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A B S T R A C T

The growing number of vehicles and the evolving behaviour of road users present new and additional challenges
to road safety. Study on the variables that influence the frequency of crash occurrences such as road geometry,
junction, speed and land use are needed as they have proven effects on the number and severity of crashes. In this
paper, we identify and assess the variables, namely road geometry, vehicle speed, traffic volume, land use and
junction type, and develop accident frequency prediction models for a main urban transport corridor in São
Paulo, Brazil. Crash data was provided by the traffic management company of the city, other datasets were
obtained from a mix of primary and secondary sources including roadside cameras, Geographic Information
Systems (GIS) and digital mapping tools. The studied road was segmented and the coefficients associated with
variables in the segments were obtained using Poisson regression through a stepwise variable selection pro-
cedure. Two models with junctions density per type (access/km, T-junction unsignalised/km, T-junction sign-
alised/km and crossroads/km) and junction density per merged type (signalised/km and unsignalised/km) along
with land use per type (commercial and residential) are developed. The junction density and land use are found
to be significant and positively correlated with crash frequency. The models were evaluated by statistical means
for their accuracy of predicting the crashes, and validated with additional information obtained from field
observation.

1. Introduction

Road infrastructures play a crucial role in traffic safety, particularly
in developing countries that undergo a rapid increase in motorization.
For instance, between 2006 and 2022, vehicle fleet in Brazil grew from
45 million to 115 million, with the number of motorcycles tripling to
25.5 million [1]. However, road deaths in 2017 exceeded 34,000 with
33.6% involving motorcycles. This number is 45.3% higher than the
total road deaths in that year (23,392) within the 28 European Union
(EU) member states combined [2]. Brazil's road fatality rate of 21.5 per
100 million inhabitants (2009–2011) is four times higher than Europe
[3]. The economic impact of traffic accidents is also substantial, costing
1.2% of Brazil's GDP annually [4].

São Paulo is the largest Brazilian city with around 11 million in-
habitants and faces escalating road safety concerns due to the growth of
motorcycles, which are responsible for the highest number of fatal ac-
cidents in the city since 2016. Among 372 such incidents in 2017, 117

died from collisions with fixed objects and 229 from collisions with
other vehicles [5]. Vulnerable road users (VRUs) account for 35% of
road deaths in São Paulo, exceeding the averages in low- and middle-
income countries [6]. This warrants new studies on the impact of
infrastructure (e.g. road geometry, junction) on road user behaviour (e.
g. speeding) as the high VRU fatality rate cannot be simply explained by
exposure [7].

Crash prediction models were developed predominantly between the
mid-1990s and mid-2010s in Europe and North America. They can be
used to identify locations and designs that are associated with high
number of accidents, and to plan for countermeasures. However, only a
few were developed for urban roads and very few are using observed
traffic data that present a growing share of two wheelers and the
evolving behaviours of road users. In this paper, we assess the variables
which are found to influence the frequency of road accident occurrence,
namely the geometry (lentgh and radius), speed, traffic volume, land use
and junction. An accident database was used to develop a crash
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prediction model for a main transport corridor in the city of São Paulo.
Roadside cameras provided data on vehicles' speed, and data on the land
use were obtained from publicly available database. Field observations
were carried out on the road to identify the locations of traffic signalling
and to provide geo-referenced images that will help intervention design.
We discussed how a crash prediction model developed using this
approach may enhance the safety of urban road users.

2. Literature review

Road designs have proven effects on the occurrence and severity of
accidents ([8,9]). Road alignment, traffic condition and roadside envi-
ronment are the primary factors that determine the workload of drivers,
who then respond by adjusting the vehicle speed and lane choice. This
section reviews the contributing factors to accidents and the evolvement
of crash prediction models; some are discussed in the Highway Safety
Manual (HSM) [10] as part of practical guide to enhance the safety
design of highways.

2.1. Operating speed (V85)

Vehicle speed is a major factor contributing to accidents, explaining
the use of road geometry by many crash models to predict the operating
speed under specific traffic and environmental conditions. These models
often focus on the 85th percentile speed (V85) under free flow condi-
tions. Lamm et al. [11] established an empirical relation between V85
and degree of curve, lane width, shoulder width, and Annual Average
Daily Traffic (AADT). Later on, Lamm et al. [12] simplified this equation
by excluding variables related to lane width, shoulder width, and AADT,
as their influence explained only 5.5% of the variation in operating
speeds. Castro et al. [13] developed a similar V85 model in Spain,
correlating it with the Radius of Curve (r). However, these speed pre-
diction models are context-specific and require caution when applied to
new locations.

In a non-linear approach, Morrall and Talarico [14] linked V85 on
horizontal curves to the degree of curve using data from two-lane rural
Canadian highways. Lamm [15] modified this model for horizontal
alignments with transition curves. De Oña and Garach [16] emphasized
the importance of adapting accident prediction models to local cir-
cumstances to take into account factors such as driver behaviour and
traffic regulations.

