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Abstract

Purpose: To evaluate the feasibility and utility of a deep learning (DL)-based

reconstruction for improving the SNRof hyperpolarized 129Xe lung ventilationMRI.

Methods: 129Xe lung ventilation MRI data acquired from patients with asthma

and/or chronic obstructive pulmonary disease (COPD) were retrospectively recon-

structed with a commercial DL reconstruction pipeline at five different denois-

ing levels. Quantitative imaging metrics of lung ventilation including ventilation

defect percentage (VDP) and ventilation heterogeneity index (VHI) were compared

between each set of DL-reconstructed images and alternative denoising strate-

gies including: filtering, total variation denoising and higher-order singular value

decomposition. Structural similarity between the denoised and original images

was assessed. In a prospective study, the feasibility of using SNR gains from DL

reconstruction to allow natural-abundance xenon MRI was evaluated in healthy

volunteers.

Results: 129Xe ventilation image SNR was improved with DL reconstruction when

compared with conventionally reconstructed images. In patients with asthma

and/or COPD, DL-reconstructed images exhibited a slight positive bias in ven-

tilation defect percentage (1.3% at 75% denoising) and ventilation heterogeneity

index (∼1.4) when compared with conventionally reconstructed images. Addition-

ally, DL-reconstructed images preserved structural similarity more effectively than

data denoised using alternative approaches. DL reconstruction greatly improved

image SNR (greater than threefold), to a level that 129Xe ventilation imaging using

natural-abundance xenon appears feasible.

Conclusion: DL-based image reconstruction significantly improves 129Xe ven-

tilation image SNR, preserves structural similarity, and leads to a minor bias

in ventilation metrics that can be attributed to differences in the image sharp-

ness. This tool should help facilitate cost-effective 129Xe ventilation imaging with

natural-abundance xenon in the future.
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1 INTRODUCTION

SNR is a significant limiting factor in hyperpolarized 129Xe

imaging of lung ventilation, impacting both visual inter-

pretation and quantitative analysis of functional metrics

such as the ventilation defect percentage (VDP).1 Low

SNR in hyperpolarized 129Xe imaging can result from sev-

eral factors: low 129Xe polarization; inability of patients

(especially those with severe lung disease) to completely

inhale the gas dose and/or maintain breath-hold; unpre-

dictable logistical delays such as patient arrival at the

MR unit, and set-up time at the scanner, which can lead

to T1 decay of pre-prepared doses of polarized 129Xe. To

maximize SNR, most human 129Xe imaging studies use

129-enriched xenon (>85% 129Xe), which provides approx-

imately threefold SNR benefits over natural-abundance

xenon (26% 129Xe)2; however, the enrichment process is

expensive, resulting in an approximate five- to tenfold

increase in cost per liter of xenon. Moreover, doses that

do not satisfy a certain polarization (or dose equivalence)3

requirement before administration, as defined by ethical

constraints or FDA guidelines, may have to be discarded.4

As such, methods to improve 129Xe image SNR are

highly desirable, both economically and for quantitative

clinical interpretation. To date, efforts to improve the SNR

of hyperpolarized 129Xe images have largely been focused

on: optimization of polarizer hardware,5–7 development

of high-sensitivity radiofrequency coils,8 and implementa-

tion of efficient acquisition trajectories that require fewer

RF pulses to encode, and therefore, allow higher flip

angles to be used.9–11 With the exception of compressed

sensing—which has been used with a primary motiva-

tion of image acceleration rather than denoising11—image

reconstruction/postprocessing techniques have not been

fully explored for improving SNR in hyperpolarized 129Xe

imaging. However, a recent report of the denoising of
19F images with a low-rank matrix recovery with opti-

mal shrinkage of singular value approach12 may also hold

promise for 129Xe imaging.

In recent years, artificial intelligence (AI) methods

have been used in hyperpolarized gas image segmenta-

tion13,14 and analysis,15 but the potential for denoising

images has been underexplored.16 A deep convolutional

neural network (CNN)-based image reconstruction tool

that acts on raw MR data and produces images with

increased sharpness and reduced noise17 has been recently

commercialized and applied to 1H imaging of various

organs. In particular, deep learning (DL) reconstruction

led to higher SNR, CNR, and image quality scores18,19 in

the prostate, higher sharpness and contrast in the liver,20

and improved diagnostic performance in the pituitary

gland21 and lumbar spine.22

The purpose of this work was to assess the feasibil-

ity and utility of applying this commercially available DL

reconstructionmethod developed for 1H imaging to hyper-

polarized 129Xe lung ventilation images, and to evaluate

whether the fidelity of quantitative metrics including VDP

and ventilation heterogeneity index (VHI) are preserved.

