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The occipital place area (OPA) is a scene-selective region
on the lateral surface of human occipitotemporal cortex
that spatially overlaps multiple visual field maps, as well
as portions of cortex that are not currently defined as
retinotopic. Here we combined population receptive
field modeling and responses to scenes in a
representational similarity analysis (RSA) framework to
test the prediction that the OPA’s visual field map
divisions contribute uniquely to the overall pattern of
scene selectivity within the OPA. Consistent with this
prediction, the patterns of response to a set of complex
scenes were heterogeneous between maps. To explain
this heterogeneity, we tested the explanatory power of
seven candidate models using RSA. These models
spanned different scene dimensions (Content, Expanse,
Distance), low- and high-level visual features, and
navigational affordances. None of the tested models
could account for the variation in scene response
observed between the OPA’s visual field maps. However,
the heterogeneity in scene response was correlated with
the differences in retinotopic profiles across maps.
These data highlight the need to carefully examine the
relationship between regions defined as
category-selective and the underlying retinotopy, and
they suggest that, in the case of the OPA, it may not be
appropriate to conceptualize it as a single
scene-selective region.

Introduction

Human scene processing is associated with a trio
of brain areas spanning the lateral (occipital place
area [OPA]; Dilks, Julian, Paunov, & Kanwisher, 2013;
Epstein & Baker, 2019), ventral (parahippocampal place
area [PPA]; Epstein & Kanwisher, 1998), and medial
(retrosplenial complex or medial place area; Epstein,
2008; Silson, Steel, & Baker, 2016) cortical surfaces,
respectively. Considering the OPA specifically, prior
work has begun to characterize the visual features that
drive its responses. This work highlights the OPA’s
sensitivity to low-level visual features of scenes, such
as the overall distribution of orientations, spatial
frequencies, and degree of rectilinearity (Nasr et al.,
2011, Nasr, Echavarria, & Tootell, 2014; Watson,
Hymers, Hartley, & Andrews, 2016). More recently,
voxel-wise responses in the OPA were shown to be
predictable on the basis of surface distances and
orientations within scenes (Lescroart & Gallant, 2019).
Along with clear sensitivity to low-level visual features,
the OPA also represents high-level visual features of
scenes. For example, the OPA’s scene selectivity remains
even when rectilinearity is matched between stimuli
(Bryan, Julian, & Epstein, 2016). Moreover, advanced
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multivariate pattern analysis techniques indicate the
OPA’s sensitivity to high-level properties of scenes,
such as landmark identity (Marchette, Vass, Ryan, &
Epstein, 2015), scene category (Walther, Caddigan,
Fei-Fei, & Beck, 2009), scene shape (Kravitz, Peng,
& Baker, 2011), navigational affordances (Bonner &
Epstein, 2017), and the mnemonic recall of scenes
(Bainbridge, Hall, & Baker, 2021; Baldassano, Beck, &
Fei-Fei, 2013; Steel, Billings, Silson, & Robertson, 2021;
Steel, Silson, Garcia, & Robertson, 2024).

Previous functional magnetic resonance imaging
(fMRI) research also indicates that the OPA overlaps at
least five separate visual field maps to varying degrees
(Silson, Groen, Kravitz, & Baker, 2016); visual field
maps represent visual information retinotopically
and are found throughout the human visual system.
However, most research regarding the OPA is based on
either the average response or the pattern of responses
across voxels (or surface nodes) within OPA as a whole.
As such, interpretations about the role of the OPA in
scene processing have been drawn at the largest spatial
scale (i.e., at the level of the OPA itself) rather than the
finer-grained level of the visual field maps that subdivide
it. Given such diverse recruitment of the OPA, through
sensitivity to low- and high-level scene features, a
deeper and more comprehensive characterization of
the nature of scene processing within the OPA requires
investigating the unique contributions of the OPA’s
visual field maps (Groen, Silson, & Baker, 2017).

The aim of the current study was to test the specific
role played by the OPA’s visual field maps during
scene processing. Here, we measured the responses of
the OPA’s visual field maps to 96 complex scenes. We
predicted that the different maps would represent scenes
differently, contributing uniquely to the OPA’s overall
response profile. Consistent with previous reports
(Silson, Groen, et al., 2016), the OPA overlapped visual
field maps (LO1, LO2, V3A, V3B, and V7/IPS0) to
varying degrees but also spanned a swath of cortex that
did not spatially overlap any (as yet) known visual field
map—a region we term “OPA Other” (Figure 1).

As anticipated, different patterns of responses
were observed across visual field maps. We used
representational similarity analysis (RSA) to
characterize the representational structure within these
visual field maps, by comparing the patterns of response
in eachmap against multiple candidate models spanning
different dimensions of scenes, low- and high-level
visual features, and navigational affordances. Finally, we
considered whether the representational structure was
best captured by considering the underlying retinotopic
profiles of the visual field maps themselves. Overall, we
found no consistent or clear relationship between the
pattern of responses measured from each visual field
map and the candidate models. Instead, the similarity in
response between maps was captured by the similarity
of their retinotopic profiles. These data highlight the

diversity of responses across the OPA and question
whether considering the OPA as a homogeneous
scene-selective region remains appropriate.

Methods

Participants and testing

Twenty-four participants (mean age: 23.5), seven
males, completed an fMRI experiment. Participants
included students from the University of Edinburgh and
individuals from the surrounding areas. Participants
had normal or corrected-to-normal vision and were
free from neurological or psychiatric conditions.
Written consent was obtained from all participants
in accordance with the Declaration of Helsinki and a
consent form approved by the School of Philosophy,
Psychology and Language Sciences ethics committee of
the University of Edinburgh.

MRI/fMRI imaging parameters

MRI scans were acquired using a Siemens 3T Prisma
scanner and 32-channel head coil at the University of
Edinburgh Imaging Facility RIE, Edinburgh Royal
Infirmary. Participants attended one MRI testing day
split into two 1-hour sessions with a break in between
(ranging from 15–60 minutes, depending on scanner
timetabling constraints). In Session 1, we acquired T1
and T2 weighted structural scans followed by six fMRI
runs of population receptive field mapping, lasting 6
minutes each. In Session 2, we acquired a second T1
weighted structural scan to facilitate across-session
alignment if needed. This was followed by two runs of
a scene localizer task, lasting 5 minutes each, and two
runs of an event-related scene perception task, lasting
8 minutes each.