2.2. Accident prediction models

Lamm et al. [11] proposed ΔV85 (difference in 85th percentile speed
between consecutive road segments) as a consistency criterion for ac-
cident prediction. It was used by Anderson et al. [17] to predict acci-
dents on rural two-lane highways in the USA. Hadi et al. [18] and Martin
[19] highlighted that the effect of traffic flow on crash rate increases
with AADT on roads with higher levels of traffic, while the effect de-
creases with AADT on roads with lower traffic volumes. The same study
found weaker correlation between traffic volume and fatal accidents.
Road length is another form of exposure. The segment length was used in
the crash modelling by Silva et al. [20], whose study divided the
investigated segment of BR-116, which connects the cities of São Paulo
and Rio de Janeiro, into 10 segments of different lengths. The better
performance (i.e. smallest errors and highest values of R2) of the longer
segments (4.5 to 5.0 km) was explained as the model aggregated more
crashes into one segment. Road length was also used by Fitzpatrick et al.
[21] to predict accidents on horizontal curves over a 3-year period,
based on a study of 5287 horizontal curves. Two forms of accident
prediction are available in literature, presented in Eq. (1) and Eq. (2).

Y = e− 7.1977AADT0.9224L0.8419e0.0662×ΔV85 (1)

Y = e− 0.8571MVKTe0.0780×ΔV85 (2)

where Y is the number of accidents on horizontal curve in a 3-year
period, L is the length of the curve, MVKT denotes million vehicle-
kilometres travelled. It can be seen as a variable that combines the
length with traffic. Both models indicate that speed reductions (ΔV85)
compared to the preceding curve or tangent have statistically significant
relationships with accident frequency.

Additional measures investigated by Anderson et al. [17] included
the average radius, rate of vertical curvature and ratio of individual
curve radius to average radius, while Taylor et al. [22] used average
speed (V) for accident frequency prediction as in Eq. (3).

Y = e− 14.93AADT0.7268L1.000e2.479×V (3)

De Oña and Garach [16] validated Anderson's model using data from
1748 km of Spanish two-lane rural highways, which included 10,289
horizontal curves over 306 highway sections. The accident prediction
model can be presented in a general form, as in Eq. (4) and Eq. (5), in
which the variables were determined by different researchers using
regression analysis (see Table 1), including Ng and Sayed [23] who
studied a total of 319 horizontal curves and 511 tangents from two-way
rural highways in Canada.

Y = eα1AADTα2Lα3eα4ΔV85 (4)

Y = eβ1MVKTeβ2ΔV85 (5)

Ng and Sayed [23] further developed the model by replacing ΔV85
with variables of exposure at critical locations such as percentage of
heavy vehicles, geometry (e.g. longitudinal gradient and curvature
change rate) and access density (e.g. number of access/km). Tangent-to-
curve transitions and successive curves of substantial difference in
radius are typical examples of the critical locations. Camacho-
Torregrosa et al. [24] selected 65 two-lane rural road segments of 2–5
km each in Spain to develop a new design consistency model using
negative binomial regression for road safety evaluation.

Researchers have also incorporated roadside features as independent
variables in crash prediction models. For instance, Ben-Bassat and Shi-
nar [25] analysed a 13.4 km long road with experimental scenarios,
followed by a questionnaire with 8 participants. They found that the
roadside features and drivers' perception of risks and manoeuvres (e.g.
actual speed, lane position) are interrelated. For instance, guardrails
give drivers a sense of security and they drive faster in their presence.
Cafiso et al. [26] calibrated a total of 19 accident models with varying

Table 1
Variables in accident frequency models.

Model α1 α2 α3 α4 β1 β2

Anderson
et al.
[17]

− 7.1977 0.9224 0.8419 0.0662 − 0.8571 0.0780

De Oña
[16] (for
constant
accel/
decel)

− 3.1008 1.1228 0.9932 0.0128 − 1.9596 0.0124

De Oña
[16] (for
variable
accel/
decel)

− 3.0680 1.1236 1.0002 0.0124 − 1.9420 0.0119

Ng and
Sayed
[23]

− 3.796 0.5847 0.8874 0.004828

Camacho
et al.
[24]

− 4.9462 0.7683* 0.8645 − 0.7285

* AADT is the average of the road segment.

C.A. Isler et al.
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explanatory variables, using a sample of 168 km long two-lane rural
roads in Italy. The accident prediction model used in that study has a
comprehensive set of variables such as geometry, speed, length and
roadside context. Details are presented in Table 2.

Further calibration resulted in several crash models. For example,
Cafiso et al. [26] had Eq. (6) that comprises at least one variable in each
of the above variable groups.

Y = e− 7.812AADT0.753L1e− 1.948×CR+0.0872×ΔV10+0.067×DD+0.185×RSH (6)

In summary, a widely accepted ([23,26,27]) form of accident pre-
diction model can be presented as in Eq. (7).

Y = eα1AADTα2Lα3e
∑m

i=1
bixi

(7)

where Y is the expected accident frequency; L is the section length;
AADT is the annual average daily traffic; xi is any of the m variables in
addition to L and AADT (see Table 2); and a1, a2, and bi are the co-
efficients related to the variables.

Further discussion on the accident frequency models and the esti-
mation procedures were made by Lord and Mannering [28]. Generalized
Linear Models (GLM) are widely used to estimate the parameters of the
accident frequency models [27]. Negative Binomial and Poisson distri-
butions are appropriate to model non-negative integer values as it is the
case of accident frequency [28].