2 METHODS

2.1 Datasets—retrospective

129Xe lung ventilation MRI data acquired from patients

with asthma and/or chronic obstructive pulmonary dis-

ease (COPD) under a National Research Ethics Commit-

tee approved protocol (16/EM/0439) were retrospectively

re-processed. Datasets (n= 34) with a range of SNR val-

ues (median [range]; 29.3 [8.66, 38.0]) were randomly

selected from a database of >100 MRI examinations with

SNR<40 performed between 2020 and 2022. These data

were acquired from patients with median (range) age of

57.5 (30.7, 82.2) years; sex: 17 female (F), 17male (M);

diagnosis: asthma, n= 17, asthma + COPD, n= 13, COPD,

n= 4; physician-assigned severity: mild, n= 8, moderate,

n= 17, severe n,= 9; and forced expiratory volume in 1 s

(FEV1) z-score of −0.83 (−3.77, 2.66).

2.2 Datasets—prospective

To explore the effect of DL reconstruction on low SNR

images, and the feasibility for low-dose natural-abundance

xenonMRI, n= 3 healthy volunteers (age: 23, 29, 36 years;

sex: 1 F, 2M) were scanned with a 50:50 mix of

natural-abundance xenon and N2. One of these healthy

volunteers was also scanned with the usual dose of

129-enriched xenon described below, but with increased

spatial resolution. A simplified diagram summarizing the

datasets included in the two sub-studies is included in

Figure S1.

2.3 MRI acquisition

In all cases, a gas dose comprising a 50:50 mix of xenon

(129Xe polarization −25%5) and N2 of total volume 1L (or

less depending on patient height, see Chan et al.23) was

inhaled from functional residual capacity and breath-hold

was maintained while images were acquired as described

below. For the retrospective study, 129-enriched xenonwas

used (∼86% enrichment), and for the prospective study,

either 129-enriched or natural-abundance (26% 129Xe)

xenon was used.
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STEWART et al. 3

A 1.5 T GE Healthcare MR scanner (HDx for retro-

spective study, HDx or 450w for prospective study) was

used in combination with a flexible transmit-receive vest

coil (ClinicalMR Solutions). 129Xe ventilation imageswere

acquired using a 3D balanced steady state sequence2 with

in-plane FOV between 36 and 48 cm, matrix 100× 100

(in-plane resolution 3.6–4.8 cm2) with partial phase FOV,

slice thickness 10mm, flip angle −10◦, bandwidth 16 kHz

or 32 kHz. For the prospective 129-enriched xenon acqui-

sition, the slice thickness was halved (5mm) and flip

angle decreased (∼7◦), as optimum for the phase encoding

resolution.2

To enable calculation of the VDP, 1H anatomical

images of the lungs were acquired during a separate

breath-hold after inhalation of a bag of air of equivalent

volume. Imaging parameters were: 3D spoiled gradient

recalled acquisition in steady state (SPGR) sequence with

FOVmatching that of 129Xe imaging, slice thickness 5mm,

flip angle ∼5◦, and bandwidth ±83.3 kHz.

2.4 Image reconstruction

The DL reconstruction pipeline—commercially available

as AIR Recon DL (GE Healthcare)—was trained using

a supervised learning approach with pairs of low-noise,

high resolution images, and typical noisy, lower resolu-

tion counterparts across a broad range of image content

to enable generalizability of the model across anatomies.17

This trainingwas performed previously as part of the prod-

uct optimization, a process that is not related to the present

study. The training data had not included any 129Xe lung

images, and no additional training was performed for the

purpose of this study. In addition to reducing image noise,

themodel also improves sharpness and suppresses trunca-

tion artifacts, having an integrated “de-ringing” step that

is independent from the denoising step. The 3D Carte-

sian pipeline of this DL model was applied as is without

any adjustment or retraining to our 3D 129Xe raw k-space

data. Images were generated using an offline version of the

product reconstruction pipeline at denoising levels of 0 (no

denoising), 25%, 50%, 75%, and 100% (a.k.a. 0, 0.25, 0.5,

0.75, 1.0), with de-ringing active in all cases. In addition,

images were generated without de-ringing for all denois-

ing levels (including 0) in attempt to isolate the effects of

the two independent processing steps. (Unless explicitly

specified, DL denoised images reported in the following

include de-ringing).

The resulting images were compared to several alter-

native de-noising pathways: (1) k-space filtering using a

2D Hamming window with periodicity defined by the

image size (this acts in addition to the GE Healthcare

product reconstruction pipeline’s Fermi filter); (2) an

image-based total variation (TV) denoising approach using

FASTA (fast adaptive shrinkage/thresholding algorithm)

(total variation regularization parameter, λ= 0.03)24; (3)

higher-order singular value decomposition (HOSVD)

denoising25 applied to the 3D images post-reconstruction

(using a 3D tensor with rank [40 40 13] on the DICOM

images of size [256 256 number of slices], with forward and

inverse variance-stabilizing transformation26 applied pre-

and post-HOSVD, respectively).