In Session 1, we acquired two structural images:
T1 weighted (repetition time (TR) = 2.5 s, echo time
(TE) = 4.37 ms, flip angle = 7°, field of view (FOV) =

256 × 256 × 192 mm, resolution = 1 mm isotropic,
acceleration factor = 3) and T2 weighted (TR = 3.2
s, TE = 408 ms, flip angle = 9°, FOV = 256 × 240 ×

192 mm, resolution = 0.9 mm isotropic, acceleration
factor = 2). Functional scans were acquired using a
multiecho multiband echo planar imaging sequence
(TR = 2; TE = 14.6 ms, 32.84 ms, 51.08 ms; multi-band
(MB) factor = 2; acceleration factor = 2; 52/48
interleaved slices; phase encoding anterior to posterior;
transversal orientation; slice thickness = 2.7 mm; voxel
size = 2.7 × 2.7 mm; distance factor = 0%; flip angle
= 70°). To accommodate larger heads, we reduced
the number of slices from 52 to 48, which provided
greater coverage in the anterior-posterior direction.
This change was made from Participant 6 onward. As
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Figure 1. Location of the OPA relative to visual field maps and quantification of the spatial overlap between OPA and visual field map

divisions. (A) A lateral view of a partially inflated surface reconstruction of the gray matter from a representative participant. The

red-dashed box highlights the lateral occipital portion as in the enlarged inset. The borders of known visual field maps are outlined in

white. The group average OPA is overlaid in green. Light green denotes the portion of OPA that spatially overlaps visual field maps,

with dark green denoting “OPA Other,” which does not overlap any known visual field maps. (B) The group average (plus/minus

standard deviation) percentages of spatial overlap between OPA and the visual field map divisions are shown as sections of a pie

chart. Note that these percentages were averaged across hemispheres and participants for display. Consistent with prior work (Silson,

Groen, et al., 2016), the OPA had the largest overlap with visual field maps V3B (∼21%), LO2 (∼9%), and V7 (∼10%) but also had a

large overlap (∼52%) with a cortical expanse outside of any known retinotopic maps (OPA Other).

our analysis is in surface node space and whole-brain
coverage was achieved for Participants 1 to 5, who had
smaller head sizes, we do not expect this to influence
our results.

Stimuli and tasks

Population receptive field modeling

During population receptive field (pRF) mapping
sessions, a bar aperture traversed gradually through
the visual field while revealing randomly selected
scene fragments from 90 possible scenes. During each
36-second sweep, the aperture took 18 evenly spaced
steps every 2 seconds (1 TR) to traverse the entire
screen. Across the 18 aperture positions, all 90 possible
scene images were displayed once. A total of eight
sweeps were made during each run (four orientations,
two directions). Specifically, the bar aperture progressed

in the following order for all runs: left to right, bottom
right to top left, top to bottom, bottom left to top
right, right to left, top left to bottom right, bottom
to top, and top right to bottom left. The bar stimuli
covered a circular aperture (diameter = 12° of visual
angle). Participants performed a color detection task
at fixation, indicating via button press when the white
fixation dot changed to red. Color fixation changes
occurred semi-randomly, with approximately two color
changes per sweep (Silson, Chan, Reynolds, Kravitz, &
Baker, 2015).

Scene-selective localizer

During each run, color images of scenes and faces
were presented at fixation (10 × 10 degrees of visual
angle (dva)) in 16-second blocks (20 images per
block [300 ms per image, 500 ms blank]). Participants
responded via anMRI-compatible button box whenever
the same image appeared sequentially (twice per run).
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Scene perception

During two event-related scene perception scans,
participants were presented with 96 complex scenes
(12 × 9 degrees of visual angle, 500 ms each) in
a randomized order, as in Kravitz et al. (2011).
These scenes can be categorized based on their
apparent Distance from the viewer (near/far), Expanse
(open/closed), and Content (natural/humanmade).
Interstimulus intervals (3–7 seconds) were chosen
to optimize the ability of the later deconvolution to
extract the responses to each scene. Participants fixated
centrally and performed an orthogonal fixation color
detection task, pressing a button (via MRI-compatible
button box) every time the green fixation cross turned
red (nine times per scan, set randomly).

MRI analysis

Preprocessing

MRI scans were processed using AFNI (Cox, 1996),
Freesurfer, and SUMA (Saad & Reynolds, 2012).
Dummy scans were removed from the start of each
run (3dTcat). Slice time correction was then performed
(3dTshift), aligning each slice with a time offset of
zero. The skull was removed from the first Echo 1
scan (TE = 14.6 ms) and used to create a brain mask
(3dSkullStrip and 3dAutomask). The first Echo 2
scan (TE = 32.84 ms) was used as a base for motion
correction and registration with the T1 structural scan
(3dbucket). Motion parameters were estimated for
the Echo 2 scans (3dVolreg) and applied to the other
echoes (3dAllineate). After completing the standard
preprocessing, the data were also processed using
tedana (Evans, Kundu, Horovitz, & Bandettini, 2015;
Kundu, Inati, Evans, Luh, & Bandettini, 2012) to
denoise the multiecho scans (using default options).
The tedana optimally combined and denoised output
was then scaled so that each voxel had a mean value of
100 (3dTstat and 3dcalc). For the pRF data, an average
of the runs was then taken to leave a single time series
for further analysis.

The Session 1 structural scans were aligned to the
functional data collected in Session 1 (align_epi_anat)
and manually checked for accuracy. Functional data
collected in Session 2 were aligned to the Session 1
structural data to ensure that all functional data had
the same alignment. Freesurfer reconstructions were
estimated using both the T1 and T2 scans (recon-all)
from Session 1 and the output used to create surfaces
readable in SUMA (SUMA_Make_Spec_FS). The
SUMA structural was then aligned to the Session
1 experimental structural to ensure alignment with
the functional images (SUMA_AlignToExperiment).
Surface based analysis was conducted using the SUMA
standard cortical surface (std.141).

pRF modeling and visual field map delineation

Population receptive fields were estimated using
AFNI’s nonlinear fitting algorithm (3dNLfim) and
the GAM basis function. Full details are provided
elsewhere (Silson et al., 2015). The outputs were
used to delineate subject-specific visual field maps,
which were drawn manually on the SUMA surface
using the polar angle and eccentricity parameters
(V1, V2d, V2v, V3d, V3v, LO1, LO2, V3A, V3B,
and V7/IPS0). These region of interests (ROIs) were
then converted into 1D files (ROI2dataset) and the
node indices were used to select only those nodes
within each visual field map that overlapped with
that participant’s OPA. Overlapping nodes between
neighboring retinotopic maps were removed before
analysis such that all included nodes were unique to
each visual field map. Almost all visual field maps
were identifiable in all participants (see Supplementary
Material). A minimum overlap with the OPA of six or
more nodes was required for each visual field map to be
included in our analyses. Due to the individual nature
of the visual field map delineations, OPA definitions,
and our inclusion criteria noted above, not all visual
field maps overlapped OPA in all participants: left
hemisphere (LO1 = 11/24, LO2 = 16/24, V3A = 13/24,
V3B = 20/24, V7 = 16/24, OPA Other = 24/24) and
right hemisphere (LO1 = 13/24, LO2 = 15/24, V3A
= 11/24, V3B = 17/24, V7 = 14/24, OPA Other =

24/24). The number of nodes included in each ROI
across participants can be found in the supplementary
material as well as a summary of the excluded ROIs
and the reason for the exclusion (Supplementary
Table S3). Due to the contralateral nature of the visual
field representations within these maps, we consider
visual field maps within each hemisphere separately
throughout.

