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We expand the classic result that 𝖠𝖢𝖶𝖮 is equivalent to the statement “For all
𝑋, ℵ(𝑋) = ℵ∗(𝑋)” by proving the equivalence of many more related statements.
Then, we introduce the Hartogs–Lindenbaum spectrum of a model of 𝖹𝖥, and
inspect the structure of these spectra in models that are obtained by a symmet-
ric extension of a model of 𝖹𝖥𝖢. We prove that all such spectra fall into a very
rigid pattern.

1 INTRODUCTION

Perhaps one of the most powerful consequences of the axiom of choice is a straightforward classification of size for all
sets: Given any set 𝑋, there is a minimum ordinal 𝛼 such that 𝑋 has the same cardinality as 𝛼. Indeed, grappling with
how to compare sizes of infinite objects (or appropriate abstractions of this notion) is an inalienable aspect of modern
mathematical foundations. Even without the axiom of choice, it is still understood that if 𝑌 is a superset of 𝑋, then 𝑌 is
still ‘at least as big as𝑋’ in someway. Taking this further, we are able to compare the cardinalities of sets through functions
that map between them. If there is a surjection from 𝑋 onto 𝜔, then we can still describe 𝑋 as being ‘at least as big as 𝜔’.
Even when we lose the straightforward description of cardinality classes that is obtained from the axiom of choice, we can
still consider comparisons between sets and ordinals in this way.

Definition 1.1. Let 𝑋 be a set. The Hartogs number of 𝑋 is

ℵ(𝑋) ∶= min{𝛼 ∈ Ord ∣ there is no injection 𝑓 ∶ 𝛼 → 𝑋}.

The Lindenbaum number of 𝑋 is

ℵ∗(𝑋) ∶= min{𝛼 ∈ Ord ∖{0} ∣ there is no surjection 𝑓 ∶ 𝑋 → 𝛼}.

If 𝑋 is well-orderable, then ℵ(𝑋) = ℵ∗(𝑋) = |𝑋|+, and so in the case that 𝖠𝖢 holds, these descriptions of sets tell us no
more than cardinality already did. However, if the axiom of choice does not hold and 𝑋 is not well-orderable then such
descriptions still provide insight into the cardinality of 𝑋. Indeed the existence of ℵ(𝑋) and ℵ∗(𝑋) is a theorem of 𝖹𝖥,
in the former case by Hartogs’s lemma and in the latter by a lemma of Lindenbaum’s theorem.1 It is easy to see, though
important to note, that they must both be cardinal numbers and that for all 𝑋, ℵ(𝑋) ⩽ ℵ∗(𝑋).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2024 The Author(s).Mathematical Logic Quarterly published by Wiley-VCH GmbH.
1 Hartogs’s lemma is proved in [2]. Lindenbaum’s theorem is stated in [8, Théorème 82.𝐴6] with the first published proof in [10].
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As observed, if we assume 𝖠𝖢 then ℵ(𝑋) = ℵ∗(𝑋) for all sets 𝑋, but this principle is in general weaker than the axiom
of choice. In fact, (∀𝑋)ℵ(𝑋) = ℵ∗(𝑋) is equivalent to the axiom of choice for well-ordered families of non-empty sets. This
equivalence, a theorem of Pincus, uses a powerful construction that takes sets 𝑋 with ℵ(𝑋) ≠ ℵ∗(𝑋) and ‘transfers’ this
property to sets of larger Hartogs or Lindenbaum number. We refer to sets 𝑋 such that ℵ(𝑋) ≠ ℵ∗(𝑋) as eccentric. In this
paper, we shall fine-tune this construction to produce many more equivalent statements.

Theorem 1.2. The following are equivalent:

1. For all 𝑋, ℵ(𝑋) = ℵ∗(𝑋);
2. there is 𝜅 such that for all 𝑋, ℵ∗(𝑋) ⩾ 𝜅 ⇒ ℵ(𝑋) = ℵ∗(𝑋);
3. there is 𝜅 such that for all 𝑋, ℵ(𝑋) ⩾ 𝜅 ⇒ ℵ(𝑋) = ℵ∗(𝑋);
4. 𝖠𝖢𝖶𝖮;
5. for all 𝑋, ℵ(𝑋) is a successor; and
6. for all 𝑋, ℵ(𝑋) is regular.

Remark 1.3. While we would like to include the statements “for all 𝑋, ℵ∗(𝑋) is a successor” and “for all 𝑋, ℵ∗(𝑋) is
regular” in our theorem,2 this does not hold: In Cohen’s first model, 𝖠𝖢𝖶𝖮 fails, but ℵ∗(𝑋) is a regular successor for all
𝑋. This is proved in § 4.1 as Corollary 4.7.

To take Theorem 1.2 further, given that 𝖠𝖢𝖶𝖮 is not a consequence of 𝖹𝖥, it is quite possible to build models of 𝖹𝖥 in
which we have sets 𝑋 such that ℵ(𝑋) ≠ ℵ∗(𝑋). Let us produce a classification tool for such objects.

Definition 1.4 (Hartogs–Lindenbaum Spectrum). Given a model𝑀 of 𝖹𝖥, theHartogs–Lindenbaum spectrum (or simply
spectrum) of𝑀, denoted by Specℵ(𝑀), is the class

Specℵ(𝑀) ∶= {⟨𝜆, 𝜅⟩ ∣ (∃𝑋)ℵ(𝑋) = 𝜆, ℵ∗(𝑋) = 𝜅}.

This paper explores the possible spectra of models of 𝖹𝖥 that arise as symmetric extensions of models of 𝖠𝖢. This
behaviour is captured internally to a model by small violations of choice, or 𝖲𝖵𝖢. This axiom, introduced in [1], is the
statement “There is a set 𝑆 such that for all𝑋 there is an ordinal 𝜂 and a surjection𝑓 ∶ 𝑆 × 𝜂 → 𝑋”, but is also surprisingly a
precise description of being a symmetric extension of amodel of𝖠𝖢, by [11]. Indeed, 𝖲𝖵𝖢 is equivalent to several statements
relating to symmetric extensions and 𝖠𝖢, and is introduced more thoroughly in § 2.1.4.
In any model of 𝖲𝖵𝖢, the Hartogs–Lindenbaum spectrum is broken down into four parts.

Main Theorem. Let 𝑀 ⊨ 𝖲𝖵𝖢. Then there are cardinals 𝜑 ⩽ 𝜓 ⩽ 𝜒0 ⩽ Ω, a cardinal 𝜓∗ ⩾ 𝜓, a cardinal 𝜒 ∈ [𝜒0, 𝜒
+
0
],

and a set 𝐶 ⊆ [𝜑, 𝜒0) such that

Specℵ (𝑀) =
⋃

⎧⎪⎪⎪⎨⎪⎪⎪⎩

SC = { ⟨ 𝜆+, 𝜆+⟩ | 𝜆 ∈ Card}

𝔇 ⊆ { ⟨ 𝜆, 𝜅⟩ | 𝜓 ⩽ 𝜆 ⩽ 𝜅 ⩽ 𝜒, 𝜓∗ ⩽ 𝜅}

ℭ ⊆ { ⟨ 𝜆, 𝜆+⟩ | cf ( 𝜆) ∈ 𝐶, 𝜆 < Ω}

𝔘 = { ⟨ 𝜆, 𝜆+⟩ | cf ( 𝜆) ∈ 𝐶, 𝜆 ≥ Ω}.

That is, there is a necessary core to the spectrum {⟨𝜆+, 𝜆+⟩ ∣ 𝜆 ∈ Card} that every model of 𝖹𝖥 contains, since ℵ(𝜆) =
ℵ∗(𝜆) = 𝜆+ for all cardinals 𝜆; there is a bounded chaotic part of the spectrum containing those ⟨𝜆, 𝜅⟩ that have no restric-
tions other than 𝜓 ⩽ 𝜆 ⩽ 𝜅 ⩽ 𝜒, and 𝜓∗ ⩽ 𝜅; there is a bounded but potentially irregular part of the spectrum in which
the only values are ⟨𝜆, 𝜆+⟩ for those 𝜆 such that cf (𝜆) ∈ 𝐶, with 𝜆 < Ω; and there is an unbounded, controlled tail of the
spectrum containing precisely ⟨𝜆, 𝜆+⟩ for all 𝜆 such that cf (𝜆) ∈ 𝐶.

2 For symmetry, if nothing else.
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1.1 Structure of the paper

§ 2 establishes preliminaries for the paper. No knowledge of forcing will be needed for the results in § 3 or § 4.2; the
results can be understood entirely using the framework of transitive nested models of 𝖹𝖥. However, § 4.1 uses the forcing
framework, so we briefly introduce our standard treatment of forcing in § 2.2. In particular, we introduce all necessary
concepts for our use of 𝖲𝖵𝖢.
In § 3 we investigate the equivalence between 𝖠𝖢𝖶𝖮, Specℵ = SC, and several other equivalent conditions using core

machinery that allows an ‘upwards transfer’ of eccentricity. In § 4 we investigate the spectrum ofmodels of 𝖲𝖵𝖢, providing
bounds for the behaviour of such models and some instances of sharpness on those bounds.