2.5 Image analysis

For all sets of reconstructed 129Xe ventilation images,

quantitative metrics of lung ventilation, namely; VDP,27

coefficient of variation (CV),28 and its interquartile range,

the ventilation heterogeneity index (VHI),29 were calcu-

lated for comparison with conventional images. In brief,
1H structural images were co-registered to the 129Xe

images; then, the image pairs (129Xe and 1H) were used as

inputs to an in-house CNN-based segmentation algorithm,

developed from Bertin et al.,30 to segment the lung cav-

ity and main airways, followed by a manual editing stage.

After N4 bias correction and normalization, the 129Xe sig-

nal was binned into four bins (defect, low, normal and

hyper ventilation; see Figure 1),31,32 and VDP was cal-

culated as the ratio of the volume of pixels with sig-

nal in the “defect” bin to the volume of the lung cavity

from the 1H image. Local CV was calculated slice-by-slice,

by first subsampling the images by 50% and then slid-

ing a (nearest-neighbor) 3× 3 voxel kernel across the

images, calculating the signal variation within the kernel

at each step.28,33 The ventilation heterogeneity index is

the interquartile range of the resulting CV distribution.29

Unless otherwise specified, the lung cavity masks derived

from the original 129Xe images (conventional reconstruc-

tion) were used to process all other 129Xe images (i.e.,

those reconstructed using the DL model and alternative

denoising pathways). However, in a sub-analysis, lung cav-

ity masks were also derived from the DL 0.75 images, and

VDP and VHI were re-calculated.

Bland–Altman analyseswere performed to identify dif-

ferences in VDP and VHI across different reconstruction

approaches. In addition, SNR was computed from the

DICOM images as the ratio between the estimated sig-

nal and the estimated noise. The signal was estimated

as the average over a region identified by thresholding

at a level selected as proposed by Ridler and Calvard.34

The noise was estimated as the most frequent occurrence

when fitting a Rayleigh function (a special case of a Rician

estimation35with an expected zero signal) on a slidingwin-

dow spanning the whole image. The images included in

the retrospective study represent a range of SNR values,
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4 STEWART et al.

F IGURE 1 (Retrospective study) From left to right: Conventional (Orig) reconstruction, deep learning (DL) reconstruction at

incremental denoising levels from 0.25 to 1.0 (de-ringing active in all cases) for ventilation images and their corresponding binning maps. (A)

Patient with severe asthma. (B) Patient with severe asthma + chronic obstructive pulmonary disease. (C) Patient with moderate asthma.

however, to explore the effect of SNR on the DL recon

and derived metrics within one dataset, complex Gaus-

sian noise of increasing SD was added to the raw k-space

data before reconstruction for one dataset with high base-

line SNR. Finally, the structural similarity index measure

(SSIM)36 was evaluated for each set of denoised images

to quantify similarity to the images reconstructed using

the conventional pipeline. SSIM was calculated for three

regions; (1) the entire image; (2) the region containing the

lungs and airways only (i.e., lung cavity mask + airway

mask); and (2) the background (i.e., the difference between

regions [1] and [2]). Metrics are presented as mean (±SD)

or median (range) depending on whether data followed a

normal distribution (Shapiro–Wilk test).

3 RESULTS

3.1 Retrospective study

Example 129Xe ventilation images obtained from two sub-

jects with severe disease reconstructed using the scanner’s
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STEWART et al. 5

TABLE 1 (Retrospective study) Quantitative metrics of lung ventilation (ventilation defect percentage, VDP and ventilation

heterogeneity index, VHI) for different reconstruction methods (retrospective dataset).

Denoising method VDP (%)

VDP diff:

method—original VHI

VHI diff:

method—original Apparent SNRa

Original (none) 3.8 (6.3) – 10.5 (3.2) – 29.3 (8.7, 38.0)

DL DN (0%)+DR 5.2 (6.4) 1.22 (0.01, 2.43) 12.5 (4.5) 1.44 (0.18, 2.70) 31.7 (9.1, 52.3)

DL DN (25%)+DR 5.2 (6.4) 1.25 (−0.04, 2.54) 12.5 (4.4) 1.41 (0.05, 2.77) 42.1 (11.8, 67.6)

DL DN (50%)+DR 5.2 (6.5) 1.28 (−0.09, 2.66) 12.5 (4.3) 1.40 (0.00, 2.80) 61.5 (17.4, 101)

DL DN (75%)+DR 5.2 (6.5) 1.31 (−0.15, 2.77) 12.6 (4.2) 1.41 (0.00, 2.83) 123 (34.8, 192)

DL DN (100%)+DR 5.2 (6.5) 1.34 (−0.19, 2.88) 12.6 (4.1) 1.43 (0.02, 2.83) 933 (284, 1580)

