteomic 

analyses were performed in 2017 (ref. 26), whereas the analyses for 

the HUNT-SomaScan-7K cohort (using the extended aptamer-based 

SomaScan 7K platform (v.4.1)) were performed in 2022.

The UK Biobank
The UK Biobank is a population-based cohort of approximately 

500,000 participants aged 37–73 years. The participants were recruited 

between 2006 and 2010. Participant data include genome-wide geno-

typing, exome sequencing, whole-body magnetic resonance imaging, 

electronic health record linkage, blood and urine biomarkers and 

physical and anthropometric measurements18. For proteomic analyses, 

EDTA-plasma was collected and stored at −80 °C until samples were ana-

lyzed. The plates were kept at −80 °C and then sent to Olink (Uppsala, 

Sweden) for proteomic profiling. The UK Biobank Pharma Proteom-

ics Project (UKB-PPP) is a collaboration between the UK Biobank and 

13 biopharmaceutical companies18. Using baseline samples, 50,876 

participants with successful proteomic analyses (starting in 2021) 

and available information on covariates (age, height, sex, weight and 

ethnicity) and not included in the COVID-19 case–control imaging study 

were included in the present proteomic hip fracture study. The majority 

(44,817, 88%) of the included participants were selected from a rand-

omized subset within UK Biobank (randomly selected participants), 

while the remaining participants were selected by the 13 biopharma-

ceutical companies18. In sensitivity analyses, we restricted our analyses 

to the participants in the large randomized subsample, showing an 

essentially unchanged effect estimate for the association between 

the proteomic risk score and hip fractures in UK Biobank compared to 

the effect estimate when including all participants. Further details are 

available at https://biobank.ndph.ox.ac.uk. The UK Biobank has ethical 

approval from the North West Multi-centre Research Ethics Committee 

(North West Research Ethics Committee, 11/NW/0382) and informed 

consent was obtained from all participants. No compensation was 

provided to participants. The present research was approved by the 

UK Biobank Research and Access Committee (application no. 51784).

FRAX estimates in the UK Biobank. FRAX estimates of the 10-year 

probability of experiencing a hip fracture for the participants in the 

UK Biobank were calculated by the international FRAX team ( J. A. 

Kanis and H. Johansson) using the UK-specific FRAX tool (https://www.

sheffield.ac.uk/FRAX/; v.1.4.4.) incorporating clinically relevant risk 

factors. Clinically relevant risk factors included in the FRAX algorithm 

were measured at the baseline visit for the UK Biobank such as age, 

sex, BMI (in kg m−2), previous fractures (hip fractures and other osteo-

porotic fractures), current smoking, glucocorticoid use, rheumatoid 

arthritis and diagnosis of secondary causes of osteoporosis (type 1 

diabetes, osteogenesis imperfecta in adults, untreated long-standing 

hyperthyroidism, hypogonadism or premature menopause, chronic 

malnutrition, chronic malabsorption and chronic liver disease). Par-

ticipants with missing information on any FRAX clinical risk factor 

were considered free of the corresponding risk factors for the deriva-

tion of FRAX probability, as suggested by the FRAX model (https://

www.sheffield.ac.uk/FRAX/faq.aspx). The relationships between risk 

factors and fracture risk in the FRAX model have been constructed 

using information derived from the primary data of population-based 

cohorts from around the world, including centers from North America, 

Europe, Asia and Australia, based on a series of meta-analyses41–47. The 

FRAX algorithm has been externally validated with a similar geographic 

distribution with a follow-up in excess of 1 million patient-years and 

its construct summarized in a World Health Organization technical 

report48,49. Since its launch in 2008, the FRAX model has proven to 

be well calibrated in diverse populations from Canada, Israel, Japan, 

Norway, Taiwan and the United Kingdom50–55.

eBMD using ultrasound in the UK Biobank. Quantitative ultrasound 

of the heel was used to obtain a noninvasive eBMD that predicts frac-

ture32,33. A Sahara Clinical Bone Sonometer (Hologic Corporation) was 

used for quantitative assessment of calcanei in UK Biobank partici-

pants. Details of the complete protocol are publicly available on the UK 

Biobank website (www.ukbiobank.ac.uk/). eBMD (g cm−2) was derived 

as a linear combination of speed of sound and bone ultrasound attenu-

ation (eBMD = 0.0025926 × (bone ultrasound attenuation + speed 

of sound) − 3.687)56. Lower eBMD predicted high risk of incident hip 

fractures also in the present UK Biobank proteomics cohort (HR 1.76; 

95% CI 1.60–1.93, per s.d. lower eBMD; the model was adjusted for age, 

sex, height, weight, ethnicity and assessment center).

