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A B S T R A C T

This paper introduces novel semi-analytical models tailored for estimating land subsidence resulting from
groundwater extraction in confined aquifers. These models offer high scalability, allowing them to be
applied to various well configurations and pumping schedules. Their development involves the numerical
integration of two key analytical solutions: the ‘‘nucleus of strain’’ (NoS) (Mindlin and Chen, 1950), which
represents a localised zone within the aquifer where a unit change in pore pressure leads to deformation and
subsequent surface displacement, and the classic Theis equation (Theis, 1935) for the pore pressure changes
induced by a constant-rate well pumping from a laterally unbounded aquifer. These integrations yield surface
displacement components, both horizontal and vertical, expressed as functions of two dimensionless spatial–
temporal variables, which encompass aquifer depth, thickness, well placement, pumping schedules, and critical
hydro-geomechanical parameters like hydraulic conductivity, porosity, vertical compressibility, and water
compressibility. Proposed are two distinct modelling approaches: one employing a lookup table (LT) derived
from numerical integration results, and the other providing direct closed-form surface displacement solutions
by fitting LT data with ‘‘hinge models’’, which use piecewise-linear functions linked by sigmoidal curves for
computational efficiency. In both cases, surface displacement components are estimated by plugging in the
dimensionless variables. Conditions of variable pumping from multiple wells can be addressed by applying
superposition of solutions. In essence, these semi-analytical models offer swift computational capabilities for
understanding and forecasting land subsidence dynamics. Their scalability makes them adaptable to a wide
array of well configurations and scheduling scenarios, rendering them valuable for numerous applications. They
are particularly significant for providing preliminary estimates of the impacts of groundwater development,
conducting ‘‘what-if’’ tests, and performing sensitivity analyses to identify key factors affecting land subsidence
risk. This underscores the importance of these models in sustainable groundwater resource management and
in mitigating land subsidence and its associated consequences.

1. Introduction

Land subsidence refers to the settling of the Earth’s surface in
response to various natural and human-induced factors and may occur
over relatively small areas or cover large regions at various rates, from
slow to rapid. One of the primary anthropogenic causes of land subsi-
dence is the extraction of fluids from the subsurface. These activities
are carried out commonly for purposes of fossil fuel and groundwater
development. While groundwater resources can be found at any depth,
their quality is suitable for domestic, agricultural, or industrial use
normally when they are taken from shallower sedimentary formations,
whose depth typically range from a few meters to a few hundred meters
in depth. Excessive pumping of groundwater from aquifers is arguably
the main cause of land subsidence worldwide (Gambolati et al., 1991;

E-mail address: d.bau@sheffield.ac.uk.

Holzer and Galloway, 2005; Erkens et al., 2015; Guzy and Malinowska,

2020).

Land subsidence is the effect of a consolidation process that is

triggered by groundwater abstraction, which causes a reduction in fluid

pressure followed by an overall aquifer compaction, under the isostatic

load exerted by burying materials. Such a deformation is then gradually

transferred to the surface, where settlement is observed. This effect

may pose significant environmental and infrastructural risks, which

highlights the need for modelling and monitoring programs that can

be used to assist sustainable water management practices that mitigate

the risks. These may be particularly significant in coastal regions where

the ground elevation is of the order of a few tens of centimetres above

the mean sea level (Abidin et al., 2015; Yan et al., 2020) as it has the
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potential to significantly increase the vulnerability to sea level rise and
coastal flooding (Kulp and Strauss, 2019).

Mathematical models play a crucial role in forecasting land dis-
placement caused by groundwater withdrawal. These models can be
categorised into two types: numerical and analytical. The latter relies
on solving the classical equations of poro-elasticity (Biot, 1941, 1955;
Verruijt, 1969) through discretisation techniques like finite elements,
finite differences, finite volumes, or their combinations. These mod-
els possess considerable power and flexibility, enabling simulation of
intricate hydrogeological scenarios under various conditions of het-
erogeneity, elasticity, elasto-plasticity, and viscosity constitutive laws.
As a result, they have led to unparallelled levels of sophistication
and accuracy in simulations. For in-depth examinations of numerical
models, one may refer to the works of Galloway and Burbey (2011),
Gambolati and Teatini (2015), and Guzy and Malinowska (2020).

Analytical models constitute the earliest group of mathematical
tools for land subsidence assessment, and remain to these days an at-
tractive solution for their ease of application, computational efficiency
and low data requirement. One of the earliest and most renowned
models for land subsidence was developed by Geertsma (1966, 1973)
to predict surface displacement caused by a disk-shaped reservoir em-
bedded in a homogeneous, linearly-elastic, semi-infinite domain and
subjected to a constant change in pore pressure. Geerstma used the
‘‘Nucleus of Strain’’ (NoS) equations (Mindlin, 1936; Mindlin and Chen,
1950), integrating them over the reservoir volume. These equations
quantify both horizontal and vertical displacements resulting from a
unit change in pore pressure within a unit volume at a specified depth
underground. Following Geertsma’s work, van Opstal (1974) and, more
recently, Tempone et al. (2010) proposed analytical models to estimate
the surface vertical displacement assuming the reservoir is positioned
above a rigid basement.

We should note that the NoS integration method can be extended
to reservoirs with various shapes that experience a spatially distributed
change in pore pressure, which typically requires numerical compu-
tation. However, under specific conditions, an analytical solution is
feasible. For instance, Jayeoba et al. (2019) introduced an analytical
solution for the surface vertical settlement above a well that pumps at a
constant rate from a cylindrical reservoir. In this case, due to the radial
symmetry of the pore pressure change, the integration was carried out
by utilising Geertsma’s vertical surface displacement at the centre of a
disk-shaped reservoir.

For groundwater development applications, the studies of Bear and
Corapcioglu (1981a,b) and Corapcioglu and Bear (1983) constitute
the earliest examples of analytically based models for calculations
of land subsidence due to pumping from shallow aquifers. Bear and
Corapcioglu (1981a) derived a closed-form solution for the compaction
resulting from pumping in a confined aquifer. Their derivation relied
on the integration of the 3D equation of groundwater flow across the
aquifer’s thickness and the introduction, through Terzaghi’s effective
stress principle (Terzaghi, 1923; Terzaghi and Peck, 1967), of a linear-
elastic constitutive model between the vertical aquifer compaction
and the average piezometric head, assuming horizontal flow and no
horizontal displacements.

Bear and Corapcioglu (1981b) integrated the 3D classical equations
of poro-elasticity (Biot, 1941) within the aquifer thickness, considering
shear-free boundaries and conditions of plane stress, still under the
assumption of horizontal flow and linear-elastic stress–strain relations.
They thus derived closed-form equations for both vertical and horizon-
tal displacements associated with flow to pumping wells in confined
and partially confined aquifers. Corapcioglu and Bear (1983) extended
the approach of Bear and Corapcioglu (1981b) to the case of uncon-
fined aquifers. In this scenario, applying Terzaghi’s principle requires
considering the variation in total stress to link changes in water level
to effective stress variations.

It is worth highlighting that the solutions presented by Bear and
Corapcioglu primarily focus on estimating the aquifer deformation

(consolidation settlement) rather than directly calculating surface dis-
placements. Indeed, the solutions are integrated over the saturated
aquifer thickness, assuming a rigid basement beneath the aquifer. As a
result, strains in the aquifer underburden and overburden are not taken
into account, and the formation depth results to have no impact on the
surface displacement.

In the work of Xie et al. (2014), Biot’s equations of poro-elasticity
were solved analytically to determine radial symmetric analytical solu-
tions for the land surface displacement induced by the deformation of
an overburden layer sitting above a confined aquifer. Such a solution,
however, did not account for the compaction of the aquifer, which was
assumed merely as a rigid boundary where a time-dependent change
in fluid pressure is imposed. Such a ‘‘drawdown’’ was given by the
Theis solution (1935) for a single well pumping continuously in a
laterally-infinite, horizontal and constant-thickness confined aquifer.

Loáiciga (2013) provided closed-form analytical solutions for the
vertical consolidation settlement occurring within both confined and
unconfined aquifers due to groundwater pumping, considering con-
ditions of both steady-state and transient flow. These solutions were
derived by integrating traditional aquifer drawdown solutions, such as
in Thiem (1906) and Theis (1935), across the aquifer thickness. Loái-
ciga’s approach enabled the estimation of effective stress variations that
result in aquifer compaction, applicable to both normally consolidated
and under-consolidated basins, and made use of linear superposition of
solutions to simulate the effect of multiple wells.

Of related interest is the work of Pujades et al. (2017), who used
a numerical approach to analyse the strain caused by groundwater
pumping in overconsolidated, perfectly confined and partially confined
aquifers. Their investigation employed a radial-symmetric conceptual
model similar to the one used by Bear and Corapcioglu (1981b) and
addressed various aspects, including the influence of boundary condi-
tions on displacements at the aquifer’s bottom and lateral boundaries.
They also developed a closed-form solution for aquifer compaction
in the case of confined flow, which significantly expanded upon the
one proposed by Bear and Corapcioglu (1981b) for three-dimensional
consolidation.

Zhang and Mehrabian (2020) presented an analytical solution to
the problem of underground fluid injection in a disk-shaped reservoir
while accounting for strain-induced changes in permeability. While the
focus of such a study was on aquifer injectivity rather than surface
displacement, the rock stress was assumed to be a function of the
pore fluid pressure change within the reservoir and was derived by
integration of the NoS solution in an elastic half space. Wang et al.
(2022) presented a semi-analytical solution for the land subsidence
due to pressure changes in a poro-elastic reservoir. Their method was
based on the integration of a Green function derived as the solution
of the coupled hydro-geomechanical system equation, multiplied to
the reservoir pressure variation obtained from a flow simulator, either
numerical or analytical.

Aligned with the works reviewed above, this paper presents com-
putationally fast semi-analytical models that can be used to assess land
surface displacement due to aquifer pumping. These models effectively
merge the NoS solution with the classic Theis solution for flow to
wells in confined aquifers, following an approach that, to the best of
the Author’s knowledge, is fully original. Despite both solutions being
analytically based, their coupling results in integrals that can only be
calculated numerically, which is computationally expensive.

To overcome these limitations, two distinct models are proposed
here, one employing lookup tables (LTs) and another relying on direct
closed-form solutions, which furnish precise outputs for the horizontal
and vertical components of the surface displacement. The closed-form
solution relies on the fitting of the LT data with ‘‘hinge’’ models,
that is, a particular type of piecewise-linear functions connected by
smoothing curves around the intersection points. Both models share
the same fundamental inputs, which are reduced to two dimensionless
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parameters, encompassing aquifer depth and thickness, surface loca-
tion, well locations, time since pumping initiation, and critical hydro-
geomechanical properties, including hydraulic conductivity, porosity,
vertical compressibility and water compressibility.

By adopting the NoS approach, these models enable a compre-
hensive analysis of 3D deformation effects across the aquifer, and
the underburden and overburden formations. These models prioritise
efficiency and scalability. By applying the principle of superposition,
they enable the user to simulate land subsidence induced by multiple
well pumping scenarios and varying pumping rates. These develop-
ments represent a notable step forward in the realm of land subsidence
prediction, offering versatility and computational efficiency.

This paper is organised as follows: Section 2 describes the funda-
mentals of the land subsidence model and the NoS solution; Section 3
presents the derivation of the semi-analytical land subsidence simu-
lators, which rely on the integration of the NoS solution with the
Theis equation over the aquifer volume, and the parameterisation of
these integrals with respect to two dimensionless variables; Section 4
present the results of a number of numerical tests conducted for model
testing purposes; in Section 5, a discussion is provided concerning the
model’s capabilities, along with a concise overview of its fundamental
assumptions and an examination of the constraints imposed on the
model’s accuracy and relevance; Section 6 includes concluding remarks
on the models developed.