DL DN (0%) (no DR) 4.2 (5.7) 0.06 (−1.11, 1.23) 11.4 (4.0) 0.35 (−0.11, 0.81) 31.2 (8.9, 51.7)

DL DN (25%) (no DR) 4.2 (5.8) 0.11 (−0.96, 1.18) 11.3 (4.0) 0.33 (−0.19, 0.86) 40.6 (11.4, 67.5)

DL DN (50%) (no DR) 4.2 (5.8) 0.14 (−0.89, 1.18) 11.4 (3.9) 0.34 (−0.25, 0.86) 60.6 (17.0, 98.7)

DL DN (75%) (no DR) 4.2 (5.8) 0.18 (−0.83, 1.20) 11.4 (3.8) 0.37 (−0.25, 0.98) 120 (33.9, 197)

DL DN (100%) (no DR) 4.3 (5.8) 0.22 (−0.83, 1.26) 11.4 (3.5) 0.41 (−0.22, 1.04) 874 (277, 1484)

Filtering 3.3 (4.6) −0.95 (−3.46, 1.56) 9.2 (3.0) −2.02 (−4.16, 0.12) 43.2 (12.4, 71.0)

TV 3.9 (4.2) −0.95 (−4.78, 2.87) 9.9 (3.8) −1.64 (−4.11, 0.83) 33.5 (9.4, 55.8)

HOSVD 3.7 (5.2) −0.46 (−2.67, 1.75) 10.5 (3.5) −0.94 (−2.25, 0.38) 37.1 (9.3, 438)

Note: All metrics are reported as median (interquartile range), alongside Bland–Altman metrics—mean difference (i.e., bias [± 1.96 SDs])—of the difference

between values for each method and the original (conventional manufacturer pipeline processed) images.

Abbreviations: diff, difference; DL DN, deep learning based denoising; DR, de-ringing (“on” by default); HOSVD, higher-order singular value decomposition;

Orig, original (conventional scanner manufacturer pipeline); TV, total variation.
aBecause of the alterations to the signal and noise introduced by DL processing and other denoising methods, the SNR values quoted are only considered “true”

SNR for the original reconstruction.

conventional pipeline (“Orig”) and at all four DL denois-

ing levels (0.25, 0.5, 0.75, and 1.0) are shown in Figure 1.

Qualitatively, across all datasets, the image SNRand sharp-

ness were improved by the DL reconstruction, whereas the

physiological ventilation distribution remained visually

unchanged. Alongside the raw images, binning maps of

the ventilation distribution are shown, which qualitatively

illustrate that in addition to ventilation defect regions,

areas of low, normal and hyper ventilation are generally

preserved by the DL reconstruction. Quantitatively, the

median VDP was increased for DL-reconstructed images

when compared with conventional images, as summa-

rized in Table 1. However, when the de-ringing step was

removed, the VDP values were considerably closer to the

original values. A denoising level of 0.75 was chosen

empirically to provide a good balance between optimal

SNR improvement and relatively low bias in VDP. (More-

over, the highest denoising level of 1.0 is not available

prospectively). In Figure 2, images reconstructed using the

“Orig” are shown alongside images reconstructed at the

empirically optimal DL denoising level of 0.75 (75%) and

difference images to highlight the regions of the image

that are most significantly affected by the denoising (and

de-ringing) pipeline.

Figure 3 shows a Bland–Altman plot for the DL recon-

structed images at a denoising level of 0.75 (including

de-ringing), with a positive bias toward increased VDP for

the DL images of 1.31%; this was reduced to 0.18% when

de-ringing was removed (Figure S2). The difference in

VDPwas generally lower at lower VDP; the bias calculated

for datasets with mean VDP<10% was reduced to 1.15%.

When re-calculated using the masks generated from the

DL (0.75) images, the mean bias in VDP was reduced to

0.88% (Figure S3). The VDP values derived from filtering,

TV denoising and HOSVDwere all lower than those of the

original images, with a smaller mean difference than that

of the DL reconstructed images (Table 1).

The VHI was also increased for DL-reconstructed

images when compared with original images (Table 1),

with a positive bias of∼1.4 for all denoising levels. Remov-

ing the de-ringing pipeline reduced the positive bias to 0.3

to 0.4 for all denoising levels. When re-calculated using

the masks generated from the DL (0.75) images, the mean

bias in VHI was reduced to 0.98. In contrast, VHI values

were lower for all other denoisingmethods comparedwith

those of the original images, with HOSVD providing the

closest agreement with the original values. Figure 3 shows

a Bland–Altman plot for the DL reconstructed images at
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6 STEWART et al.