Incident hip fractures
Hospitalizations were self-reported by CHS participants (every  

6 months) and hospitalizations not reported by participants were  

identified from Medicare claims data26. In the CHS, incident hip frac-

tures were identified from hospital discharge International Classi-

fication of Diseases, Ninth Revision (ICD9) codes 820.xx, covering  

the time following the 1992–1993 CHS study visit through 2015. Patho-

logic fractures (ICD9 code 773.1x) and fractures caused by motor vehi-

cle accidents (E810.xx–E825.xx) were excluded26.

Hospital-based registries in the region were used to collect hip 

fracture data for the HUNT participants, covering the time interval 

from baseline (HUNT3 survey in 2006–2008) until March 2021. The 

following ICD10 codes S72.0, S72.1 and S72.2 or ICD9 code 820 were 

used for hip fracture definition26.

In the UK Biobank, hip fractures were identified using ICD10 codes 

S72.0, S72.1 and S72.2 or ICD9 code 820 derived from registries cover-

ing the interval from baseline samples 2006–2010 until 31 October 

2022.
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Proteomics
SomaScan. The SomaScan 5K v.4.0 (CHS cohort and HUNT- 

SomaScan-5K cohort) and the SomaScan 7K v.4.1 (HUNT-SomaScan-7K 

cohort) aptamer-based assays were used to measure the concen-

trations of plasma proteins. The concentrations are given as rela-

tive fluorescent units. In brief, the aptamers from SomaScan are 

single-stranded DNA-based reagents called SOMAmers (slow off-rate 

modified aptamers). The negatively charged SOMAmers are designed 

to be complementary to the shape of the natively folded target pro-

teins and bind the target protein tightly and specifically at a ratio of 

1:1 (refs. 35,36). The method, which takes advantage of new chemi-

cally modified nucleotides, converts the measurement of protein 

levels into the measurement of nucleic acid levels assessed by a DNA 

oligo-array plate reader35,57. The assay sensitivity has a median lower 

limit of detection in the femtomolar range, which is comparable to 

that of typical immunoassays14,58. Results of these assays, reported in 

relative fluorescent units, are approximately proportional to plasma 

protein concentrations. Median intra- and inter-assay coefficients  

of variation for SomaScan v.4.0 and 4.1 are low at approximately 

5% (refs. 14,31,58). The assays used for these analyses include 5,284 

aptamers for the 5K platform and 7,596 aptamers for the extended 7K 

platform. We excluded aptamers marked as ‘deprecated’ (indicating 

a retired aptamer) and those marked as ‘non-human’ from the pre-

sent analyses. Samples flagged by SomaLogic for poor quality assay  

were also removed. After these exclusions, 4,979 aptamers were avail-

able for analyses in the 5K platform and the same aptamers were also 

evaluated in the 7K platform.

Olink. The samples from UK Biobank were analyzed using the Olink 

Explore 1536 platform, measuring 1,472 protein analytes corresponding 

to 1,463 unique proteins. The Olink platform is considered a specific 

antibody-based assay. In brief, Olink uses a proximity extension assay 

technology where complimentary DNA-tags on matched pairs of anti-

bodies hybridize when the antibodies are bound to the same target 

protein (antigen), enabling DNA amplification of the protein signal 

with a DNA polymerase. The PCR product is quantified and detected 

on a next generation sequencing readout59,60. The Olink Explore plat-

form consists of four panels focusing on inflammation, oncology, 

cardiometabolic and neurology proteins. Each panel has 12 internal 

controls and three proteins (CXCL8, IL-6 and TNF) are included in all 

four panels for quality assurance purposes. The performance of each 

protein assay is validated based on specificity, sensitivity, dynamic 

range, precision, scalability detectability and endogenous interfer-

ence61. The median intra-individual coefficient of variation was 6.3%. 