2.2.1. Observed speed
Hauer et al. [29] found a correlation between higher speed limits and

fewer crashes, suggesting that higher speeds on flat terrain, associated
with gentle curves and gradients, may lead to fewer accidents, especially
with a lower number of non-motorized road users. The question arises as
to whether actual vehicle speed alone should be used to model crash
frequency, and if so, whether traditional variables like radius (r) and
traffic volume (AADT) remain necessary in the model. Camacho-
Torregrosa et al. [24] employed an innovative in-vehicle GPS-data
collection method based on continuous operating speed profiles for
more accurate observations of driver behaviour. Guo et al. [30] placed
emphasis on the motorway speed influenced by driving behaviour in a
study. Hossain [31] also stressed the values for a real-time crash pre-
diction model that can be used to inform design of intervention
measures.

Different to previous studies carried out on two-lane rural roads,
Caliendo et al. [32] investigated the correlation between accident fre-
quency and traffic (AADT), length (L), curvature (1/r), surface friction
and longitudinal gradient on a 4-lane median-divided motorway of 46.6
km length in Italy consisting of circular curves without transition curves
and tangents over a 5-year monitoring period. They developed separate
equations for predicting accidents on curves (Ycurve) and tangents
(Ytangent), as in Eq. (8) and Eq. (9), respectively.

Ycurve = e− 0.07130+0.80311×lnL+0.27017× 1
r + 0.32660 × AADT × 10− 4

(8)

Ytangent = e0.50347
(
e0.85729×lnL+0.23960×AADT×10− 4

+0.22848 J
(
AADT×10− 4)

)

(9)

In which J = 0 where there is no junction and J = 1 where there is
junction (50 m to signalised intersection or 20 m to other types of
intersection). While this might be accurate, it creates a difficulty in
practice separating them in a given road segment. Besides, 31.1% of all
crashes and 33.4% of severe crashes occurred on curves, which repre-
sent 29.7% of the total length of the motorway. This means there might
be no significant difference in the number of accidents in relation to the
tangent/curve ratio. It can also be seen that speed is not a variable in Eq.
(8) and Eq. (9) as the model deals with motorway. Study carried out by
the UK Transport Research Laboratory [22] used the speed instead of
change in speed in a crash model to predict accident frequency (Y) as in
Eq. (10), where DS is the density (number per km) of sharp bend and DX
is the density of crossroad. Note that Eq. (10) by Taylor et al. [22] is a
more general model than the ones proposed by Caliendo et al. [32] for
curves and tangents in Eq. (8) and (9), respectively.

Y = 3.152×10− 7 Q0.728L1.039V2.431e0.121DS+0.286DX (10)

Road design such as the taper length, and roadside environment such
as availability for parking, are important variables that influence drivers'
workload. A study by Garach et al. [27] of 972 km long two-lane rural
highway over a flat terrain in Spain found that longitudinal grade has
little effect on crash frequency. In comparison, the bendiness and per-
centage of HGV have the most significant effects on crash occurrence, e.
g. a 10% increase of HGV in the vehicle mix is associated with 22.7%
increase of crash incidents in road segments that have high traffic vol-
ume (> 4000 vehicles per day). Variables such as shoulder width and
access density, which are regulated for high traffic roads, have a relative
high influence on crashes on low traffic roads. Interestingly, this is
different to what is found on mountainous highways in China. In a study
by Fu et al. [33], the accident rates for a 85 km long highway with an
average longitudinal gradient of up to 6.5% were found to increase
exponentially with the gradient, and in particular on segments after 2–3
km of continuous descent. However, no prediction model was provided
by the study and the types of accidents were not stated.

2.2.2. Junctions and land use
Modelling accidents on urban roads is more complicated mainly due

to the frequent presence of junctions, non-motorized road users and
increased variance in collision patterns. Unsignalised intersections,
which may have stop control, yield control or no traffic control, are more
subject to drivers' discretion than signalised ones. In a study of 142 km
urban road links including 1036 junctions but excluding roundabouts
(due to insufficient data) in Demark, an accident model was developed
by Greibe [34]. Generalized linear modelling techniques were used to
relate accident frequency to explanatory variables and simple models
containing only traffic variables are found almost as good as more
complicated ones, and variables describing junction design improve the
models by only a small extent. The reason can be attributed to behaviour
such as explained by Savolainen and Mannering [35], that motorcycle
riders are more reckless in ideal riding conditions and by Morency et al.
[36], that lenient geometry may increase operating speed. Moore et al.
[37] also suggested that good geometry may be offset by reckless
behaviour, and campaign for behaviour such as helmet use and driver
awareness of cyclists should be encouraged.

Another finding by Greibe [34] is that the total number of accidents
is very similar for signalised and unsignalised junctions with the same
traffic flow. The same view is held by Haleem and Abdel-Aty [38] in a
study in the USA. Greibe [34] further developed the model into a more
general form to predict accidents on urban roads, as in Eq. (11), in which

Table 2
Examples of explanatory variables in accident frequency models.