F IGURE 2 (Retrospective study) From left to right: Conventional (Orig) reconstruction, deep learning (DL) reconstruction (denoising

level:0.75+ de-ringing), “difference image” calculated as the subtraction of the former from the latter after normalization, and normalized

histograms of the pixel intensities for conventional and DL reconstructed images, for a patient with asthma + chronic obstructive pulmonary

disease (top) and a patient with asthma (bottom; same raw data as in Figure 1C); in both cases physician-assigned disease severity was

moderate. Ventilation defect percentage (VDP) and ventilation heterogeneity index (VHI) are noted for each image. The color bar has been

chosen to accentuate the signal/noise differences. The SSIM in the lung and airway region for the case in the top row was 0.931 and for the

case in the bottom row was 0.865.

F IGURE 3 (Retrospective study) Bland–Altman plots of the difference in ventilation defect percentage (VDP) and ventilation

heterogeneity index (VHI) as a function of their mean values, calculated from conventionally reconstructed images versus deep learning

(DL)-reconstructed (denoising level:0.75+ de-ringing) images for n= 34 patients with asthma and/or chronic obstructive pulmonary disease.

a denoising level of 0.75, indicating a positive bias toward

increased VHI for the DL images of 1.41.

Median SSIM values are reported in Table 2. For DL

reconstructed images, the SSIM decreased in all three

regions of assessment (entire image, lung and airway

region only, and background only) with increasing denois-

ing level. Evaluating SSIM across the whole 3D image set,

the SSIM was lower for DL reconstructed images with

high denoising levels (≥0.5) than all alternative denoising

techniques. When evaluating SSIM for the lung and air-

way region and background region separately, it was found

that the SSIM was well preserved in the lung and airway

region for all denoising levels (SSIM ≥0.95), whereas a

sharp decrease in SSIM of the background was observed
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STEWART et al. 7

TABLE 2 (Retrospective study) Structural similarity of images reconstructed using the DL model and alternative pipelines, evaluated

in comparison with the original images.

SSIM

Denoising method Entire image Lungs+ airways Background

DL DN (0%)+DR 0.992 (0.007) 0.972 (0.012) 0.988 (0.006)

DL DN (25%)+DR 0.962 (0.027) 0.972 (0.014) 0.957 (0.025)

DL DN (50%)+DR 0.881 (0.060) 0.968 (0.016) 0.874 (0.055)

DL DN (75%)+DR 0.753 (0.099) 0.963 (0.018) 0.739 (0.102)

DL DN (100%)+DR 0.620 (0.145) 0.954 (0.023) 0.598 (0.151)

DL DN (0%) 0.997 (0.002) 0.989 (0.008) 0.995 (0.002)

DL DN (25%) 0.973 (0.015) 0.989 (0.007) 0.970 (0.014)

DL DN (50%) 0.900 (0.051) 0.986 (0.010) 0.895 (0.046)

DL DN (75%) 0.778 (0.102) 0.981 (0.013) 0.766 (0.100)

DL DN (100%) 0.637 (0.141) 0.971 (0.017) 0.616 (0.153)

Filtering 0.953 (0.028) 0.921 (0.041) 0.935 (0.029)

TV 0.936 (0.039) 0.931 (0.015) 0.921 (0.031)

HOSVD 0.927 (0.058) 0.900 (0.075) 0.889 (0.046)

Note: Metrics are quoted as a median (interquartile range) across all subjects. Denoising level of 0% refers to data processed through the DL pipeline with a

denoising level of 0% (i.e., not necessarily identical to “original” data i.e., that processed through the manufacturer stock [non-DL] pipeline).

Abbreviations: DL DN, deep learning based denoising; DR, de-ringing (“on” by default); HOSVD, higher-order singular value decomposition; TV, total variation.

with increasing denoising level. For DL 0.75, the SSIM

in the lung and airway region was 0.963. For all denois-

ing levels, a marginal, but significant increase in SSIM

was observed when the de-ringing step was removed; this

increase was exhibited in all three regions of assessment,

indicating increased similarity to the original images as a

whole. The SSIM values for DL images at all denoising lev-

els in the lung and airway region were higher than those

of any of the alternative denoising techniques in the same

region.

Example images reconstructed using each alternative

denoising technique is shown in Figure 4 alongside his-

tograms of the corresponding signal intensity in the lung

region. The DL (0.75) image histogram is the most simi-

lar in shape to that of the TV denoising technique; both

exhibit a sharper fall-off compared with the histograms

obtained from other techniques. On the other hand,

the histograms generated from the filtering and HOSVD

denoising methods are most similar in shape to that of the

original images.