2 PRELIMINARIES

Throughout this paper we work in 𝖹𝖥. Given a set 𝑋, we denote by |𝑋| its cardinal number. If 𝑋 can be well-ordered, then|𝑋| is simply the least ordinal 𝛼 such that a bijection between 𝛼 and 𝑋 exists. Otherwise, we use the Scott cardinal of 𝑋,
the set {𝑌 ∈ 𝑉𝛼 ∣ ∃𝑓 ∶ 𝑋 → 𝑌 a bijection}with 𝛼 taken minimal such that the set is non-empty. Greek letters, when used
as cardinals, always refer to well-ordered cardinals. We call an ordinal 𝛼 a cardinal if |𝛼| = 𝛼, and we shall denote by Card
the class of all well-ordered cardinals.
We write |𝑋| ⩽ |𝑌| to mean that there is an injection from 𝑌 to 𝑋, and |𝑋| ⩽∗ |𝑌| to mean that there is a surjection

from 𝑌 to 𝑋 or that 𝑋 is empty. These notations extend to |𝑋| < |𝑌| (and |𝑋| <∗ |𝑌|) to mean that |𝑋| ⩽ |𝑌| (respectively|𝑋| ⩽∗ |𝑌|) and there is no injection from𝑌 to𝑋 (respectively surjection from𝑋 to𝑌). Finally, |𝑋| = |𝑌|means that there
is a bijection between 𝑋 and 𝑌.
Using this notation, one may redefine the Hartogs and Lindenbaum numbers as

ℵ(𝑋) ∶= min{𝛼 ∈ Ord ∣ |𝛼| ≰ |𝑋|} and
ℵ∗(𝑋) ∶= min{𝛼 ∈ Ord ∣ |𝛼| ≰∗ |𝑋|}.

Given two cardinals 𝜆, 𝜅, we will denote by [𝜆, 𝜅] the set {𝜇 ∈ Card ∣ 𝜆 ⩽ 𝜇 ⩽ 𝜅}. Similarly, (𝜆, 𝜅)will be the open interval,
and [𝜆, 𝜅) and (𝜆, 𝜅] are the one-sided intervals. If 𝛼, 𝛽 are instead understood to be ordinals, thenwewill take the intervals
over the ordinals, so [𝛼, 𝛽] = {𝛾 ∈ Ord ∣ 𝛼 ⩽ 𝛾 ⩽ 𝛽}, and so forth. Note that if 𝜆 = 𝜅, then [𝜆, 𝜅) = ∅.
Given two sets 𝐴, 𝐵, we shall denote by Inj(𝐴, 𝐵) the set of injections 𝐴 → 𝐵.

2.1 Choice-like axioms

Throughout, we shall use several axioms that can be considered to be partial fulfilments of the full strength of 𝖠𝖢. Recall
that if 𝑋 is a set of non-empty sets, a choice function for 𝑋 is a function 𝑐 ∶ 𝑋 →

⋃
𝑋 such that for all 𝑥 ∈ 𝑋, 𝑓(𝑥) ∈ 𝑥.

2.1.1 The axiom of choice 𝖠𝖢𝑋

For any set 𝑋, we shall denote by 𝖠𝖢𝑋 the statement that all families of non-empty sets indexed by 𝑋 admit a choice
function. If 𝛼 is an ordinal or a cardinal, we shall denote by𝖠𝖢<𝛼 the statement that all families of non-empty sets indexed
by some 𝛽 < 𝛼 admit a choice function. Finally, by 𝖠𝖢𝖶𝖮, we mean the statement that all well-orderable families of non-
empty sets admit a choice function; equivalently, this can be written (∀𝜆 ∈ Card)𝖠𝖢𝜆. When the subscript is omitted, we
mean the full axiom of choice: every family of non-empty sets admits a choice function.

2.1.2 Dependent choice

We say that a partially ordered set (𝑇, ⩽) is a tree if 𝑇 has a minimum element and, for all 𝑡 ∈ 𝑇, the set {𝑠 ∈ 𝑇 ∣ 𝑠 ⩽ 𝑡} is
well-ordered by ⩽. Given a cardinal 𝜆, we say that 𝑇 is 𝜆-closed if all ⩽-chains in 𝑇 of length less than 𝜆 have an upper
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bound in 𝑇. Finally, the statement 𝖣𝖢𝜆, the principle of dependent choice (for 𝜆), is the statement that every 𝜆-closed tree
has a maximal element or a chain of order type 𝜆. When the subscript is omitted, we mean 𝖣𝖢𝜔. While 𝖣𝖢𝜆 does imply
𝖠𝖢𝜆, we do not have the reverse implication; cf. [3, Theorem 8.1, Theorem 8.9] for proofs.

2.1.3 Comparability and dual comparability

Finally, for a set 𝑋, we shall denote by 𝑊𝑋 the axiom of comparability (to 𝑋): for all 𝑌, either |𝑌| ⩽ |𝑋| or |𝑋| ⩽ |𝑌|.
Similarly, we shall define the dual axiom of comparability (to 𝑋),𝑊∗

𝑋 , to be the statement that for all 𝑌, either |𝑌| ⩽∗ |𝑋|
or |𝑋| ⩽∗ |𝑌|. We immediately observe the following:
Proposition 2.1. 𝑊𝜆 is equivalent to the statement “for all 𝑋, either 𝑋 is well-orderable or ℵ(𝑋) ⩾ 𝜆+”. Likewise,𝑊∗

𝜆
is

equivalent to the statement “for all 𝑋, either 𝑋 is well-orderable or ℵ∗(𝑋) ⩾ 𝜆+”. □

Definition 2.2. Since (∀𝜆)𝖣𝖢𝜆, (∀𝜆)𝑊𝜆, and (∀𝜆)𝑊∗
𝜆
are all equivalent to 𝖠𝖢, whenever𝑀 is a model of 𝖹𝖥 + ¬𝖠𝖢 we

shall denote by 𝜆𝖣𝖢 (respectively 𝜆𝑊 , 𝜆∗𝑊) the least cardinal 𝜆 such that 𝖣𝖢𝜆 (respectively𝑊𝜆,𝑊∗
𝜆
) does not hold.

2.1.4 Small violations of choice

In [1], the author introduces a choice-like axiom called small violations of choice, also written 𝖲𝖵𝖢. At its inception, it was
defined by setting 𝖲𝖵𝖢(𝑆) to be “for all 𝑋 there is an ordinal 𝜂 and a surjection 𝑓 ∶ 𝜂 × 𝑆 → 𝑋”, where 𝑆 is a set (known
as the seed). We then use 𝖲𝖵𝖢 to mean (∃𝑆)𝖲𝖵𝖢(𝑆). However, this is equivalent to several other statements.

Fact 2.3 (cf. [1, 11]). The following are equivalent:

1. 𝑀 ⊨ 𝖲𝖵𝖢;
2. 𝑀 ⊨ “there is a set 𝐴 such that for all 𝑋 there is an ordinal 𝜂 and an injection 𝑓 ∶ 𝑋 → 𝐴 × 𝜂”;
3. there is an inner model 𝑉 ⊆ 𝑀 such that 𝑉 ⊨ 𝖹𝖥𝖢 and there is a symmetric system ⟨ℙ,𝒢,ℱ⟩ ∈ 𝑉 such that 𝑀 =

𝖧𝖲
𝐺
ℱ for some 𝑉-generic 𝐺 ⊆ ℙ;

4. there is an inner model 𝑉 ⊆ 𝑀 such that 𝑉 ⊨ 𝖹𝖥𝖢 and there is 𝑥 ∈ 𝑀 such that𝑀 = 𝑉(𝑥); and
5. there is a notion of forcing ℙ ∈ 𝑀 such that 𝟙ℙ ⊩ 𝖠𝖢.

Definition 2.4 (Injective seed). We shall say that a set𝐴 is an injective seed for𝑀 ⊨ 𝖹𝖥 if it satisfies condition (2). That is,
for all 𝑋 ∈ 𝑀 there is an ordinal 𝜂 and an injection 𝑓 ∶ 𝑋 → 𝐴 × 𝜂 in𝑀.

Proposition 2.5. 𝑀 ⊨ 𝖲𝖵𝖢 if and only if𝑀 has an injective seed.

Proof. Suppose that 𝐴 is an injective seed for𝑀. Then𝑀 ⊨ 𝖲𝖵𝖢(𝐴).
On the other hand, suppose that 𝑆 is a seed for 𝑀. We claim that 𝒫(𝑆) is an injective seed for 𝑀. Indeed, suppose

that 𝑋 ∈ 𝑀, and let 𝑓 ∶ 𝜂 × 𝑆 → 𝑋 be a surjection. For 𝑥 ∈ 𝑋, let 𝛼𝑥 = min{𝛼 < 𝜂 ∣ (∃𝑠 ∈ 𝑆)𝑓(𝛼, 𝑠) = 𝑥}. Since 𝑓 is a
surjection, 𝑥 ↦ 𝛼𝑥 is well-defined. Then define 𝑔 ∶ 𝑋 → 𝒫(𝑆) × 𝜂 via 𝑔(𝑥) = ⟨{𝑠 ∈ 𝑆 ∣ 𝑓(𝛼𝑥, 𝑠) = 𝑥}, 𝛼𝑠⟩. Then whenever
𝑔(𝑥) = 𝑔(𝑦), we have 𝛼𝑥 = 𝛼𝑦 , and thus for all 𝑠 such that 𝑓(𝛼𝑥, 𝑠) = 𝑥, we have 𝑓(𝛼𝑦, 𝑠) = 𝑦. However, 𝑓(𝛼𝑥, 𝑠) = 𝑓(𝛼𝑦, 𝑠),
so 𝑥 = 𝑦 as required. □

2.2 Forcing

By a notion of forcingwemean a preordered setℙwithmaximum element denoted 𝟙ℙ, or with the subscript omitted when
clear from context. We write 𝑞 ⩽ 𝑝 to mean that 𝑞 extends 𝑝. Two conditions 𝑝, 𝑝′ are said to be compatible, written 𝑝‖𝑝′,
if they have a common extension.We followGoldstern’s alphabet convention so 𝑝 is never a stronger condition than 𝑞, etc.
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When given a collection of ℙ-names, {𝑥̇𝑖 ∣ 𝑖 ∈ 𝐼}, we will denote by {𝑥̇𝑖 ∣ 𝑖 ∈ 𝐼}∙ the canonical name this class generates:
{⟨𝟙, 𝑥̇𝑖⟩ ∣ 𝑖 ∈ 𝐼}. The notation extends naturally to ordered pairs and functions with domains in the ground model. Given
a set 𝑥, the check name for 𝑥 is defined inductively as 𝑥̌ = {𝑦̌ ∣ 𝑦 ∈ 𝑥}∙.