Variable Group Abbreviation Description

Exposure L (km) Length of homogeneous section
AADT (vpd) Average annual daily traffic

Geometric/
Operational

CCR (◦/km) Curvature change rate
W (m) Paved width
TR (%) Tangent ratio
CR (%) Curve ratio
Vavg (km/h) Average operating speed
σ (km/h) Standard deviation of operating speed

Design consistency ΔV10 (no./
km)

Number of speed difference higher than
10 km/h

ΔV20 (no./
km)

Number of speed difference higher than
20 km/h

Roadside context RSH Roadside hazard
DD (no/km) Driveway density

C.A. Isler et al.
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Y is the accident frequency per km per year. Besides, specific values are
given for speed, road geometry and roadside environment jth variables
as in Table 3.

Y =
(
6.09×10− 4)AADT0.8e

∑m

j=1
bj×xj

(11)

Table 3 shows that narrow road links with high number of accesses,
and with shops and chances for roadside parking, are prone to accidents.
The effects of speed are complicated. For instance, high speed roads tend
to have few vulnerable road users (VRUs), which may explain the low
accident frequency compared to roads of low speed limits. Haleem and
Abdel-Aty [38] indicated that 25–30% of fatal crashes occur at or near
an intersection. In the study using 1547 three-legged and 496 four-
legged unsignalised intersections in the USA, aggregated binary probit
model was proved effective in analysing crash severity. Results indicated
that in urban areas, young drivers (demographic factors), grade-
separated ramps (geometry factors), low AADT on the major approach
and low speed limit (traffic factors) contributed to a decrease in severe
crash injuries.

3. Development of a crash model

Broadly, there are two types of crash prediction models. One is
represented by Nilsson [39] and Cameron and Elvik [40] that relate
casualties and/or crashes to changes of speed limit. These time-series
studies require data from a relatively long period of time, and exclude
the effects of traffic, road geometry and roadside environment, unless
there is a change of them in addition to change of speed limit. The other
type is cross-section studies, which hold the time constant and relate
crashes and/or casualties to different road sections. In this paper, the
effects of road geometry, traffic and roadside environment are studied
using a cross-sectional approach with the following steps illustrated in
Fig. 1.

In STEP 1, variables and the functional form of the regression model
for accident prediction are identified based on literature. STEP 2 in-
volves collecting crash data from secondary sources, primary data on
traffic volumes and speeds, and data for road geometry using digital
mapping tools. STEP 3 focuses on model development, when the studied
road is segmented, the dataset is analysed with the support of
Geographic Information Systems (GIS), and the coefficients for the
model variables are estimated through a stepwise variable selection
procedure. STEP 4 assesses the model performance and suggests ad-
justments to the model that best estimates accident frequency based on a
set of independent variables. Finally, STEP 5 discusses the model,
incorporating information from field visit, and proposes countermea-
sures for traffic management, capital investment and strategic planning

to reduce accident frequency.
We developed a functional form of the regression model in order to

take into account the traffic related attributes (AADT and ΔV85), the
road geometry attributes (radius) and other related attributes (junction
and land use) to predict accident frequency. The first model derived
from STEP 3 as depicted in Fig. 1 is presented in Eq. (12):

Y = eα1AADTα2Lα3eα4ΔV85e
∑m

i=1
bixi

(12)

where Y is the expected accident frequency per section of the studied
road; AADT is the annual average daily traffic per section; L is the sec-
tion length; xi refers to the explanatory variables, e.g. speed, average
radius, land use, number of lanes and number of junctions per type; and
a0, a1, a2,α3, α4 and bi are model coefficients.

The following variables were initially considered to be included in
the crash frequency model: length (meters); average radius (meters);
average speed (kilometres per hour – kph); 85th percentile speed (kph);
difference in 85th percentile speed between successive sections (kph);
AADT (vehicles per day – vpd); type of land use (residential or com-
mercial) at the roadside; average number of lanes; and density of in-
tersections per type (crossroad/km, T-junction signalised/km, T-
junction unsignalised/km and access/km). Two models have been
considered after an assessment of the correlation between independent
variables; Model (1) comprised the intersections per type and Model (2)
comprised the intersections merged (un-signalised junctions including
the number of access and unsignalised T-junction, and signalised junc-
tions including the number of crossroad and signalised T-junction) along
with other variables after an assessment of the correlation between
dependent and independent variables.

A stepwise Poisson regression model was developed considering
variables after an assessment of the correlation between them. Poisson
model assumes the dependent variable Yi (crash frequency in the ith

segment) have the following distribution as represented in Eq. (13) [41].

P(Yi; μi) =
μYi exp( − μi)

Yi!
,Yi = 0,1, 2… (13)

and μi = μi
(
xij
)
= exp

(
∑k

j=0βjxij

)

where xij (j = 0,1,…, k and xi0 = 1)

are independent variables and βj (j = 0,1,…, k) are regression param-

eters. In this paper, μi = μi
(
xij
)
= exp

(
∑k

j=0βjxij

)

=

exp

⎛

⎝eα1AADTα2Lα3eα4ΔV85e
∑m

i=1
bixi

⎞

⎠.