Visual field coverage

The visual field coverage of an ROI includes the
locations within a visual field that evoke the greatest
response across voxels. We calculated coverage as the
best Gaussian population receptive field model for
each suprathreshold node within an ROI. We used a
max operator that reflects the maximum value from
all pRFs within the ROI for each point in the visual
field (Winawer, Horiguchi, Sayres, Amano, & Wandell,
2010). The visual field coverage plots represent the
group average sensitivity of each ROI to different
positions in the visual field. From these data, we
quantified two types of visual field biases using the
same approach as prior work (Silson, Groen, et al.,
2016): contralateral bias (mean contralateral coverage
– mean ipsilateral coverage) and elevation bias (mean
contralateral upper visual field – mean contralateral
lower visual field).
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Scene-selective regions of interest

To localize the OPA, a general linear model was
estimated on the scene face localizer scans using a
block design with a 16-second GAM basis function
(3dDeconvolve, GAM: 8.6, .547,16). The output of
the model was then projected onto the cortical surface
(3dVol2Surf) and smoothed with a full-width-half-
maximum (FWHM) of 2 mm (SurfSmooth). The
OPA ROIs were then drawn manually for each subject
on their cortical surface (SUMA draw ROI) after
thresholding the contrast of scene versus face stimuli at
t > 3.5.

Scene perception analysis

The activity associated with each stimulus in the
scene perception scans was deconvolved using a GAM
basis function aligned to the onset of each stimulus.
The two runs were modeled together, and each stimulus
regressor included two onsets. The data within each
participant-specific ROI (OPA from the scene/face
localizer, LO1, LO2, V3A, V3B, and V7/IPS0 from the
population receptive field mapping) were then extracted
for analysis in MATLAB (ConvertDset) using an RSA
framework (Nili et al., 2014).

Representational dissimilarity analysis

Representational dissimilarity analysis was calculated
within each visual ROI on the lateral surface in the
left and right hemispheres separately (LO1, LO2,
V3A, V3B, and V7), including only the nodes that
fell within the larger OPA region. A further ROI was
created (OPA Other) using all of the OPA nodes that
did not overlap with the visual ROIs. As the ROIs were
drawn on a single-subject basis, the number of nodes
varied, with some ROIs failing to overlap the OPA
in all subjects. For each ROI that met our inclusion
criteria, the t-values for each stimulus at each node
were taken from the event-related general linear model
(GLM) output. The pairwise dissimilarities between
stimuli t-values were then calculated in MATLAB (1
– corr, Pearson, v.2021a MathWorks), organized by
their stimulus category, creating a 96 × 96 matrix per
ROI. The stimuli were categorized as in Kravitz et al.
(2011) based on their Distance (near/far), Expanse
(open/closed), and Content (natural/humanmade).
To produce group-level representational dissimilarity
matrices (RDMs) representing the differences across
ROIs, we first computed the pairwise dissimilarity
(1 – Spearman’s rho) across the 96 × 96 matrices
for each ROI in each participant (producing a 5 × 5
RDM), before averaging the dissimilarity matrices
across participants. The dissimilarity values were
Fisher transformed prior to any secondary analysis
(atanh, MATLAB). In the event that a given ROI was
not included for a given participant, all correlations

involving that ROI were not a number (NaNs) and
did not contribute to the final dissimilarity values. For
example, if LO1 in a given participant did not meet
our inclusion criteria, then all cells in the 5 × 5 RDM
involving LO1 would be NaN.

Candidate model selection and construction

First, we constructed binary model RDMs to
represent the idealized representational structure of
responses if they were organized by the dimensions of
Distance, Expanse, or Content. This was based on prior
work using these same stimuli and models. After these
models failed to account fully for the patterns in our
data, we decided to consider alternative models. Four
additional RDMs were created using models designed
to capture low-level visual features (GIST and lateral
geniculate nucleus (LGN) models; Groen, Ghebreab,
Prins, Lamme, & Scholte, 2013; Oliva & Torralba,
2006), high-level visual features (convolutional neural
network [CNN] model), and navigational affordance
features (Bonner & Epstein, 2017) of the stimuli. To
accurately reflect the chronology of this work, we keep
the analyses for the original and alternative models
separate throughout.

GIST model. Image statistics were computed
for each image using the gist descriptor (http://
people.csail.mit.edu/torralba/code/spatialenvelope/).
For each scene, a vector composed of 512 values
was created by passing each scene through a series
of Gabor filters across four spatial frequencies and
eight orientations. The resulting vector characterizes
the image in terms of the spatial frequencies and
orientations at different spatial locations within the
image. We computed the pairwise Euclidean distance
between vectors to produce an RDM across stimuli.

LGN model. Image statistics were computed for each
stimulus by taking the output of the model described
elsewhere (Groen et al., 2013). In brief, for each image,
the model returns two main parameter estimates:
spatial coherence (SC), which describes the shape of
the contrast distribution, and contrast energy (CE),
which describes the scale of the contrast distribution.
The RDM was produced by calculating the pairwise
Euclidean distance across both of these parameters
(SC, CE) for each stimulus.

CNN model. Stimuli were passed through AlexNet,
and the unit activations from the final fully connected
layer were extracted prior to computing the pairwise
dissimilarity (1 – Pearson’s correlation) in unit
activations for each scene (Krizhevsky, Sutskever, &
Hinton, 2017).

Navigational affordances model. Following the
procedures outlined in prior work (Bonner & Epstein,
2017), we first recorded navigational path trajectories
for all 96 scenes from two participants. Participants
were instructed to only draw realistic navigable
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paths from the perspective of the scene. These path
trajectories were summed across participants before
being passed through 180 one-degree bins to produce
an angle histogram per scene. To produce the RDM,
we computed the pairwise squared Euclidean distance
across the navigability vectors.

Retinotopic filtering analysis. To quantify the
influence of retinotopy on the pattern of response in
each ROI, we performed the following analysis. First,
we filtered each of the 96 images by the group-averaged
visual field coverage plots for each visual field map.
Then we computed the GIST descriptors for each of
these images and calculating their pairwise distances.
This analysis produced a 96 × 96 RDM for each visual
field map. Next, we compared the correlation between
each ROI scene response RDM and GIST RDMs
computed across either (1) the entire image as default
and (2) the retinotopically filtered images.

Statistical analyses

Statistical analyses were conducted using the R
Studio package (v1.3) and custom MATLAB code
(v.2021a; MathWorks). The dissimilarity values were
Fisher transformed prior to secondary analysis (atanh).
We used linear mixed models to test for ROI and model
interactions (lme4 v27.1; lmerTest v3.1). This was used
instead of repeated-measures analyses of variance,
which cannot handle missing data points.