2.2.1 Symmetric extensions

It is key to the role of forcing that if 𝑉 ⊨ 𝖹𝖥𝖢, and 𝐺 is 𝑉-generic for some notion of forcing ℙ ∈ 𝑉, then 𝑉[𝐺] ⊨ 𝖹𝖥𝖢.
However, this demands additional techniques for trying to establish results that are inconsistent with 𝖠𝖢. Symmetric
extensions extend the technique of forcing in this very way by constructing an intermediate model between 𝑉 and 𝑉[𝐺]

that is a model of 𝖹𝖥.
Given a notion of forcingℙ, we shall denote byAut(ℙ) the collection of automorphisms ofℙ. Letℙ be a notion of forcing

and 𝜋 ∈ Aut(ℙ). Then 𝜋 extends naturally to act on ℙ-names by recursion: 𝜋𝑥̇ = {⟨𝜋𝑝, 𝜋𝑦̇⟩ ∣ ⟨𝑝, 𝑦̇⟩ ∈ 𝑥̇}.
Such automorphisms extend to the forcing relation in the following way, proved in [4, Lemma 14.37].

Lemma 2.6 (The Symmetry Lemma). Let ℙ be a notion of forcing, 𝜋 ∈ Aut(ℙ), and 𝑥̇ a ℙ-name. Then 𝑝 ⊩ 𝜑(𝑥̇) if and
only if 𝜋𝑝 ⊩ 𝜑(𝜋𝑥̇).

Note in particular that for all 𝜋 ∈ Aut(ℙ)we have 𝜋𝟙 = 𝟙. Therefore, 𝜋𝑥̌ = 𝑥̌ for all groundmodel sets 𝑥, and 𝜋{𝑥̇𝑖 ∣ 𝑖 ∈
𝐼}∙ = {𝜋𝑥̇𝑖 ∣ 𝑖 ∈ 𝐼}∙, similarly extending to tuples, functions, etc.
Given a group 𝒢, a filter of subgroups of 𝒢 is a set ℱ of subgroups of 𝒢 that is closed under supergroups and finite

intersections. We say thatℱ is normal if whenever𝐻 ∈ ℱ and 𝜋 ∈ 𝒢, then 𝜋𝐻𝜋−1 ∈ ℱ.
A symmetric system is a triple ⟨ℙ,𝒢,ℱ⟩ such that ℙ is a notion of forcing,𝒢 is a group of automorphisms of ℙ, andℱ is

a normal filter of subgroups of 𝒢. Given such a symmetric system, we say that a ℙ-name 𝑥̇ is ℱ-symmetric if sym𝒢(𝑥̇) =

{𝜋 ∈ 𝒢 ∣ 𝜋𝑥̇ = 𝑥̇} ∈ ℱ. 𝑥̇ is hereditarilyℱ-symmetric if this notion holds for everyℙ-name hereditarily appearing in 𝑥̇. We
denote by 𝖧𝖲ℱ the class of hereditarilyℱ-symmetric names. When clear from context, we will omit subscripts and simply
write sym(𝑥̇) or 𝖧𝖲. The following theorem, [4, Lemma 15.51], is then key to the study of symmetric extensions.

Theorem 2.7. Let ⟨ℙ,𝒢,ℱ⟩ be a symmetric system, 𝐺 ⊆ ℙ a 𝑉-generic filter, and let𝑀 denote the class 𝖧𝖲𝐺ℱ = {𝑥̇𝐺 ∣ 𝑥̇ ∈

𝖧𝖲ℱ}. Then𝑀 is a transitive model of 𝖹𝖥 such that 𝑉 ⊆ 𝑀 ⊆ 𝑉[𝐺].

Finally, we have a forcing relation for symmetric extensions ⊩𝖧𝖲 defined by relativising the forcing relation ⊩ to the
class 𝖧𝖲. This relation has the same properties and behaviour of the standard forcing relation⊩. Moreover, when 𝜋 ∈ 𝒢,
the Symmetry Lemma holds for⊩𝖧𝖲.

3 𝖠𝖢𝖶𝖮

𝖠𝖢𝖶𝖮, the axiom of choice for all well-orderable families of non-empty sets, is known to be equivalent to the statement
(∀𝑋)ℵ(𝑋) = ℵ∗(𝑋), and the proof make use of the idea of transferring eccentricity upwards. This idea is best explained
by proving the theorem.

Theorem 3.1 (cf. [9]). 𝖠𝖢𝖶𝖮 is equivalent to (∀𝑋)ℵ(𝑋) = ℵ∗(𝑋).

Proof. (⟹). Let 𝑋 be a set. We always have that ℵ(𝑋) ⩽ ℵ∗(𝑋), so it is sufficient to prove that ℵ∗(𝑋) ⩽ ℵ(𝑋). Let
𝜆 < ℵ∗(𝑋), and let𝑓 ∶ 𝑋 → 𝜆 be a surjection. Since𝑓 is a surjection, if we set𝐶 = {𝑓−1(𝛼) ∣ 𝛼 < 𝜆} then𝐶 is awell-ordered
family of non-empty sets, and so by 𝖠𝖢𝖶𝖮, there is a choice function 𝑐 ∶ 𝜆 → 𝑋. However, 𝑐 must be an injection since
𝑓−1(𝛼) ∩ 𝑓−1(𝛽) = ∅ whenever 𝛼 ≠ 𝛽.
(⟸). We shall prove 𝖠𝖢ℵ𝛿

for all ordinals 𝛿 by induction. Suppose that we have established 𝖠𝖢<ℵ𝛿
(indeed, this is

a theorem of 𝖹𝖥 for 𝛿 = 0), and let 𝑋 = {𝑋𝛼 ∣ 𝛼 < ℵ𝛿} where 𝑋𝛼 ≠ ∅ for all 𝛼 < ℵ𝛿. By induction, for all 𝛼 < ℵ𝛿, 𝑌𝛼 ∶=
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∏
𝛾<𝛼

𝑋𝛾 ≠ ∅. Define by induction on 𝛼 < ℵ𝛿 the cardinal 𝜅𝛼 and the set 𝐷𝛼 in the following way:

𝜅𝛼 ∶= ℵ
(⋃

{𝐷𝛽 ∣ 𝛽 < 𝛼}
)
and 𝐷𝛼 ∶= 𝑌𝛼 × 𝜅𝛼.

Let 𝐷 =
⋃
{𝐷𝛼 ∣ 𝛼 < ℵ𝛿} and 𝜆 = sup{𝜅𝛼 ∣ 𝛼 < ℵ𝛿}. By projection to its second co-ordinate, there is a surjection 𝐷 → 𝜆,

and so ℵ∗(𝐷) ⩾ 𝜆+. By assumption, we must also have that ℵ(𝐷) ⩾ 𝜆+. Let 𝑓 ∶ 𝜆 → 𝐷 be an injection.

Since 𝜆 > ℵ(
⋃

𝛽<𝛼
𝐷𝛽) for all 𝛼 < 𝛿, it cannot be the case that 𝑓“𝜆 ⊆

⋃
𝛽<𝛼

𝐷𝛽 for any 𝛼 < 𝛿. Therefore, by projection
to its first co-ordinate, 𝑓“𝜆 gives a well-ordered set of partial choice functions for 𝑋 of unbounded domain. Setting 𝑐(𝛼) =
1st(𝑓(𝛾))(𝛼), where 1st is the projection ⟨𝑎, 𝑏⟩ ↦ 𝑎 and 𝛾 is minimal such that 𝛼 ∈ dom(1st(𝑓(𝛾))), produces a choice
function 𝑐 ∈

∏
𝑋 as desired. □

Inspired by this proof, we produce a general framework for taking a set 𝑋 and producing a set 𝐷 of larger Lindenbaum
number with some control over the Hartogs and Lindenbaum numbers produced.

Definition 3.2. Let 𝜅 be a cardinal, 𝛿 > 0 a limit ordinal, and 𝑋 = {𝑋𝛼 ∣ 𝛼 < 𝛿} be such that for all 𝛼 < 𝛿, 𝑌𝛼 ∶=∏
𝛽<𝛼

𝑋𝛽 ≠ ∅. Inductively define the cardinals 𝜅𝛼 and sets 𝐷𝛼 for 𝛼 < 𝛿 as follows:

𝜅𝛼 ∶= ℵ
(⋃

{𝐷𝛽 ∣ 𝛽 < 𝛼}
)
+ 𝜅 and 𝐷𝛼 ∶= 𝑌𝛼 × 𝜅𝛼.

We then define the upwards transfer construction 𝐷 = 𝐷(𝑋, 𝜅) as
⋃

𝛼<𝛿
𝐷𝛼 and 𝜆 = 𝜆(𝑋, 𝜅) as sup{𝜅𝛼 ∣ 𝛼 < 𝛿}. We observe

that 𝜆 > 𝜅 and that 𝜆 is a limit cardinal.

Proposition 3.3. ℵ(𝐷) ⩾ 𝜆, ℵ∗(𝐷) ⩾ 𝜆+, and if ℵ(𝐷) ⩾ 𝜆+ then
∏

𝛼<𝛿
𝑋𝛼 is non-empty.

