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Abstract 16 

The impending deployment of automated vehicles (AVs) will lead to mixed traffic conditions, where 17 

pedestrians will be required to interact with both AVs and human-driven vehicles. For traffic flow to be 18 

safe and efficient, AVs’ understanding of pedestrians’ behaviour and intention is as important as 19 

pedestrians’ perception of AVs’ status and intent. To investigate pedestrians’ road-crossing decisions and 20 

interactive behaviour in mixed traffic, a distributed simulation study was developed by linking a CAVE-21 

based pedestrian simulator and a desktop driving simulator. Twenty-five pairs of pedestrians and drivers 22 

were recruited, and each pair experienced 32 trials, where pedestrians decided to cross (or not) before an 23 

approaching vehicle at an un-signalised, single-lane, road. The driving pattern of the approaching vehicle 24 

(controlled by either a predefined program or human driver) and braking mode (braking/non-braking) were 25 

manipulated. For the predefined vehicles, the braking pattern was subdivided into hard braking and soft 26 

braking to provide more kinematic variability. Human drivers were also instructed to yield, or not, in 27 

different trials. Pedestrians’ road-crossing decisions and head movements were recorded and analysed. 28 

Results revealed a significant difference in head-turning patterns between crossing and non-crossing 29 

manoeuvres, demonstrating pedestrians’ head movements as a valid indicator of their road-crossing 30 

intentions. Moreover, results identified a ‘last moment check’ behaviour before pedestrians’ crossing 31 

initiation, with a significant increase in head-turning during the last 2 seconds. Finally, pedestrians made a 32 

similar percentage of road crossings and displayed a similar pattern of head movements, in response to 33 

human-driven and predefined vehicles, suggesting that the difference of implicit cues in the current mixed 34 

traffic setup does not impact their behaviour prior to road crossings. The findings from this study extend 35 

our knowledge of how pedestrians behave when crossing the road in mixed traffic, particularly in terms of 36 

their head-turning behaviour. We hope this information can be used by future AVs to better predict 37 

pedestrians’ road-crossing intentions in urban settings.  38 

 39 
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Introduction 42 

Automated vehicles (AVs) promise to improve traffic efficiency, safety, and mobility of all users, 43 

especially the elderly and disabled, and are expected to become commercially available and widely 44 

deployed in the next ten to twenty years (Fagnant & Kockelman, 2015; Milakis et al., 2017). Once 45 

deployed, AVs and other road users, such as drivers of conventional vehicles (CVs), cyclists, powered two-46 

wheelers, and pedestrians, will need to share the same road space in a mixed-traffic environment. In this 47 

case, pedestrians, one of the most vulnerable road users, will be required to interact with both AVs and 48 

CVs, which could lead to behavioural uncertainty or unsafe situations for pedestrians because AVs could, 49 

for example, behave differently to CVs, in terms of the way they negotiate the road and their kinematic 50 

conduct (Razmi Rad et al., 2020).  51 

Pedestrians’ interpretation of vehicle’s intention 52 

When studying the communication and interaction of actors in such mixed traffic environments, 53 

Markkula et al. (2020) describe an interaction as: “a situation where the behaviour of at least two road 54 

users can be interpreted as being influenced by the possibility that they are both intending to occupy the 55 

same region of space at the same time in the near future”. Several recent studies in this context have 56 

indicated that when pedestrians are interacting with approaching vehicles, they interpret the intention of 57 

vehicles and base their crossing decisions on a combination of elaborate communication cues. These 58 

include implicit cues from the vehicle, such as its speed, distance, and time-to-arrival (TTA) (Ackermann 59 

et al., 2019; Dey & Terken, 2017; Lee et al., 2020; Sucha et al., 2017); and explicit information, such as 60 

traffic and road-based signals, sound- and light-based signals of approaching vehicles, as well as the body 61 

language of the driver (Mahadevan et al., 2018; Razmi Rad et al., 2020; Sucha et al., 2017). However, such 62 

interpretations are context dependent. For example, pedestrians can assume that an approaching vehicle 63 

will yield at signalised road sections, such as traffic lights or zebra crossings. By contrast, when crossing at 64 

an un-signalised location, where the right of way is more ambiguous, pedestrians are exposed to a higher 65 

risk if they choose to cross. Here, pedestrians may rely on other cues, such as vehicle kinematics or driver-66 

initiated cues (Guéguen et al., 2015; Lee et al., 2020; Madigan et al., 2023).  67 
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The role of implicit cues for pedestrian-AV interaction 68 

With the impending deployment of AVs, especially at SAE Level 4 or 5 (SAE International., 2021), 69 

where the human driver is no longer in charge of the driving task, the opportunity for interaction and 70 

communication between humans inside the AV and other road users is removed. To compensate for this 71 

lack of explicit communication, many recent studies have investigated external human-machine interfaces 72 

(eHMIs) as a potential solution for mitigating the uncertainty that might arise for pedestrians interacting 73 

with these AVs in a mixed traffic environment (Dey et al., 2020; Lee et al., 2022; Schieben et al., 2019). 74 

Some studies have demonstrated the value of eHMIs for resolving ambiguity and increasing pedestrians’ 75 

perceived trust and safety towards AVs (de Clercq et al., 2019; Holländer, Colley, et al., 2019; Holländer, 76 

Wintersberger, et al., 2019), whilst other studies have found no significant effect of eHMIs on pedestrians’ 77 

decisions (Clamann, 2017; Moore et al., 2019). Overall, there seems to be a consensus that implicit cues 78 

(e.g., speed-, distance-, or TTA- based information) have precedence over explicit cues in conveying AVs’ 79 

intention, and assisting pedestrians’ crossing decisions (Dey & Terken, 2017; Holländer et al., 2019; 80 