Results

Quantifying the spatial overlap between the
OPA and visual field maps

First, we calculated the proportion of overlap
between the OPA and its underlying visual field maps
in each participant and hemisphere separately, before
averaging across hemispheres. Largely consistent with
prior reports (Silson, Groen, et al., 2016), we found
that ∼48% of the OPA overlapped five separate visual
field maps to varying degrees (Figure 1): V3B (∼21%),
V7 (∼10%), and LO2 (∼9%) had the largest overlap,
whereas LO1 (∼6%) and V3A (∼3%) had little overlap.
The OPA also had a large overlap (∼52%) with no
known visual field maps, despite displaying a consistent
contralateral visual field coverage (see below).

Visual field coverage

Next, we computed the visual field coverage for the
OPA, OPA Other, and each of the OPA’s visual field
map divisions using the outputs from the pRFmodeling
(Figure 2). The visual field coverage plots represent the
group average sensitivity of each region to different

positions in the visual field. Consistent with prior work
(Silson, Groen, et al., 2016; Wandell, Dumoulin, &
Brewer, 2007), all ROIs showed a clear contralateral
bias. LO1 and LO2 largely represented the lower
visual field, whereas V3A and V3B had full hemifield
representations. V7 here represented the upper visual
field. Both OPA and OPA Other showed a full hemifield
representation, albeit biased to the lower visual field
(Silson, Groen, et al., 2016). For consistency with
prior work (Silson, Groen, et al., 2016), we computed
both the contralateral bias (contralateral – ipsilateral)
and elevation bias (contralateral upper visual field –
contralateral lower visual field) and tested these biases
against zero (i.e., no bias) using two-tailed one-way
t-tests. All visual field maps, as well as OPA and OPA
Other, had a significant contralateral bias in both
hemispheres (p < 0.05). In terms of elevation biases,
both LO1 and LO2 were significantly biased toward
the lower visual field in both hemispheres, whereas V7
was significantly biased toward the upper visual field.
V3A and V3B in both hemispheres did not show a
significant bias for either the upper or lower visual field
as was anticipated. Despite being numerically larger
for the lower visual field, the elevation biases were
only significant for OPA and OPA Other in the right
hemisphere. This pattern of a stronger lower visual field
bias in the right OPA than the left OPA was also found
in prior work (see Silson, Groen, et al., 2016; Figure 5).
The lower visual field bias in OPA (as a whole) likely
reflects its overlap with LO1 and LO2, which showed
largely lower quadrant representations in these data.

Heterogeneity of scene responses across visual
field maps

Next, we examined the heterogeneity in the pattern
of responses between these visual field maps, plus OPA
Other for completeness. We predicted that the visual
field map divisions of the OPA would exhibit different
patterns of response. To this end, we first extracted the
pattern of responses to each of the 96 stimuli within
ROI (visual field maps + OPA Other; Supplementary
Figure S1) before comparing these patterns across
ROIs (Figure 3). The patterns of responses across the
divisions of the OPA were not homogeneous but rather
differentiated into what appeared to be three separate
clusters: LO1 and LO2, V3A and V3B, and V7. LO1
and LO2 appeared similar to each other but distinct
from V3A/V3B and V7, whereas V3A was most similar
to V3B only. Patterns of response in V3B were relatively
similar to all maps but most similar to V3A, and V7
appeared distinct from all except V3B. Interestingly,
the different visual field maps showed a heterogeneous
pattern of similarity with OPA Other. Specifically, V3B,
V7, and LO2 were the most similar with V3A and LO1
less so. The finding that the patterns of response were
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Figure 2. Visual field coverage plots. The heatmaps in the left two panels represent the group average sensitivity of each ROI across

positions in the visual field, separately for the left and right hemispheres of the brain. The coverage values were normalized between

0 and 1 to create the coverage plots. The bar plots in the right two panels show the average coverage in each ROI after calculating left

minus right visual field (LVF – RVF) and upper minus lower contralateral visual field (UVF – LVF). The values in the bar plots were not

normalized. For each ROI, the green bars plot the data in the left hemisphere of the brain, and the purple bars plot the right

hemisphere. Each data point represents a single participant. Asterisks indicate p< 0.05 in two-tailed one-sample t-tests. For the

visual field maps (LO1, LO2, V3A, V3B, and V7), we used only the nodes that fell within the larger OPA ROI. For OPA Other, we included

the other nodes within the OPA that did not fall into one of the visual field maps. OPA, by definition, includes all of the preceding ROIs.
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Figure 3. Representational dissimilarity matrices between visual field map divisions of the occipital place area, plus OPA Other. Cells

represent the group average pairwise dissimilarity (1 – Pearson’s r) in the pattern of response between visual field maps in the left

and right hemispheres separately. Several groups appear to form; LO1 and LO2 are similar to one another but distinct from V3A, V3B,

and V7. V3A is most similar to V3B, whereas V3B is relatively similar to all other ROIs. V7 is distinct from all but V3B. The purple line

separates retinotopic subdivisions of OPA from OPA Other.

not uniform across these ROI divisions of OPA suggests
that each cluster (if not each map) may contribute
uniquely to the OPA’s computations during scene
processing.

Testing scene dimension models

Having established representational differences
between the ROI divisions of OPA, we next sought
to explain the organizational structure of these
representations. Prior work using these same stimuli
reported that scene representations in PPA and, to a
lesser extent, the OPA were structured by Expanse (i.e.,
open/closed) (Kravitz et al., 2011). Therefore, we first
asked whether the differences between visual field maps
could be explained by different responses across the
three scene dimensions, Content (humanmade/natural),
Expanse (open/closed), and Distance (near/far), using
RSA (seeMethods). To test the correspondence between
the data and the candidate models, we correlated
each participant’s fMRI RDM with candidate RDMs
representing the three scene dimensions above. This
was calculated separately in each hemisphere for each
visual field map division, as well as in OPA Other. To
quantify the relationship between maps, these values
were submitted to a linear mixed model (LMM) with
ROI (LO1, LO2, V3A, V3B, V7, and OPA Other) and
scene dimension (Content, Expanse, and Distance) as
factors.