Proof. Let 𝜇 < 𝜆. Then there is 𝛼 < 𝛿 such that 𝜇 < 𝜅𝛼. Hence by fixing 𝑦 ∈ 𝑌𝛼, the function 𝛾 ↦ ⟨𝑦, 𝛾⟩ is an injection
𝜇 → 𝐷. Therefore, ℵ(𝐷) ⩾ 𝜆. On the other hand, by projection to the second co-ordinate we have that ℵ∗(𝐷) ⩾ 𝜆+.
Finally, suppose that ℵ(𝐷) ⩾ 𝜆+, so there is an injection 𝑓 ∶ 𝜆 → 𝐷. Note that since 𝜆 > ℵ(

⋃
𝛽<𝛼

𝐷𝛽) for all 𝛼 < 𝛿, we
cannot have that 𝑓“𝜆 ⊆

⋃
𝛽<𝛼

𝐷𝛽 for any 𝛼 < 𝛿. Hence, 𝑓“𝜆 intersects 𝐷𝛼 for unboundedly many 𝛼 s and so, by projection
to the first co-ordinate and the well-order of 𝑓“𝜆, we may select some 𝑦𝛼 ∈ 𝑌𝛼 for unboundedly many 𝛼 s. Putting these
partial choice functions together yields 𝑐 ∈

∏
𝑋 as desired. Explicitly, 𝑐(𝛼) = 1st(𝑓(𝛾))(𝛼), where 𝛾 < 𝛿 is minimal such

that 𝛼 ∈ dom(1st(𝑓(𝛾))). □

With upwards transfer construction in hand, we may produce a great many new statements that are all equivalent to
𝖠𝖢𝖶𝖮 through the general framework of Theorem 3.1.

Theorem 3.4. The following are equivalent:

1. For all 𝑋, ℵ(𝑋) = ℵ∗(𝑋);
2. there is 𝜅 such that for all 𝑋, ℵ∗(𝑋) ⩾ 𝜅 ⇒ ℵ(𝑋) = ℵ∗(𝑋);
3. there is 𝜅 such that for all 𝑋, ℵ(𝑋) ⩾ 𝜅 ⇒ ℵ(𝑋) = ℵ∗(𝑋);
4. 𝖠𝖢𝖶𝖮;
5. for all 𝑋, ℵ(𝑋) is a successor; and
6. for all 𝑋, ℵ(𝑋) is regular.

Proof. (1) ⟹ (2): Immediate.
(2) ⟹ (3): Immediate from ℵ∗(𝑋) ⩾ ℵ(𝑋) for all 𝑋.
(4) ⟹ (1): See the proof of Theorem 3.1.
(4) ⟹ (5): Let𝑋 be such thatℵ(𝑋) ⩾ 𝜆 for a limit cardinal 𝜆. For all 𝜇 < 𝜆, recall that Inj(𝜇, 𝑋) denotes the set of injec-

tions 𝜇 → 𝑋, and use 𝖠𝖢𝖶𝖮 to find 𝐹 ∈
∏

𝜇<𝜆
Inj(𝜇, 𝑋). Define the sequence ⟨𝑥𝛼 ∣ 𝛼 < 𝜂⟩ by concatenating the sequences⟨𝐹(𝜇)(𝛽) ∣ 𝛽 < 𝜇⟩ and removing duplicate entries. This must be an injection 𝜂 → 𝑋 for some ordinal 𝜂, and we claim that
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𝜂 ⩾ 𝜆, proving that ℵ(𝑋) ⩾ 𝜆+ as required. If instead 𝜂 < 𝜆, then letting 𝜂 < 𝜇 < 𝜆 we find that 𝐹 ( 𝜇)“𝜇 ⊆ { 𝑥𝛼 | 𝛼 < 𝜂},
so 𝐹(𝜇) is not an injection, a contradiction. Hence 𝜂 ⩾ 𝜆 as required.
(4) ⟹ (6): By 𝖠𝖢𝖶𝖮, all successor cardinals are regular.3 Also by condition (4), we deduce condition (5), so ℵ(𝑋) is a

successor for all 𝑋. Therefore, ℵ(𝑋) is regular for all 𝑋.

Each of (3), (5), and (6) implies (4). Since the proofs of these three implications are almost identical, they have been
packaged here.
We shall prove𝖠𝖢ℵ𝛿

by induction on 𝛿. Suppose that we have𝖠𝖢<ℵ𝛿
(which is a theorem of𝖹𝖥 in the case of 𝛿 = 0), and

let𝑋 = {𝑋𝛼 ∣ 𝛼 < ℵ𝛿}where𝑋𝛼 ≠ ∅ for all𝛼 < ℵ𝛿. By induction,
∏

𝛽<𝛼
𝑋𝛽 ≠ ∅ for all𝛼 < ℵ𝛿, so setting𝐷 = 𝐷(𝑋, 𝜅 + ℵ𝛿)

and 𝜆 = 𝜆(𝑋, 𝜅 + ℵ𝛿)we get thatℵ(𝐷) ⩾ 𝜆 > 𝜅 + ℵ𝛿. For each of theConditions (3), (5), and (6)wemay use Proposition 3.3
to prove that

∏
𝑋 ≠ ∅ by showing that ℵ(𝐷) ⩾ 𝜆+.

First assume condition (3). Then ℵ(𝐷) ⩾ 𝜅, so ℵ(𝐷) = ℵ∗(𝐷) ⩾ 𝜆+, and thus
∏

𝑋 ≠ ∅.
If we instead assume condition (5), then since 𝜆 is a limit cardinal we have ℵ(𝐷) ⩾ 𝜆+, and thus

∏
𝑋 ≠ ∅.

Finally, if we assume condition (6), then since 𝜆 = sup{𝜅𝛼 ∣ 𝛼 < ℵ𝛿} and 𝜆 > ℵ𝛿, we get that 𝜆 is a singular cardinal, so
ℵ(𝐷) ⩾ 𝜆+, and thus

∏
𝑋 ≠ ∅.

Hence, in each case, we can conclude condition (4). □

Remark 3.5. Note that, by combining the techniques exhibited in the proof of Theorem 3.4, one can produce a vast
collection of conditions that are equivalent to 𝖠𝖢𝖶𝖮. For example, 𝖠𝖢𝖶𝖮 is equivalent to the statement “there is 𝜅 such
that for all 𝑋, if ℵ∗(𝑋) ⩾ 𝜅 then either ℵ(𝑋) is a successor or ℵ(𝑋) is regular”.

4 SPECTRA

Theorem 3.4 gives the very strong conclusion that 𝖠𝖢𝖶𝖮 is not just equivalent to (∀𝑋)ℵ(𝑋) = ℵ∗(𝑋), but also that ℵ(𝑋)
is a successor cardinal for all 𝑋. In this way, 𝖠𝖢𝖶𝖮 gives us that the class of all pairs ⟨ℵ(𝑋), ℵ∗(𝑋)⟩ is minimal, i.e., just
{⟨𝜆+, 𝜆+⟩ ∣ 𝜆 ∈ Card}. However, it is possible to violate 𝖠𝖢𝖶𝖮, and we inspect here the various ways in which this can be
violated in models of 𝖲𝖵𝖢.

Definition 4.1 (Hartogs–Lindenbaum Spectrum). For a model 𝑀 of 𝖹𝖥, the (Hartogs–Lindenbaum) spectrum of 𝑀,
denoted by Specℵ(𝑀), is the class

Specℵ(𝑀) ∶= {⟨𝜆, 𝜅⟩ ∣ 𝑀 ⊨ (∃𝑋)ℵ(𝑋) = 𝜆, ℵ∗(𝑋) = 𝜅}

of all possible pairs ⟨𝜆, 𝜅⟩ such that there is 𝑋 ∈ 𝑀 with ℵ(𝑋) = 𝜆 and ℵ∗(𝑋) = 𝜅.

In [7], the authors show that it is consistent with 𝖹𝖥 to have a model𝑀 such that

Specℵ(𝑀) = {⟨𝜆, 𝜅⟩ ∣ ℵ0 ⩽ 𝜆 ⩽ 𝜅} ∪ {⟨𝑛 + 1, 𝑛 + 1⟩ ∣ 𝑛 < 𝜔}.

However, this was achieved with a class-length iteration of symmetric extensions and (by the main theorem) cannot be
optimised further. Recall that𝑀 ⊨ 𝖲𝖵𝖢 if𝑀 is a symmetric extension of a ground model 𝑉 ⊨ 𝖠𝖢. We shall show that in
this case Specℵ(𝑀) is controlled on a tail of cardinals. In particular, there isΩ ∈ Card such that for all 𝜆 ⩾ Ω, if ℵ(𝑋) = 𝜆

then ℵ∗(𝑋) ⩽ 𝜆+.

4.1 The spectrum of Cohen’s first model

Let us first establish the methods that will be employed in our favourite test model of 𝖹𝖥 + 𝖲𝖵𝖢 + ¬𝖠𝖢: Cohen’s first
model. In fact, Cohen’s first model is not even a model of 𝖠𝖢𝜔, and so in particular is not a model of 𝖠𝖢𝖶𝖮. This will be