Frome et al. [42] described the maximum likelihood (ML) method
that is used to estimate the coefficients βj in the Poisson regression
model while several measures of goodness-of-fit have been proposed in
the literature. The Akaike information criterion (AIC) [43] has been
extensively used for these purposes, where AIC = − log(LL) + (k+ 1)
with LL equals the final log-likelihood of the estimation and lower AIC
values indicate better fit of the model [41]. Given the Poisson model to
estimate the coefficients that correlate the independent variables, a
variable selection procedure can be applied to develop the model con-
taining the independent variables that best estimate the values for the
dependent variables. Several methods have been proposed for variable
selection to identify the best subset of independent variables that are
relevant for regression modelling. Stepwise methods consider a
goodness-of-fit measure (for example, the AIC) in an iterative procedure
to select and remove the independent variables in order to obtain the
best model fit. In summary, the model starts without input variables.
Next, variable xij is selected for the model with a unique significant in-
dependent variable and highest goodness-of-fit measure. A selection
method is performed to compare the criterion values of all models that
include the first xij (or xij’s) and one additional xí j variable. Next, a

Table 3
Explanatory Variables for Crash Prediction on Urban Roads.

Geometry/Roadside Scenario Estimation [34]

Speed limit 50 km/h 2.25
60 km/h 2.85
70 km/h 1.00

Road width 5.0–7.5 m 0.83
8.0–8.5 m 0.68
9.0–15.0 m 0.80

Number access road 0 0.72
0–5 0.75
5–10 1.00
>10 1.25

Parking Prohibited 1.19
Rarely 1.00
Permitted 1.77

Land use Scattered housing 1.00
Residential blocks 1.56
Industrial blocks 1.58
Shops 2.44

C.A. Isler et al.
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deletion is performed to compare the criterion value of all models that
include the xij’s without one xí j. The method stops when there is no
inclusion or deletion to be performed. Yamashita et al. [44] provided
further details on the AIC stepwise method for variable selection in
linear regression models.

After obtaining the independent variables that provided the bet
model fit, we analysed its final measures of performance, and we dis-
cussed the values and significance of the coefficients related to each
independent variable. We also performed an analysis of correlation
between the independent variables after a model estimation through the
Variance Inflation Factor (VIF) and we discussed the errors through
Residual and Cumulative Residual (CURE) plots. VIF is used to detect
multi-collinearity between the independent variables of a regression and
measures the magnitude at which the variance of the estimated regres-
sion coefficients is inflated, compared to when these variables are not
linearly related [45]. CURE plots are used to assess how well a model fits
the data used to estimate the model coefficients. They may present poor
fit when the cumulative residual line plotted in the y-axis of a chart
against the ascending values of each independent variable in the x-axis
increases or decreases significantly at a certain point [46]. Further in-
formation on CURE plots can be found in studies by Hauer [47] and Lin
et al. [48].

Finally, the models were evaluated using a cross-validation proced-
ure that involved splitting the dataset by year from 2017 to 2021. In
each iteration, a four-year period was used as the calibration dataset to
derive the coefficients of the model. The remaining year was set aside as
the validation dataset that played a crucial role in assessing the pre-
dictive performance of the model. This process was applied again by
removing another year of data and assigning it as the validation dataset.
It is repeated until all the years are used as validation dataset.

The Root Mean Square Error (RMSE) presented in Eq. (14) was uti-
lized to obtain the disparity between the predicted accident frequencies
and the actual frequencies observed.

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i
(Ei − Oi)2

√

n
(14)

where Ei is the i-th estimated accident frequency of the validation
dataset, Oi is the observed accident frequency of the validation dataset,
and n is the size of the dataset.

4. Case study

4.1. Desk study and data collection

The city of São Paulo is located in the southeast region of Brazil and is
the largest city of the country, and Radial Leste is one of its major roads
connecting the eastern highly populated neighbourhoods to the city
centre where most of job opportunities are (see Fig. 2). In this study,
Avenida Radial Leste was divided into 11 sections in the eastbound di-
rection and 9 sections in the westbound direction as shown in Fig. 3(a)-
(b). This division was based on the locations of roadside cameras that
record the vehicle speeds, which were used to derive the average speed
of traffic. We opted for this segmentation instead of a homogeneous or
fixed-length segmentation because the former would result in the same
average speed for both straight and curved segments, thus introducing
bias to the model, and the latter would lead to uniform average speed
and vehicle flow across several successive segments, resulting in poor
model fit.

The State of São Paulo use a georeferenced InfoSiga1 database which
is updated monthly since 2016. InfoSiga contains information on traffic
accidents, including fatalities and injuries, in every city of the State. The
database includes details on vehicles, age and gender of the casualties,

Fig. 1. Flow diagram of the crash model development.

1 https://www.infosiga.sp.gov.br/
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and collision types. Additionally, the traffic management company CET
(Companhia de Engenharia de Tráfego) in São Paulo has access to the
Digital Registry of Civil Police Occurrences and data from the Medical
Legal Institute, collecting around 227 million records annually from 13
traffic cameras. CET publishes annual data on traffic collisions, injuries
and victim characteristics. Records from 2017 to 2021 were used in the
model development. Fig. 4(a)-(b) illustrates accident locations on sec-
tions of Radial Leste in the eastbound and westbound directions.