2. Land Subsidence Model

Considered here is the case of a geomechanically homogeneous,
linearly-elastic, semi-infinite system delimited by a traction-free hor-
izontal surface, and subject to a spatially distributed pore pressure
change 𝛥𝑝 within a volume 𝛺 embedded in it. Based on the superposi-
tion principle, the components 𝑢𝑥, 𝑢𝑦, and 𝑢𝑧 of the surface displacement
along the coordinate directions 𝑥, 𝑦 and 𝑧, and at a generic time 𝑡, are
given by the following volume integrals:

𝑢𝑥 (𝑥, 𝑦, 𝑡) =∫𝛺 𝑢∗
ℎ
(𝑟, 𝑐) ⋅ 𝜂𝑥 ⋅ 𝛥𝑝 ⋅ 𝑑𝛺

𝑢𝑦 (𝑥, 𝑦, 𝑡) =∫𝛺 𝑢∗
ℎ
(𝑟, 𝑐) ⋅ 𝜂𝑦 ⋅ 𝛥𝑝 ⋅ 𝑑𝛺

𝑢𝑧 (𝑥, 𝑦, 𝑡) =∫𝛺 𝑢∗
𝑣
(𝑟, 𝑐) ⋅ 𝛥𝑝 ⋅ 𝑑𝛺

(1)

where: 𝛥𝑝 = 𝛥𝑝
(
𝑥′, 𝑦′, 𝑐, 𝑡

) [
MT−2L−1

]
with

(
𝑥′, 𝑦′, 𝑐

)
∈ 𝛺 and 𝑑𝛺 = 𝑑𝑥′⋅

𝑑𝑦′ ⋅ 𝑑𝑐; 𝑟 and (𝜂𝑥, 𝜂𝑦) are the length and the cosine directors of the 2D
vector

(
𝑥 − 𝑥′, 𝑦 − 𝑦′

)
, respectively; and 𝑢∗

ℎ
and 𝑢∗

𝑣
are ‘‘Green’’ functions

that represent the horizontal and vertical displacements, respectively,
associated with a ‘‘Nucleus of Strain’’ (NoS), that is, a unit volume
located at depth 𝑐, in which a unit change in pore pressure takes place
(Fig. 1a).

Eqs. (1) represent the solution to the classic equations of poro-
elasticity (Biot, 1941) under the assumption that the flow field is
‘‘one-way’’ coupled to the deformation of the porous medium (Verruijt,
1969). In the case of a homogeneous porous medium, closed-form
analytical expressions of the Green functions (𝑢∗

ℎ
, 𝑢∗

𝑣
) have been derived

by Mindlin and Chen (1950) and Geertsma (1973):

(a): 𝑢∗
ℎ
(𝑟, 𝑐) =

𝑐𝑀 ⋅ (1 − 𝜈)

𝜋
⋅

𝑟(
𝑐2 + 𝑟2

)1.5

(b): 𝑢∗
𝑣
(𝑟, 𝑐) =

𝑐𝑀 ⋅ (1 − 𝜈)

𝜋
⋅

𝑐(
𝑐2 + 𝑟2

)1.5
(2)

where 𝑐𝑀 and 𝜈 are the vertical compressibility
[
M−1T2L

]
and the

Poisson ratio
[
∕
]
of the porous medium, respectively, and 𝑟 is the radial

coordinate with respect to a vertical axis crossing the NoS location
(Fig. 1a). Note that since 𝑢ℎ∕𝑢𝑣 = 𝑟∕𝑐, 𝑢ℎ and 𝑢𝑣 are equal for 𝑟 = 𝑐.

Eqs. (2) can be made dimensionless by normalising them with
respect to the displacement 𝑢∗

𝑣
(0, 𝑐) =

𝑐𝑀 ⋅(1−𝜈)

𝜋⋅𝑐2

[
M−1T2L−1

]
, and in-

troducing the scaled radial coordinate 𝑅 = 𝑟∕𝑐, which leads to the
following expressions:

(a): 𝑢ℎ
∗
(𝑅) =

𝑢∗
ℎ
(𝑟, 𝑐)

𝑢∗
𝑣
(0, 𝑐)

= 𝑅 ⋅

(
1 + 𝑅2

)−1.5

(b): 𝑢𝑣
∗
(𝑅) =

𝑢∗
𝑣
(𝑟, 𝑐)

𝑢∗
𝑣
(0, 𝑐)

=
(
1 + 𝑅2

)−1.5 (3)

Eqs. (3) show that the normalised displacement depends solely on the
scaled radial coordinate 𝑅, and is thus invariant with respect to the
NoS depth 𝑐. The normalised displacement components (𝑢ℎ

∗
, 𝑢𝑣

∗
) are

graphed in Fig. 1b.

3. Surface Displacements due to Groundwater Pumping

Eqs. (1) can be used to estimate the surface displacement compo-
nents if the pore pressure change field 𝛥𝑝

(
𝑥′, 𝑦′, 𝑧′, 𝑡

)
is known. This

field may be obtained using a groundwater flow model, and the inte-
grals (1) are then calculated numerically by discretising the domain 𝛺

into a finite-element (FE) or finite-difference (FD) grid of 𝑁𝑒 elements
or cells, which allows for splitting them into the sum of as many terms.
By referring the surface displacements to the𝑁𝑛 nodes of a surface grid,
Eqs. (1) may be expressed as a matrix–vector product (Verrujit, 2015):

⎡
⎢⎢⎣

𝐔𝑥

𝐔𝑦

𝐔𝑧

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

𝐌𝑥

𝐌𝑦

𝐌𝑧

⎤
⎥⎥⎦
⋅ 𝐅 (4)

where: 𝐔𝑥, 𝐔𝑦 and 𝐔𝑦 are 𝑁𝑛 × 1 vectors including the displacement
components at the surface points; 𝐅 is a 𝑁𝑒 × 1 vector, whose generic
𝑗th component equals the product 𝑉𝑗 ⋅ 𝛥𝑝𝑗 , where 𝑉𝑗 is the volume of
element 𝑗 (𝑗 = 1,.., 𝑁𝑒), and 𝛥𝑝𝑗 is average pore pressure change in it;
𝐌𝑥, 𝐌𝑦, and 𝐌𝑧 are 𝑁𝑛 × 𝑁𝑒 matrices, whose generic 𝑚𝑖,𝑗 coefficient
depends on the NoS surface displacements (Eqs. (2)) for the radial
distance 𝑟𝑖,𝑗 between the grid node 𝑖 (𝑖 = 1,.., 𝑁𝑛) and element 𝑗’s
centroid, and element 𝑗’s depth 𝑐𝑗 .

An alternative ‘‘hybrid’’ semi-analytical approach, is here devised
in the case of the pore pressure change 𝛥𝑝 produced by a single well,
operating at a constant rate 𝑄 within a confined, laterally-infinite,
homogeneous, isotropic and horizontal aquifer. The well is positioned
at the origin of the coordinate system (𝑥 = 0, 𝑦 = 0) (Fig. 2) and is fully-
screened through the aquifer, which is located at average depth 𝑐 and
has a thickness 𝑏. Under these conditions, the change in pore pressure
in the aquifer can be calculated as Theis (1935):

𝛥𝑝
(
𝑥′, 𝑦′, 𝑧′, 𝑡

)
= 𝜌𝑤 ⋅ 𝑔 ⋅

𝑄

4 ⋅ 𝜋 ⋅ 𝑏 ⋅𝐾
⋅𝑊

(
𝑆𝑠

4 ⋅𝐾
⋅

𝑟′
2

𝑡

)
(5)

where 𝜌𝑤 is the water density
[
ML−3

]
, 𝑔 is the standard gravity

[
LT−2

]
,

𝑄 is the well flow rate (negative for extraction)
[
L3T−1

]
, 𝐾 is the

aquifer hydraulic conductivity
[
LT−1

]
, 𝑆𝑠 is the specific elastic storage[

L−1
]
, and 𝑟′ is the radial distance from the well [L], which is equal to√

𝑥′2 + 𝑦′2 (Fig. 2). The coefficient 𝑆𝑠 is linked to the compressibility
by the classic relationship (De Wiest, 1966):

𝑆𝑠 = 𝜌𝑤 ⋅ 𝑔 ⋅

(
𝑐𝑀 + 𝜙 ⋅ 𝑐𝑤

)
(6)

where 𝜙 is the aquifer porosity
[
∕
]
, and 𝑐𝑤 is the water compressibility[

M−1T2L
]
. In Eq. (5), 𝑊 (⋅) is a ‘‘well function’’

[
∕
]
, given by:

𝑊 (𝑢) = ∫
+∞

𝑢

𝑒−𝑢
′

𝑢′
⋅ 𝑑𝑢′ (7)

where 𝑢 =
𝑆𝑠

4𝐾
⋅

𝑟′
2

𝑡

[
∕
]
. The ‘‘exponential’’ integral in Eq. (7) is

typically calculated numerically using a truncated form of the series

−0.57721566− 𝑙𝑛(𝑢)−
∑+∞

𝑖=1
(−1)𝑖𝑢𝑖

𝑖 𝑖!
. Note that Eq. (5) is valid for 𝑐−𝑏∕2 ≤

𝑧′ ≤ 𝑐 + 𝑏∕2, otherwise 𝛥𝑝 = 0.
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Fig. 1. (a) 3D semi-infinite space including the NoS; (b) Horizontal and vertical components of the normalised surface displacement vs. the radial distance 𝑟 scaled with respect
to the depth 𝑐 for a NoS within a semi-infinite homogeneous porous medium.

Fig. 2. Reference system adopted for the derivation of the surface displacements
associated with the Theis (1935) analytical solution. The pumping well is situated at
the origin, the generic observation point P is on the x-axis, whereas the integration
moving point O is located at the generic polar coordinates (𝑟′ , 𝜃).