3 If 𝛼 < 𝜅+ and 𝑓 ∶ 𝛼 → 𝜅+ is a strictly increasing sequence, then by 𝖠𝖢𝖶𝖮 we may simultaneously pick injections 𝑓(𝛼) → 𝜅 for all 𝛼, and so ||⋃𝑓“𝛼|| ⩽
𝜅 × 𝜅 = 𝜅.
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a consequence of the existence of a set 𝐴 such that ℵ(𝐴) = ℵ0; by [3, § 2.4.1], if 𝖠𝖢ℵ0
holds then every infinite set has a

countably infinite subset.
We begin with a quick reminder of how Cohen’s first model is defined. Let 𝑉 be a model of 𝖹𝖥𝖢 and, working in 𝑉,

let ℙ = Add(𝜔, 𝜔), i.e., the forcing whose conditions are finite partial functions 𝑝 ∶ 𝜔 × 𝜔 → 2 with the ordering 𝑞 ⩽ 𝑝

if 𝑞 ⊇ 𝑝. The group 𝒢 is the finitary permutations of 𝜔, those 𝜋 ∈ 𝑆𝜔 such that {𝑛 < 𝜔 ∣ 𝜋𝑛 ≠ 𝑛} is finite. This has group
action on ℙ given by 𝜋𝑝(𝜋𝑛,𝑚) = 𝑝(𝑛,𝑚). For 𝐸 ∈ [𝜔]<𝜔, let f ix(𝐸) ⩽ 𝒢 be the subgroup {𝜋 ∈ 𝒢 ∣ 𝜋 ↾ 𝐸 = id}, and let
ℱ be the filter of subgroups of 𝒢 generated by the f ix(𝐸) as 𝐸 varies over [𝜔]<𝜔. Let𝑀 be the symmetric extension of 𝑉
by this symmetric system, and let 𝑉[𝐺] be the full extension by ℙ. Note that, since ℙ is c.c.c., 𝑉,𝑀, and 𝑉[𝐺] will agree
on the cardinalities and cofinalities of ordinals, and 𝑉 and 𝑉[𝐺] will agree on the cardinalities of all sets in 𝑉.
For each 𝑛 < 𝜔, let 𝑎̇𝑛 be the ℙ-name {⟨𝑝, 𝑚̌⟩ ∣ 𝑝(𝑛,𝑚) = 1} and note that for all 𝜋 ∈ 𝒢, 𝜋𝑎̇𝑛 = 𝑎̇𝜋𝑛. Let 𝐴̇ = {𝑎̇𝑛 ∣ 𝑛 <

𝜔}∙, so 𝜋𝐴̇ = 𝐴̇ for all 𝜋 ∈ 𝒢. Let 𝐴 be the realisation of the name 𝐴̇ in𝑀. Note that 𝑉[𝐺] ⊨ |𝐴| = ℵ0 witnessed by, say,
{⟨𝑛̌, 𝑎̇𝑛⟩∙ ∣ 𝑛 < 𝜔}∙.

Fact 4.2 (cf. [3, §5.5]). The following hold in𝑀:

1. ℵ(𝐴) = ℵ0;
2. for every infinite 𝑋 there is a surjection 𝑓 ∶ 𝑋 → 𝜔; and
3. for every 𝑋 there is an ordinal 𝜂 and an injection 𝑓 ∶ 𝑋 → [𝐴]<𝜔 × 𝜂.

An immediate corollary of this fact is the following.

Corollary 4.3. In𝑀, ℵ∗(𝐴) = ℵ1.

Proof. By statement (2) in Fact 4.2, there is a surjection 𝐴 → 𝜔 in 𝑀, and so ℵ∗(𝐴) ⩾ ℵ1. However, in the outer model,|𝐴| = ℵ0, and so certainly there is no surjection 𝐴 → ℵ1 in𝑀. Hence, ℵ∗(𝐴) = ℵ1. □

We shall use these facts alongside the techniques laid out in § 3 to produce a complete picture of the spectrum of Cohen’s
first model.

Theorem 4.4. Specℵ(𝑀) = {⟨𝜆+, 𝜆+⟩ ∣ 𝜆 ∈ Card} ∪ {⟨𝜆, 𝜆+⟩ ∣ cf (𝜆) = ℵ0}.

To translate this to the notation of the main theorem, we have that 𝜑 = 𝜓 = ℵ0, 𝜒0 = 𝜒 = Ω = 𝜓∗ = ℵ1, and 𝐶 = {ℵ0}.
Hence,

Specℵ (𝑀) =
⋃

⎧⎪⎪⎪⎨⎪⎪⎪⎩

SC = { ⟨ 𝜆+, 𝜆+⟩ | 𝜆 ∈ Card}

𝔇 ⊆ { ⟨ 𝜆, 𝜅⟩ | ℵ0 ⩽ 𝜆 ⩽ 𝜅 ⩽ ℵ1, ℵ1 ⩽ 𝜅}

ℭ ⊆ { ⟨ 𝜆, 𝜆+⟩ | cf ( 𝜆) = ℵ0, 𝜆 < ℵ1}

𝔘 = { ⟨ 𝜆, 𝜆+⟩ | cf ( 𝜆) = ℵ0, 𝜆 ≥ ℵ1}.

Therefore, both 𝔇 and ℭ are subsets of {⟨ℵ0, ℵ1⟩}. However, we have already seen by Fact 4.2 and Corollary 4.3 that
ℵ(𝐴) = ℵ0 and ℵ∗(𝐴) = ℵ1, and thus𝔇 = ℭ = {⟨ℵ0, ℵ1⟩}.

4.1.1 The upper bound

We begin with an upper bound for the spectrum.

Lemma 4.5. For all 𝑋, if ℵ(𝑋) = 𝜆 and ℵ∗(𝑋) = 𝜅, then for all 𝜇 ∈ [𝜆, 𝜅), cf (𝜇) ⩽ ℵ0.

Proof. We may assume that 𝑋 ⊆ [𝐴]<𝜔 × 𝜂 for some ordinal 𝜂. For each 𝑎 ∈ [𝐴]<𝜔, let 𝑋𝑎 = 𝑋 ∩ ({𝑎} × 𝜂), so each
𝑋𝑎 is well-orderable. Let 𝜇 ∈ [𝜆, 𝜅). Since 𝜇 < 𝜅, there is a surjection 𝑓 ∶ 𝑋 → 𝜇. Hence, in 𝑉[𝐺], we have that 𝜇 =⋃

𝑎∈[𝐴]<𝜔
𝑓“𝑋𝑎, so 𝜇 is the union of countablymany sets (note that𝐴 is countable in𝑉[𝐺], and so [𝐴]<𝜔 is as well). If 𝜇 has
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uncountable cofinality then there is 𝑎 ∈ [𝐴]<𝜔 such that𝑉[𝐺] ⊨ |𝑋𝑎| ⩾ 𝜇. Since𝑀 and𝑉[𝐺] agree on the cardinalities of
sets of ordinals, and 𝑋𝑎 is well-orderable, we have that |𝑋𝑎| ⩾ 𝜇 in𝑀 as well. However, this contradicts 𝜇 ⩾ ℵ(𝑋). Hence
we must have cf (𝜇) = ℵ0. □

Lemma 4.6. For all 𝑋, ℵ∗(𝑋) is a successor.

Proof. As before, wemay assume that𝑋 ⊆ [𝐴]<𝜔 × 𝜂 for some ordinal 𝜂, and againwe shall denote by𝑋𝑎 the set𝑋 ∩ ({𝑎} ×

𝜂) for all 𝑎 ∈ [𝐴]<𝜔. Let 𝜅 be a limit cardinal such thatℵ∗(𝑋) ⩾ 𝜅. Then wemust show thatℵ∗(𝑋) > 𝜅, i.e., we must show
that there is a surjection𝑋 → 𝜅. Let 𝜇 < 𝜅 be infinite. Since 𝜅 is a limit, we still have that 𝜇+ < 𝜅, and 𝜇+ is regular in both
𝑀 and 𝑉[𝐺]. Since 𝜇+ < 𝜅, there is a surjection 𝑓 ∶ 𝑋 → 𝜇+, so in 𝑉[𝐺] we have 𝜇+ =

⋃
{𝑓“𝑋𝑎 ∣ 𝑎 ∈ [𝐴]<𝜔} a countable

union. Since cf (𝜇+) > ℵ0, there is 𝑎 ∈ [𝐴]<𝜔 such that |𝑓“𝑋𝑎| ⩾ 𝜇+ in 𝑉[𝐺], and so |𝑋𝑎| ⩾ 𝜇+ in 𝑉[𝐺]. However, 𝑋𝑎 is
well-orderable, and so |𝑋𝑎| ⩾ 𝜇+ in𝑀 as well. Therefore, for all 𝜇 < 𝜅, there is 𝑎 ∈ [𝐴]<𝜔 such that |𝑋𝑎| > 𝜇. Hence the
projection of 𝑋 onto its second co-ordinate is a surjection onto a subset of 𝜂 of cardinality at least 𝜅, and so this can be
turned into a surjection 𝑋 → 𝜅. □

Corollary 4.7. Both “for all 𝑋, ℵ∗(𝑋) is regular” and “for all 𝑋, ℵ∗(𝑋) is a successor” are strictly weaker than 𝖠𝖢𝖶𝖮.

Corollary 4.8. If ℵ(𝑋) = 𝜆 and ℵ∗(𝑋) = 𝜅, then one of the following holds:

(a) 𝜅 = 𝜆 are successors; or
(b) 𝜅 = 𝜆+ and cf (𝜆) = ℵ0.

Proof. Suppose that 𝜅 = 𝜆. Since 𝜅 is a successor, 𝜆 must be as well. Suppose instead that 𝜅 > 𝜆. Then by Lemma 4.5, for
all 𝜇 ∈ [𝜆, 𝜅), cf (𝜇) = ℵ0. However, cf (𝜆+) = 𝜆+ > ℵ0 in𝑀, so we have 𝜆+ ∉ [𝜆, 𝜅), i.e. 𝜅 = 𝜆+. □

4.1.2 The lower bound

To complete Theorem 4.4, we must show the lower bound for the spectrum.

Lemma 4.9. For all 𝜆 such that cf (𝜆) = ℵ0 there is a set 𝑋 such that ℵ(𝑋) = 𝜆 and ℵ∗(𝑋) = 𝜆+.