A total of 556 accidents occurred over the 20 studied segments of
Radial Leste between 2017 and 2021. The majority of accidents (84.8%)
occurred in the eastbound direction, with 75.7% of them taking place
between 2017 and 2019. Fig. 5 depicts the distribution of accidents in
both directions between 2017 and 2021. Half of the segments had be-
tween 0 (zero) and 2 accidents in this period, while the remaining

segments had between 3 and 22 accidents. Note that the occurrence rate
of accidents adheres to a Poisson distribution that aligns with the
functional form and estimation approach used in this study.

Following the variables presented in Section 2.2, the length and
average radius were measured using GIS. We obtained the average
speed, 85th percentile speed (V85) and difference in 85th percentile
speed between successive sections (ΔV85) from observed (camera) data.
A large dataset was made available by CET containing the records of
each vehicle that passed through the studied sections of Radial Leste
between 2017 and 2021. The average speeds were calculated by
dividing the travelled distance between cameras by time. However, only
23% of the total records were employed because the rest contained in-
formation about the vehicle's license plate captured only at the entrance,
or at the exit, and not both of a section. Data on AADT was also obtained

Fig. 2. Location of the (a) State of São Paulo and its Metropolitan Region, (b) city of São Paulo in the Metropolitan Region of São Paulo (MRSP) and (c) Radial Leste
in the city.
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from the traffic cameras at the entrance/exit of each section containing
information about vehicles and speeds. The percentage of land use
(residential or commercial) was calculated using GIS with the support

from a dataset made available by Geosampa2 that contains information
about the land use over São Paulo. The average number of lanes was

Fig. 3. Location of the segments in Radial Leste in the eastbound (a) and westbound (b) directions.

Fig. 4. Example of accident locations in the sections of Radial Leste in the eastbound (a) and westbound (b) directions.

2 https://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx

C.A. Isler et al.

https://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx


IATSS Research 48 (2024) 378–392

385

obtained from the OpenStreetMaps3 database also with the support of
GIS. Finally, the number of intersections per type was obtained from the
OpenStreetMap database.

Appendix A and B of the supplementary material present the values
for the predictive variables (number of accidents) and the exploratory
variables (road geometry, AADT, land use, number of lanes and number
of intersections per type) in the eastbound and westbound directions,
respectively. These values were used in regression analysis to estimate
the coefficients of the exploratory variables in the model. Table 4 pre-
sents the descriptive statistics of accidents and of the variables.

The correlation between the crash frequency and the independent

variables were calculated and presented in Table 5. Fig. 6 presents the
correlation plot for the independent variables.

Fig. 6 highlights a significant negative correlation between the
average radius and various factors associated with junction types (T-
junction unsignalised per km, access per km, and unsignalised junctions
per km), AADT and the number of lanes. Similarly, the length and res-
idential land use exhibit negative correlations with variables related to
junctions, AADT and the number of lanes, so does commercial land use.
Conversely, the number of lanes shows a strong positive correlation with
types of junctions (T-junction unsignalised per km, access per km, and
unsignalised junctions per km), and with AADT.

4.2. Model development

We applied the stepwise variable selection procedure to model the
accident frequency as a function of the independent variables in Model
(1) comprising the junctions per type (access, unsignalised T-junction,
crossroad and signalised T-junction) and Model (2) comprising the
junctions merged by signalised and unsignalised along with other vari-
ables discussed in section 4.1. Fig. 7(a) and 7(b) presents the AIC and the
variables included in each step of the selection procedure, respectively,
for Model (1) and Model (2).

Based on the final AIC of Model (1) and Model (2), we calculated the
final log-likelihood of the models and compared them through a likeli-

Fig. 5. Relative and cumulative frequency of accidents in the studied sections of Radial Leste between 2017 and 2021 in the eastbound and westbound directions.

Table 4
Average statistics of accident and of the explanatory variables per direction.

Eastbound Westbound

Total number of accidents 472 84
Accidents per section 8.6 1.9
Length (m) 1890.9 2318.2
Radius (m) 154.3 153.9
Speed (kph) 33.9 34.0
V85 (kph) 44.5 45.2
ΔV85 (kph) 0.01 − 0.96
AADT 14166 16842

Land Use (%)
Residential 28 23
Commercial 53 55
Other 19 22

Number of Lanes 3 3
Number of Crossroad 2 1

Number of T-junction
Unsignalised 2 1
Signalised 1 2

Number of Access 8 5

Number of Intersection
merged by type

Signalised (crossroad
and T-junction)

3 3

Unsignalised (access
and T-junctions)

9 5

Table 5
Correlation between accident frequency and the independent variables.
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hood ratio test [49] with null model (H0) equals Model (2) and alter-
native model (H1) given by LR = − 2.

[
LLH0 :Model (2) − LLH1 :Model (1)

]
.

Table 6 summarizes the measures of performance and shows that the
models exhibit similar performance (LR = 0.6 > χ2

2;95% = 5.991) and
with a preference for Model (1) that uses junctions per type and other
variables in estimating the accident frequency in the studied case.