Since the well is located at the origin of the cartesian system (Fig. 2),

the displacement is radial-symmetric with respect to the (vertical) 𝑧

axis, and thus the calculation is limited to the displacement components

𝑢𝑥 and 𝑢𝑧 at any point 𝑃 on the 𝑥 axis, having the generic radial

coordinate 𝑥0 (Fig. 2). Substituting Eqs. (2) and (5) in Eq. (1), and

adopting the polar coordinate system (𝑟′, 𝜃) shown in Fig. 2, leads

to the following expressions for the radial and vertical displacement

components:

𝑢ℎ
(
𝑥0, 𝑡

)
= 𝑢∗

𝑣
⋅ ∫

+∞

0

𝑊 (𝛼 ⋅ 𝑟′
2
)

⎡
⎢⎢⎣∫

2𝜋

0

𝑥0 − 𝑟′ ⋅ cos 𝜃
(
𝑐2 + 𝑟′2 + 𝑥0

2 − 2 ⋅ 𝑟′ ⋅ cos 𝜃
)1.5 ⋅ 𝑑𝜃

⎤
⎥⎥⎦
⋅ 𝑟′ ⋅ 𝑑𝑟′

𝑢𝑣
(
𝑥0, 𝑡

)
= 𝑢∗

𝑣
⋅ ∫

+∞

0

𝑊 (𝛼 ⋅ 𝑟′
2
)

⎡
⎢⎢⎣∫

2𝜋

0

𝑐(
𝑐2 + 𝑟′2 + 𝑥0

2 − 2 ⋅ 𝑟′ ⋅ cos 𝜃
)1.5 ⋅ 𝑑𝜃

⎤
⎥⎥⎦
⋅ 𝑟′ ⋅ 𝑑𝑟′

(8)

where 𝑢∗
𝑣
=

𝑐𝑀 ⋅(1−𝜈)⋅𝜌𝑤⋅𝑔⋅𝑄

4⋅𝜋2⋅𝐾
[L], and 𝛼 =

𝑆𝑠

4⋅𝐾⋅𝑡

[
L−2

]
(i.e. 𝛼⋅𝑟′2 = 𝑢). Eqs. (8)

can be further modified by scaling the radial coordinate 𝑟′ to the depth

𝑐, and dividing them by 𝑢∗
𝑣
, which yields:

𝑢ℎ
(
𝑋0, 𝛽

)
=

𝑢ℎ
(
𝑥0, 𝑡

)
𝑢∗
𝑣

= ∫
+∞

0

𝑊 (𝛽 ⋅ 𝑅′2) ⋅ ℎ(𝑋0, 𝑅
′) ⋅ 𝑅′

⋅ 𝑑𝑅′

𝑢𝑣
(
𝑋0, 𝛽

)
=

𝑢𝑣
(
𝑥0, 𝑡

)
𝑢∗
𝑣

= ∫
+∞

0

𝑊 (𝛽 ⋅ 𝑅′2) ⋅ 𝑣(𝑋0, 𝑅
′) ⋅ 𝑅′

⋅ 𝑑𝑅′

(9)

with 𝛽 =
𝑆𝑠

4𝐾
⋅
𝑐2

𝑡

[
∕
]
(i.e. 𝛽 ⋅ 𝑅′2 = 𝑢) and 𝑋0 = 𝑥0∕𝑐. The two functions

ℎ(⋅) and 𝑣(⋅) are given by:

ℎ(𝑋0, 𝑅
′) = ∫

2𝜋

0

𝑋0 − 𝑅′
⋅ cos 𝜃

(1 + 𝑅′2 +𝑋0
2 − 2 ⋅ 𝑅′

⋅ cos 𝜃)1.5
⋅ 𝑑𝜃

𝑣(𝑋0, 𝑅
′) = ∫

2𝜋

0

1

(1 + 𝑅′2 +𝑋0
2 − 2 ⋅ 𝑅′

⋅ cos 𝜃)1.5
⋅ 𝑑𝜃

(10)

Eqs. (9) are useful to investigate the dependency of the scaled surface
displacement (𝑢ℎ, 𝑢ℎ) on the system parameters 𝐾, 𝑐𝑀 , 𝜈, and 𝑐 and the
independent variables 𝑥0 and 𝑡. Note that the spatial and the temporal
variables are accounted for in 𝑋0 and 𝛽, respectively.

Since the double integrals (9)–(10) cannot be solved analytically,
they are calculated numerically using the iterative quadrature method
developed by Shampine (2008a,b). The results of these integrations
are given in Fig. 3, which shows a series of profiles of the scaled
displacement components (𝑢ℎ, 𝑢𝑣) as functions of the spatial variable
𝑋0, for a discrete set of values of the temporal variable 𝛽. A sensitivity

analysis (not presented here) conducted on 𝛽 =
𝑆𝑠

4𝐾
⋅
𝑐2

𝑡
indicates that

such a variable typically takes values between 10−8 and 10, which is
the range considered in Fig. 3.

In Fig. 3, the scaled displacement components (𝑢ℎ, 𝑢𝑣) are seen to
generally increase as 𝛽 decreases, that is, they become expectedly more
pronounced at larger times, and for shallower aquifers, having lower
𝑐. In addition, the displacements result larger for systems with lower
values of the ratio 𝑆𝑠∕𝐾, that is, with low-compressibility 𝑐𝑀 (see
Eq. (6)) and high-permeability 𝐾. This may seem counterintuitive at
a first glance, but one must bear in mind that 𝑢ℎ and 𝑢𝑣 are scaled with
respect to the coefficient 𝑢∗

𝑣
which is linearly proportional to 𝑐𝑀∕𝐾,

thus what is true for the scaled displacement (Eqs. (9)) is not necessarily
true for the absolute displacement (Eqs. (8)).

3.1. Lookup Table Numerical Model

The substitution of Eqs. (9)–(10) in Eqs. (8) provides the mathemat-
ical model:

𝑢ℎ
(
𝑥0, 𝑡

)
=

𝑐𝑀 ⋅ (1 − 𝜈) ⋅ 𝜌𝑤 ⋅ 𝑔 ⋅𝑄

4 ⋅ 𝜋2
⋅𝐾

⋅ 𝑢ℎ
(
𝑋0, 𝛽

)

𝑢𝑣
(
𝑥0, 𝑡

)
=

𝑐𝑀 ⋅ (1 − 𝜈) ⋅ 𝜌𝑤 ⋅ 𝑔 ⋅𝑄

4 ⋅ 𝜋2
⋅𝐾

⋅ 𝑢𝑣
(
𝑋0, 𝛽

) (11)
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Fig. 3. Profiles of the scaled displacement components 𝑢ℎ (subpanel (a)) and 𝑢𝑣 (subpanel (b)) (see Eqs. Eq. (9)) vs. the scaled radial coordinate 𝑋0, for a discrete set of the
temporal variable 𝛽, ranging between 10−8 and 10 with log-intervals of 1.

which simulates the surface displacement at the radial coordinate 𝑥0
and at the time 𝑡 induced by a well pumping at the constant rate
𝑄 from an aquifer of depth 𝑐, thickness 𝑏, hydraulic conductivity
𝐾 and compressibility 𝑐𝑀 . Since, as previously mentioned, the inte-
grals (9)–(10) can only be calculated numerically, which turns out to be
computationally quite expensive, it is necessary to devise approaches to
overcome this limitation.

A first method presented here relies on the use of ‘‘lookup’’ tables
(LT’s), compiled by numerical calculation of the functions 𝑢ℎ

(
𝑋0, 𝛽

)
and 𝑢𝑣

(
𝑋0, 𝛽

)
(Eqs. (9)–(10)) over the points of a regular grid in the(

𝑋0, 𝛽
)
space. LT’s are reported in Tables A.1 and A.2 of Appendix A,

which contain the datasets employed to plot Fig. 3. 𝑋0’s and 𝛽’s are
tabulated in the first column and in the first row, respectively, and the
function values are in the table cells. Since 𝑋0, 𝛽, 𝑢ℎ and 𝑢𝑣 values may
differ by several orders of magnitude, a logarithmic transformation is
applied to all entries, which makes the data easier to interpret.

Based on LT data, for any generic ‘‘input’’ point
[
log

(
𝑋0

)
, log (𝛽)

]
,

it is then possible to calculate approximate displacement components[
log

(
𝑢ℎ

)
, log

(
𝑢ℎ

)]
by 2D interpolation. In this case, either cubic

spline (de Boor, 1978) or cubic Hermite (Akima, 1974) algorithms can
be adopted, both of which conserve continuity in the partial derivatives
and closely adhere to the values of the original data points. Numerical
tests, not presented here, indicate that a more simple bilinear interpo-
lation method (Abramowitz and Stegun, 1964) is also viable but leads
to results of comparable accuracy only if the grid resolution adopted in
Tables A.1 and A.2 is at least doubled for the log (𝛽) ‘‘coordinate’’ (e.g.
−8,−7.5,−7,… , 0.1, 0.5, 1, 5, 10).

3.2. Closed-Form Hinge Model

An alternative to the LT model is to develop closed-form emulators
𝑢ℎ

(
𝑋0, 𝛽

)
and 𝑢𝑣

(
𝑋0, 𝛽

)
of 𝑢ℎ and 𝑢𝑣 by regression of the LT ‘‘data’’.

Since all profiles in Fig. 3, which are based on the data in Tables A.1
and A.2, may be interpreted as contour lines of 𝛽 in the spaces of(
𝑋0, 𝑢ℎ

)
(Fig. 3a) and

(
𝑋0, 𝑢𝑣

)
(Fig. 3b) and these exhibit a locally linear

behaviour, it appears possible to construct semi-analytical models by
fitting each profile to a ‘‘continuous hinge function’’.

A hinge function ℎ(𝑥′) (𝑥′ is a generic independent variable) is a type
of 1D piecewise-linear function formed by merging together a generic
number 𝑁 of straight lines using ‘‘sigmoids’’ to smooth out the discon-
tinuity in the derivative at the intersection points (Sanchez-Ubeda and
Wehenkel, 1998). Indicating with 𝑠𝑖(𝑥

′) = 𝑞𝑖 + 𝑚𝑖𝑥
′ (𝑖 = 1,… , 𝑁) the

equation of the generic straight line, ℎ(𝑥′) may be expressed as:

ℎ(𝑥′) = 𝑞1 + 𝑚1 ⋅ 𝑥
′ +

𝑁∑
𝑖=2

𝛥𝑚𝑖−1,𝑖 ⋅ 𝛥𝑖−1,𝑖 ⋅ log(1 + 10

𝑥′−𝑥′
𝑖−1,𝑖

𝛥𝑖−1,𝑖 ) (12)

where 𝛥𝑚𝑖−1,𝑖 = 𝑚𝑖−𝑚𝑖−1 is the slope variation between two consecutive
segments ‘‘𝑖−1’’ and ‘‘𝑖’’, 𝑥′

𝑖−1,𝑖
is the abscissa of their intersection point

(𝑥′
𝑖−1,𝑖

= −
𝑞𝑖−𝑞𝑖−1
𝑚𝑖−𝑚𝑖−1

), and 𝛥𝑖−1,𝑖 is a smoothness coefficient. A detailed

derivation of Eq. (12) is given in Appendix B.
The ‘‘goodness of fit’’ that can be achieved with the hinge model (12)

strongly depends on the selected number of segments 𝑁 . Based on the
profiles in Fig. 3, it appears reasonable, for any given 𝛽 value, to choose
𝑁 = 3 for 𝑢ℎ and 𝑁 = 4 for 𝑢𝑣. Fig. 4 shows hinge examples that mimic
the profile shapes in Fig. 3. Since Fig. 3 use a logarithmic scale on both
axes, the variables in the hinge model (12) need to be log-transformed
(𝑥′ = log𝑋0, ℎ = log 𝑢) prior to the fitting analysis. In the case of 𝑢ℎ,
the adopted hinge model results (Eq. ((B.6) in Appendix B):

𝑢ℎ
(
𝑋0, 𝛽

)
=

10
𝑞
(ℎ)

1 ⋅𝑋0

⎡
⎢⎢⎣
1 +

(
𝑋0

𝑋0
(ℎ)

1,2

) 1

𝛥
(ℎ)
1,2

⎤
⎥⎥⎦

𝛥
(ℎ)

1,2

⋅

⎡
⎢⎢⎣
1 +

(
𝑋0

𝑋0
(ℎ)

2,3

) 1

𝛥
(ℎ)
2,3

⎤
⎥⎥⎦

2⋅𝛥
(ℎ)

2,3

(13)

whereas, in the case of 𝑢𝑣, the hinge model is (Eq. ((B.7) in Appendix B):

𝑢𝑣
(
𝑋0, 𝛽

)
= 10

𝑞
(𝑣)

1 ⋅

4∏
𝑖=2

⎡⎢⎢⎢⎣
1 +

⎛
⎜⎜⎝

𝑋0

𝑋0
(𝑣)

𝑖−1,𝑖

⎞
⎟⎟⎠

1

𝛥
(𝑣)
𝑖−1,𝑖

⎤⎥⎥⎥⎦

𝛥𝑚
(𝑣)

𝑖−1,𝑖
⋅𝛥

(𝑣)

𝑖−1,𝑖

(14)

Details of the derivation of Eqs. (13)–(14) are included in Appendix B.