The mean correlations across different panels for each of the three 

proteins (CXCL8, IL-6 and TNF) measured on all four protein panels 

varied between r = 0.81 and 0.96.

Statistical analyses
Proteomic risk scores. Weighted proteomic risk score. From the Cox 

regression of the associations between each of the 4,979 aptamers and 

incident hip fractures, a weighted proteomic risk score was developed 

in the CHS derivation cohort. The proteomic risk score includes the 

18 aptamers passing the Bonferroni-adjusted P value threshold of 

P < 1.0 × 10−5 in the CHS cohort (Supplementary Table 2). The weights 

are the estimated β values from the Cox regression.

LASSO proteomic risk score. We used LASSO with repeated data splitting 

to identify top aptamers (proteins) for inclusion in a risk score, using 

as few proteins as possible in the model. Protein prediction models 

were derived in CHS with the R package ‘glmnet’. For Cox regression 

analysis with LASSO penalty, a tenfold cross-validation was carried out 

for tuning parameter selection. The CHS data were randomly split 500 

times, with 70% of the data in each split used as training data for model 

fitting and 30% of the data used for model testing. Age, sex and race 

were forced into the model, while log-transformed and normalized 

protein values for all available aptamers were included as parameters. 

For each of the 500 splits, a set of proteins relevant for prediction were 

identified by the model based on the λ value, which gives the minimum 

mean cross-validated error in our model. Based on results from the 500 

data splits, proteins were ranked by the frequency with which they were 

selected by the LASSO model.

The top 1–30 aptamers, ranked by their average selection fre-

quency and coefficient estimates using LASSO, were carried into usual 

Cox regression models via repeated sample splitting. The data were 

split ten times, again into 70% training and 30% testing data, with 

C-index and AUC calculated for models containing age, sex, race and 

between 1–30 aptamers, by selection frequency in the previous step. A 

parsimonious model of top aptamers was chosen based on the number 

of aptamers included in the model that maximized AUC and C-index. 

The model that was found to be the most reliable protein model for 

prediction of fractures included 22 proteins and was validated in the 

HUNT cohorts (Supplementary Table 3).

Elastic net proteomic risk score. Using similar methods as for the LASSO 

machine-learning proteomic risk score, additional analyses were con-

ducted using an elastic net (EN) penalty. This method is a hybrid of 

ridge regression and LASSO regularization which performs well in 

the setting of multicollinearity, in which parameters are highly cor-

related, as is seen in large proteomics datasets. In our EN analyses, 

an α value of 0.9 was chosen to allow for some multicollinearity while 

generating a parsimonious model, the top model, including 20 proteins  

(Supplementary Table 4).

Polygenic risk scores. We selected PRSs for fractures (PRS-Fracture15), 

FN-BMD (PRS-FN-BMD16) and the bone mass-related parameter speed of 

sound in the heel (PRS-gSOS8) based on the previously published larg-

est GWAS8,15,16, yielding the highest number of independent loci for each 

phenotype (see details below). The performances of PRS-FN-BMD and 

PRS-gSOS for fracture prediction have been published previously8–11. 

There is also an alternative BMD-based PRS evaluating fracture predic-

tion62–64, which we have not used, as it is based on an early publication 

with a considerably smaller GWAS for FN-BMD65.

PRS-Fracture The weighted PRS was based on 15 independent 

GWAS significant signals for fractures at any bone site derived from a 

previous fracture GWAS15.

PRS-FN-BMD The weighted PRS score was based on 47 independent 

GWAS significant signals for FN-BMD16.

PRS-gSOS The PRS was developed by the machine-learning tech-

nique LASSO using 21,717 genetic markers for ultrasound-derived 

speed of sound in the heel in the UK Biobank8.

Cox proportional hazards models. For hip fracture survival analyses, 

HRs, 95% CIs and significance levels were calculated using Cox propor-

tional hazards models. Fractures were assessed from baseline to the 

diagnosis of fracture, death or the end of follow-up, whichever occurred 

first. The HR for a proteomic risk score or PRS was reported per one s.d. 

higher risk score. In addition, exploratory stratified analyses accord-

ing to sex, age and ancestry were performed in the large UK Biobank 

cohort. Hip fracture risk in different total population percentile bins 

of the proteomic risk score, compared to participants with an average 

proteomic risk score (40–60%), was also determined.