The apparent SNR of the reconstructed images was

observed to increase in a non-linear manner with

increasing denoising level, with a trend toward slightly

higher SNR with de-ringing compared with no de-ringing

(Table 1). (Although the SNR is deemed to be true SNR

for the original images, the DL reconstruction alters the

noise profile such that SNR values calculated after DL

reconstruction are considered as “apparent” SNR values

in this manuscript). Figure 5 shows the effect of adding

Gaussian noise to reduce the baseline SNR before run-

ning the DL recon. At a denoising level of 0.75, the

original SNR (32.0) is boosted approximately fourfold by

DL recon, and the original SNR is recoverable from a

baseline SNR of ∼8 (Figure 5A). The SSIM in the lung

and airway region was >0.8 for all DL denoising levels

down to a baseline SNR ∼10 (Figure 5B). VDP and VHI

biases were fairly constant for SNR >10, but SNR <10

caused the values to vary considerably. Concurrent with

other observations, the VDP and VHI were closer to that

of the original images for the images processed without

de-ringing.

3.2 Prospective Study

129Xe ventilation images acquired from two healthy sub-

jects using a 50% natural abundance xenon inhaled gas

mixture and reconstructed using the conventional pipeline

exhibited borderline SNR acceptability criteria for clinical

use, however, application of the DL reconstruction led to

a greater than threefold increase in SNR (see examples in

Figure 6). Images acquired with 129-enriched xenon with

conventional sequence parameters, natural abundance

xenon with the same parameters, and 129-enriched xenon
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8 STEWART et al.

F IGURE 4 (Retrospective study) Images reconstructed using different denoising pipelines for a patient with moderate asthma (same

raw data as Figure 2). Below each image, histograms of the pixel intensities within the lung mask region are shown overlaid on those of the

original images. The dark bands on the left and right of the images arise from the “gradwarp” gradient non-linearity correction to the image.

This is applied after denoising and creates 0 value pixels in these bands that are distinct from the true noise (>0). For the DL image, the

gradwarp correction is incorporated into the DL pipeline and the noise level is even closer to zero in value; as such these bands are less

noticeable. Orig, original (conventional scanner manufacturer pipeline); Filt, additional filtering; TV, Total variation denoising; HOSVD:

Higher-order singular value decomposition; DL, deep learning based denoising level:0.75+ de-ringing.

F IGURE 5 (Retrospective study) Deep learning (DL) reconstruction ventilation analysis with Gaussian noise added retrospectively to

the raw k-space data of a high baseline SNR dataset acquired from a patient with moderate asthma (different to the data in Figures 1C, 2 and

5). (A) Initial image (SNR= 32), image with noise added (SNR= 10.5), and image with noise added and subsequent DL:0.75 reconstruction

(SNR 40). (B–E) Apparent SNR, SSIM, ventilation defect percentage (VDP) and ventilation heterogeneity index (VHI) as a function of

baseline SNR after adding different levels of Gaussian noise, and reconstructing at different denoising levels with de-ringing, and for no

de-ringing at the 0.75 denoising level.
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STEWART et al. 9

F IGURE 6 (Prospective

study) Original reconstruction

and deep learning (DL)

reconstruction (denoising

level:0.75+ de-ringing) of data

acquired in two healthy

subjects after inhalation of a

dose of natural-abundance

xenon. Quoted SNR is the

mean across all slices. In the

top row, the right bronchus

becomes more visible after the

DL reconstruction (white

arrow), whereas in the bottom

row, an upper region of the

bronchus becomes apparent on

DL reconstruction (gray arrow).

with increased spatial resolution (half the slice thickness)

are shown for one subject in Figure 7. In all cases, the SNR

of the DL reconstructed images was increased greater than

fourfold compared with the original reconstructions. The

difference maps indicated a negative difference at the bor-

ders of the lungs, particularly basally, indicating increased

sharpness, with relatively little signal distribution change

in most of the lung region.

4 DISCUSSION

VDP is the principal metric used in 129Xe ventilation

image interpretation, and the significant increase in VDP

in the DL-based reconstructed images compared with

the original images should not be overlooked. How-

ever, this increase is explainable in part because of the

sharpness of the lung edges that is introduced by the

DL reconstruction process, particularly the de-ringing

algorithm. This increased sharpness is highlighted by

the high relative signal differences at the borders of the

lungs in Figure 7, and furthermore in Figure 8, the

effects of the denoising and de-ringing layers are sepa-

rated visually for an example case, illustrating that the

de-ringing has the most significant impact on the edge

definition.

As the same lung cavity mask (generated from the

original images) was used to calculate VDP for all sets of

images, there are pixels at the borders of the lungs that

were classified as signal in the original images, but have

been set to noise in the DL images; these will, therefore,

contribute to increased VDP. To investigate this further,

we re-generated the lung cavity masks using the DL (0.75)

images and found that the mean bias in VDP compared

with the original images decreased to 0.88% (compared

with 1.31%) (see Figure S3). This is still a non-negligible

bias and is likely because of the increased sharpness at the

border of low and high signal regions inside the lungmask

(i.e., the borders of defects internally rather than periph-

erally). Again, most of this sharpness can be attributed to
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10 STEWART et al.