3.2.1. Parameter Fitting
The hinge functions (13) and (14) depend on the parameter sets 𝜽ℎ ≡[

𝑞
(ℎ)

1
, 𝑋0

(ℎ)

1,2
, 𝑋0

(ℎ)

2,3
, 𝛥

(ℎ)

1,2
, 𝛥

(ℎ)

2,3

]
and 𝜽𝑣 ≡

[
𝑞
(𝑣)

1
,

(
𝑋0

(𝑣)

𝑖,𝑖+1
, 𝛥𝑚

(𝑣)

𝑖,𝑖+1
, 𝛥

(𝑣)

𝑖,𝑖+1

)
𝑖=1,2,3

]
,

respectively, which, based on Fig. 3, are to be considered non-linear
functions of 𝛽. Here, these functions are ‘‘emulated’’ by fitting the
models (13)–(14) to each of the profiles in Fig. 3a and b. This is carried
out by implementing a two-stage regression procedure.

The first stage consists of the calculation of parameter sets that
provide a best fit of the hinge models (13) and (14) for each of the
10 𝛽 values selected in Fig. 3. In practice, this requires minimising the
square residuals between the hinge models (13) and (14) and the scaled
surface displacement calculated over 𝑁𝑠 points spanning the practical
range of variability of 𝑋0 (Fig. 3). These non-linear regressions are
performed by using a ‘‘trust-region-reflective’’ algorithm (Coleman and
Li, 1996) and produce 10 ‘‘training’’ data for each fitting parameter
in 𝜽ℎ and in 𝜽𝑣.
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Fig. 4. Graph of the hinge functions adopted to mimic the profiles of the displacement components 𝑢ℎ (subpanel (a)) and 𝑢𝑣 (subpanel (b)) vs. the scaled radial coordinate 𝑋0 as
indicated in Fig. 3. For the horizontal and the vertical components, hinge models based on 𝑁 = 3 and 𝑁 = 4 straight lines are selected, respectively, in the double-log space.

Table 1
Coefficients for the logarithmic hinge functions, either 𝑔1(𝛽) or 𝑔2(𝛽) (Eqs. (15)),

defining the dependence on 𝛽 of each of the parameters in
[
𝑞
(ℎ)

1
, 𝑋0

(ℎ)

1,2
, 𝑋0

(ℎ)

2,3
, 𝛥

(ℎ)

1,2
, 𝛥

(ℎ)

2,3

]
.

These functions are used in Eq. (13) to construct the hinge model 𝑢ℎ
(
𝑋0 , 𝛽

)
.

Fitting parameter → 𝑞
(ℎ)

1
(𝛽) 𝑋0

(ℎ)

1,2
(𝛽) 𝑋0

(ℎ)

2,3
(𝛽) 𝛥

(ℎ)

1,2
(𝛽) 𝛥

(ℎ)

2,3
(𝛽)

Hinge model → 𝑔1 𝑔2 𝑔2 𝑔1 𝑔1

𝑁 2 3 2 3 4
𝜉1 0.7979 0.2992 −0.2221 0.7009 0.3452.
𝜂1 0.0000 0.0000 −0.4896 0.0000 0.0000.
𝛥𝜂1,2 −1.2700 −0.6250 0.4896 −0.4072 −0.0482
𝛥𝜂2,3 – 0.6250 – 0.4072. 0.4954
𝛥𝜂3,4 – – – – −0.4472
𝛿1,2 1.9270 3.7870 1.9830 4.4340 2.6280
𝛿2,3 – 1.4960 – 2.7870 1.1470
𝛿3,4 – – – – 1.0110
𝛽1,2 1.5926 1.5428 0.1610 0.0547 3.97 × 10−6

𝛽2,3 – 7.7983 – 0.4944 0.3346
𝛽3,4 – – – – 1.1992

In the second stage, these training data are used to capture the
relationships between the fitting parameters and the variable 𝛽. The
fitting model adopted in this stage relies either on logarithmic or
double-logarithmic hinge functions (Eqs. (B.4)–(B.5) in Appendix B),
given as:

𝑔1(𝛽) = 𝜉1 + 𝜂1 ⋅ log 𝛽 +

𝑁∑
𝑖=2

𝛥𝜂𝑖−1,𝑖 ⋅ 𝛿𝑖−1,𝑖 ⋅ log

⎡⎢⎢⎣
1 +

(
𝛽

𝛽𝑖−1,𝑖

) 1
𝛿𝑖−1,𝑖

⎤⎥⎥⎦

𝑔2 (𝛽) = 10𝜉1 ⋅ 𝛽𝜂1 ⋅

𝑁∏
𝑖=2

⎡⎢⎢⎣
1 +

(
𝛽

𝛽𝑖−1,𝑖

) 1
𝛿𝑖−1,𝑖

⎤⎥⎥⎦

𝛥𝜂𝑖−1,𝑖⋅𝛿𝑖−1,𝑖
(15)

The regression coefficients
(
𝜉1, 𝜂1

)
,

(
𝛥𝜂1,2,… , 𝛥𝜂𝑁−1,𝑁

)
,

(
𝛿1,2,… ,

𝛿𝑁−1,𝑁

)
, and

(
𝛽1,2,… , 𝛽𝑁−1,𝑁

)
in Eqs. (15) are determined by applying

a non-linear least-square regression method based on the Levenberg–
Marquardt algorithm (Levenberg, 1944; Marquardt, 1963). Results
of the two-stage process are presented in Tables 1 and 2 for the
coefficients in 𝜽ℎ and 𝜽𝑣, respectively. Further details on the procedure
may be found in Appendix B.

In summary, the integrals providing the scaled displacement com-
ponents 𝑢ℎ and 𝑢𝑣 (Eqs. (9)–(10)) are approximated by the closed-form
hinge models 𝑢𝑣

(
𝑋0, 𝛽

)
(Eqs. (13)) and 𝑢𝑣

(
𝑋0, 𝛽

)
(Eqs. (14)) with

the parameters
[
𝑞
(ℎ)

1
, 𝑋0

(ℎ)

1,2
, 𝑋0

(ℎ)

2,3
, 𝛥

(ℎ)

1,2
, 𝛥

(ℎ)

2,3

]
and

[
𝑞
(𝑣)

1
,

(
𝑋0

(𝑣)

𝑖,𝑖+1
, 𝛥𝑚

(𝑣)

𝑖,𝑖+1
,

𝛥
(𝑣)

𝑖,𝑖+1

)
𝑖=1,2,3

]
estimated, in turn, as hinge functions of 𝛽 using one of

the models (15). Tables 1 and 2 indicate the logarithmic form (single-
for 𝑔1, double- for 𝑔2) and the coefficients of each of the parameter

hinge functions
[
𝑞
(ℎ)

1
(𝛽), 𝑋0

(ℎ)

1,2
(𝛽),…

]
. The substitution of these func-

tions in Eqs. (13)–(14), provides the closed-form expressions of the
hinge models.

Using the two-stage procedure presented above, 𝑢ℎ
(
𝑋0, 𝛽

)
and

𝑢𝑣
(
𝑋0, 𝛽

)
are constructed by combining two sequential hinge regres-

sions of the LT datasets Appendix B, one performed along the spatial
coordinate 𝑋0 (Eqs. (13)–(14)) and the other along the temporal
coordinate 𝛽 (Eqs. (15)).

3.3. Land Subsidence due to Groundwater Abstraction

Under the assumptions of the Theis analytical solution (5), it is
possible to apply the principle of linear superposition to simulate the
effects of the changes in pore pressure 𝛥𝑝 associated, for example, with
multiple wells operating simultaneously and at variable pumping rates.
Likewise, due to the hypothesis of linear elasticity and the boundary
conditions to which the semi-infinite domain is subject, the principle
of superposition can also be applied to the surface displacement fields
associated with multiple overlapping 𝛥𝑝 fields.

Considered here is the case of a generic system of 𝑛𝑤 pumping wells
operating at constant flow rates 𝑄1, 𝑄2,… , 𝑄𝑛𝑤

from the starting times
𝑡𝑠,1, 𝑡𝑠,2,… , 𝑡𝑠,𝑛𝑤

, at the locations (𝑥𝑤,1, 𝑦𝑤,1), (𝑥𝑤,2, 𝑦𝑤,2),… , (𝑥𝑤,𝑛𝑤
, 𝑦𝑤,𝑛𝑤

),
respectively. The surface displacement components (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) at the
generic location (𝑥0, 𝑦0) and at the time 𝑡, are given by:

𝑢𝑥
(
𝑥0, 𝑦0, 𝑡

)
=
𝑐𝑀 ⋅ (1 − 𝜈) ⋅ 𝜌𝑤 ⋅ 𝑔

4 ⋅ 𝜋2
⋅𝐾

⋅

𝑛𝑤∑
𝑖=1

𝑄𝑖 ⋅ 𝑢ℎ
(
𝐷0,𝑖, 𝛽𝑖

)
⋅ 𝜂𝑥,0,𝑖

𝑢𝑦
(
𝑥0, 𝑦0, 𝑡

)
=
𝑐𝑀 ⋅ (1 − 𝜈) ⋅ 𝜌𝑤 ⋅ 𝑔

4 ⋅ 𝜋2
⋅𝐾

⋅

𝑛𝑤∑
𝑖=1

𝑄𝑖 ⋅ 𝑢ℎ
(
𝐷0,𝑖, 𝛽𝑖

)
⋅ 𝜂𝑦,0,𝑖

𝑢𝑧
(
𝑥0, 𝑦0, 𝑡

)
=
𝑐𝑀 ⋅ (1 − 𝜈) ⋅ 𝜌𝑤 ⋅ 𝑔

4 ⋅ 𝜋2
⋅𝐾

⋅

𝑛𝑤∑
𝑖=1

𝑄𝑖 ⋅ 𝑢𝑣
(
𝐷0,𝑖, 𝛽𝑖

)

(16)

where 𝐷0,𝑖 and (𝜂𝑥,0,𝑖, 𝜂𝑦,0,𝑖) represent the length and the cosine directors

of the 2D vector
(
𝑥0−𝑥𝑤,𝑖

𝑐
,
𝑦0−𝑦𝑤,𝑖

𝑐

)
, respectively, and 𝛽𝑖 =

𝑆𝑠

4𝐾
⋅

𝑐2

𝑡−𝑡𝑠,𝑖
(𝑖 = 1, 2,… , 𝑛𝑤). In Eqs. (16), each of the terms in the sums need to
be considered only if 𝑡 > 𝑡𝑠,𝑖.

The functions 𝑢ℎ and 𝑢𝑣 are given by the LT model presented in
Section 3.1 or by the hinge model presented in Section 3.2 (Eqs. (13)–
(14)). Note that Eqs. (16) can also be applied to conditions where
pumping rates are time-dependent. Scripts of the land subsidence sim-
ulator based on the LT model and the hinge model are available in the
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Table 2

Coefficients for the logarithmic hinge functions, either 𝑔1(𝛽) or 𝑔2(𝛽) (Eqs. (15)), defining the dependence on 𝛽 of each of the parameters in

[
𝑞
(𝑣)

1
,

(
𝑋0

(𝑣)

𝑖−1,𝑖
, 𝛥𝑚

(𝑣)

𝑖−1,𝑖
, 𝛥

(𝑣)

𝑖−1,𝑖

)
𝑖=2,3,4

]
. These

functions are used in Eq. (14) to construct the hinge model 𝑢𝑣
(
𝑋0 , 𝛽

)
.