If the heterogeneous pattern of responses reported
above could be explained by different responses across
these scene dimensions in each ROI, we expected to find
a significant ROI by model interaction. However, this
interaction was not statistically significant (F(10, 264) =

0.85, p = 0.57) in the left hemisphere. Instead, we found
only a significant main effect of scene dimension, F(2,
264) = 5.48, p = 0.004 (but not ROI: F(5, 276) = 0.95,
p = 0.44), driven primarily by higher correlations with
Expanse on average (Figure 4). Pairwise comparisons
(Bonferroni corrected) indicated significant differences
for Content versus Distance: t(260) = 2.69, p = 0.02,
and Expanse versus Distance: t(260) = 3.01, p = 0.008,
but not Content versus Expanse: t(260) = 0.32, p =

1.00. The pattern within each ROI in the left hemisphere
was mixed, and only LO1 correlated positively with
the Distance RDM model. The close correspondence
between LO1 and LO2 in their overall response patterns
reported above (see Figure 3) is not reflected here,
suggesting that the representational structure within
these visual field maps is not organized along either
of these scene dimensions. In the right hemisphere,
the ROI by model interaction was also not significant,
F(10, 244) = 0.99, p = 0.44. The main effect of scene
dimension was significant (F(2, 244) = 5.80, p = 0.003),
driven primarily by higher correlations with Content,
on average (Figure 4), but not the main effect of ROI
(F(5, 259) = 1.02, p = 0.40). Pairwise comparisons
(Bonferroni corrected) indicated significant differences
for Content versus Distance: t(244) = 3.27, p = 0.003,
and Content versus Expanse: t(244) = 2.45, p = 0.04,
but not Expanse versus Distance: t(244) = 0.81, p =

1.00.
Overall, none of the three scene dimensions could

account for the heterogeneous pattern of responses
across OPA’s divisions (visual field maps + OPAOther).
Due to our ROI inclusion criteria (see Methods),
different numbers of ROIs contributed to the group
average data (e.g., LH LO1 = 11, LH LO2 = 16).
We therefore tested whether these missing data could
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Figure 4. Representational similarity analysis for the OPA’s ROI divisions and models for Content, Expanse, and Distance in both

hemispheres. Bars represent the average Spearman’s rho between the fMRI RDMs for each visual field map (LO1, LO2, V3A, V3B, V7,

and OPA Other) and three candidate model RDMs coding for Content (humanmade/natural), Expanse (open/closed), and Distance

(near/far) in the left and right hemispheres separately. Error bars represent the standard error of the mean (SEM), and each datapoint

represents a single subject.

account for the above pattern of results by rerunning
our analyses but only including participants with full
sets of ROIs in each hemisphere (LH, n = 6; RH, n
= 8). Crucially, the pattern of scene response between
ROIs remained heterogeneous even when restricted
to complete data sets (see top row Supplementary
Figure S2). This pattern of heterogeneity was not
captured by our LMM: Importantly, the ROI × Scene
dimension interaction remained nonsignificant (p >

0.05), with only the main effect of scene dimension
reaching significance (p < 0.05) in both hemispheres
(see Supplementary Table S4 for a full statistical
breakdown).

OPA as a whole

For completeness, we also assessed the extent to
which responses in OPA as a whole were organized
along the same scene dimensions by submitting the

RDM correlations to a linear mixed model with scene
dimension as the only factor. This was calculated for
each hemisphere separately to mirror the approach
taken above. In the left hemisphere, there was a
significant main effect of scene dimension (F(2, 69)
= 6.91, p = 0.001), driven by larger correlations with
Content and Expanse on average: Pairwise comparisons
(Bonferroni corrected) revealed a significant different
for Content versus Distance (t(46) = 3.67, p = 0.001),
and Expanse versus Distance approached significance
(t(46) = 2.32, p = 0.07) with no difference for Content
versus Expanse (t(46) = 1.34, p = 0.55). A largely
similar pattern was observed in the right hemisphere,
with a significant main effect of scene dimension (F(2,
69) = 5.82, p = 0.004), which was driven by a larger
correlation with Content on average: Both Content
versus Distance (t(46) = 3.13, p = 0.009) and Content
versus Expanse (t(46) = 2.74, p = 0.02) were significant
(p > 0.05, for Expanse versus Distance). In contrast
to the ROI subdivisions of OPA, a model coding for
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Figure 5. RDMs for four alternative models and the model–model dissimilarities. Left panel: RDM models for the 96 scene images

using GIST, LGN, CNN, and NA. Right panel: The pairwise 1 – Spearman’s rho between these alternative model RDMs. The low-level

image statistic models GIST and LGN were most similar to one another, as expected, but distinct from both the CNN and NA models.

both Content (i.e., humanmade/natural) and Expanse
(i.e., open/closed) provides potential organizing factors
for the responses in left OPA, whereas Content alone
appears to account for the responses in right OPA.

Prior work found that responses in the OPAwere best
explained by a model of Expanse, with no effects for
Content when using a bilateral OPA ROI. Interestingly,
in our data, the correlation with the Content model
remains the largest even when applied to a bilateral
OPA ROI (see Discussion and Supplementary Table S5
for details).

Alternative models

Importantly, the analyses above considered only
three candidate models based upon prior work using
these same stimuli (Kravitz et al., 2011). It was therefore
possible that different candidate models might reveal
a consistent representational structure across the ROI
divisions of OPA. We explored this possibility by
calculating the correspondence between the fMRI
RDMs in ROI and four further candidate models
(see Methods and Figure 5): two that model low-level
image statistics, GIST descriptor (Oliva & Torralba,
2006), LGN statistics (Groen et al., 2013), the final
layer of a convolutional neural network (AlexNet;

Krizhevsky, Sutskever, & Hinton, 2012), and a model
of navigational affordances (Bonner & Epstein, 2017).

Consistent with the approach taken above, we first
evaluated the correlation between these alternative
models and the ROI divisions of OPA in each
hemisphere separately before considering OPA as a
whole. Similar to our previous analyses, the pattern
across the ROI divisions of OPA was varied (Figure 6).
To quantify the relationship between maps, these values
were submitted to a linear mixed model with ROI
(LO1, LO2, V3A, V3B, V7, and OPA Other) and model
(GIST, LGN, CNN, and navigational affordances [NA])
as factors. In the left hemisphere, we found only a
significant main effect of model (F(3, 356) = 12.33, p
= 1.07-7), driven primarily by higher correlations with
the LGN and GIST models on average (ROI by model
interaction F(15, 356) = 0.91, p = 0.54, main effect of
ROI F(5, 370) = 1.37, p = 0.23). Pairwise comparisons
(Bonferroni corrected) indicated several significant
comparisons: LGN versus CNN, t(354) = 4.12, p =

0.0003; LGN versus NA, t(354) = 5.4, p < 0.0001;
GIST versus CNN, t(354) = 2.77, p = 0.03; and GIST
versus NA, t(354) = 4.06, p = 0.0004 (p > 0.05 in all
other cases). We also found a significant main effect of
model in the right hemisphere (F(3, 322) = 6.72, p =

0.0002), but again no ROI by model interaction (F(15,
322) = 0.50, p = 0.93) or main effect of ROI (F(5, 348)
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Figure 6. Representational similarity analysis for the OPA’s ROI divisions and four alternative models in both hemispheres. Bars

represent the average Spearman’s rho between the fMRI RDMs for each visual field map and four candidate model RDMs coding for

low-level visual properties (GIST and LGN), high-level visual properties (CNN), and NA. Error bars represent the standard error of the

mean (SEM), and each datapoint represents a single subject.