Rasouli & Tsotsos, 2020). For example, a recent study by Dey et al. (2020) investigated the contributions 81 

of eHMI and vehicle braking patterns (gentle/early/aggressive) in communicating the AV’s intention to 82 

pedestrians, and demonstrated a secondary influence from eHMIs, with pedestrians’ preference for gentle, 83 

rather than aggressive, braking. 84 

Although the role of implicit cues (especially braking profiles) from AVs has been emphasised by 85 

many studies in AV-pedestrian interaction, few have explored whether differences in kinematic cues in 86 

mixed traffic influence pedestrians’ decision-making and behaviour when crossing the road (Taima & 87 

Daimon, 2023). Wizard-of-Oz and ‘ghost driver’ studies (Dey et al., 2019; Rodríguez Palmeiro et al., 2018; 88 

Rothenbucher et al., 2016), which hide the driver in some way, creating a ‘driverless’ vehicle, have failed 89 

to show any differences in response from pedestrians to vehicles of different appearances or sizes, or those 90 

that clearly do not have a human in the driver’s seat. These studies suggest that external appearance as a 91 

cue has limited effects on pedestrians’ interactions with AVs and CVs, with more to be understood about 92 

the value of implicit cues (such as yielding patterns and braking profiles). However, the challenge with 93 

Wizard-of-Oz studies is that they are controlled by humans, and implicit traits such as driving and braking 94 

patterns are difficult to create in a repeated and controlled manner. Thus, an important research gap is to 95 
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understand whether pedestrians respond differently to system-controlled vehicles and human driven 96 

vehicles in mixed traffic, approaching with different implicit characteristics, such as different yielding 97 

intentions and braking patterns. 98 

AVs’ recognition of pedestrians’ intention 99 

While it is important for pedestrians to understand the intentions of AVs when interacting with them 100 

in mixed-traffic environments, it is also important for future AVs to have some understanding of 101 

pedestrians’ crossing intentions. As drivers, we use a range of cues from pedestrians to identify this 102 

intention. Although relatively rare (Lee et al., 2020), drivers are found to yield to pedestrians if they 103 

display hand gestures, leg and head movements (Chen et al., 2019; Crowley‐Koch et al., 2011; Schmidt & 104 

Faerber, 2009; Zhuang & Wu, 2014) or achieve simple eye contact, or display a smile (Guéguen et al., 105 

2016). On the other hand, pedestrian intention recognition for AVs is generally taken as a tracking problem, 106 

when using various models or algorithms. In general, these models use pedestrians’ motion and pose and 107 

movements of the legs and upper body, within multiple consecutive image frames (Koehler et al., 2013; 108 

Volz et al., 2019), to create a trajectory representation. One major drawback of these models is that they 109 

may function inferiorly when pedestrians stop (Rasouli et al., 2018), for example if they are waiting at the 110 

curb or looking at approaching vehicles. In addition, these body pose- or dynamics-based models may fail 111 

when it comes to a more diverse range of pedestrians or scenarios, such as pedestrians with a crutch or in a 112 

wheelchair (Singh et al., 2019) or those partly occluded by other obstacles. For this reason, a number of 113 

researchers have incorporated head movements into their pedestrian-intention-recognition models, 114 

showing that the inclusion of head information could lower the estimation error rate (Varytimidis et al., 115 

2018) and bring forward prediction time (Cao et al., 2022). However, little is known about the precise 116 

patterns of head movements in these cases, particularly in the AV context. In addition, few studies have 117 

included a baseline comparison of pedestrian head-movements in situations where they do not cross. Thus, 118 

it is important to gain a deeper understanding of pedestrian head movements in both crossing and non-119 

crossing situations, to understand whether, and how, these differ. This understanding can be used to inform 120 

AV intention recognition algorithms. 121 

Head movement cues for AV-pedestrian interaction 122 

Some studies have demonstrated that pedestrians’ head movements are a strong indicator of their 123 
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crossing intention (Hollands et al., 2002; Rasouli et al., 2018; Rehder et al., 2014), closely linked to their 124 

situation awareness, and visual attention before a crossing initiation (Kooij et al., 2014). For example, 125 

Rasouli et al. (2017) and Lee et al. (2020) have shown that in approximately 90% of crossings at un-126 

signalised locations, pedestrians’ heads were oriented towards approaching cars, prior to and during the 127 

road crossing. Research from naturalistic observation studies suggests that when performing risky tasks in 128 

a complex environment (e.g., road crossing), humans tend to turn their heads to expand their scanning area, 129 

to compensate for a limited oculomotor range (±55°) (Avineri et al., 2012). In addition, head rotation helps 130 

to re-centre the head on the torso as a new reference point for the next movement (Hollands et al., 2002), 131 

which is fundamental for a road crossing manoeuvre, where frequent redirection of attention is commonly 132 

required. Pedestrians are also seen to display different head movement patterns at various stages of a road 133 

crossing manoeuvre. For example, observation studies have shown that, when crossing in front of a vehicle 134 

approaching from the right, participants were found to turn their heads to the left before stepping off the 135 

curb, and then turn their heads to the right as they crossed the street (Geruschat et al., 2003). These authors 136 

also found an increase in head-turning frequency during the last 4 s before a crossing initiation, with the 137 

frequency being greatest during the last second (Hassan et al., 2005). In another observation study 138 