Proof. By Corollary 4.8, it will be sufficient to prove that there is a set 𝑋 such that ℵ(𝑋) = 𝜆. By Fact 4.2, suppose that
𝜆 > ℵ0. Let ⟨𝜆𝑛 ∣ 𝑛 < 𝜔⟩ be a strictly increasing sequence of cardinals such that sup{𝜆𝑛 ∣ 𝑛 < 𝜔} = 𝜆. For each 𝑛 < 𝜔,
let 𝑋𝑛 = 𝜆𝑛 × Inj(𝑛, 𝐴), and let 𝑋 =

⋃
𝑛<𝜔

𝑋𝑛. We certainly have that ℵ(𝑋) ⩾ 𝜆, as for all 𝑛 < 𝜔 there is an injection 𝑓𝑛 ∶

𝜆𝑛 → 𝑋 by taking arbitrary 𝑐 ∈ Inj(𝑛, 𝐴), and having 𝑓𝑛(𝛼) = ⟨𝛼, 𝑐⟩. Suppose now that there were an injection 𝑓 ∶ 𝜆 → 𝑋.
Note that in 𝑉[𝐺], ||Inj(𝑛, 𝐴)|| = ℵ0, and so

|||⋃𝑚<𝑛
𝜆𝑚 × Inj(𝑚,𝐴)

||| < 𝜆 for all 𝑛 < 𝜔. Therefore, 𝑓“𝜆 is not a subset of⋃
𝑚<𝑛

𝜆𝑚 × Inj(𝑚,𝐴) for any 𝑛 < 𝜔, so 𝑓must give us a well-ordered collection of injections 𝑛 → 𝐴 for arbitrarily large 𝑛.
We may now put these injections together to produce an injection 𝜔 → 𝐴, contradicting ℵ(𝐴) = ℵ0. Hence an injection
𝜆 → 𝑋 cannot exist and ℵ(𝑋) = 𝜆 as desired. □

Combining Corollary 4.8 and Lemma 4.9, we immediately obtain Theorem 4.4:

Specℵ(𝑀) = {⟨𝜆+, 𝜆+⟩ ∣ 𝜆 ∈ Card} ∪ {⟨𝜆, 𝜆+⟩ ∣ cf (𝜆) = ℵ0}.

4.2 The spectrum of a model of 𝗦𝗩𝗖

When dealing with Cohen’s first model, having an outer model of 𝖹𝖥𝖢 that agrees on the cardinalities and cofinalities of
ordinals was an important fact that appeared in almost every proof of the previous section. Fortunately, this is not unique
to Cohen’s first model, and is very close to the conclusions that can be drawn from 𝖲𝖵𝖢. Let𝑀 be a model of 𝖲𝖵𝖢 + ¬𝖠𝖢,
witnessed by an inner model 𝑉 of 𝖹𝖥𝖢, a symmetric system ⟨ℙ,𝒢,ℱ⟩, and an injective seed 𝐴. Let 𝑉[𝐺] be the outer
forcing extension of𝑀, so 𝑉 ⊆ 𝑀 ⊆ 𝑉[𝐺] for 𝑉-generic 𝐺 ⊆ ℙ, and𝑀 = 𝖧𝖲

𝐺
ℱ . For a set 𝑋 ∈ 𝑀, denote by ⌈𝑋⌉ the least

ordinal 𝛿 such that𝑉[𝐺] ⊨ “ |𝑋| = |𝛿| and 𝛿 is a cardinal”. Unlike in Cohen’s model, wemay not have that ⌈𝜅⌉ = 𝜅 for all
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cardinals 𝜅 ∈ 𝑀 sinceℙmay collapse some cardinals, but by appealing to large enough cardinals we are able to overcome
this obstacle.

Fact 4.10 (cf. [4, Theorem 15.3]). There is a cardinal 𝜆 (e.g., |ℙ|+) such that, if 𝛼, 𝛽 ⩾ 𝜆 are ordinals, then 𝑉 ⊨ |𝛼| = |𝛽| if
and only if 𝑉[𝐺] ⊨ |𝛼| = |𝛽|. Furthermore, if 𝜂 ⩾ 𝜆 is a cardinal then 𝑉 ⊨ cf(𝛼) = 𝜂 if and only if 𝑉[𝐺] ⊨ cf (𝛼) = 𝜂.

The following is an immediate corollary of Fact 4.10.

Corollary 4.11. There is a cardinal 𝜆 such that 𝑉, 𝑀, and 𝑉[𝐺] agree on cardinalities above 𝜆 and cofinalities greater
than 𝜆.

Let 𝜏 be the least cardinal such that𝑀 and 𝑉[𝐺] agree on cardinalities at least 𝜏 and cofinalities greater than or equal
to 𝜏. Finally, fix an injective seed 𝐴 for𝑀 and let 𝜈 = ⌈𝐴⌉.
Throughout this section, all sets and statements about sets are understood to be in the context of 𝑀 unless

stated otherwise.

4.2.1 An upper bound

We first aim to create an upper bound on the Hartogs–Lindenbaum spectrum of 𝑀 by showing scenarios in which
combinations of Hartogs and Lindenbaum numbers are not possible.
The proof of the following is effectively identical to the proof of Lemma 4.5.

Lemma 4.12. Suppose that ℵ(𝑋) = 𝜆 and ℵ∗(𝑋) = 𝜅. Then for all 𝜇 ∈ [𝜆, 𝜅), cf (𝜇) < max(𝜈+, 𝜏).

Corollary 4.13. If ℵ(𝑋) = 𝜆 ⩾ max(𝜈+, 𝜏) then ℵ∗(𝑋) ⩽ 𝜆+.

Proof. Since 𝜆 ⩾ 𝜏, and 𝑉[𝐺] ⊨ cf (𝜆+) = 𝜆+, we have 𝑀 ⊨ cf(𝜆+) = 𝜆+, and in particular 𝑀 ⊨ cf(𝜆+) > max(𝜈+, 𝜏).
Therefore, by Lemma 4.12, 𝜆+ ∉ [𝜆, ℵ∗(𝑋)), so we must have that ℵ∗(𝑋) ⩽ 𝜆+. □

Lemma 4.14. For all 𝑋, if ℵ∗(𝑋) > max(𝜏, 𝜈) then ℵ∗(𝑋) is a successor cardinal.

Proof. Let 𝜅 > max(𝜏, 𝜈) be a limit cardinal and suppose that 𝑋 is such that ℵ∗(𝑋) ⩾ 𝜅. Then we must show that ℵ∗(𝑋) ⩾

𝜅+.
We may assume that 𝑋 ⊆ 𝐴 × 𝜂 for some 𝜂 ∈ Ord. For each 𝑎 ∈ 𝐴, let 𝑋𝑎 = 𝑋 ∩ ({𝑎} × 𝜂), so each 𝑋𝑎 is well-orderable.

We aim to show that, if 𝜋 ∶ 𝑋 → 𝜂 is the projection of 𝑋 to its second co-ordinate, then |𝜋“𝑋| ≥ 𝜅 and thus ℵ∗(𝑋) > 𝜅

as required.
Let 𝜇 ∈ (max(𝜏, 𝜈), 𝜅). Since 𝜅 > max(𝜏, 𝜈) is a limit cardinal, such a 𝜇 exists, and indeed sup{𝜇 ∈ Card ∣ max(𝜏, 𝜈) <

𝜇 < 𝜅} = 𝜅. Since 𝜇 < 𝜅 and 𝜅 is a limit cardinal, 𝜇+ < 𝜅, so there is a surjection 𝑓 ∶ 𝑋 → 𝜇+. In 𝑉[𝐺], cf (𝜇+) = 𝜇+ > 𝜈,
so there is 𝑎 ∈ 𝐴 such that |𝑓“𝑋𝑎| ≥ 𝜇+. Since 𝜇 was taken arbitrarily, for all 𝜇 < 𝜅 there is 𝑎 ∈ 𝐴 such that |𝑋𝑎| ⩾ 𝜇, and
thus |𝜋“𝑋| ≥ 𝜅. □

Lemma 4.15. Suppose that𝑀 ⊨ 𝖣𝖢𝜇, and let 𝜆 be a limit cardinal such that cf (𝜆) = 𝜇. Then for all 𝑋 ∈ 𝑀, ℵ(𝑋) ≠ 𝜆.

Proof. Suppose that ℵ(𝑋) ⩾ 𝜆, and let ⟨𝜆𝛼 ∣ 𝛼 < 𝜇⟩ be a continuous strictly increasing cofinal sequence in 𝜆 with 𝜆0 = 0.
Define the tree𝑇 to be the set

⋃
𝛼<𝜇

Inj(𝜆𝛼, 𝑋), with 𝑓 ⩽ 𝑔 if 𝑓 ⊆ 𝑔. Sinceℵ(𝑋) ⩾ 𝜆,𝑇 has nomaximal nodes and, by taking
unions, we see that 𝑇 is 𝜇-closed. By 𝖣𝖢𝜇, 𝑇 has a maximal branch 𝑏. Let 𝑓 =

⋃
𝑏. Then 𝑓 is an injection 𝜅 → 𝑋 for some

𝜅, and 𝜅 is either 𝜆𝛼 for some 𝛼 < 𝜇 or is 𝜆. In the former case, we may extend 𝑓 to a function from 𝜆𝛼+1 by inspecting any
node at level 𝛼 + 1 (ℵ(𝑋) > 𝜆𝛼+1 so it is nonempty) and removing any duplicate entries. We’ll remove fewer than 𝜆𝛼+1
entries, so adjoining the two will still yield an extension in 𝑇. This contradicts the maximality of 𝑏. Therefore, we are in
the latter case and 𝑓 is an injection 𝜆 → 𝑋, so ℵ(𝑋) > 𝜆. □

Recall that 𝜆𝖣𝖢 is the least cardinal 𝜆 such that 𝖣𝖢𝜆 does not hold.
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Proposition 4.16. If ℵ(𝑋) = 𝜆 and ℵ∗(𝑋) = 𝜅, then one of the following holds:

(a) 𝜅 ⩽ max(𝜈+, 𝜏+);
(b) 𝜅 = 𝜆 are successors; or
(c) 𝜅 = 𝜆+ and 𝜆𝖣𝖢 ⩽ cf (𝜆) < max(𝜈+, 𝜏).