Fitting parameter → 𝑞
(𝑣)

1
(𝛽) 𝛥𝑚

(𝑣)

1,2
(𝛽) 𝛥𝑚

(𝑣)

2,3
(𝛽) 𝛥𝑚

(𝑣)

3,4
(𝛽) 𝑋0

(𝑣)

1,2
(𝛽) 𝑋0

(𝑣)

2,3
(𝛽) 𝑋0

(𝑣)

3,4
(𝛽) 𝛥

(𝑣)

1,2
(𝛽) 𝛥

(𝑣)

2,3
(𝛽) 𝛥

(𝑣)

3,4
(𝛽)

Hinge model → 𝑔1 𝑔1 𝑔1 𝑔1 𝑔2 𝑔2 𝑔2 𝑔1 𝑔1 𝑔1

𝑁 2 2 2 3 2 2 2 2 3 3
𝜉1 1.4680 −1.1470 −22.8500 1.1520 −0.5399 0.0552 0.3700 0.0725 0.4005 0.1995
𝜂1 −0.0703 −0.0410 0.6741 −1.6480 −0.4240 −0.5202 −0.5250 −0.2701 0.0000 0.0000
𝛥𝜂1,2 −1.6550 −1.1250 1.8730 0.2997 0.4240 0.5202 0.5250 0.2701 −0.0036 0.8089
𝛥𝜂2,3 – – – 5.4320 – – – – 0.0036 −0.8089
𝛿1,2 3.2610 0.5345 24.2800 0.2358 2.0000 1.5010 1.4998 1.2020 0.0861 0.0411
𝛿2,3 – – – 0.9023 – – – – 0.0861 0.0411
𝛽1,2 4.4371 0.5049 9.71 × 10−7 0.0525 0.0581 0.9781 2.9936 0.0269 4.04 × 10−8 1.82 × 10−3

𝛽2,3 – – – 147.9108 – – – – 7.55 × 10−8 1.83 × 10−3

Fig. 5. Plan views of the well fields #1 (a) and #2 (b) adopted for model testing. Well field #1 includes a single well at 𝑊1,1 ≡ (10, 000 m, 10, 000 m). Well field #2 consists of 3
wells, 𝑊2,1, 𝑊2,2, and 𝑊2,3, at the vertices of an equilateral triangle with radius 5000 m and centred at the location 𝑊1,1. Both subpanels show the location of observation points
(𝑂1,1 , 𝑂1,2 , ...) chosen to plot profiles of the displacement vs. time.

Table 3
Aquifer parameters adopted for the selected test cases. The aquifer has a transmissivity
𝑇 of 400 m2/d, and a storativity 𝑆 of 3.9 × 10−2.

𝑐 𝑏 𝐾 𝜙 𝑐𝑀 𝑐𝑤 𝑆𝑠 𝜈

(m) (m) (m/d) (/) (Pa−1) (Pa−1) (m−1) (/)

200 40 10 0.25 1 × 10−7 4.6 × 10−10 9.8 × 10−4 0.3

supplemental information (SI) section of this paper. The SI also includes

example input files of the codes along with a detailed description of the

parameters in them.

4. Model Testing

For testing purposes, a 200-m deep and 40-m thick confined aquifer

is considered, with the parameters reported in Table 3. Two well

field scenarios are hypothesised. Well field #1 (Fig. 5a) consists of

a single large-capacity well operated continuously for 5 years at the

extraction rate of 1000 m3/d from the location 𝑊1,1 ≡ (10,000 m,

10,000 m). Well field #2 (Fig. 5b), consists of 3 wells at the locations

𝑊2,1 ≡ (13,535.53 m,13,535.53 m), 𝑊2,2 ≡ (11 294.10 m, 5,170.3 m),

and𝑊2,3 ≡ (5,170.3 m, 11 294.10 m), pumping continuously for 5 years
at a flow rate of 333.33 m3/d each. The three wells form an equilateral

triangle, with a distance of 5000 m from its center, which coincides

with the location 𝑊1,1 (Fig. 5a). Note that Well field #1 and Well field

#2 have the same cumulative extraction rate of 1000 m3/d.

4.1. Single-Well Scenario

Fig. 6 shows the maps of the displacement fields 𝑢𝑥 (subpanels a-
b), and 𝑢𝑧 (subpanels c-d) after 1825 days (5 years) of continuous
operation of Well field #1 (𝑢𝑦-maps are not shown as they can be
inferred from a 90◦ rotation of the 𝑢𝑥 maps). Subpanels 6a and b present
the comparison of the 𝑢𝑥 field obtained with the LT model and the
hinge model with that determined using the FE approach as in Eq. (4).
The latter is considered the most accurate approach as it relies on a
high-resolution discretisation of the aquifer domain (not shown here),
in which the 𝛥𝑝 field is calculated from the Theis analytical solution
(Eq. (5)) using linear superposition of effects, and the displacement
components are calculated by spatial integration of the NoS Eqs. (2).

In Fig. 6a, the horizontal displacement 𝑢𝑥 obtained with the LT
model matches quite well that calculated with the FE model, par-
ticularly at ‘‘closer’’ distance, within about 2 km, from the pumping
well, whereas some slight discrepancies are observed farther away. In
Fig. 6b, the horizontal displacement 𝑢𝑥 obtained with the hinge model
still matches closely the one given by FE model, but the discrepan-
cies become more significant, however not dramatic, away from the
pumping well.

Fig. 6c and d pair the 𝑢𝑧 fields obtained with the LT and FE model,
and the hinge and FE model, respectively. In Fig. 6c, the LT model
exhibits a close fidelity to the FE model in terms of 𝑢𝑧. Fig. 6d, shows
that the hinge model is very accurate at closer distance (less than
2 km) from the pumping well, where 𝑢𝑧 is more pronounced, but
such an accuracy tends to deteriorate, although slightly, away from
the well, where the displacement becomes comparatively smaller. It
is interesting to observe that, when compared the FE model, both the
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Fig. 6. Maps of the surface displacement 𝑢𝑥 and 𝑢𝑧 after 5 years of continuous operation of a single well extracting 1000 m
3/d. Subpanels (a) and (b) present, for purposes of

comparison, the 𝑢𝑥 fields obtained with the FE model (the same in both maps), the LT model and the hinge model, respectively. Subpanels (c) and (d) present the same comparisons
for the 𝑢𝑧 fields.

LT and the hinge models seem to mildly underestimate the horizontal
displacement 𝑢𝑥, and mildly overestimate the vertical displacement 𝑢𝑧.

The results presented in Fig. 6 relate to a single value of the time-
dependent variable 𝛽 (5.38 × 10−4) so that the discrepancies between
the LT and hinge models and the FE model can be explained in terms
of the accuracy of the two approaches with respect to the spatial
variable 𝑋0 for that 𝛽 value. Overall, the LT model is generally very
accurate where displacements are larger, that is, for smaller 𝑋0, and a
bit less accurate where displacements are smaller, that is, for larger
𝑋0. This likely due to the accuracy in the numerical calculation of
the integrals (9)–(10), which is apparently close to perfect for low
𝑋0, but deteriorates — although quite slightly — for larger 𝑋0. The
hinge model is apparently less accurate than the LT model because of
the propagation of errors that arise from the numerical calculation of
Eqs. (9)–(10), as in the LT model, and from the hinge approximation,
which is somewhat less accurate for larger 𝑋0 values (Fig. B.12).

Fig. 7 shows the profiles of the surface displacements 𝑢𝑥 (subpanels
a-b) and 𝑢𝑧 (subpanels c-d) vs. time over the 5 years of operation of
Well field #1, at three observation points, one located at the pumping
well (𝑂1,1 in Fig. 5a), and the other two at distance of 1 km and 10 km
from the pumping well (𝑂1,2 and 𝑂1,3 in Fig. 5a). Subpanels 7a and b
present the comparison of the 𝑢𝑥 profiles obtained with the LT model
and the hinge model with that from the FE model. Subpanels 7c and d
present a similar comparisons but for the 𝑢𝑧 displacement component. It

should be observed that these profiles refer to fixed values of the scaled
distance 𝑋0, whereas the time-dependent variable 𝛽 varies between
5.38 × 10−4 and 0.2 (using the parameters in Table 3). Overall,
these plots confirm that, when compared to the FE model, the LT
model is slightly more accurate than the hinge model and both models
tend to underestimate the horizontal displacement 𝑢𝑥, and overestimate
the vertical displacement 𝑢𝑧. The absolute error between the different
formulations appears to increase with time (i.e. as 𝛽 decreases) and is
more pronounced at intermediate values of the scaled distance 𝑋0.

4.2. Three-Well Scenario

Fig. 8 presents maps of the horizontal displacement 𝑢𝑥 (subpanels
a-b), and the vertical displacement 𝑢𝑧 (subpanels c-d) after 1825 days
(5 years) of continuous operation of Well field #3 (𝑢𝑦-displacement
is not shown). Fig. 8a and b show that, even in the case of multiple
operating wells, the LT model and the hinge model lead to 𝑢𝑥 maps very
similar to those obtained calculated with the FE model. The fidelity
of the two models is particularly good at ‘‘closer’’ distance (∼2 km
or less) from the pumping wells. Discrepancies with the FE model are
observed at large distance, particularly with the hinge model, which,
as previously indicated, is affected by numerical integration errors
(Eqs. (9)–(10)), which also affect the LT model, and approximations
in the hinge regression.
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Fig. 7. Profiles of the surface displacements 𝑢𝑥 and 𝑢𝑧 vs. time induced by the continuous operation of a single well extracting 1000 m
3/d over 5 years. Displacements are shown

at three locations, one in close proximity to the pumping well (𝑂1,1 in Fig. 5a), and the other two at 1 km and 10 km distance from it, respectively (𝑂1,2 and 𝑂1,3 in Fig. 5a).
Subpanels (a) and (b) present, for purposes of comparison, the 𝑢𝑥 profiles obtained with the FE model (the same in both plots), the LT model and the hinge model, respectively.
Subpanels (c) and (d) present the same comparisons for the 𝑢𝑧 fields.

Subpanels 8c and d show the comparison of the 𝑢𝑧 maps obtained
with FE model with those calculated using the LT and hinge model,
respectively. In Fig. 6c, the LT model matches quite well the FE
model response, and appears to mildly underestimate the lateral ex-
tent of the displacement bowl. On the other hand, Fig. 6d indicates
a reasonable matching between the hinge model and the FE model
results, but in this case the hinge model overestimates the lateral
extent of the displacement bowl, seemingly due to an overestimation
of the vertical displacement introduced at larger distance (see Fig. B.12
in Appendix B.0.1).

Fig. 9 presents the evolution of the surface displacements 𝑢𝑥 (sub-
panels a-b) and 𝑢𝑧 (subpanels c-d) over the 5 years of operation of
Well field #3. The displacement profiles are shown for two observation
points, one located at the center (𝑂2,1 in Fig. 5b) of the well field, which
is 5000 m away from each of the pumping wells, and another (𝑂2,2 in
Fig. 5b) located right at pumping well on 𝑊2,1.

Subpanels 9a and b present the comparison of the 𝑢𝑥 profiles ob-
tained with the LT model and the hinge model with that calculated
using the FE model. It is interesting to observe that all models show
𝑢𝑥 = 0 at 𝑂2,1. This is expected, since such a point is ‘‘central’’ and
equidistant from the three pumping wells, and thus undergoes no
horizontal displacement if the latter operate at the same pumping rate.

On the other hand, the 𝑢𝑥 displacement at 𝑂2,2 depends only on the
effect of the wells at 𝑊2,2 and 𝑊2,3 (Fig. 5b). In Fig. 9a a reasonable
match is observed between the LT model and the FE model, with
the former overestimating 𝑢𝑥 at smaller times and underestimating it
at larger times. These errors, however minor, can be linked to the
numerical integration of Eqs. (9)–(10). In Fig. 9b a more significant
discrepancy is observed between the hinge model and the FE model,
with the former generally underestimating 𝑢𝑥. This error is due to the
combined effect of numerical errors introduced in the calculation of
the integrals (9)–(10), and in the hinge regression for larger values
of 𝑋0. However, it is worth mentioning that the relevance of these
errors should be considered minor as the intensity of the horizontal
displacement is indeed very small due to the large distance between
the two wells 𝑊2,2 and 𝑊2,3, and the observation point 𝑂2,2.