(Kalantarov et al., 2018), pedestrians initiated a crossing with their head and shoulder moving first (0.82s 139 

before ankle movement, which was defined as the beginning of the crossing), followed by the elbow (0.62s 140 

before ankle movement). These studies provide us with knowledge of the importance of pedestrian head 141 

movements as part of the information gathering process for pedestrians prior to crossing the road. By 142 

understanding the impact of variations in vehicle kinematic behaviours on these head movements, we can 143 

gain detailed information on how these vehicle behaviours are likely to impact pedestrian road crossing 144 

decisions in future mixed traffic with AVs.  145 

Research aims and questions 146 

Based on the above knowledge gap, the aim of this study was to investigate pedestrians’ road-crossing 147 

decisions and patterns of head movements in mixed traffic. In particular, the study investigated head 148 

movements: (1) in crossing versus non-crossing manoeuvres, to validate head movement as a potential cue 149 

for road-crossing intention; and (2) in response to vehicles with different implicit kinematics (e.g., human-150 

driven versus predefined patterns: soft braking versus hard braking). 151 

Given the limited availability of AVs (SAE Level 3 or above) on roads and regarding safety concerns 152 
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in pedestrian-vehicle interaction experiments, this study developed a distributed simulation platform, 153 

which integrates a CAVE-based pedestrian simulator and a desktop driving simulator, enabling the real-154 

time interaction between pedestrians and human driven / predefined system-controlled vehicles in a VR 155 

environment. Within such a high-fidelity virtual environment, a range of road-crossing scenarios were 156 

developed, and pedestrians’ road-crossing decisions and head movement were captured and investigated. 157 

Method 158 

Participants 159 

Using the University of Leeds driving simulator database and social media adverts, 50 participants 160 

(25 pedestrians and 25 drivers) were recruited and matched randomly into 25 driver-pedestrian pairs for 161 

this study. Participants’ demographic information is provided in Table 1. To be eligible for the study, 162 

drivers were required to have a UK/EU driving licence and at least three years of driving experience. All 163 

pedestrian participants were required to have lived in the UK for at least one year. The driver and 164 

pedestrian participants self-reported to have normal or corrected-to-normal vision, and be free from any 165 

head or upper/lower limb diseases that could lead to impairments in driving/walking. Due to the length of 166 

time taken to prepare for and complete the study, drivers and pedestrians were rewarded with £10 and £15, 167 

respectively, for their participation. Ethical approval was obtained from the University of Leeds Research 168 

Ethics Committee (Ref: LTTRAN-113). All participants provided written informed consent to take part in 169 

the study. 170 

Table 1. Demographic information of participants 171 

Participant Gender Age (years) 

Male Female M (SD) Range 

Driver 13 12 43.36 (13.29) 21 - 64 

Pedestrian 12 13 32.64 (9.97) 20 - 57 

Apparatus and Virtual Environment  172 

The experiment was conducted at the University of Leeds Virtuocity centre, which houses a set of 173 

human-in-the-loop, connected, Virtual Reality simulators to study road user interactions with vehicles on 174 

the road. For this study, the Highly Immersive Kinematic Experimental Research (HIKER) lab, a CAVE-175 

based pedestrian simulator (see https://uolds.leeds.ac.uk/facility/hiker-lab/) was integrated with a desktop 176 

driving simulator, to create a distributed simulation environment for driver-pedestrian pairs (see Figure 1). 177 

https://uolds.leeds.ac.uk/facility/hiker-lab/
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The HIKER lab provides walking space in a 9 m × 4 m room, formed by three glass panel walls and a 178 

wooden floor, which present the virtual road environment and respond to the pedestrians’ position, using a 179 

set of body trackers and a lightweight pair of glasses with integrated reflective trackers. The glasses 180 

provide appropriate visual cues of the stereo virtual environment that can be adjusted to the pedestrians’ 181 

height, and track their head movements over time. The Unity 3D software was used to incorporate the 182 

vehicle parameters and pedestrian state into the virtual environment.  183 

 184 

Figure 1. The HIKER lab (Left) and the desktop driving simulator (Right) at the University of Leeds, 185 

displaying the driver’s view of the pedestrian.  186 

For this experiment, an un-signalised, single-lane, urban road was used for the virtual environment, 187 

visible to both the pedestrian and the driver. The 4.2 metre-wide (UK standard) road depicted a residential 188 

setting during daylight hours (see Figure 2). From the drivers’ perspective, the pedestrian was presented as 189 

a set of graphical components, which corresponded to the reflective trackers worn by the participant, and 190 

represented pedestrians’ main body elements and head (see Figure 2). Due to technical limitations, the 191 

reflective trackers could become occluded while the pedestrian was walking, leading to a sense for the 192 

driver that the pedestrian was missing body parts when a human-like avatar was displayed. Therefore, to 193 

avoid potential driver discomfort, while still accurately representing pedestrian walking behaviour, this 194 

graphical visual representation was used instead of a more human-like agent. The drivers were notified that 195 

they were interacting with real pedestrians as depicted by those graphical components. The desktop 196 

simulator was placed behind one of the HIKER’s walls, and the driver was not visible to pedestrians, who 197 

could only see the vehicle in the virtual environment. 198 
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 199 

Figure 2. Pedestrian’s view of approaching vehicles (Left) vs driver’s view of the crossing pedestrian 200 

(Right) 201 

Experimental Design 202 

A within-participant design was used in this study, in which each pair of participants experienced 32 trials, 203 

presented in a preselected randomised order. In each trial, the pedestrian interacted with a vehicle that was 204 

either controlled by a predefined driving (PD) program or a human driver (HD). In addition to the driving 205 

mode, the yielding behaviour of the vehicle was manipulated for both the PD and HD conditions: braking 206 

and non-braking (see Table 2). At the start of each trial in all conditions, the vehicle began driving in a 207 

predefined mode, travelling at 30 mph, which is the designated speed limit on many UK urban roads. For 208 

the PD braking trials, the braking pattern was subdivided into hard braking (PDHB) and soft braking 209 

(PDSB), to generate more kinematic variability and study the effect of these two braking patterns on 210 

pedestrian crossing behaviour. The initial travelling speed, deceleration rate, braking distance, and yielding 211 

behaviour of the PD vehicle were informed by previous studies in this context (Dey et al., 2020; Lee et al., 212 

2022). The driver was made aware of the driving mode at the start of each trial, i.e., whether the vehicle 213 

was PD or HD, and also whether the trial was a braking or non-braking trial. A simple dashboard-mounted 214 

HMI was used to ask drivers to take over when prompted in the HD trials. Further information about the 215 

experimental design is provided in Table 2.  216 

Table 2. Detailed information about the experimental variables 217 

Vehicle 

controller 

Braking 

Mode 

Abbreviation Description Number 

of trials 

Predefined 

driving 

(PD) 