= 1.98, p = 0.08). On average, correlations with the
LGN model were highest, followed by GIST: LGN
versus CNN, t(332) = 3.09, p = 0.01; LGN versus NA,
t(332) = 4.05, p = 0.0004; GIST versus NA, t(332) =

2.88, p = 0.02 (p > 0.05 in all other cases, Bonferroni
corrected). As above, we considered the impact of
different numbers of ROIs by rerunning our LMM
with only those participants with complete ROIs.
Importantly, the ROI × model interaction remained
nonsignificant in both hemispheres (p > 0.05), with
the main effect of model reaching significance in both
hemispheres and the main effect of ROI in the right
hemisphere (see Supplementary Table S4 for a full
statistical breakdown).

OPA as a whole

Consistent with our approach above, we also
considered how these alternative models could account

for the patterns of response measured in OPA. In both
hemispheres, correlations were highest for the LGN
model, followed by the GIST and then CNN models.
In contrast, there was a negative correlation with the
navigational affordance model in both hemispheres. To
quantify these patterns, the fMRI–model correlations
for OPA were submitted to a linear mixed model with
model as the only factor. In the left hemisphere, the
effect of model was significant (F(3, 69) = 4.34, p =

0.007): Two significant pairwise comparisons were
observed (LGN versus CNN, t(69) = 2.76, p = 0.04;
LGN versus NA, t(69) = 2.87, p = 0.03; p > 0.05 in all
other cases, Bonferroni corrected). A similar pattern
was observed in the right hemisphere with a significant
main effect of model (F(3, 69) = 3.10, p = 0.03).
Only the LGN versus NA comparison was significant
t(69) = 2.72, p = 0.04 (p > 0.05 in all other cases). These
data suggest the responses in OPA are best captured by
models that represent low-level visual features.
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Retinotopic similarity between maps accounts
for similarity in scene response

At the spatial scale of the OPA’s ROI divisions,
we failed to observe the anticipated ROI by model
interactions, which would have been consistent with
the heterogeneous pattern of responses observed
between ROIs (Figure 3). Instead, we found only main
effects of model, both when considering different scene
dimensions and alternative models that capture low-
and high-level visual features. How can we reconcile
this? One feature of the visual map divisions of
OPA, and even OPA Other, is that their visual field
representations are not uniform. Indeed, whereas LO1
and LO2 predominantly represent the contralateral
lower visual field, V3A and V3B exhibit largely complete
hemifield representations (as does OPA Other), with
V7, in our data, oversampling the upper visual field
(Figure 2).

Given this, we considered as a final analysis whether
the ROI–ROI patterns of response to scenes could be
explained simply by the different retinotopic profiles
of these ROIs. First, we computed the pairwise
dissimilarity in visual field coverage (1 – Pearson’s r
of the visual field coverage plots) between all ROIs
in each participant before averaging these correlation
coefficients across participants to match the structure
of our scene response RDMs (Figure 3). Next, we
computed the correlation (Spearman’s rho) between
these scene response RDMs (Figure 7A) and retinotopy
RDMs (Figure 7B) in each hemisphere. Here, the
average pattern of similarity in visual field coverage
between ROIs was significantly correlated with the
pattern of similarity in scene response between those
same ROIs in the left hemisphere (LH: rho = 0.51, p
= 0.05; RH: rho = 0.45, p = 0.09; Figure 7C). These
data suggest that the structure of responses within
the ROI subdivisions of the OPA may be driven by
the visual features present at locations in the stimulus
represented by those ROIs. That is, the more similar
the visual field coverage of two ROI subdivisions
of OPA, the more similar the structure of their
scene responses and vice versa. Consistent with our
approach above, we considered the impact of different
numbers of ROIs on this pattern by recomputing the
Scene RDM–Coverage RDM correlations with only
those participants with complete ROIs. Importantly,
the same positive correlations were observed, with
significant correlations now in both hemispheres (see
Supplementary Figure S2).

The correlation between similarity in visual field
coverage across ROIs and similarity in scene responses
indicates a strong influence of retinotopy in driving the
response to scenes. To test this interpretation further,
we considered whether differences in the visual features
at specific retinotopic locations could account for the
differences between ROIs. As an indicative example,

we focused on LO1 and V7 in the left hemisphere, as
these two visual field maps were the most dissimilar on
average (Figure 2). First, we calculated the absolute
difference between the two group average 96 × 96
RDMs to identify pairs of scenes that differentially
drove these visual field maps (see Figure 8, top left
panel). This analysis revealed that Scenes 85 and 96
produced the largest absolute difference between LO1
and V7 (dissimilarity difference = 0.52). Visualizing
these scenes as a whole suggests that this may be driven
by different types of visual information in the upper
and lower visual fields, respectively (see Figure 8, top
row of right panel). For example, both scenes are
dominated by relatively high spatial frequencies at the
same relative locations in the lower visual field. In
contrast, although Scene 85 has high spatial frequency
information throughout the upper right quadrant, that
same location is dominated by low spatial frequencies
in Scene 96.

Importantly, LO1 and V7 represent very different
portions of the visual field. Computing the difference
in normalized coverage demonstrates that whereas left
hemisphere LO1 represents the lower right quadrant
of the visual field, left hemisphere V7 represents the
upper right quadrant (see Figure 8, bottom left panel).
To quantify whether such differential visual field
coverage could account for the difference in correlation
between LO1 and V7, we filtered each scene by the
group-averaged visual field coverage before computing
the GIST descriptors from these filtered images (see
Figure 8, right panel). As anticipated, the Euclidean
distance in GIST descriptors between LO1 filtered
images was almost four times lower than that for V7
filtered images (LO1 D = 0.06, V7 D = 0.22). This
indicative example suggests that the different patterns
of scene response between ROIs likely reflect the
ensemble of visual features at locations represented by
that ROI.

To take this one step further, we implemented the
retinotopic filtering analysis (see Methods) to all 96
scenes and all ROIs. We filtered each of the 96 images
by the group-averaged visual field coverage plots for
each ROI before computing the GIST descriptors for
each of these images and calculating their pairwise
distances. This analysis produced a 96 × 96 RDM
for ROI. Next, we compared the correlation between
each ROI’s scene response RDM and GIST RDMs
computed across either (1) the entire image (as
reported in Figure 6) and (2) the retinotopically filtered
images.

The retinotopically filtered GIST RDMs numerically
outperformed the whole GIST RDMs in all ROIs in the
left hemisphere and were very similar to the whole GIST
RDMs in the right hemisphere (Figure 9). Indeed, a
series of paired signed-rank tests revealed only a single
significant difference (LH V3A Retino > V3A GIST, p
= 0.01; p > 0.05 in all other cases). It is crucial to note
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Figure 7. The relationship between scene responses and visual field coverage across ROI divisions of the occipital place area. Top

panel: The group average dissimilarity in scene response across visual field maps. Middle panel: The group average dissimilarity in

visual field coverage across visual field maps. Bottom panel: The correlation between the lower triangles of the scene dissimilarity

and coverage dissimilarity matrices, separately for the left and right hemispheres. OPAo = OPA Other.

that the Retino GIST RDMs were not significantly
worse than the full GIST in any ROI despite being
computed using only ∼24% of the total available visual
information within the scenes (the most retinotopically
relevant 24%).