The values of the coefficients in both models are presented in
Table 7. As expected for the stepwise estimation, all the variables are
significant at 95% confidence level (|z-value| > 1.96). In Model (1),
length, commercial and residential land use, and all types of junctions
(crossroad/km, T-junction unsignalised/km, T-junction signalised/km
and access/km) are found to be significant, while in Model (2), the
junctions merged are found to be significant. Note that the values of the
coefficients for both models have the expected signs and magnitude
similar to those found in the literature (see Table 1 and Table 7). It is
worth noting that number of lanes, average radius, AADT and difference
of 85th percentile speed between successive segments have been drop-
ped from the models in accordance with the correlation observed be-
tween variables as shown in Fig. 6. It indicates that the frequency of
accidents is primarily associated with land use and traffic control of the
road rather than the geometry (except by the segment length) and traffic
characteristics.

The signs and values of the parameters in both models agreed with
our expectation. The constants reveal an expected accident frequency
value regardless of other variables in the model when the Poisson dis-
tribution is inferred. The accident frequency increase when the length
segment increases exponentially by a factor of 1.087 and 1.089 in Model
(1) and Model (2), respectively. The variables related to land use are
significant in all models and range between 1.980 and 2.598 in Model
(1) and 2.042 and 2.532 in Model (2), contributing to an increase of
accidents. It can be explained by the fact that drivers (or riders) usually
reduce their speed to access the facilities and buildings along the road
and interfere with the traffic when leaving such places. Additionally,
commercial land use has higher impacts in increasing accident fre-
quency compared to residential land use. The junction density also in-
creases accident frequency, with the highest contribution made by
crossroad/km and T-junction signalised/km, followed by T-junction
signalised/km and access/km in Model (1). Signalised junction/km
made highest contribution to accident frequency, followed by

unsignalised junction/km in Model (2). Such results might derive from
higher traffic flows at the signalised junctions than at the unsignalised
ones.

4.3. Model performance assessment

CURE plot residuals were developed for each variable in both models
based on the method by Snirivasan et al. [46] to assess the residuals of
accident frequency in the studied case. The plots present the cumulative
residual (observed accident frequency minus estimated accident fre-
quency) over the values of a given explanatory variable sorted in
ascending order. Fig. 8(a)-(g) presents the CURE plots of variables in
Model (1) and Fig. 9(a)-(e) presents the CURE plots of variables in Model
(2).

CURE plots indicate that the cumulative residuals do not exhibit an
increasing or decreasing trend as expected, and they fall within the
confidence intervals for most of the explanatory variables. However,
exceptions are observed for lower values of length (below 7.0 km) and
access/km (below 2.0) in Model (1), as well as length (below 7.0 km)
and unsignalised junctions (below 2.5) in Model (2). Following the early
work by Hauer [47] and Lyon [50], Snirivasan et al. [46] suggested that
if 5% or more of cumulative residuals fall outside the confidence in-
tervals of CURE plots (i.e., below or above the confidence bounds),
further investigation into the functional form of the predictive models is
warranted for specific variables, although this evidence should be
explored further. Practitioners should carefully analyse estimations
within these intervals, as different models may be needed for specific
intervals depending on the dataset and application. Table 8 presents the
Variance Inflation Factor (VIF) per variable and model to assess the
multi-collinearity between the independent variables of a regression.

There is a lack of a consensus on acceptable values in literature for
the Variance Inflation Factor. Montgomery [51], Kutner et al. [52],
O'Brien [53], Chatterjee and Simonoffart [54], Marcoulides and Raykov
[55] discussed the commonly used rule of thumb and suggested that VIF
values below 5.0 are generally considered acceptable, indicating a lower
proportion of variance that the ith independent variable shares with
other independent variables in the model. Therefore, we consider the
results of our model acceptable, as the VIF for all variables in the models
are below 3.00.

Finally, Table 9 presents the RMSE of the cross-validation procedure
when each year is considered as validation dataset and the remaining
years are used as calibration dataset. Results show that both models
have similar RMSE close to 1.2 accident on average in the validation
dataset.

In conclusion, results show that the estimations of accident fre-
quency are more accurate when the variables related to geometry
(length as proxy), number of intersections per type and land use are
included in the models. It is worth noting that the models perform
equally well whether or not the junctions are merged into the unsign-
alised and signalised categories. Roadside environment such as avail-
ability for parking and the traffic make-up such as percentage of HGV
are found in literature [26] to have a high influence on crashes. These
can be tested for their significance in the model should the data be
available.

4.4. Field survey

A field survey was carried out over the Avenida Radial Leste on
Friday 7th April 2023. 340 images were obtained from the survey and
later linked to a GIS, which enabled visual assessment of the site for
roadside traffic environment, such as the number of lanes. A sample of
those images are presented in Fig. 10(a) and the variables of land use are
illustrated in Fig. 10(b) for residential use and Fig. 10(c) for commercial
use. Appendix C of the supplementary material presents a set of images
per segment and direction (Eastbound and Westbound) illustrating the
road geometry and land use.