Braking Predefined driving, 

soft brake (PDSB) 

PD vehicle started braking at a distance of 40 m 

from pedestrians at a rate of 2.5 m/s2 and stopped at 

a distance of 4 m from the pedestrian  

4 
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Predefined driving, 

hard brake (PDHB) 

PD vehicle started braking at a distance of 40 m 

from pedestrians at a rate of 3.2 m/s2 and stopped at 

a distance of 12 m from the pedestrian  

4 

Non-

braking 

Predefined driving, 

non-braking 

(PDNB) 

PD vehicle did not brake and maintained a speed of 

30 mph 

8 

Human 

Driver 

(HD) 

Braking Human driver, 

brake (HDB) 

At 80 m from the pedestrian, the dash turned 

yellow, alerting drivers to ‘get ready to take over 

control’. At 60 m from the pedestrian, the dash 

turned red, asking drivers to take over control. The 

HD was instructed to brake and allow pedestrians 

to cross the road. 

8 

Non-

braking 

Human-driven, non-

braking (HDNB) 

At 80 m from the pedestrian, the dash turned 

yellow, alerting drivers to ‘get ready to take over 

control’. At 60 m from the pedestrian, the dash 

turned red, asking drivers to take over control. The 

HD was instructed to carry on driving and not yield 

to the crossing pedestrian. 

8 

 218 

The decision to start each trial in a predefined mode was to generate the same initial speed, distance, and 219 

time-gap between the manipulated vehicle and the lead vehicle until the pedestrian appeared. This was to 220 

ensure that, from the pedestrian’s perspective, the initial gap between the lead vehicle and the target 221 

vehicle was the same in both the PD and HD trials. To mitigate against any effects of takeover, for HDB, 222 

the drivers were informed to take over control at 60 m to the pedestrian, compared to 40 m for the PD trials, 223 

where the vehicle began to decelerate in PDSB and PDHB. Following a series of pilot studies, the earlier 224 

takeover and extended margin aimed to enable the drivers to adjust to their “normal driving”, and they 225 

were instructed to drive normally and yield when they normally would for the pedestrian in HDB condition 226 

or not yield in the HDNB condition. 227 

 228 
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 229 

Figure 3. Depiction of the experimental design 230 

Procedure 231 

The experiment lasted between 60 and 75 minutes, respectively, for each pair of participants. The 232 

pedestrian participant was asked to attend the lab around 15 minutes earlier to prepare for the study, which 233 

involved fitting the trackers and the glasses. Upon arrival, the driver and pedestrian participants were 234 

greeted separately, and instructed to read and sign the information sheet and consent form about the 235 

experiment and had the opportunity to ask questions.  236 

Drivers were briefed on how to operate the simulator and told to interact with the pedestrians as they 237 

would typically do when they are in control of a conventional vehicle in real traffic. They were asked to 238 

follow the instructions on the dashboard monitor of the driving simulator, which would display the 239 

manipulation of the vehicle mode (PD/HD) and braking mode (Braking/Non-braking) of the impending 240 

trial. If the vehicle mode was HD, the driver needed to get ready to take over control of the vehicle at 80 m 241 

from the pedestrian (indicated by a green-to-yellow change of HMI on the dashboard). After resuming 242 

control at 60 m to the pedestrian, the driver carried on driving normally and needed to brake for the 243 

pedestrian in the HDB condition (as they would in real traffic), but not brake in the HDNB conditions. 244 

However, they had the discretion to brake if the pedestrian stepped onto the road in non-braking trials and 245 

they felt uncomfortable driving on. When in the PD condition, drivers were asked to simply observe the 246 

predefined driving patterns. Drivers were equipped with a headset to hear the engine sound of the vehicle.  247 

Pedestrians began by standing at a designated point at the edge of the road in the HIKER lab. Two 248 
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cars approached the pedestrian from their right, with a white vehicle followed by a blue one (see Figure 3). 249 

The pedestrians’ task was to naturally cross the road (or not) between the approaching vehicles when they 250 

felt safe. Pedestrians were informed that although the second vehicle always looked the same, it could 251 

either be driven by a predefined program or a human driver. They were not informed about the identity of 252 

the driver (PD or HD), for individual trials. If they crossed the road in a particular trial, they needed to 253 

return to the starting position after the blue vehicle had passed, to get ready for the subsequent trial. 254 

The experiment started with a 5-minute practice session for each pair of participants to familiarise 255 

them with the tasks and the virtual environment. Following the practice session, the experimental session, 256 

consisting of 32 trials, began. Once the experimental session was completed, the driver and pedestrian 257 

were each asked to complete a short questionnaire that included demographic information and questions 258 

about their subjective experience of the entire experiment.  259 

Data collection and exclusion 260 

As the head movement profiles of pedestrians are considered to be a powerful indicator of crossing 261 

intention and visual search (Hollands et al., 2002; Rasouli et al., 2018; Rehder et al., 2014), this paper 262 

focused on investigating pedestrians’ head movements in response to a range of implicit cues displayed by 263 

approaching vehicles. The head movement data of pedestrians were recorded at 50 Hz in quaternion format, 264 

which was then converted into Euler angle for ease of analysis (see Figure 4 for an illustration). The 265 

left/right head-turning behaviour reflects the switch of pedestrians’ visual attention between traffic 266 

elements, such as the road ahead and vehicles approaching from left or right. Therefore, the horizontal 267 

head-turning pattern around the torso (yaw axis) was analysed for this study, as left/right head-turns are 268 

considered more informative than looking up/down or tilting left/right for a road crossing task (Rhee et al., 269 