Subpanels 9c and c allow for the comparison of the 𝑢𝑧 profiles
obtained with the LT model and the hinge model with those calculated
using the FE model. The matching between the models is overall
satisfactory, with a slightly better fidelity to the FE model of the LT
model, rather than the hinge model. These discrepancies are more
noticeable for observation points (e.g. 𝑂2,1 in Fig. 5b) that are situated
at larger distance 𝑋0 from the pumping wells. On the other hand, when
observation points (e.g. 𝑂2,2 in Fig. 5b) are in close proximity to one



Journal of Hydrology 642 (2024) 131813

10

D. Baù

Fig. 8. Maps of the surface displacement 𝑢𝑥 and 𝑢𝑧 after 5 years of continuous operation of 3 wells extracting 333.33 m
3/d continuously for 5 years. The three wells are equidistant

from one another (8660.25 m) and at a distance of 5000 m from the well location in Well field #1, that is, (10,000 m, 10,000 m). Subpanels (a) and (b) present, for purposes
of comparison, the 𝑢𝑥 fields obtained with the FE model, the LT model and the hinge model, respectively. Subpanels (c) and (d) present the same comparisons for the 𝑢𝑧 fields.

of the pumping wells (e.g. 𝑊2,1 in Fig. 5b) approximation errors for
both LT and hinge models are smaller because 𝑢𝑧 is due predominantly
to the effect of that pumping well, and less to the contribution of the
other pumping wells, which is potentially less accurate due to the large
distance 𝑋0 at which they operate from the observation point.

5. Discussion

The LT and the hinge models rely on the coupling of the classical
Theis equation (5), which describes flow to a well, with the NoS
equations, which quantify surface displacement caused by changes in
effective stress. The assumption of linear elasticity forms the basis of
the model, resulting in integral equations that can only be solved nu-
merically, for example adopting a sufficiently resolved FE discretisation
of the aquifer where pumping wells operate. However, it should be
noted that FE-based methods often demand significant computational
resources, and expertise to prepare model inputs and analyse results.
To address these challenges, the LT and hinge model formulations
proposed here aim to strike a balance between computational efficiency
and accuracy and constitute approximations that can provide results
comparable to the FE model.

It is important to acknowledge that these models rely on idealised
representations of the subsurface system. The aquifer is assumed to
be laterally unbounded, perfectly confined, horizontal, constant thick-
ness, and homogeneous in terms of hydraulic conductivity 𝐾, vertical
compressibility 𝑐𝑀 and porosity 𝜙. In addition, pumping wells are con-
sidered fully screened and point-like. While these assumptions (Theis,
1935) may not capture all the complexities of real-world aquifers, they
are widely applied by practitioners for initial calculations, pumping
tests, and other practical purposes for flow to pumping wells. Further-
more, the deformation of the subsurface is assumed to be caused solely
by changes in effective stress, which are estimated to be equal and
opposite to changes in pore pressure given by the Theis model (5).
This assumption relies on Terzaghi’s principle (Terzaghi and Peck,
1967) and assumes that the total stress remains constant during aquifer
pumping, which is generally valid for confined aquifers. However,
in the case of unconfined aquifers, the use of the Theis equation is
not warranted, and the total stress does change. In these instances,
it is necessary to determine how changes in effective stress can be
quantified and corrected based on the changes in pore pressure, and
analytical solutions distinct from Theis’s equation need to be applied.

Another important matter of concern is the underlying assumption
of laterally infinite aquifers. While these aquifers do not exist in reality,
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Fig. 9. Profiles of the surface displacements 𝑢𝑥 and 𝑢𝑧 vs. time induced by the continuous operation of 3 wells extracting 333.33 m
3/d continuously over 5 years. Displacements

are reported for two observation points, one at the center of the well field (𝑂2,1 in Fig. 5b) and another at one of the pumping wells (𝑂2,2 in Fig. 5b)). Subpanels (a) and (b)
present, for purposes of comparison, the 𝑢𝑥 profiles obtained with the FE model (the same in both plots), the LT model and the hinge model, respectively. Subpanels (c) and (d)
present the same comparisons for the 𝑢𝑧 fields.

the models developed in this study should be applicable to aquifers
of sufficiently ‘‘large’’ extent, that is, large enough that the cone of
depression caused by groundwater pumping and the surface area af-
fected by displacements remain within the physical boundaries of the
system. Note that this does not depend on the boundaries alone, but
also on the intensity of groundwater abstraction rates and the time
horizon over which pumping occurs. Also, since the extent of the cone
of depression is directly proportional to the hydraulic conductivity 𝐾

of the aquifer, and inversely proportional to the specific elastic storage
𝑆𝑠, which depends on the vertical compressibility 𝑐𝑀 (Eq. (6)), the
boundary effects are expected to be less significant for aquifers having
lower conductivity and larger storage properties, which imply smaller
cones of depression and smaller surface displacement bowls.

The models developed here can be applied under the assumption
the aquifer is perfectly confined, that is, bounded above and below
by perfectly impervious aquicludes. As such, they do not take into
account of changes in fluid pressure that may occur in confining layers,
and the consequent compaction, which may result results significant
under particular conditions (Ferronato et al., 2004; Zhang et al., 2020).
Last but not least, while it is important to acknowledge that the
models presented here have certain limitations due to the simplify-
ing conceptualisations discussed above, their computational efficiency

makes them particularly suitable for obtaining fast initial estimates
related to land subsidence caused by groundwater pumping from con-
fined aquifers, what-if analyses, assessment of groundwater pump-
ing based on displacement observations, risk assessment, decision-
making, stochastic simulations requiring repeated model runs, and
simulation–optimisation based groundwater management approaches.

6. Conclusions

This paper presented innovative semi-analytical models designed
for estimating land subsidence resulting from groundwater pumping in
confined aquifers. Their derivation couples the NoS equations with the
Theis solution, resulting in surface displacement components (horizon-
tal and vertical) expressed as integrals that must be solved numerically,
requiring significant computational effort similar to that of more ad-
vanced numerical models like FDs or FEs. The paper introduces two
distinct models that aim to reduce such an effort: one utilising a
lookup table (LT) containing results from numerical integration, and
the other offering direct closed-form surface displacement solutions
through the fitting of LT data with ‘‘hinge’’ models, that is, piecewise-
linear functions connected by sigmoidal curves. Such solutions depend
on two dimensionless spatio-temporal variables, which account for
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aquifer depth and thickness, well locations, pumping schedules, and
essential hydro-geomechanical properties like hydraulic conductivity,
porosity, vertical compressibility of the porous skeleton, and water
compressibility.

Emphasising computational efficiency and scalability through the
superposition principle, these models can simulate land subsidence
caused by various well pumping scenarios. To validate their accuracy,
a confined aquifer with specific dimensions was considered for testing,
and the model results were rigorously compared with those obtained
with a finite-element-based integration of the NoS solution and Theis
equation. Impressively, these models provide quite accurate predictions
of land subsidence, with errors below 5% when compared to more
complex models, while resulting computationally much more efficient.
However, one must be aware that these models remain analytically-
based and thus should be applied only within the limitations of the
NoS and Theis solutions, which rely on simplified subsurface concep-
tualisations. As such, these models are ideally suited for swift initial
assessments, what-if analyses, assisting groundwater management de-
cisions, and stochastic simulations for risk assessment. Under these
real-world settings, they offer a robust toolset for assessing and mit-
igating the impacts of groundwater pumping in confined aquifers,
with scalability ensuring applicability across diverse hydrogeological
conditions.
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Appendix A. Lookup Table Data

Since the computation of the integrals (9)–(10) results computation-
ally intensive, surrogates 𝑢ℎ

(
𝑋0, 𝛽

)
and 𝑢𝑣

(
𝑋0, 𝛽

)
can be constructed

through a 2D interpolation of ‘‘data’’ compiled by numerical calculation
of the integrals over the points of a regular grid in the

(
𝑋0, 𝛽

)
space.

These data are reported in Table A.1 for 𝑢ℎ and in Table A.2 for 𝑢𝑣.
It is worth mentioning that the data in these tables are precisely those
used to plot the profiles in Fig. 3. The data grid is based on 41 nodes
along 𝑋0 and 10 nodes along 𝛽. 𝑋0’s and 𝛽’s are tabulated in the first
column and in the first row, respectively, and the function values are
in the table cells.

All tabulated data are log-transformed since they vary over several
orders of magnitude. For any generic ‘‘input’’ point

[
log

(
𝑋0

)
, log (𝛽)

]
,

surrogate displacement values
[
log

(
𝑢ℎ

)
, log

(
𝑢ℎ

)]
can be obtained by

2D interpolation of the log 𝑢ℎ and log 𝑢𝑣 data at the four corner nodes of
the gridblock to which the input point belongs and, if continuity in the
derivatives is preferred, at the eight nodes of contiguous gridblocks.

Appendix B. Hinge Function Model

A continuous hinge function is a particular type of piecewise linear
function formed by merging multiple straight lines with smoothing
profiles around the intersection points (Sanchez-Ubeda and Wehenkel,
1998). A basic hinge function example is shown in Fig. B.10. Two
straight lines with equations 𝑠1(𝑥) = 𝑞1+𝑚1 ⋅𝑥 and 𝑠2(𝑥) = 𝑞2+𝑚2 ⋅𝑥 form
a piecewise-linear function, whose derivative is a step function with
the discontinuity located at the intersection abscissa 𝑥1,2. The hinge
function ℎ(𝑥) is characterised by a derivative having the ‘‘sigmoidal’’
form:

𝑑ℎ(𝑥)

𝑑𝑥
= 𝑚1 +

𝑚2 − 𝑚1

1 + 10
−

𝑥−𝑥1,2
𝛥1,2

(B.1)

where 𝛥1,2 is a coefficient that regulates the local curvature around 𝑥1,2.
After integrating Eq. (B.1), and imposing the ‘‘boundary’’ conditions
ℎ(𝑥) → 𝑠1(𝑥) for 𝑥 ≪ 𝑥1,2 and ℎ(𝑥) → 𝑠2(𝑥) for 𝑥 ≫ 𝑥1,2 the hinge
function expression results:

ℎ(𝑥) = 𝑞1 + 𝑚1 ⋅ 𝑥 + (𝑚2 − 𝑚1) ⋅ 𝛥1,2 ⋅ log(1 + 10

𝑥−𝑥1,2
𝛥1,2 ) (B.2)

Eq. (B.2) can be extended to the case of a hinge function connecting a
generic number 𝑁 of segments, which gives:

ℎ(𝑥) = 𝑞1 + 𝑚1 ⋅ 𝑥 +

𝑁∑
𝑖=2

𝛥𝑚𝑖−1,𝑖 ⋅ 𝛥𝑖−1,𝑖 ⋅ log(1 + 10

𝑥−𝑥𝑖−1,𝑖
𝛥𝑖−1,𝑖 ) (B.3)

where 𝛥𝑚𝑖−1,𝑖 = 𝑚𝑖 −𝑚𝑖−1, 𝑥𝑖−1,𝑖 is the abscissa of the intersection point
between the straight lines ‘‘𝑖 − 1’’ and ‘‘𝑖’’ (𝑥𝑖−1,𝑖 = −