F IGURE 7 (Prospective study) From top to bottom: conventional 129-enriched xenon acquisition with 10mm slice thickness;

natural-abundance xenon acquisition at the same resolution; 129-enriched xenon acquisition with 5mm slice thickness, all acquired in the

same healthy volunteer. Conventionally reconstructed (Orig) images are shown on the left, deep learning (DL)-reconstructed images

(denoising level:0.75+ de-ringing) in the middle, and “difference image” (subtraction after normalization) on the right. The color bar has

been chosen to accentuate the signal/noise differences. SNR is noted for each image (mean across all slices).

the de-ringing process, as disabling de-ringing reduced the

bias of VDP from 1.31% to 0.18% (using the originalmasks)

(see Figure S2).

In DL denoised images, the separation between sig-

nal and noise is greater than in the original lower SNR

images. In very poor SNR images, the ventilation bin-

ning algorithm may erroneously classify noise within

ventilation defects as signal, artifactually reducing VDP.

Therefore, although VDP is not the same when calculated

from the original and DL images, the VDP calculated from

the DL images is less affected by noise and, therefore, we

believe it to be amore robust and accurate value; therefore,

in future studies we recommend that DL recon is used

prospectively and that the lung cavity masks are generated

from the DL images. It is worth noting that the difference

in VDP between original and DL images correlates signif-

icantly with the mean absolute VDP value (Spearman’s

r= 0.810, p< 0.001), as seen in Figure 3. Interestingly,

the difference in VDP did not correlate with SNR for any

of the DL levels when de-ringing was present (p> 0.05),

however, difference in VDP weakly correlated with SNR

for the DL (0.75) images when de-ringing was disabled

(Pearson’s r=−0.377, p= 0.028); perhaps explained by

the reasons noted above. None of the other de-noising
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STEWART et al. 11

F IGURE 8 Visualization of the effects of de-ringing and de-noising on the sharpness of the image and consequently the delineation of

the borders of the lungs. From left to right: images reconstructed from the same data—acquired from a patient with mild chronic obstructive

pulmonary disease—using the original (conventional) reconstruction pipeline, the deep learning (DL) denoising (DN) pipeline only, the DL

de-ringing (DR) pipeline only, and the DL denoising+ de-ringing pipelines. A zoomed in view of the top left lung is provided in the bottom row.

methods exhibited a correlation between VDP difference

and SNR (p> 0.05).

The increase in ventilation heterogeneity index may

be similarly explained by the increase in image sharp-

ness because of the DL recon pipeline, which would

cause more low valued pixels to be included in the mask

and, therefore, increase the local CV at the borders of

defects and the lung periphery, and concordantly increase

the interquartile range of the CV (i.e., VHI). Disabling

de-ringing significantly reduced the bias in VHI, again

highlighting the significant influence of this processing

step. The median CV was found to have a mean positive

bias of 0.17 toward DL (0.75) images; this bias is less sig-

nificant than that of the VHI and implies that the local

distribution of ventilation is similar between the original

images and DL reconstructed images across most of the

lung regions. Moreover, a reduction in heterogeneity of

ventilation—as was observed for the alternative denois-

ing techniques—could be interpreted as a smoothing out

of physiological ventilation heterogeneity, and therefore, a

loss of functional information. However, it is worth not-

ing that the nearest-neighbor CV calculation is dependent

on the image SNR. In low SNR images, signal variations

may arise from noise-related granularity as well as local

physiology; smoothing out of the former would lead to a

difference in the local CV as compared with the original

images, although not associated with a loss in functional

information.

Importantly, the similarity between DL reconstructed

and original images (as assessed by the SSIM) was close

to 1 (worst case SSIM of 0.954) and better preserved in

DL images relative to the other denoising methods, indi-

cating that the main shapes/structural features of the

image are relatively unchanged by the DL reconstruc-

tion. Disabling the de-ringing pipeline led to a minor,

but significant improvement in similarity, particularly in

the lung and airway region. As with the comparison of

quantitative ventilation metrics, it is worth reiterating

that the SSIM calculation uses the original images as the

reference/ground-truth, but given the improved SNR and

sharpness of the DL images, a decrease in SSIM should not

necessarily be viewed negatively. Indeed, as the de-ringing

improves image sharpness and, therefore, aids VDP anal-

ysis, we recommend using DL denoising in combination

with de-ringing in future studies.