Proof. If 𝜅 ⩽ max(𝜈+, 𝜏+) then we are in case (a), so we may assume otherwise. By Lemma 4.14, 𝜅 is a successor car-
dinal. If 𝜆 = 𝜅, then we are in case (b), so assume that 𝜆 < 𝜅. Suppose for contradiction that 𝜅 > 𝜆+. Then setting
𝜇 = max(𝜆+, 𝜈+, 𝜏+), we have 𝜇 ∈ [𝜆, 𝜅), so by Lemma 4.12 cf (𝜇) < max(𝜈+, 𝜏). However, 𝑉[𝐺] ⊨ cf (𝜇) = 𝜇 ⩾ 𝜏, since
𝜇 is a successor cardinal, and so we have𝑀 ⊨ cf(𝜇) = 𝜇 ⩾ max(𝜈+, 𝜏), contradicting that cf (𝜇) < max(𝜈+, 𝜏). Therefore,
𝜅 = 𝜆+. Finally, we have that 𝜆𝖣𝖢 ⩽ cf (𝜆) < max(𝜈+, 𝜏) by Lemmas 4.12 & 4.15. □

The underlying pattern of Proposition 4.16 is that once we have dealt with the chaos of ℵ∗(𝑋) ⩽ max(𝜈+, 𝜏+) and the
inevitability ofℵ(𝑋) = ℵ∗(𝑋) = 𝜆+, all that we have are sets𝑋withℵ(𝑋) = 𝜆 andℵ∗(𝑋) = 𝜆+ for some cardinal 𝜆. Indeed,
this scenario is the only one in which we may have an eccentric set of arbitrarily large Hartogs or Lindenbaum number.

Definition 4.17 (Oblate cardinal). An oblate cardinal is a cardinal 𝜆 such that there is a set𝑋 withℵ(𝑋) = 𝜆 andℵ∗(𝑋) =

𝜆+.

As we have observed, the only candidates for oblate cardinals that are at least as large as max(𝜈+, 𝜏) are those sin-
gular cardinals 𝜆 with cf (𝜆) ∈ [𝜆𝖣𝖢,max(𝜈+, 𝜏)). However, this does not tell us which of those cardinals will be oblate.
Fortunately, when we begin to produce a lower bound for the spectrum, we will have very strong results for transferring
eccentricity that force cardinals to be oblate.
Recall that 𝜆𝑊 is the least cardinal 𝜆 such that𝑊𝜆 does not hold, and that 𝜆∗𝑊 is defined analogously for𝑊∗

𝜆
. Combining

Proposition 2.1 and Proposition 4.16, we produce an upper bound of Specℵ(𝑀) in three parts:

1. The successors, SC = {⟨𝜆+, 𝜆+⟩ ∣ 𝜆 ∈ Card}. In fact, we always have that SC ⊆ Specℵ(𝑀) since ℵ(𝜆) = ℵ∗(𝜆) = 𝜆+

for all cardinals 𝜆.
2. The ‘bounded chaos’, those ⟨𝜆, 𝜅⟩where 𝜆𝑊 ⩽ 𝜆 ⩽ 𝜅 ⩽ max(𝜈+, 𝜏+) and 𝜆∗𝑊 ⩽ 𝜅. If we haveℵ(𝑋)+ < ℵ∗(𝑋) for some

set 𝑋, then it must appear here.
3. The oblate cardinals, those ⟨𝜆, 𝜆+⟩ with cf (𝜆) ∈ [𝜆𝖣𝖢,max(𝜈+, 𝜏)).

4.2.2 A lower bound

Having just seen the upper bound of the spectrum of a model of 𝖲𝖵𝖢, we now wish to exhibit a lower bound, which we
shall construct entirely through controlling oblate cardinals. By Theorem 3.4, if any eccentric set exists then wemust have
eccentric sets of arbitrarily large Hartogs or Lindenbaumnumber. However, by Proposition 4.16, ifℵ(𝑋) ⩾ max(𝜈+, 𝜏) and
𝑋 is eccentric, thenwemust have thatℵ(𝑋) is an oblate cardinal. Therefore, theremust be a proper class of oblate cardinals.
In this section we will explore methods of lifting oblate cardinals to larger oblate cardinals with the same cofinality. We
do this in two ways: The first lifts any set 𝐵 with ℵ(𝐵) a limit cardinal, and the other lifts any set 𝐵 with ℵ(𝐵) < ℵ∗(𝐵).

Lemma 4.18. Let 𝐵 be such that ℵ(𝐵) = 𝜇 a limit cardinal, 𝜆 a cardinal with 𝜆 ⩾ 𝜈 + 𝜏 +
⌈
𝐵<𝜇

⌉+
, and ⟨𝛿𝛼 ∣ 𝛼 < 𝜇⟩ a

strictly increasing sequence of ordinals such that sup{𝛿𝛼 ∣ 𝛼 < 𝜇} = 𝜆.4 Then there is a set 𝑋 such that ℵ(𝑋) = 𝜆 and
ℵ∗(𝑋) = 𝜆+.

Proof. Let ⟨𝛿𝛼 ∣ 𝛼 < 𝜇⟩ be the sequence described in the proposition. For each 𝛽 < 𝜇, let 𝑋𝛽 =
⋃

𝛼<𝛿
𝛿𝛼 × Inj(𝛼, 𝐵), and

let 𝑋 =
⋃
{𝑋𝛽 ∣ 𝛽 < 𝜇}. Note that since ℵ(𝐵) = 𝜇, Inj(𝛼, 𝐵) ≠ ∅ for all 𝛼 < 𝜇. Note also that for all 𝛽 < 𝜇, in 𝑉[𝐺] we can

embed 𝑋𝛽 into 𝛿𝛽 × 𝐵<𝜇, so
⌈
𝑋𝛽

⌉
⩽
⌈
𝛿𝛽

⌉
⋅
⌈
𝐵<𝜇

⌉
< 𝜆. Therefore, there cannot be an injection 𝜆 → 𝑋𝛽 for any 𝛽 < 𝜇.

For all 𝛼 < 𝜇, 𝛿𝛼 embeds into𝑋, soℵ(𝑋) ⩾ 𝜆. Furthermore, projection to its first co-ordinate begets a surjection𝑋 → 𝜆,
so ℵ∗(𝑋) ⩾ 𝜆+. Suppose that there were an injection 𝜆 → 𝑋. We have already seen that the image of this injection cannot

4 Such a sequence exists if and only if 𝜇 ⩽ 𝜆 and cf (𝜆) = cf (𝜇).
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be contained in any 𝑋𝛽 , so it must be unbounded. By our usual construction, noting that 𝜇 is a limit, this gives us an
injection 𝜇 → 𝐵, contradicting ℵ(𝐵) = 𝜇. Therefore, ℵ(𝑋) = 𝜆 as required. By Proposition 4.16, ℵ∗(𝑋) = 𝜆+. □

Lemma 4.19. Let 𝐵 be such that ℵ(𝐵) = 𝜇 and ℵ∗(𝐵) > 𝜇, 𝜆 a cardinal with 𝜆 ⩾ 𝜈 + 𝜏 + ⌈𝐵⌉+, and ⟨𝜆𝛼 ∣ 𝛼 < 𝜇⟩ a strictly
increasing sequence such that sup{𝜆𝛼 ∣ 𝛼 < 𝜇} = 𝜆. Then there is a set 𝑋 such that ℵ(𝑋) = 𝜆 and ℵ∗(𝑋) = 𝜆+.

Proof. Let ⟨𝜆𝛼 ∣ 𝛼 < 𝜇⟩ be the sequence described in the proposition and 𝑓 ∶ 𝐵 → 𝜇 a surjection. For each 𝛼 < 𝜇, let
𝑌𝛼 = 𝑓−1(𝛼) ≠ ∅, and let 𝑋 ∶=

⋃
𝛼<𝜇

𝜆𝛼 × 𝑌𝛼. By the usual techniques, noting that 𝜆 > ⌈𝐵⌉, we see that ℵ(𝑋) ⩾ 𝜆

but any injection 𝜆 → 𝑋 would beget an injection 𝜇 → 𝐵, contradicting ℵ(𝐵) = 𝜇. Furthermore, ℵ∗(𝑋) ⩾ 𝜆+ and by
Proposition 4.16, ℵ∗(𝑋) = 𝜆+. □

Proposition 4.20. There is a set 𝐶 ⊆ [𝜆𝖣𝖢,max(𝜈+, 𝜏)) and a cardinalΩ such that for all 𝜆 ⩾ Ω, 𝜆 is an oblate cardinal if
and only if cf (𝜆) ∈ 𝐶.

Proof. Firstly, by Lemmas 4.12 & 4.15, if 𝜆 is an oblate cardinal then cf (𝜆) ∈ [𝜆𝖣𝖢,max(𝜈+, 𝜏)). For each 𝜇 ∈

[𝜆𝖣𝖢,max(𝜈+, 𝜏)), if there is an oblate cardinal 𝜆 with cf (𝜆) = 𝜇, then letΩ𝜇 be the minimal value of 𝜈 + 𝜏 + ⌈𝐵⌉+ among
all sets 𝐵 such that cf (ℵ(𝐵)) = 𝜇 and ℵ∗(𝐵) = ℵ(𝐵)+. By Lemma 4.19, for each 𝜆 > Ω𝜇 with cf (𝜆) = 𝜇, we can construct
a set 𝑋 witnessing that 𝜆 is an oblate cardinal. Let 𝐶 = {𝜇 ∈ [𝜆𝖣𝖢,max(𝜈+, 𝜏)) ∣ (∃𝜆 ∈ Card) cf (𝜆) = 𝜇 and 𝜆 is oblate }.
Then, setting Ω = sup{Ω𝜇 ∣ 𝜇 ∈ 𝐶}, we see that for all 𝜆 ⩾ Ω, we have that 𝜆 is oblate if and only if cf (𝜆) ∈ 𝐶. □

In fact, we get more than Proposition 4.20. By Lemma 4.19, 𝐶 is precisely the set {cf (ℵ(𝑋)) ∣ ℵ(𝑋) < ℵ∗(𝑋)}.
Finally, putting together Propositions 2.1, 4.16 & 4.20, we obtain the following theorem.