2019).  270 

 271 

Figure 4. Scheme of head movement around yaw, pitch, and roll axes 272 
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The data analysed included results from 461 crossing trials and 290 non-crossing trials. 49 trials were 273 

excluded from analysis for two reasons: (1) pedestrians crossed the road before the first vehicle (not 274 

following the instructions given), and (2) head-tracking data was missing due to technical issues. Table 3 275 

provides a detailed list of trials included and excluded in each condition. 276 

Table 3. Detailed information about trials excluded and included for each condition 277 

Item HDB PDSB PDHB HDNB PDNB Sum 

Total trials 200 100 100 200 200 800 

Trials – invalid crossing (before 1st vehicle) 10 6 3 10 13 42 

Trials - data missing 0 1 5 1 0 7 

Trials - valid non-crossing  6 1 0 134 149 290 

Trials - valid crossing 184 92 92 55 38 461 

Percentage of crossing 92% 92% 92% 27.5% 19% 57.63% 

Analysis of head movements 278 

Pedestrians’ head movements were analysed for each crossing trial, for the period immediately before 279 

and after their crossing initiation. Figure 5 provides an example plot of a single trial, to illustrate how the 280 

pedestrian turned their head throughout the road crossing process. Due to the experimental setup, which 281 

included a one-way single-lane road, pedestrians were aware that the vehicle would approach from the 282 

right, and thus, they were facing this way most of the time. However, as the gap for crossing opened (i.e., 283 

the rear of the first vehicle passed the pedestrian’s position), or the pedestrian was about to initiate a 284 

crossing, they exhibited more head-turns, as shown by the spikes of the black curve in Figure 5. 285 

 286 

Figure 5. Example plot of a pedestrian’s head-turning behaviour around crossing initiation (Pedestrian #1 287 
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Trial #29 in HDB condition) 288 

 289 

To understand the effect of the vehicle’s implicit cues on pedestrians’ crossing behaviour, a target 290 

window was selected to investigate pedestrians’ interactions with the vehicle. For the crossing trials, this 291 

window was selected based on pedestrians’ crossing initiation time (CIT, i.e., the time elapsed from the 292 

crossing gap opening until the pedestrian stepped off the curb) and crossing duration time. In 455 out of 293 

461 trials (98.70%), pedestrians initiated a crossing within 12 s after the crossing gap was open. Thus, the 294 

head-tracking data for the 12 s before a crossing initiation was selected as the first part of the target 295 

window. To avoid the inclusion of head-turning noise generated after they had crossed the road, the 296 

minimum of their crossing duration time (3 s) was selected as the end of this target window. For the non-297 

crossing trials, a 12 s window before the second vehicle passed the pedestrian’s location was chosen, for 298 

ease of comparison with head-turning behaviour in crossing trials. Two metrics were adopted within the 299 

predefined windows, to study pedestrians’ head-turning behaviour while making road-crossing decisions: 300 

head-turning frequency and head-turning rate. For head-turning frequency, the mode and standard 301 

deviation of the head-turning angle were computed for the 15 s window and served as the baseline and 302 

threshold for head-turning detection, respectively. As shown in Figure 5, one head turn was counted if the 303 

head-turning angle was beyond the grey detection area (mode ± standard deviation, Baseline ± SD), with 304 

four head turns seen for this particular trial. Head-turning rate was provided and calculated as the 305 

difference in head-turning angle between the current frame and the next frame. A higher head-turning rate 306 

denotes that the pedestrian displayed larger head turns between the two adjacent frames. The head-turning 307 

rate was observed to fluctuate around 0 degrees, where positive values indicate that the pedestrians turned 308 

their heads towards the right. To avoid the positive and negative values cancelling each other out, the 309 

negative values were transformed into absolute values. In the subsequent analysis, an average value of 310 

head-turning rate was calculated every 0.5 s, to reduce the overall volume of data.  311 

Descriptive statistics were used to check the effect of the experimental variables on the two head-312 

turning metrics. For head-turning frequency, non-parametric tests were used when assumptions of 313 

parametric tests were violated. Particularly, a Mann-Whitney U test was performed when the factors 314 

consisted of two sampled groups (e.g., HDNB vs PDNB in non-braking conditions). If there were three or 315 

more sample groups for a single variable (e.g., HDB, PDSB, and PDHB in braking conditions), the 316 

Kruskal-Wallis test was performed. For the head-turning rate, Generalised Estimating Equation (GEE) was 317 
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used. 318 

Results  319 

Based on the predefined research goals, we first report pedestrians’ head movements for crossing 320 

versus non-crossing manoeuvres, followed by head-turning behaviour under different vehicle kinematics. 321 

Particularly, due to a notable difference between the speed patterns of the braking and non-braking 322 

conditions, which might induce different behavioural responses by pedestrians (Dey et al., 2019), results 323 

for these two conditions are presented separately.  324 

Head movements for the different road-crossing decisions 325 

Table 3 provides a comprehensive summary of the experimental trials, consisting of 800 trials in total, 326 

equally distributed between braking and non-braking scenarios. Pedestrians crossed the road in 461 trials, 327 

of which 79.83% stemmed from the braking conditions. In contrast, pedestrians refrained from crossing the 328 

road in 290 trials, with 97.59% of these instances occurring in the non-braking conditions. Pedestrians’ 329 

head-turning metrics were subjected to analysis and comparison across different road-crossing decisions. 330 

Within the 12-second windows, the Mann-Whitney U test revealed a significant discrepancy in head-331 

turning frequency between crossing and non-crossing pedestrians (U(461,290) = 9.139*104, z = 9.137, p 332 

< .001). The median head-turning frequency for the crossing and non-crossing incidents was 2 and 1, 333 

respectively, despite both of their mean values being very close to 0.9 during this time period. 334 

Figure 6 presents the head-turning rate within the designated time window for the different road-335 

crossing decisions, as indicated by the solid lines. The temporal point 0 marks the commencement of road-336 

crossing, and the termination of the road-crossing task for non-crossing trials as this was when the second 337 

vehicle passed the location of the stationary pedestrian). The GEE test demonstrates a significant 338 

distinction in head movements between crossing and non-crossing trials (Wald χ²(2) = 13.476, p < .001), as 339 

well as across different time intervals (Wald χ²(2) = 482.998, p < .001). This disparity is illustrated in 340 