There are several potential uses for this reconstruction

model in 129Xe imaging of lung ventilation in a clinical set-

ting. For example, reducing the need to repeat scans when

the SNR is insufficient, whether caused by incomplete

inhalation of the gas dose, or suboptimal performance of

the 129Xe polarizer, or otherwise. As shown in Figure 5B,

DL recon with a denoising level of 0.75 is able to recover a

baseline SNR of ∼10 to apparent SNR>30, and as shown

in Figure 5C, a high similarity (SSIM>0.8) is preserved for

all DL denoising levels for a baseline SNR of 10. Based on

the data in Figure 5, we propose that a minimum image

SNR of ∼8 can be recovered using DL reconstruction (i.e.,

the image with SNR of 7.6 in Figure 6 is a good example

of this lower limit). In addition, DL reconstruction should

facilitate routine use of natural-abundance Xe in place

of 129-enriched Xe for 129Xe ventilation imaging, which

would reduce the cost per scan approximately fivefold
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12 STEWART et al.

based on current gas mixture prices, therefore, increas-

ing the economic viability of the technique. However, the

small number of healthy volunteer datasets acquired with

natural abundance Xe (and one dataset with 129-enriched

Xe at higher spatial resolution) is a proof of concept only,

and further studies in patients with ventilation hetero-

geneity are still needed to demonstrate clinical utility.

In this work we have confined our investigations to 3D

Cartesian data acquired using a balanced SSFP (bSSFP)

sequence at 1.5 T. The reasons for this are twofold; (1) 3D

bSSFP is used routinely for ventilation imaging at our cen-

ter, therefore we have the largest database available for

testing data acquired with this sequence; and (2) the DL

model used here is specific to 3D acquisitions and a dif-

ferent model is needed for denoising 2D gradient echo

data. To demonstrate the applicability of this 3D model

beyond bSSFP, we have confirmed that it can effectively

denoise 3D SPGR data using six datasets acquired at 3 T.

Figure S4 shows the denoising performance in representa-

tive example datasets acquired from one healthy volunteer

and one patient with sarcoidosis. Similar to in 3D bSSFP

datasets, DL reconstruction at the 0.75 denoising level

led to a three- to four-fold apparent SNR increase. It is

important to note that the DL model used here cannot be

directly applied for denoising k-space data acquired with

a non-Cartesian acquisition trajectory, for example, the

3D radial trajectory used for dissolved-phase 129Xe imag-

ing.37,38 Training and application of a non-Cartesianmodel

will be the subject of future work. We also note that the

current model holds substantial potential for application

to other non-proton nuclei (e.g., 13C, 23Na, and 31P) where

the images have no background signal and SNR is typi-

cally a limiting factor. However, we acknowledge that a

major limitation of the DL method presented here is that

it is only available on GE Healthcare scanners. Alterna-

tive models are likely under-development, and ultimately,

cross-vendor comparison and validation of the robustness

of any proposed DL method will be needed to ensure

maximum benefit to the 129Xe MRI community.

5 CONCLUSION

DL-based image reconstruction of 129Xe images was found

to be feasible using a commercially available reconstruc-

tion pipeline and was found to enhance 129Xe ventila-

tion image sharpness and greatly suppress image noise,

while incurring a minor, explainable bias in key physio-

logical metrics. Further application of this tool on images

acquired from patients with a range of lung pathologies

is required to fully evaluate the physiological interpre-

tation of the resulting images and determine the opti-

mal parameters for future studies. This approach holds

potential for routine low-cost 129Xe ventilation imaging

using natural-abundance xenon, and/or improved spatial

resolution imaging with 129-enriched xenon.
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SUPPORTING INFORMATION

Additional supporting information may be found in the

online version of the article at the publisher’s website.

Figure S1. Simplified diagram of the cohorts included in

the retrospective and prospective parts of this study.

Figure S2. Bland–Altman plots of the difference between

VDP and VHI as a function of their mean values, cal-

culated from conventionally reconstructed images vs.

DL-reconstructed images without de-ringing (denoising

level:0.75) for N = 34 patients with asthma and/or COPD.

These plots are analogous to those in Figure 3 of the main

manuscript, with the de-ringing pipeline disabled.

Figure S3. Bland–Altman plots of the difference between

VDP and VHI as a function of their mean values,

calculated from conventionally reconstructed images

vs. DL-reconstructed (denoising level:0.75+ de-ringing)

images for N = 34 patients with asthma and/or COPD.

These plots are analogous to those in Figure 3 of the

main manuscript, however, whilst the DL-reconstructed

data in Figure 3 were processed using a lung cavity mask

derived from the original images, here the data were

processed using a lung cavity mask derived from the

DL-reconstructed images.

Figure S4. DL reconstruction denoising performance

when applied to 3D spoiled gradient echo (SPGR) data.

(A) Example original images and DL:0.75 reconstructed

images for a patient with sarcoidosis (top row) and a

healthy volunteer (bottom row). (B) Apparent SNR in six

datasets for different denoising levels.

How to cite this article: Stewart NJ, de Arcos J,

Biancardi AM, et al. Improving Xenon-129 lung

ventilation image SNR with deep-learning based

image reconstruction.Magn Reson Med. 2024;1-14.

doi: 10.1002/mrm.30250
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