Main Theorem. Let 𝑀 ⊨ 𝖲𝖵𝖢. Then there are cardinals 𝜑 ⩽ 𝜓 ⩽ 𝜒0 ⩽ Ω, a cardinal 𝜓∗ ⩾ 𝜓, a cardinal 𝜒 ∈ [𝜒0, 𝜒
+
0
],

and a set 𝐶 ⊆ [𝜑, 𝜒0) such that

Specℵ (𝑀) =
⋃

⎧⎪⎪⎪⎨⎪⎪⎪⎩

SC = { ⟨ 𝜆+, 𝜆+⟩ | 𝜆 ∈ Card}

𝔇 ⊆ { ⟨ 𝜆, 𝜅⟩ | 𝜓 ⩽ 𝜆 ⩽ 𝜅 ⩽ 𝜒, 𝜓∗ ⩽ 𝜅}

ℭ ⊆ { ⟨ 𝜆, 𝜆+⟩ | cf ( 𝜆) ∈ 𝐶, 𝜆 < Ω}

𝔘 = { ⟨ 𝜆, 𝜆+⟩ | cf ( 𝜆) ∈ 𝐶, 𝜆 ≥ Ω}.

In the notation of this section, 𝜑 = 𝜆𝖣𝖢, 𝜓 = 𝜆𝑊 , 𝜓∗ = 𝜆∗𝑊 , 𝜒0 = max(𝜈+, 𝜏), and 𝜒 = max(𝜈+, 𝜏+).

Remark 4.21. The techniques used in § 4.1 to produce cleaner, stricter bounds only rely on the total agreement of cardi-
nalities and cofinalities of ordinals between Cohen’s model and the outer model. Any other model of 𝖲𝖵𝖢 in which this
occurs will have similarly tight control over the spectrum, assuming that one can find an injective seed (which is no small
feat).

Example 4.22. Suppose that𝑀 ⊨ 𝖲𝖵𝖢 + ¬𝖠𝖢𝖶𝖮 and𝑀 agrees with its outer model on the cardinalities and cofinalities
of all ordinals. Let 𝐴 be an injective seed for𝑀 and suppose that we have preserved 𝖣𝖢<⌈𝐴⌉, so 𝜆𝖣𝖢 = ⌈𝐴⌉. Then, in the
notation of the main theorem, 𝜑 = ⌈𝐴⌉, 𝜒0 = 𝜒 = ⌈𝐴⌉+, and so 𝐶 = {⌈𝐴⌉}. Since 𝜑 ⩽ 𝜓 ⩽ 𝜒0, we have that 𝜓 = ⌈𝐴⌉ or⌈𝐴⌉+. If 𝜓 = ⌈𝐴⌉+, then 𝔇 is empty (other than maybe ⟨⌈𝐴⌉+ , ⌈𝐴⌉+⟩, which is included in SC), and if 𝜓 = ⌈𝐴⌉ then
𝔇 ⊆ {⟨⌈𝐴⌉ , ⌈𝐴⌉⟩, ⟨⌈𝐴⌉ , ⌈𝐴⌉+⟩}. However, given that ⌈𝐴⌉ ∈ 𝐶, we may as well exclude ⟨⌈𝐴⌉ , ⌈𝐴⌉+⟩ from𝔇, as it would
appear in ℭ anyway.
Finally, we have the oblate cardinals. LetΩ be the least value of ⌈𝐵⌉where cf (ℵ(𝐵)) = ⌈𝐵⌉, and ℵ∗(𝐵) > ℵ(𝐵)with the

restriction that Ω ⩾ 𝜒0 = ⌈𝐴⌉+. Then by Lemma 4.19 (using that 𝜏 = ℵ0), we have that Ω ⩽ ℵ(𝑋) < ℵ∗(𝑋) if and only if
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cf (ℵ(𝑋)) = ⌈𝐴⌉. Putting this together,

Specℵ(𝑀) =
⋃

⎧⎪⎪⎪⎨⎪⎪⎪⎩

SC = {⟨𝜆+, 𝜆+⟩ ∣ 𝜆 ∈ Card}

𝔇 ⊆ {⟨⌈𝐴⌉ , ⌈𝐴⌉⟩}
ℭ ⊆ {⟨𝜆, 𝜆+⟩ ∣ cf (𝜆) = ⌈𝐴⌉ , 𝜆 < Ω}

𝔘 = {⟨𝜆, 𝜆+⟩ ∣ cf (𝜆) = ⌈𝐴⌉ , 𝜆 ⩾ Ω}.

By 𝖣𝖢<⌈𝐴⌉, ℵ(⌈𝐴⌉) ⩾ ⌈𝐴⌉, and certainly ℵ(𝐴) ⩽ ⌈𝐴⌉+. However, if ℵ(𝐴) = ⌈𝐴⌉ and ℵ∗(𝐴) = ⌈𝐴⌉+, then we have Ω =

⌈𝐴⌉+, andℭ = {⟨⌈𝐴⌉ , ⌈𝐴⌉+⟩}. On the other hand, ifℵ(𝐴) = ℵ∗(𝐴) = ⌈𝐴⌉ is a limit cardinal, thenwe haveΩ ⩽
⌈
𝐴<⌈𝐴⌉⌉+,

so there may be oblate cardinals missing.
A more specific example is Cohen’s model which, as we saw, follows this pattern precisely with Ω = ⌈𝐴⌉+ = ℵ0 and

𝔇 = ∅. In Question 5.5 we ask if it is possible to have𝔇 ≠ ∅ in this situation.

5 THE FUTURE

Chief among unanswered questions in this field is as follows:

Question 5.1. Precisely which spectra are possible to achieve with models of 𝖲𝖵𝖢?

Throughout the work in § 4.2, the spectre of the injective seed haunted our calculations. If wewished to decide precisely
which spectra are achievable inmodels of 𝖲𝖵𝖢, thenmore information on the injective seeds of themodels thatwe produce
is required. It is also unclear to us howmuch controlwe canhave over𝐶,ℭ andΩ. In [7], for each infinite 𝜆 ⩽ 𝜅, the authors
construct a symmetric system ⟨ℙ,𝒢,ℱ⟩ such that for all𝑉 ⊨ 𝖹𝖥𝖢, 𝟙ℙ ⊩𝖧𝖲 (∃𝑋)ℵ(𝑋) = 𝜆̌, ℵ∗(𝑋) = 𝜅̌. In fact, suchmodels
can be constructed so that the model and the outer model agree with the cardinality and cofinality of all ordinals, just as
in the case of Cohen’s model.

Question 5.2. What are the spectra of the symmetric extensions produced in [7]?

Assume 𝖲𝖵𝖢 and suppose thatℵ(𝑋) = 𝜆 andℵ∗(𝑋) = 𝜅, with 𝜆+ < 𝜅, and suppose that 𝜆𝖣𝖢 = 𝜆. Then for all 𝜇 ∈ [𝜆, 𝜅),
we have that ℵ(𝑋 + 𝜇) = 𝜇+ and ℵ∗(𝑋 + 𝜇) = 𝜅, so cf (𝜇+) ∈ 𝐶 for all 𝜇 ∈ [𝜆, 𝜅) and, as we have seen, cf (𝜆) ∈ 𝐶 as well.
Therefore, given any 𝜇 ∈ [𝜆, 𝜅), if cf (𝜇) is a successor, thenwe can deduce that cf (𝜇) ∈ 𝐶 if and only if cf (𝜇) ⩾ 𝜆. However,
this does not complete the picture. If there is a weakly inaccessible cardinal5 𝜇 ∈ [𝜆, 𝜅), then we have not been able to
deduce if 𝜇 ∈ 𝐶 using these tools.

Question 5.3. Let 𝜇 be weakly inaccessible and suppose that for some set 𝑋, ℵ(𝑋) < 𝜇 < ℵ∗(𝑋). Must there exist 𝑌 such
that ℵ(𝑌) = 𝜇?

Question 5.4. Suppose that𝑀 ⊨ 𝖹𝖥 + 𝖲𝖵𝖢 + 𝖠𝖢𝖶𝖮. Can we always force 𝖠𝖢 in a way that collapses no cardinals?

Question 5.5. Is there a model𝑀 of 𝖲𝖵𝖢 + ¬𝖠𝖢𝖶𝖮 such that

Specℵ(𝑀) = SC∪{⟨𝜆, 𝜆+⟩ ∣ cf (𝜆) = ℵ0} ∪ {⟨ℵ0, ℵ0⟩},
as described in the example after the main theorem? If we replace ℵ0 by an arbitrary infinite cardinal 𝜅, for which 𝜅 is
this possible?

5 An uncountable regular limit cardinal.
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The Bristol model, introduced in [5] and expanded upon in [6], is an inner model of 𝐿[𝑐], where 𝑐 is a single Cohen
real. It therefore satisfies the same conditions that made manipulating Cohen’s model so nice: There is an outer model
of 𝖹𝖥𝖢 that agrees with the inner model on all cardinalities and cofinalities of ordinals. However, the Bristol model was
constructed with explicit intention to violate 𝖲𝖵𝖢, and so many of the techniques used in this paper cannot be applied
‘as is’. However, it does not seem too far-fetched that an amount of this work can be reclaimed. The Bristol model is, in
a sense, a limit of models of 𝖲𝖵𝖢 that approaches the final model, and it is reasonable to believe that one can look at
intermediate models to obtain results about the spectrum.

Question 5.6 (cf. [6, Question 10.19]). Does the Bristol model satisfy 𝖠𝖢𝖶𝖮? If not, what is the spectrum of the
Bristol model?
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