Figure 6, where pedestrians exhibited a significant increase in head-turning rate from time -2 s onwards, 341 

significantly surpassing their earlier head turnings. The GEE analysis also unveiled a significant interaction 342 

effect between road-crossing decisions and time intervals (Wald χ²(2) = 41.056, p = .012). Post-hoc 343 

analysis, with Bonferroni corrections, revealed that from 2 seconds prior to road-crossing decisions, the 344 

head-turning rate for crossing manoeuvres increased more rapidly and was significantly higher than that 345 
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for non-crossing events, as depicted by the shaded area in Figure 6. 346 

 347 

Figure 6. Head-turning rate of pedestrians under different road-crossing decisions. The error bar depicts 348 

standard error. 349 

 350 

Head movements in braking conditions 351 

In the braking conditions, regardless of driving mode or braking conditions, pedestrians completed an 352 

equal percentage of crossing (~92%) for the HDB, PDHB and PDSB trials (χ²(2) = 3.80, p = .150) (see 353 

Table 3). A Kruskal-Wallis H test was used to examine whether the different braking characteristics of the 354 

predefined and human-driven vehicles influenced pedestrians’ head-turning frequency before and after 355 

their crossing initiation. There were no significant differences in head-turning frequency in response to the 356 

approaching HDB, PDSB, and PDHB, before crossing initiation (H(2) = 1.084, p = .582). However, after 357 

the pedestrians started to cross, there was a significant difference in head-turning frequency, between the 358 

three braking conditions (H(2) = 13.318, p = .001). Post-hoc analysis with Dunn’s test showed that 359 

pedestrians’ head-turning frequency in response to the PDSB was significantly lower than that of PDHB 360 

(z(91) = 48.402, p < .001) and HDB (z(91) = 28.592, p = .014), as shown in Figure 7.  361 
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 362 

Figure 7. Head-turning frequency in braking conditions. The error bar depicts standard error. (* indicates p 363 

< .05, *** indicates p < .001) 364 

A GEE analysis was used to check the effect of braking conditions on pedestrians’ head-turning rate 365 

in the 15s window around their crossing initiation. Results showed that there was a main effect of time 366 

(Wald χ²(24) = 2.935*103, p < .001). The head-turning rate increased steadily from about 2 s before 367 

pedestrians’ crossing initiation, reaching its peak value immediately after they commenced a crossing (see 368 

Figure 8). Post-hoc analysis, with Bonferroni corrections, showed that from around 0.5 s before the 369 

crossing initiation, pedestrians’ head-turning rate was significantly higher than that of the previous waiting 370 

period, reaching its peak around 0.5 s  after the crossing was initiated, and then steadily decreasing. There 371 

was no significant effect of braking conditions on head-turning rate (Wald χ²(2) = 3.298, p = .192). 372 

However, there was a significant interaction between time and braking conditions (Wald χ²(28) = 373 

1.740*1012, p < .001). Post-hoc analysis, with Bonferroni corrections, found that the head-turning rate was 374 

significantly higher when participants were crossing in response to the HDB, compared to the PDSB, at 0 s, 375 

0.5 s, and 1 s after crossing initiation (see the shaded area in Figure 8).  376 
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 377 

 378 

Figure 8. Head-turning rate of pedestrians in braking conditions. The error bar depicts standard error. 379 

Taken together, the results from head-turning frequency and head-turning rate metrics show a 380 

consistent and complementary pattern. For all conditions, head-turning increased around 2 seconds before 381 

the crossing initiation, with no significant difference between the different driving or braking conditions. 382 

However, after pedestrians started crossing the road, there was a substantial increase in both head-turning 383 

frequency and head-turning rate. There was also a clear difference in head-turning behaviour during the 384 

crossings, in response to the different vehicle kinematics portrayed by the three conditions, with 385 

pedestrians displaying the lowest head-turning frequency, and head-turning rate in the PDSB condition, 386 

compared with the HDB and PDHB conditions. To understand this behaviour further, we provide 387 

information about kinematic states (including approaching speed and distance) of the manipulated vehicle 388 

at pedestrians’ crossing initiation for each condition in Table 4.  389 

Table 4. Kinematic state of 2nd vehicle at pedestrians’ crossing initiation for each braking condition 390 

Braking Mode Pedestrians’ CIT (s) 

M (SD) 

Distance to pedestrian (m) Speed (mph) 

M (SD) Range M (SD) Range 

HDB 4.33 (2.99) -40.77 (23.46) -104.06 ~ -3.15 9.08 (12.45) 0 ~ 30.12 

PDSB 6.72 (4.22) -20.66 (30.27) -97.96 ~ -1.93 8.94 (13.51) 0 ~ 30.08 

PDHB 5.58 (3.52) -26.99 (25.86) -96.89 ~ -10.83 8.86 (12.85) 0 ~ 30.11 

Note: the minus sign before ‘Distance to pedestrian’ denotes that the vehicle is approaching the pedestrian 391 

from their right side. 392 

This data shows that at pedestrians’ crossing initiation, the average speed of the approaching vehicle 393 

was around 9 mph for the three braking conditions: HDB, PDSB, and PDHB. However, the average 394 
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distance from the vehicle to the pedestrian’s position varied substantially from ~21 m in PDSB to ~41 m in 395 

HDB. Moreover, in the HDB condition, most drivers started braking immediately (~60m) after they took 396 

over control of the vehicle, compared to the designated braking onset for PDSB and PDHB, which was at 397 

40m to the pedestrians. Therefore, it seems that the distance from the vehicle to the pedestrian played a 398 

dominant role, not only in determining pedestrians’ crossing initiation time but also in their head-turning 399 

behaviour. More specifically, a shorter distance from the vehicle to the pedestrian was related to less head-400 

turning behaviour during the crossing, although this resulted in a later crossing (a larger CIT).  401 