Taken together, these analyses suggest that
the similarity in retinotopy between the OPA’s
ROI divisions is predictive of the similar-
ity in the pattern of responses to different
scenes.
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Figure 8. Correlation differences, visual field coverage differences, and retinotopically filtered GIST for LO1 versus V7. Top left: Matrix

represents the absolute difference in pairwise correlation between LO1 and V7 in the left hemisphere. The black arrow at cell (x = 96,

y = 85) shows the highest absolute difference in dissimilarity between LO1 and V7 (LO1 = 0.04, V7 = 0.92, Difference = 0.52).

Bottom left: Matrix represents the mean differential visual field coverage for LO1 versus V7 in the left hemisphere. LO1 exhibits a

stronger representation of the lower right quadrant of space (LO1 > V7 = green) with V7 exhibiting a stronger representation of the

upper right quadrant of space (V7 > LO1 = pink). Top right: Scenes 85 and 96 from the stimuli presented to all participants. Bottom

right: Representations of Scene 85 and Scene 96 after filtering through the group average visual field coverage for V7 (top row) and

LO1 (bottom row). Black arrows represent the GIST distance (Euclidean) between pairs of filtered scenes. The smallest GIST distance

(i.e., most similar) was for LO1 filtered scenes—almost four times smaller than the V7 GIST distance.

Discussion

Here we tested the specific role played by the OPA’s
ROI divisions (visual field maps plus OPA Other)
during scene processing using RSA. We compared
fMRI responses with models spanning different
scene dimensions, low- and high-level visual features,
navigational affordances, and retinotopic profiles. As
anticipated, we observed a heterogeneous pattern of

responses between the OPA’s ROI divisions, consistent
with the notion that they contribute uniquely to the
OPA’s overall scene response.

Retinotopic similarity between visual field
maps predicts similarity in patterns of response

Initially, we tested the heterogeneity in the processing
of scenes between the ROI divisions of OPA. We
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Figure 9. GIST versus retinotopically filtered GIST. Bars represent the mean correlation between each ROI’s scene RDM and two GIST

models—one computed across the entire image (GIST: green) and one computed across the image after filtering it by that ROI’s visual

field coverage (Retino: purple). In both hemispheres, correlations were similar across both models but were numerically higher for

the Retino GIST in the LH. Error bars represent the standard error of the mean (SEM) and each datapoint represents a single subject.

Asterisks indicate p< 0.05 in paired-sample t-tests (ns = not significant).

computed the pairwise dissimilarity in responses
to all scene stimuli in each ROI before correlating
those patterns across maps. Consistent with our
prediction, the patterns of responses between ROIs
were not homogeneous but rather differentiated into
what appeared to be three separate clusters within
the visual field maps: LO1 and LO2, V3A and V3B,
and V7. The clustering of visual field maps and the
heterogeneity of responses between maps suggests that
each map (or indeed cluster) is likely sensitive to a
different feature of scenes. In addition, the different
visual field maps showed a heterogeneous pattern of
similarity with OPA Other. Specifically, V3B, V7, and
LO2 were the most similar, whereas V3A and LO1
were less similar. This pattern of similarity with OPA
Other likely reflects that fact that OPA Other has a
representation of both the upper visual field (like
V7) and the lower visual field (like LO2). The finding
that LO1 and V3A were less like OPA Other, despite
sharing visual field representations (lower visual field in

the case of LO1), might reflect differences in feature
tuning.

A critical feature of the OPA’s ROI divisions is that
their retinotopic profile (as quantified by their visual
field coverage) is not uniform. For instance, LO1 and
LO2 predominately represent the contralateral lower
visual field, whereas V3A and V3B have full hemifield
representations, and V7 overrepresents the contralateral
upper visual field (in our data, see Figure 7). In line
with previous suggestions (Silson, Groen, et al., 2016),
we tested the prediction that the heterogeneous pattern
of scene responses between ROIs could be accounted
for by the differences in their retinotopic profiles.
Indeed, the similarity in scene responses between
maps was captured by the similarity in retinotopic
profile between maps (at least in the left hemisphere).
This was true even when the analysis was restricted
to only those participants with complete sets of ROIs
(see Supplementary Figure S2). There are (at least)
two possible explanations for this pattern: On the one
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hand, these data could be explained by retinotopy
alone. That is, it is possible that these results simply
reflect the same visual feature tuning preferences
across ROIs but different retinotopic tuning. On the
other hand, these data could reflect different visual
feature tuning preferences between ROIs that relate to
their different retinotopic profiles. We interpret our
results as suggesting that ROIs likely undertake quite
different visual computations that relate to the types
of visual features found typically at those locations
within scenes. For example, V3A and V3B contain a
representation of the upper visual field not shared by
LO1 and LO2 (Figure 2). It is likely, therefore, that
V3A and V3B are more sensitive to visual features
(both low and high level) that typically occur at those
visual field locations. By that logic, the shared lower
visual field representation among LO1, LO2, V3A,
and V3B may suggest that these maps are similarly
sensitive to visual information in the lower visual field.
However, there is evidence to suggest that even ROIs
with almost identical retinotopic profiles can undertake
different visual computations (or use that visual
information differently). For instance, LO1 and LO2
are known to be involved in object and shape processing
(Larsson & Heeger, 2006; Silson et al., 2013) but show a
transition in their dominant representation as measured
through multivariate fMRI responses (Vernon, Gouws,
Lawrence, Wade, &Morland, 2016). Similarly, V3A and
V3B have very similar retinotopic profiles, but whereas
V3A is highly sensitive to visual motion (McKeefry,
Burton, Vakrou, Barrett, & Morland, 2008; Strong,
Silson, Gouws, Morland, & McKeefry, 2017), V3B is
not.

We further explored this retinotopic explanation by
explicitly taking the retinotopic profiles of the ROIs
into account. Specifically, we compared the correlation
between the scene RDMs for each ROI and GIST
RDMs derived in two ways: (1) using the whole image
and (2) when the image was first filtered by the visual
field coverage of the ROI. Retinotopically filtering the
scene images did not lead to a significant reduction
in model performance relative to the entire image,
despite removing ∼75% of visual information within
the scene. Crucially, the remaining portion of the scene
represented the most retinotopically relevant portion
for each ROI.

No tested model can account for the
heterogeneity

Having observed the heterogeneity of responses
between ROI divisions of OPA, we sought to
understand the representational structure of those
relationships through RSA. In total, we tested the
explanatory power of seven candidate models: three

that modeled different scene dimensions (Content,
Expanse, and Distance), two that modeled low-level
visual features (GIST and LGN), one that modeled
high-level visual features (CNN), and a model of
navigational affordances (NA). Despite observing
numerically different correlations between ROIs, our
analyses did not reveal any ROI by model interactions
that would have accounted for the heterogeneity of
responses between ROIs. Indeed, across the four
analyses computed, only a main effect of model was
observed. Of course, it is possible that a different
set of candidate models may have better explained
the heterogeneity in the responses between ROIs (or
clusters of ROIs), but this is beyond the scope of the
current study and requires further investigation (Groen
et al., 2017; Lescroart & Gallant, 2019).