Time-dependent analyses. Kaplan–Meier curves and hip fracture sur-

vival probability curves adjusted for age and sex were used to explore 

the time dependency of the difference in hip fracture risk according 

to proteomic risk score quartiles.

Fracture discrimination. A receiver operating characteristic (ROC) 

AUC was calculated using the roc.test function in the pROC R package. 
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The difference between AUCs were tested using DeLong’s test, in the 

same R function (https://cran.r-project.org/web/packages/pROC/

index.html)66.

C-index and 95% CIs were calculated using the rcorr.cens function 

in the Hmisc R package (F. E. Harrel proposed the method and wrote 

the R package; https://cran.r-project.org/web/packages/Hmisc/index.

html). Differences between C-index were tested using the compareC 

function in the R package compareC (https://cran.r-project.org/web/

packages/compareC/index.html)67.

Fracture reclassification. To evaluate the improvement in reclassifica-

tion gained by adding a variable to a baseline predictor, the NRI using 

3% predicted hip fracture threshold (NRI categorical; above which 

pharmacological treatment is recommended by the Bone Health and 

Osteoporosis Foundation20), the integrated discrimination improve-

ment and the category-free NRI were used68,69.

All statistical computations were performed using R.

Association with fractures at different bone sites
We also evaluated the performance of the developed hip fracture 

proteomic risk score for prediction of fractures at other bone sites 

besides hip fractures in the UK Biobank. Fracture cases were identified 

using ICD10 and ICD9 codes (Supplementary Table 16) and included 

the following fracture groups: forearm fractures, hip fractures, major 

osteoporotic fractures (includes distal forearm fractures, hip frac-

tures, vertebral fractures and upper arm fractures) and fractures of 

the lower leg.

Phase 2 proteins in the UK Biobank
During the revision of this manuscript, the phase 2 proteins from 

the Olink platform were released in a subsample of the participants 

included in the UK Biobank validation cohort. This enabled the inclu-

sion of three additional proteins, resulting in a proteomic risk score 

with 16 proteins instead of 13 in this subsample of UK Biobank (Sup-

plementary Table 2); however, the strengths of the association per s.d. 

increase in the proteomic risk score were very similar for the originally 

designed proteomic risk score of 13 and the new proteomic risk score 

of 16 in this subsample of the UK Biobank (n = 39,551, proteomic risk 

score of 13, HR 1.70, 95% CI 1.54–1.87; proteomic risk score of 16, HR 1.70, 

95% CI 1.54–1.88). As the effect sizes for the hip fracture associations for 

proteomic risk score of 13 and proteomic risk score of 16 were similar 

and the sample size for proteomic risk score of 13 was substantially 

larger, the data in the article are presented using the originally designed 

proteomic risk score of 13.

Mendelian randomization
Genetic instruments for the plasma proteins included in the proteomic 

risk score were selected from a previously published GWAS on circu-

lating proteins analyzed by the SomaScan aptamer-based technique 

in 35,559 Icelanders17. Correlated single-nucleotide polymorphisms 

were removed using LD-pruning with an r2 threshold of 0.01. Outcome 

results were selected from a published GWAS on hip fractures (11,516 

hip fracture cases)5. MR analyses were performed using the Mendelian-

Randomization R package. Causal associations were estimated using 

either Wald ratio or inverse-variance weighted fixed effects depending 

on the number of valid genetic instruments.

Statistics and reproducibility
No statistical test was used to predetermine the sample sizes, but our 

sample sizes are similar to those reported in previous publications using 

proteomic data from the cohorts used in the present study18,26. The 

numbers of included participants for each analysis are given in the table 

and figure legends. We used population-based longitudinal cohorts and 

no randomization was performed by us; however, in the UK Biobank 

the subcohort selected for the proteomic analyses was previously 

randomly selected to be representative of the whole UK Biobank cohort 

as described in a previous publication18. To reduce potential selection 

bias, participants selected for the UK Biobank COVID-19 study were 

excluded from the present study evaluating proteomic risk scores18. 