Head movements in non-braking conditions 402 

Pedestrians crossed the road for nearly 30% and 20% of trials in the HDNB and PDNB conditions, 403 

respectively (see Table 3). This proportion of crossings for the non-braking conditions is much less than 404 

that for the braking conditions (92%). A Mann-Whitney U test was adopted to compare the effect of 405 

HDNB and PDNB on pedestrians’ head-turning frequency in the predefined 15 s window. There was no 406 

significant difference in head-turning frequency in response to the different driving modes, either before 407 

(U(55,38) = 1146, z = -.827, p = .408), or after crossing initiation (U(55,38) = 970, z = -.621, p = .535)).  408 

For the head-turning rate, the GEE did not yield a significant main effect of non-braking modes, or 409 

any interaction effect. However, there was a main effect of time on the head-turning angle (Wald χ²(16) = 410 

5.071*1012, p <.001).  As shown in Figure 9, pedestrians started to show a larger and increasing head-411 

turning rate for the last 1 s before their crossing initiation in the non-braking scenarios.  412 

 413 

Figure 9. Head-turning rate of pedestrians in non-braking conditions. The error bar depicts standard error. 414 

Overall, a significant increase in head-turning behaviour was observed just before, and particularly 415 
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around the crossing initiation, for those pedestrians who commenced a crossing in the non-braking 416 

conditions. However, results showed no significant difference in head-turning frequency, or head-turning 417 

rate, between the HDNB and PDNB trials. This is likely because of the high similarity of kinematic 418 

features between the two non-braking conditions. The kinematic information for the manipulated and 419 

leading vehicles at the time of pedestrians’ crossing initiation is provided in Table 5. As demonstrated by 420 

Table 5, while pedestrians were about to cross the road in non-braking conditions, the metrics, including 421 

the CIT and the speed and distance of the 1st and 2nd vehicle were very similar and comparable between 422 

HDNB and PDNB conditions. Therefore, for these two conditions, pedestrians initiated a road-crossing 423 

immediately (within approximately 1 s) after the 1st vehicle had passed their standing location, when the 424 

2nd vehicle was about 70 m away. Thus, it seems that the observed head-turning behaviour was more 425 

related to tracking and checking the leading vehicle, to initiate an early and quick crossing, rather than 426 

focusing on the 2nd approaching vehicle’s behaviour. 427 

Table 5. Kinematic state of 1st and 2nd vehicle at pedestrians’ crossing initiation for each non-braking 428 

condition (M (SD)) 429 

Non-braking 

Mode 

Pedestrians’ 

CIT (s)  

1st vehicle (leading) 2nd vehicle (manipulated) 

Distance to 

pedestrian (m) 
Speed (mph) 

Distance to 

pedestrian (m) 
Speed (mph) 

HDNB 1.11 (1.60) +10.34 (9.39) 29.82 (0.19) -70.36 (22.74) 26.84 (8.30) 

PDNB 0.62 (0.42) +8.39 (5.59) 29.84 (0.17) -70.40 (18.67) 29.62 (0.26) 

Note: ‘-’/‘+’ before the value for Distance to the pedestrian denotes that the vehicle is on the right/left side 430 

of the pedestrian. 431 

 432 

Finally, to understand the influence of vehicle yielding patterns on head-turning behaviour further, 433 

pedestrians’ head-turning frequency for braking and non-braking conditions was compared using the 434 

Mann-Whitney U test. Head-turning frequency in the non-braking conditions was found to be significantly 435 

more frequent than in the braking conditions, both before (U(368,93) = 14649.50, z = -2.306, p = .021) and 436 

after the crossing initiation (U(368,93) = 14383.50, z = -2.702, p = .007). Furthermore, as illustrated from 437 

the head-turning rate plots in Figure 8 and Figure 9, in non-braking conditions, pedestrians produced later 438 

and higher head-turning behaviour while they were about to cross, compared with head movements in the 439 

braking conditions. 440 
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Discussion 441 

The aim of this distributed simulation study was to investigate pedestrians’ crossing decisions and 442 

head-turning patterns in response to different kinematics of approaching vehicles, at an un-signalised 443 

crossing location in VR. Pedestrians’ head movements for different road-crossing decisions, and in 444 

response to different kinematic profiles were analysed, and compared.  445 

Results indicated a significant difference in pedestrians’ head-turning behaviour between crossing and 446 

non-crossing decisions. Pedestrians exhibited higher head-turning frequency and rate of head turns when 447 

they initiated a crossing, compared to trials that did not result in a crossing. This finding provides clear 448 

evidence that, for this type of scenario, pedestrians’ head movements can serve as a valuable indicator for 449 

identifying road-crossing intentions. This result concurs with previous observation studies in this context 450 

(Hollands et al., 2002; Rasouli et al., 2018; Rehder et al., 2014). Our results also showed that the difference 451 

in head movement patterns for crossing trials was apparent 2 s before crossing initiations. This finding 452 

offers insights into behavioural explanations for studies that use head information as input features for 453 

pedestrians’ intention recognition. For example, Varytimidis et al. (2018) reported that supplementation of 454 

head orientation on the basis of motion information decreased the estimation error rate from 60.5% to 455 

25.3%. Cao et al. (2022) found that the incorporation of head movement feature advanced the prediction 456 

time from 0.13 s to 0.56 s before pedestrians’ crossing initiation. Our results provide further insights into 457 

why this is the case, showing the exact head movements pedestrians engage in while making and enacting 458 

their crossing decisions. Therefore, with optimized algorithms and extended features, the incorporation of 459 

head movements information could benefit future AVs in earlier recognition of pedestrians’ road-crossing 460 

intents. 461 

For the braking conditions, results showed that from around 2 s before the pedestrians commenced a 462 

crossing, they increased their head-turning behaviour, which reached a peak value at the crossing initiation. 463 