Several important differences between the current
data and prior work warrant careful consideration.
First, prior work using the same stimuli reported that
responses in OPA were best captured by a model
of Expanse (i.e., open/closed; Kravitz et al., 2011),
although the variance captured by Expanse was weaker
in OPA than PPA (Kravitz et al., 2011). Here, when
considering OPA as a whole, we find that both Content
and Expanse explain similar amounts of variance in
left OPA, whereas Content alone explains the variance
in right OPA (and in a bilateral OPA ROI). The reasons
for this discrepancy are not immediately clear but could
reflect differences in the scanning protocol between
experiments (EPI vs. multiecho), the number of runs
(6 vs. 2), the method of ROI definition (volume based
vs. surface based), the criterion for ROI inclusion
(nonretinotopic + scene selective vs. scene selective), or
a combination of some/all of these factors. We do not
interpret our data as more valid than prior work and
highlight that the discrepancy offers opportunities for
further investigation into the nature of scene processing
within OPA (and related regions). Very recently, work
employing large-scale generative models to investigate
the functional organization of high-level regions of
visual cortex including OPA (Luo, Henderson, Wehbe,
& Tarr, 2024) found evidence for two clusters within
OPA that were more sensitive to indoor and outdoor
scenes that contained both humanmade and natural
features (i.e., Content), respectively. Given that detailed
retinotopic mapping was not conducted, it is difficult
to relate this result to the visual field map divisions
of OPA or indeed to the location of OPA Other.
Nevertheless, these data offer another example of
differential responses within divisions of OPA.

Second, prior work has reported a significant
correlation between responses in OPA and a model of
navigational affordances (Bonner et al., 2017). Here, we
do not observe such a correlation either within OPA as
a whole (whether considered unilaterally or bilaterally)
or any of OPA’s ROI divisions. However, there are
important differences between the two stimulus sets
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that likely explain this discrepancy. For example, the
stimuli used by Bonner et al. (2017) were all indoor
scenes with clear navigable paths. In contrast, the set of
stimuli used in the current study contained both indoor
and outdoor scenes that depicted nonrealistic scenarios
for navigation (e.g., a bird’s-eye view of a cityscape).
Therefore, we do not interpret the lack of correlation
with our navigational affordance model as evidence
against OPA’s contribution to navigational affordance.
Rather, we highlight the possible stimulus dependence
of the relationship. Indeed, it is important to recognize
that the success of models in capturing brain responses
is often contingent on the specific stimuli used.

The OPA’s relationship with visual field maps
and OPA Other

Consistent with prior work, we found that almost
half (∼48%) of the OPA spatially overlapped at
least five visual field maps to differing degrees. The
remaining half (∼52%) overlapped more anterior
portions of the lateral surface that did not fall within
the borders of known visual field maps. Despite this,
OPA Other exhibited robust responses during pRF
mapping and consistent visual field coverage. This
suggests that, although highly sensitive to visual field
position, receptive fields within OPA Other are less
topographically organized across the cortical surface
than those in visual field maps antecedent to it. Further,
the lack of evidence for a retinotopic map within
OPA Other could be interpreted as an indicator of a
weakening of the retinotopic coding scheme in favor
of a different coding mechanism. Indeed, our analyses
suggest that models based on scene Content (i.e.,
humanmade/natural) and low-level visual features
(GIST, LGN) offer possible coding frameworks
for OPA Other. To this point, prior work directly
pitting retinotopy and category selectivity against one
another reported a posterior-anterior gradient in the
strength of these coding schemes (Silson et al., 2021).
Posterior portions of the OPA (i.e., its visual field
map divisions) more strongly represented retinotopy
over category (contralateral bias > category-selectivity
bias), whereas more anterior portions outside of OPA’s
visual field maps (i.e., OPA Other) more strongly
represented category over retinotopy (Silson et al.,
2021). Notably, the location of this transition between
the retinotopic and categorical organizing mechanisms
is commensurate with the boundary between the OPA’s
visual field maps and the location of OPA Other
reported here.

The fact that the OPA, as classically defined, spatially
overlaps swaths of cortex that both fall within and
outside of the borders of known visual field maps
means that one should be considerate when defining

this area. For example, if one were to take the top 10%
of scene-selective voxels within the OPA, they would
not necessarily be spatially contiguous and may be
spread across multiple maps. In one participant, the
voxels with the highest selectivity might fall within
LO2 and predominantly represent the lower visual
field. In another participant, they may fall within V3B
and mostly represent the upper visual field. Across
participants, the region defined as the OPA could
therefore contain voxels representing different portions
of visual space, increasing the between-subject variance,
as well as complicating the interpretation of results.
This is especially pertinent if the visual stimuli contain
markedly different features across the image. Another
approach would be to take a set number of voxels
centered on the peak voxel of scene selectivity in the
OPA, therefore forcing these voxels to be contiguous.
However, in our data and prior work (Silson, Groen,
et al., 2016), the location of the peak of scene selectivity
within the OPA varied across participants. In some, this
peak fell within OPA Other; in others, it fell within a
particular map (e.g., V3B) or on the border between
maps (e.g., LO2/V3B). Thus, even if one selected an
ROI based on a set number of contiguous voxels around
the peak, the visual field representation of those voxels
could still vary quite dramatically between participants.

One way to avoid this issue would be to simply
exclude any portion of the OPA that overlaps with
known visual field maps (Lescroart & Gallant, 2019;
Lescroart, Stansbury, & Gallant, 2015). Such a
strategy would avoid the issues raised above about
the potential for differing visual field representations
among participants. However, this may exclude the
location of the most scene-selective portion of the OPA,
as the location of the peak moves from participant to
participant. Moreover, OPAOther exhibits strong visual
field biases, and thus, the extent to which we can remove
the influence of spatial biases using this approach
is limited. Importantly, we are not advocating one
approach over another. Rather, we are recommending
that researchers carefully examine the spatial overlap
between their category-selective and retinotopic ROIs
and take this overlap into account with their analyses
and inferences.

Conclusions

The scene-selective occipital place area spatially
overlaps multiple visual field maps, as well as a swath
of cortex that does not fall within any given map
(OPA Other). The pattern of responses within ROI
divisions of the OPA is not uniform. No candidate
model we tested could explain the pattern of similarity
between these ROIs. Instead, this pattern was correlated
with the retinotopic profile of the ROIs. The positive
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relationship between retinotopic profile and scene
responses found here within the OPA’s ROI divisions
suggests that retinotopy is the driving force behind
how similarly two regions represent the same stimulus.
These data highlight the importance of considering
carefully the relationship between category selectivity
and underlying retinotopy and suggest that it is perhaps
no longer appropriate to consider OPA as a single
homogeneous scene-selective region.

Keywords: retinotopy, scene selectivity, population
receptive fields
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