Fig. 6. Correlation between all the independent variables considered in
the models.
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The number of lanes is not a significant variable in any model as to
explain the accident frequency, mainly because the road geometry is not
homogeneous in the sections, where several segments contain barriers
dividing a set of lanes in the same direction as seen in Fig. 10(c).

5. Conclusion and recommendations

The geometric features of a road, junction and roadside land use are
important factors to influence the frequency of accident occurrence on
urban roads. A set of prediction models is developed in this study to
analyse the most influential factors on accident frequency. The purpose

Fig. 7. AIC in each step of the stepwise variable selection procedure.

Table 6
Measures of performance of models.

Model Final
AIC

Number of
variables (k)

Final log-
likelihood

LR
test

χ2
2;95%

(degrees of
freedom = 7–5 =

2)

1 651.8 7 − 317.9
0.6 5.9912 691.7 5 − 318.2
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is to identify any adverse traffic and roadside environment, which cause
abrupt changes in drivers' workload and subsequently increase crash
occurrences. The literature review by Lord and Mannering [28] pro-
vided a wide options of modelling techniques for crash prediction. The
multiple linear regression models are used to testify whether one or
more independent variables, e.g. speed, radius, can be used to signifi-
cantly predict a dependent variable, e.g. crash frequency or crash rate.
Poisson distribution is widely found an appropriate alternative to linear
regression because accident frequencies are (a) integers, (b) relatively
small numbers and (c) nonnegative. However, when the distribution
curve has a long tail, the negative binomial distribution can provide an
improvement over the Poisson distribution. It allows greater variance in
the data (thereby deals with over-dispersion), compared with linear or
Poisson regression. How different modelling methods could reveal
similar or divergent results from those presented in this paper is an area
for further study.

Table 7
Coefficients estimated for the models.

Variable Model (1) Model (2)

Estimation z-value Estimation z-value

Constant − 10.474 − 9.691 − 10.516 − 10.011
ln(length) 1.087 9.056 1.089 9.272
Land Use: Residential 1.980 5.385 2.042 5.656
Land Use: Commercial 2.598 6.872 2.532 7.515
Access/km 0.210 5.720 – –
T-junction unsignalised/km 0.235 3.927 – –
T-junction signalised/km 0.717 5.960
Crossroad/km 0.798 10.673 – –
Unsignalised junction/km – – 0.225 10.737
Signalised junction/km – – 0.786 11.31

Fig. 8. CURE plots of variables of Model (1): (a) ln(length), (b) Land Use: Residential, (c) Land Use: Commercial, (d) Crossroads/km, (e) T-junction unsignalised/km,
(f) T-junction signalised/km and (g) Access/km.
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Regression analysis of the most influential factors is carried out in
this paper, and the models are validated using data collected from a
main urban road in São Paulo. Our prediction model initially considered
variables such as average radius, the difference in 85th percentile speed
between successive sections, AADT, percentage of land use (residential
or commercial) and number of intersections per type (crossroad, T-
junction signalised unsignalised, access). Results show that length, land
use and junctions per type significantly affect the crash frequency.

Field observation was carried out in this study which collected pri-
mary data on the site for model development, but more can be done in

particular in the analysis of vulnerable road users (VRUs), e.g. motor-
cyclists. There is a need to investigate fully the accidents involving
motorcycles, specific to trip purposes, e.g. commuting, goods delivery,
motorcycle taxi, and thereafter to propose intervention measures.
Knowledge of the accident type (e.g. side/rear-end collision) and vehicle
type involved is also important for understanding the causes and for
implementing safety design. Developing a framework to assess road
network-wide risks is suggested in literature [56]. Improvement should
be made where a location is known for high crash incidents. Use of GIS
and digital twins of road infrastructure, as well as partnership with other
public sectors such as health and police, will enable timely and cost-
effective measures be taken to address new challenges in road safety.

Additionally, cycling has increased in popularity in Brazil over the
past decade. This adds additional challenges to road safety in dealing
with more diversified road users. Traffic management and law
enforcement, such as license management and prohibiting riding be-
tween lanes, are very important alongside the provision of in-
frastructures. Despite of the safety benefits brought by emerging vehicle
technologies, crash statistics in Brazil suggest that the protection of
VRUs should be prioritised in road safety programmes, given their
growing share of road injuries and deaths.
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Fig. 9. CURE plots of variables of Model (2): (a) ln(length), (b) Land Use: Residential, (c) Land Use: Commercial, (d) Unsignalised junction/km and (e) Signalised
junction/km.

Table 8
VIF per explanatory variable and model.

Variable Model (1) Model (2)

ln(length) 1.29 1.26
Land Use: Residential 2.76 2.70
Land Use: Commercial 3.17 2.57
Crossroads/km 2.28 –
T-junction unsignalised/km 2.27 –
Access/km 2.48 –
Unsignalised junction/km – 1.59
Signalised junction/km – 1.24

Table 9
RMSE of the estimated models using a cross-validation procedure.

Model RMSE with dataset of 5 years Average RMSE

2017 2018 2019 2020 2021

1 1.58 1.05 1.13 0.91 1.37 1.21
2 1.59 1.05 1.13 0.89 1.36 1.20
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Fig. 10. Site observation of Avenida Radial Leste in April 2023.
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