𝑞𝑖−𝑞𝑖−1
𝑚𝑖−𝑚𝑖−1

), and 𝛥𝑖−1,𝑖

is the corresponding smoothness coefficient.
For piecewise log-linear functions, the hinge model (B.3) can be

modified by substituting 𝑥 with log 𝑥, which yields:

ℎ(𝑥) = 𝑞1 + 𝑚1 ⋅ log 𝑥 +

𝑁∑
𝑖=2

𝛥𝑚𝑖−1,𝑖 ⋅ 𝛥𝑖−1,𝑖 ⋅ log

⎡⎢⎢⎣
1 +

(
𝑥

𝑥𝑖−1,𝑖

) 1
𝛥𝑖−1,𝑖

⎤⎥⎥⎦
(B.4)

For piecewise double-log-linear functions, both 𝑥 and ℎ need to be log-
transformed and, after some rearrangements, the hinge model (B.3)
becomes:

ℎ(𝑥) = 10𝑞1 ⋅ 𝑥𝑚1 ⋅

𝑁∏
𝑖=2

⎡⎢⎢⎣
1 +

(
𝑥

𝑥𝑖−1,𝑖

) 1
𝛥𝑖−1,𝑖

⎤⎥⎥⎦

𝛥𝑚𝑖−1,𝑖⋅𝛥𝑖−1,𝑖

(B.5)

For any given number of segments 𝑁 , the functions (B.3)–(B.5) depend
each on 3×𝑁−1 parameters. Since the profiles in Fig. 3 exhibit a
locally linear behaviour on a double-log scale, Eq. (B.5) appears to
be most appropriate to emulate, for any given value of 𝛽, the scaled
displacement components 𝑢ℎ and 𝑢𝑣 with respect to 𝑋0. In particular,
given the profile shapes in Fig. 3, it seems reasonable to select 𝑁 = 3

for 𝑢ℎ and 𝑁 = 4 for 𝑢𝑣 (see corresponding hinge examples in Fig. 4).
In the case of 𝑢ℎ, the profiles in Fig. 3a indicate that 𝑚1 = 1, 𝑚2 = 0,

and 𝑚3 = −2 independent of 𝛽, thus 𝛥𝑚1,2 = −1 and 𝛥𝑚2,3 = −2. In this
case, the hinge model (B.5) can be expressed as:

𝑢ℎ
(
𝑋0, 𝛽

)
=

10
𝑞
(ℎ)

1 ⋅𝑋0

⎡⎢⎢⎣
1 +

(
𝑋0

𝑋0
(ℎ)

1,2

) 1

𝛥
(ℎ)
1,2

⎤⎥⎥⎦

𝛥
(ℎ)

1,2

⋅

⎡⎢⎢⎣
1 +

(
𝑋0

𝑋0
(ℎ)

2,3

) 1

𝛥
(ℎ)
2,3

⎤⎥⎥⎦

2⋅𝛥
(ℎ)

2,3

(B.6)

which depends on the five parameters
[
𝑞
(ℎ)

1
, 𝑋0

(ℎ)

1,2
, 𝑋0

(ℎ)

2,3
, 𝛥

(ℎ)

1,2
, 𝛥

(ℎ)

2,3

]

In the case of 𝑢𝑣, all the profiles in Fig. 3b are characterised by
𝑚1 = 0 and 𝑚4 = −3 independent of 𝛽, and the hinge model (B.5)
becomes:

𝑢𝑣
(
𝑋0, 𝛽

)
= 10

𝑞
(𝑣)

1 ⋅

4∏
𝑖=2

⎡⎢⎢⎢⎣
1 +

⎛
⎜⎜⎝

𝑋0

𝑋0
(𝑣)

𝑖−1,𝑖

⎞
⎟⎟⎠

1

𝛥
(𝑣)
𝑖−1,𝑖

⎤⎥⎥⎥⎦

𝛥𝑚
(𝑣)

𝑖−1,𝑖
⋅𝛥

(𝑣)

𝑖−1,𝑖

(B.7)
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Table A.1
Lookup table for assessing, by 2D interpolation, the value of the log-transformed displacement component log(𝑢ℎ) for any given combination(
𝑋0 , 𝛽

)
. The tabulated data have been obtained by numerical calculation of Eqs. (9)–(10).

log
(
𝑋0

)
log (𝛽)

−8 −7 −6 −5 −4 −3 −2 −1 0 1

−2.0 −1.2019 −1.2021 −1.2026 −1.2043 −1.2095 −1.2260 −1.2770 −1.4277 −1.8178 −2.5593
−1.8 −1.0019 −1.0021 −1.0026 −1.0043 −1.0095 −1.0260 −1.0770 −1.2278 −1.6179 −2.3594
−1.6 −0.8020 −0.8021 −0.8027 −0.8043 −0.8096 −0.8260 −0.8771 −1.0278 −1.4180 −2.1596
−1.4 −0.6021 −0.6022 −0.6028 −0.6044 −0.6097 −0.6262 −0.6772 −0.8280 −1.2183 −1.9601
−1.2 −0.4023 −0.4025 −0.4030 −0.4047 −0.4099 −0.4264 −0.4775 −0.6284 −1.0191 −1.7614
−1.0 −0.2030 −0.2031 −0.2037 −0.2053 −0.2106 −0.2271 −0.2783 −0.4295 −0.8210 −1.5647
−0.8 −0.0046 −0.0048 −0.0053 −0.0070 −0.0122 −0.0288 −0.0802 −0.2321 −0.6259 −1.3729
−0.6 0.1914 0.1912 0.1907 0.1890 0.1837 0.1669 0.1151 −0.0387 −0.4380 −1.1930
−0.4 0.3818 0.3817 0.3811 0.3794 0.3739 0.3568 0.3037 0.1454 −0.2674 −1.0414
−0.2 0.5602 0.5600 0.5594 0.5576 0.5519 0.5338 0.4777 0.3089 −0.1358 −0.9502
0.0 0.7163 0.7161 0.7155 0.7135 0.7071 0.6871 0.6242 0.4315 −0.0829 −0.9671
0.2 0.8406 0.8404 0.8396 0.8372 0.8296 0.8056 0.7289 0.4860 −0.1607 −1.1234
0.4 0.9304 0.9301 0.9292 0.9261 0.9163 0.8848 0.7818 0.4402 −0.3952 −1.3980
0.6 0.9910 0.9906 0.9893 0.9850 0.9714 0.9270 0.7754 0.2560 −0.7359 −1.7420
0.8 1.0304 1.0298 1.0278 1.0216 1.0016 0.9349 0.6942 −0.0826 −1.1155 −2.1187
1.0 1.0554 1.0545 1.0516 1.0422 1.0117 0.9060 0.5038 −0.4923 −1.5078 −2.5092
1.2 1.0712 1.0698 1.0653 1.0509 1.0028 0.8272 0.1641 −0.8989 −1.9048 −2.9054
1.4 1.0809 1.0787 1.0718 1.0491 0.9709 0.6684 −0.2717 −1.3013 −2.3036 −3.3039
1.6 1.0867 1.0833 1.0723 1.0360 0.9050 0.3801 −0.6923 −1.7022 −2.7032 −3.7033
1.8 1.0899 1.0845 1.0670 1.0076 0.7812 −0.0453 −1.0988 −2.1026 −3.1030 −4.1030
2.0 1.0910 1.0824 1.0543 0.9551 0.5557 −0.4845 −1.5013 −2.5028 −3.5029 −4.5029
2.2 1.0903 1.0766 1.0308 0.8605 0.1832 −0.8961 −1.9022 −2.9028 −3.9029 −4.9029
2.4 1.0877 1.0657 0.9897 0.6897 −0.2694 −1.3003 −2.3026 −3.3029 −4.3029 −5.3029
2.6 1.0825 1.0468 0.9178 0.3907 −0.6918 −1.7018 −2.7028 −3.7029 −4.7029 −5.7029
2.8 1.0735 1.0148 0.7897 −0.0435 −1.0987 −2.1025 −3.1028 −4.1029 −5.1029 −6.1029
3.0 1.0585 0.9600 0.5606 −0.4844 −1.5012 −2.5027 −3.5029 −4.5029 −5.5029 −6.5029
3.2 1.0336 0.8638 0.1849 −0.8961 −1.9022 −2.9028 −3.9029 −4.9029 −5.9029 −6.9029
3.4 0.9916 0.6919 −0.2689 −1.3003 −2.3026 −3.3028 −4.3029 −5.3029 −6.3029 −7.3029
3.6 0.9190 0.3917 −0.6918 −1.7018 −2.7028 −3.7029 −4.7029 −5.7029 −6.7029 −7.7029
3.8 0.7905 −0.0433 −1.0987 −2.1025 −3.1028 −4.1029 −5.1029 −6.1029 −7.1029 −8.1029
4.0 0.5611 −0.4844 −1.5012 −2.5027 −3.5029 −4.5029 −5.5029 −6.5029 −7.5029 −8.5029
4.2 0.1851 −0.8961 −1.9022 −2.9028 −3.9029 −4.9029 −5.9029 −6.9029 −7.9029 −8.8910
4.4 −0.2688 −1.3003 −2.3026 −3.3029 −4.3029 −5.3029 −6.3029 −7.3029 −8.3029 −9.2910
4.6 −0.6919 −1.7019 −2.7028 −3.7029 −4.7029 −5.7029 −6.7029 −7.7029 −8.6914 −9.6910
4.8 −1.0987 −2.1025 −3.1028 −4.1029 −5.1029 −6.1029 −7.1029 −8.1029 −9.0914 −10.0910
5.0 −1.5012 −2.5027 −3.5029 −4.5029 −5.5029 −6.5029 −7.5029 −8.5029 −9.4914 −10.4910
5.2 −1.9022 −2.9028 −3.9029 −4.9029 −5.9029 −6.9029 −7.9029 −8.8918 −9.8914 −10.8910
5.4 −2.3026 −3.3029 −4.3029 −5.3029 −6.3029 −7.3029 −8.3029 −9.2918 −10.2914 −11.2910
5.6 −2.7028 −3.7029 −4.7029 −5.7029 −6.7029 −7.7029 −8.6920 −9.6918 −10.6914 −11.6910
5.8 −3.1029 −4.1029 −5.1029 −6.1029 −7.1029 −8.1029 −9.0920 −10.0918 −11.0914 −12.0910
6.0 −3.5029 −4.5029 −5.5029 −6.5029 −7.5029 −8.5029 −9.4920 −10.4918 −11.4914 −12.4910

Table A.2
Lookup table for assessing, by 2D interpolation, the value of the log-transformed displacement component log(𝑢𝑣) for any given combination(
𝑋0 , 𝛽

)
. The tabulated data have been obtained from the numerical calculation of Eqs. (9)–(10).

log
(
𝑋0

)
log (𝛽)