The investigators were not blinded to allocation during experiments 

and outcome assessment. Data collection (incident hip fractures) and 

proteomic analyses were performed before the initiation of the present 

study. The statistical tests used are given in the legends of all tables and 

figures. The main finding that the weighted proteomic risk score pre-

dicted hip fracture risk was observed in three independent validation 

cohorts. Data distribution was assumed to be normal, but this was not 

formally tested. We followed the STARD guidelines.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
Individual-level data from HUNT can be accessed by, or in collabora-

tion with, a Norwegian principal investigator. Researchers can apply 

for HUNT data access from the HUNT Research Centre (https://www.

ntnu.edu/hunt). To do this they must have obtained project approval 

from the Regional Committee for Medical and Health Research Ethics 

(REC)26. Information on the application and conditions for data access 

in HUNT is available at https://www.ntnu.edu/hunt/data. Qualified 

investigators may access the CHS data by following the study policies 

described at https://chs-nhlbi.org/CHS_DistribPolicy. The authors are 

restricted from sharing CHS data as per the terms of their data-use 

agreement. Access to the UK Biobank data can be obtained by applica-

tion to the UK Biobank (https://www.ukbiobank.ac.uk/). All other data 

supporting the findings of this study are available from the correspond-

ing author upon reasonable request.

Code availability
Analyses have been performed using R v.4.1.1 (https://cran.r-project.

org/) and the R packages survival (v.3.2-13) for Cox regressions; glmnet 

(v.4.1-8) for LASSO regression; pROC (v.1.18.5), ROCR (v.1.0-11), Pre-

dictABEL (v.1.2-4) for AUC and ROC analyses; Hmisc (v.5.1-2), compareC 

for C-index calculation and testing; and survminer (v.0.4.9), rms (v.6.8-

0) and metafor (v.4.4-0) for plots. The FRAX tool is available at https://

www.sheffield.ac.uk/FRAX/ (v.1.4.4). Custom written R scripts are 

available at https://github.com/marianethander/Protein_Risk_Score 

and are included in the Supplementary Code file.
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Extended Data Fig. 1 | Kaplan–Meier curves of hip fractures according to 

proteomic risk score quartiles in UK the Biobank. Data are given as point 

estimates of survival rate with 95% confidence intervals. (A) All participants 

with available proteomic analyses in the UK Biobank were included (50,876 

participants and 686 incident hip fracture cases). (B) The randomly selected 

participants with available proteomic analyses in the UK Biobank were included 

(44,817 participants and 504 incident hip fracture cases).
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Extended Data Fig. 2 | Hip fracture survival probability according to 

proteomic risk score quartiles adjusted for age, sex, and cohort specific 

factors in the UK Biobank. Data are given as point estimates of survival rate with 

95% confidence intervals. (A) All participants with available proteomic analyses 

in the UK Biobank were included (50,876 participants and 686 incident hip 

fracture cases). (B) The randomly selected participants with available proteomic 

analyses in the UK Biobank were included (44,817 participants and 504 incident 

hip fracture cases).
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Extended Data Fig. 3 | Receiver operating characteristic curves and fracture 

discrimination (AUC from logistic regression models) using proteomic risk 

score or PRS-FN-BMD beyond FRAX-CRF in the UK Biobank. Genetic analyses, 

proteomic analyses and eBMD were required. (A) All available participants (in 

total 49,087 participants and 663 incident hip fractures). (B) Randomly selected 

participants (in total 43,286 participants and 487 incident hip fractures). The 

base model was also adjusted for sex, proteomic batch, ethnicity, and UK Biobank 

centre. PRS-FN-BMD = Weighted polygenic risk score based on independent 

GWAS significant signals for femoral neck bone mineral density (FN-BMD) 

derived from Estrada et al.16. FRAX-CRF = FRAX score for estimation of incident 

hip fracture risk using all available clinical risk factors in the UK Biobank. 

The sensitivity (=true positive rate) and specificity (=1-false positive rate) are 

presented on the Y-axis and X-axis, respectively. *AUC for the model including 

FRAX-CRF + proteomic risk score (blue line) was significantly larger than the AUC 

for the model including only FRAX-CRF (red line). Two-sided DeLong’s test gave 

(A) for all available participants P = 1.4 × 10−7 and (B) for the randomly selected 

participants P = 1.2 × 10−3  (ref. 18).
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