This ‘last moment check’ behaviour has also been reported by other studies (Hassan et al., 2005; Tom & 464 

Granié, 2011), with Hassan et al. (2005) reporting an increase in the number of head turns in the last 4 s 465 

before a crossing initiation, and head-turning frequency being highest in the last 1 s. This difference in 466 

timing between our VR study and Hassan et al.’s (2015) data may be due to the different experimental 467 

setups, with our study involving a one-way single-lane road, compared to the real-world study used by 468 
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Hassan et al. (2005), which included one-way traffic across two lanes and incorporated more complex 469 

settings, such as intersections and roundabouts, and a higher volume of traffic. The length of our VR set up 470 

in the CAVE-based simulator may have also contributed to this difference in results.  471 

Interestingly, despite the different yielding behaviours adopted in the three experimental conditions 472 

(HDB, PDHB, PDSB), there was no main effect of braking condition on pedestrians’ head movements 473 

prior to a crossing. Instead, it would appear that the distance between the manipulated vehicle and the 474 

pedestrian was a dominant factor in influencing pedestrians’ head-turning behaviour (see Table 4). This is 475 

in line with the finding from a number of previous real-world observation studies (Oxley et al., 2000; Zito 476 

et al., 2015). The largest CIT, shortest distance-gap, and least head-turning behaviour were observed in 477 

PDSB conditions, whilst the opposite was seen for the HDB conditions. The early crossers in the HDB 478 

condition turned their head more frequently to seek further information and check the environment, likely 479 

as a result of their quick and somewhat risky decisions, but perhaps also to ensure that vehicle would not 480 

start moving again. This is supported by the findings of Kalantarov et al. (2018) and (Yang et al., 2024), 481 

who found pedestrians exhibiting more head and body movements, during less safe crossing opportunities, 482 

such as for earlier crossing events . By contrast, for the PDSB conditions, the late crossers who waited for 483 

a longer time to begin crossing, and crossed when the vehicle was closer, showed less head turning 484 

behaviour, in line with a more confident crossing, perhaps because it was clear that the approaching 485 

vehicle had definitely yielded for them. This inverse relationship between head-turning behaviour and CIT 486 

was particularly strong in the  non-braking trials, with very short CIT of around 1 s associated with a high 487 

frequency of head turns. Thes results show clearly that a high head-turning frequency is likely to lead to an 488 

imminent road crossing, particularly for those earlier crossers who base their decisions mainly on crossing 489 

immediately after the passing of the first approaching (lead) vehicle in this study, rather than examining the 490 

behaviour of the second approaching vehicle. Future AVs can use this sudden increase in head movement 491 

as a cue for yielding to crossing pedestrians.  492 

Finally, a post-experiment interview with the pedestrian participants (not reported here due to space 493 

constraints), found that they could not distinguish between human-driven and predefined driving vehicles, 494 

if based solely on the yielding profiles adopted. Thus, it would appear that pedestrian head movements in 495 

relation to crossing decisions are likely to remain constant when interacting with AVs in future mixed 496 
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traffic scenarios (at least with a similar parameter setup to the current study). Thus, the incorporation of 497 

current patterns of head movement data into AV prediction models for pedestrian crossing is likely to be 498 

successful. However, more research is needed to understand if varying the appearance of the AV compared 499 

to conventional vehicles would lead to a change in these behaviours. 500 

Limitations and Future Research 501 

The current study has two major limitations. First, this study involved a relatively simple, fixed traffic 502 

scenario involving an un-signalised, single-lane, urban road. This may mitigate pedestrians’ perception of 503 

traffic risk and reduce their use of head movements for information-seeking purposes, particularly when 504 

they were required to complete a series of road-crossing tasks from a fixed point, involving similar 505 

scenarios across trials. Second, this study controlled explicit cues of the manipulated vehicles to spotlight 506 

the influence of implicit cues. However, future AVs may differ from conventional vehicles in exterior 507 

appearance, for example, with labels marking their AV identity, or by including eHMIs to display their 508 

intention. This may influence pedestrians’ road-crossing decisions or behavioural patterns, particularly 509 

when they have little prior experience with AVs.  510 

Based on the above limitations, future work should use more complex traffic scenarios, such as two-511 

way traffic, crossroads, and multiple lanes, to further investigate the effect of these on pedestrian crossing 512 

behaviour and head movements. In addition, understanding how explicit cues that distinguish AVs from 513 

conventional cars, or indeed how externally presented messages affect this behaviour should be considered. 514 

Finally, understanding if this behaviour is also observed in other pedestrian groups, such as young adults or 515 

older pedestrians will be relevant to ensure a more inclusive development of future algorithms for AVs in 516 

this context.    517 

Conclusions 518 

The main goal of the current study was to determine pedestrians’ road-crossing decisions and head 519 

movement patterns in response to vehicles with predefined yielding patterns and decelerating profiles, 520 

compared to human-driven vehicles, using a CAVE-based pedestrian simulator linked to a desktop driving 521 

simulator. Results showed that pedestrians’ head movements can be a valid indicator of their road-crossing 522 

intention, with a significant increase in head-turns during the last 2 seconds before a crossing. This 523 
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information could be beneficial for the early recognition of pedestrians’ road-crossing intention, in future 524 

AVs, following more data with a wider range of scenarios and pedestrians. The comparable road-crossing 525 

percentage and head-turning patterns of pedestrians in response to the predefined and human-driven 526 

vehicles (for both braking and non-braking conditions) before a crossing initiation was made, demonstrates 527 

the significance of existing research on pedestrians’ head movements and intention recognition for future 528 

AV-pedestrian interaction. Finally, the position of the yielding vehicle exhibited quite different head 529 

movement patterns when a crossing was made, information which can be used to infer pedestrians’ 530 

uncertainty, information gathering, and risk taking behaviour, all of which can be used for the design of 531 

more informative kinematic behaviour of future AVs interacting in such mixed traffic urban settings. 532 
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