−8 −7 −6 −5 −4 −3 −2 −1 0 1

−2.0 2.0145 1.9491 1.8721 1.7787 1.6604 1.5018 1.2720 0.9093 0.3179 −0.5321
−1.8 2.0145 1.9491 1.8721 1.7787 1.6604 1.5018 1.2720 0.9093 0.3179 −0.5322
−1.6 2.0145 1.9491 1.8721 1.7787 1.6604 1.5018 1.2720 0.9093 0.3177 −0.5324
−1.4 2.0145 1.9491 1.8721 1.7786 1.6604 1.5018 1.2719 0.9091 0.3174 −0.5329
−1.2 2.0145 1.9491 1.8720 1.7786 1.6603 1.5017 1.2717 0.9088 0.3166 −0.5343
−1.0 2.0144 1.9490 1.8719 1.7784 1.6601 1.5014 1.2713 0.9079 0.3146 −0.5377
−0.8 2.0142 1.9487 1.8716 1.7781 1.6597 1.5008 1.2702 0.9057 0.3095 −0.5461
−0.6 2.0137 1.9482 1.8710 1.7773 1.6586 1.4992 1.2676 0.9002 0.2969 −0.5669
−0.4 2.0126 1.9468 1.8693 1.7752 1.6559 1.4954 1.2611 0.8867 0.2662 −0.6167
−0.2 2.0099 1.9437 1.8657 1.7707 1.6499 1.4866 1.2463 0.8553 0.1940 −0.7287
0.0 2.0045 1.9374 1.8581 1.7612 1.6374 1.4683 1.2147 0.7866 0.0364 −0.9511
0.2 1.9950 1.9263 1.8447 1.7444 1.6149 1.4348 1.1548 0.6489 −0.2672 −1.3139
0.4 1.9807 1.9096 1.8244 1.7187 1.5800 1.3812 1.0528 0.3939 −0.7430 −1.7935
0.6 1.9620 1.8874 1.7974 1.6839 1.5313 1.3027 0.8887 −0.0527 −1.3145 −2.3401
0.8 1.9394 1.8605 1.7639 1.6400 1.4677 1.1923 0.6246 −0.7361 −1.9071 −2.9179
1.0 1.9134 1.8291 1.7244 1.5866 1.3863 1.0358 0.1806 −1.4519 −2.5045 −3.5089
1.2 1.8842 1.7934 1.6784 1.5222 1.2811 0.8035 −0.5828 −2.0849 −3.1035 −4.1053
1.4 1.8519 1.7532 1.6253 1.4442 1.1411 0.4320 −1.5700 −2.6960 −3.7031 −4.7038
1.6 1.8163 1.7079 1.5635 1.3477 0.9442 −0.2167 −2.2689 −3.3002 −4.3030 −5.3032
1.8 1.7769 1.6568 1.4906 1.2239 0.6452 −1.3684 −2.8903 −3.9018 −4.9029 −5.9030
2.0 1.7334 1.5984 1.4026 1.0567 0.1449 −2.4432 −3.4980 −4.5024 −5.5029 −6.5029

(continued on next page)
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Table A.2 (continued).

log
(
𝑋0

)
log (𝛽)

−8 −7 −6 −5 −4 −3 −2 −1 0 1

2.2 1.6847 1.5306 1.2927 0.8143 −0.7805 −3.0821 −4.1009 −5.1027 −6.1029 −7.1029
2.4 1.6297 1.4502 1.1491 0.4292 −2.3847 −3.6950 −4.7021 −5.7028 −6.7029 −7.7029
2.6 1.5666 1.3520 0.9491 −0.2519 −3.2685 −4.2998 −5.3026 −6.3028 −7.3029 −8.3029
2.8 1.4928 1.2269 0.6466 −1.5822 −3.8901 −4.9016 −5.9027 −6.9029 −7.9029 −8.8910
3.0 1.4042 1.0587 0.1400 −3.4432 −4.4979 −5.5024 −6.5028 −7.5029 −8.5029 −9.4910
3.2 1.2939 0.8153 −0.8089 −4.0821 −5.1009 −6.1027 −7.1029 −8.1029 −9.0914 −10.0910
3.4 1.1499 0.4288 −2.7380 −4.6950 −5.7021 −6.7028 −7.7029 −8.6918 −9.6914 −10.6910
3.6 0.9496 −0.2557 −4.2685 −5.2998 −6.3026 −7.3028 −8.3029 −9.2918 −10.2914 −11.2910
3.8 0.6467 −1.6111 −4.8901 −5.9017 −6.9028 −7.9029 −8.8920 −9.8918 −10.8914 −11.8910
4.0 0.1394 −4.4433 −5.4979 −6.5024 −7.5028 −8.5029 −9.4920 −10.4918 −11.4914 −12.4910
4.2 −0.8118 −5.0822 −6.1009 −7.1027 −8.1029 −9.0923 −10.0920 −11.0918 −12.0914 −13.0910
4.4 −4.5102 −5.6950 −6.7021 −7.7028 −8.6924 −9.6923 −10.6920 −11.6918 −12.6914 −13.6910
4.6 −5.2685 −6.2998 −7.3026 −8.3029 −9.2925 −10.2923 −11.2920 −12.2918 −13.2914 −14.2910
4.8 −5.8901 −6.9017 −7.9028 −8.8926 −9.8925 −10.8923 −11.8920 −12.8918 −13.8914 −14.8910
5.0 −6.4979 −7.5024 −8.5028 −9.4926 −10.4925 −11.4923 −12.4920 −13.4918 −14.4914 −15.4910
5.2 −7.1009 −8.1027 −9.0928 −10.0926 −11.0925 −12.0923 −13.0920 −14.0918 −15.0914 −16.0910
5.4 −7.7021 −8.6928 −9.6928 −10.6926 −11.6925 −12.6923 −13.6920 −14.6918 −15.6914 −16.6910
5.6 −8.3026 −9.2929 −10.2928 −11.2926 −12.2925 −13.2923 −14.2920 −15.2918 −16.2914 −17.2910
5.8 −8.8929 −9.8929 −10.8928 −11.8926 −12.8925 −13.8923 −14.8920 −15.8918 −16.8914 −17.8910
6.0 −9.4930 −10.4929 −11.4928 −12.4926 −13.4925 −14.4923 −15.4920 −16.4918 −17.4914 −18.4910

Fig. B.10. Graph of a continuous hinge function ℎ(𝑥) (Eq. (B.3)), which smoothly
connects two straight lines based on a ‘‘sigmoidal’’ model of the derivative ℎ′(𝑥)

(Eq. (B.1)) around the intersection point. The degree of smoothness of ℎ(𝑥) is regulated
by parameter 𝛥1,2.

which depends on the 10 parameters

[
𝑞
(𝑣)

1
,

(
𝑋0

(𝑣)

𝑖−1,𝑖
, 𝛥𝑚

(𝑣)

𝑖−1,𝑖
, 𝛥

(𝑣)

𝑖−1,𝑖

)
𝑖=2,3,4

]
.

Since the 𝛥𝑚
(𝑣)

𝑖−1,𝑖
coefficients are constrained by the condition 𝛥𝑚

(𝑣)

1,2
+

𝛥𝑚
(𝑣)

2,3
+ 𝛥𝑚

(𝑣)

3,4
= −3, the fitting parameters reduce to 9.

B.0.1. Two-Stage Fitting Analysis
Eqs. (B.6)–(B.7) explicitly show the dependency of the displacement

(𝑢ℎ, 𝑢𝑣) on the spatial variable 𝑋0. The temporal variable 𝛽 influences
the hinge models through its impact on the parameter sets 𝜽ℎ ≡[
𝑞
(ℎ)

1
, 𝑋0

(ℎ)

1,2
, 𝑋0

(ℎ)

2,3
, 𝛥

(ℎ)

1,2
, 𝛥

(ℎ)

2,3

]
and 𝜽𝑣 ≡

[
𝑞
(𝑣)

1
,

(
𝑋0

(𝑣)

𝑖,𝑖+1
, 𝛥𝑚

(𝑣)

𝑖,𝑖+1
, 𝛥

(𝑣)

𝑖,𝑖+1

)
𝑖=1,2,3

]
.

The variability of these parameters with respect to 𝛽 is modelled by
fitting the hinge models (B.6)–(B.7) to the profiles in Fig. 3 using a
two-stage regression procedure.

In the first stage, the parameter sets 𝜽ℎ and 𝜽ℎ that guarantee the
best fit of the hinge models (B.6) and (B.7) are identified for each of the

𝛽 values selected in Fig. 3. For 𝑢ℎ, the parameters in 𝜽ℎ are calculated
by solving the optimisation problem:

min
𝜽ℎ

𝑅ℎ =

𝑁𝑠∑
𝑖=1

{
log

[
𝑢ℎ

(
𝑋0,𝑖, 𝛽

)

𝑢ℎ
(
𝑋0,𝑖, 𝑡

)
]}2

(B.8)

For 𝑢𝑣, the parameter in 𝜽𝑣 are obtained by solving the optimisation
problem:

min
𝜽𝑣

𝑅𝑣 =

𝑁𝑠∑
𝑖=1

{
log

[
𝑢𝑣

(
𝑋0,𝑖, 𝛽

)

𝑢𝑣
(
𝑋0,𝑖, 𝑡

)
]}2

(B.9)

The objective functions (B.8) and (B.9) quantify the square residuals
between the hinge models (B.6) and (B.7), for the 𝑁𝑠 = 41 scaled
displacement data reported in each column of the Tables A.1 and
A.2, respectively. The optimisation problems (B.8)–(B.9) are solved by
means of a ‘‘trust-region-reflective’’ algorithm (Coleman and Li, 1996).
This step is repeated for each of the 𝛽 values selected in Fig. 3 and
produces 10 ‘‘training’’ points for each fitting parameter in 𝜽ℎ and in 𝜽𝑣.
The resulting parameter values are plotted as ‘‘data’’ in Fig. B.11.

In the second stage, these training points are used to capture the
relationships between the fitting parameters in 𝜽ℎ and 𝜽𝑣 and the
variable 𝛽. Since in Fig. B.11 the training points exhibit a fairly regular
variability in relation to 𝛽, a hinge-function model such as that in
Eq. (B.3) is adopted. It must be observed, however, that all profiles in
Fig. B.11 use a logarithmic scale on the abscissa and, in some cases,
even on the ordinate. For these reasons, the fitting models adopted
in this stage must rely on either single or the double logarithmic-type
hinge functions in Eqs. (B.4)–(B.5), which form the basis of the 𝑔1(𝛽)

and 𝑔2(𝛽) models in Eqs. (15).

The regression parameters in Eqs. (15),
[
𝜉1, 𝜂1

]
,
[
𝛥𝜂1,2,… , 𝛥𝜂𝑁−1,𝑁

]
,[

𝛿1,2,… , 𝛿𝑁−1,𝑁

]
, and

[
𝛽1,2,… , 𝛽𝑁−1,𝑁

]
, are determined by applying a

least-square non-linear optimisation method based on the Levenberg–
Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) using on the
‘‘data’’ in Fig. B.11. Tables 1 and 2 show the hinge model type, either
𝑔1(𝛽) or 𝑔2(𝛽) (Eqs. (15)), as well as the resulting number of segments
𝑁 and regression parameter values.

Fig. B.12 shows a comparison between the displacement profiles
𝑢ℎ and 𝑢𝑣 (Eqs. (9)) and the hinge models 𝑢ℎ

(
𝑋0, 𝛽

)
and 𝑢𝑣

(
𝑋0, 𝛽

)
(Eqs. (B.6)–(B.7) constructed using the two-stage regression process
presented above. The fit of the hinge model to the numerical solution is
generally satisfactory. Some discrepancies are typically noticeable for
smaller values of 𝛽, say ≤10−3, that is, at later times, and at larger radial
distance 𝑋0.
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Fig. B.11. Regression parameter values (‘‘data’’) for the hinge models (13) and (14) obtained for the 10 𝛽 values selected in Fig. 3. The solid lines indicate the closed-form models,
either 𝑔1 or 𝑔2 (Eqs. (B.4)–(B.5), developed to represent the dependency of each of the regression coefficient from 𝛽.

Fig. B.12. Comparison of (a) 𝑢ℎ against 𝑢ℎ, and (b) 𝑢𝑣 against 𝑢𝑣 for the set of 𝛽 values adopted in Fig. 3. The fit of the hinge models to the numerical solution is generally
strong but some discrepancies may be observed for values of 𝛽 less than 10−3, and at radial distances 𝑋0 where the displacement components start decreasing monotonically.

Appendix C. Supplementary Data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jhydrol.2024.131813.
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