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Abstract— Train scheduling is a crucial part of railway 

operations, where trains are allocated to particular routes and 

times to ensure a sustainable utilization of the railway network. 

Decisions of train scheduling are usually made in well advanced 

after considering various factors such as expected passenger and 

freight demand, infrastructure availability, and operational 

constraints. Nonetheless, scheduling extra train services, being 

it for passengers or freight, to accommodate unexpected 

demand in the railway system remains a persistent challenge. 

This is due to the fact that the existing timetable is typically 

designed with predetermined robustness, and the introduction 

of additional trains can adversely impact the robustness of the 

timetable. To address this issue, this paper presents an approach 

using an actor-critic reinforcement learning algorithm that 

takes into account the aspect of timetable robustness in solving 

the problem of scheduling additional trains. A case study of this 

method demonstrates that the proposed algorithm can take into 

account the importance of robustness in the decision-making 

process, resulting in well-informed decisions and a more reliable 

timetable. 

Keywords—reinforcement learning, actor-critic 

reinforcement learning, train scheduling, railway traffic 

management 

I. INTRODUCTION  

Scheduling extra train services is a crucial process in 
railway transportation that involves adding additional trains to 
an existing timetable to meet ad-hoc demand or respond to 
unexpected disruptions. The goal of scheduling extra train 
services is to create an effective and efficient timetable that 
meets the needs of passengers and the railway system while 
minimizing costs and maximizing revenue. 

In practice, the scheduling process for adding one or 
more extra trains usually includes three steps (shown in 
Fig.1): (1) the first step is to identify the optimal timing for 
the new trains. This step involves analyzing the existing 
timetable and identifying the best periods to meet the 
demand or congestion. The new trains must be scheduled at 
a time that minimizes disruptions to the existing schedule 
while meeting the demand of passengers. The timing of the 
new trains must also consider the allocation of 
infrastructure resources such as track elements, routes, 
platform, sidings, etc. which ensures the extra services will 
not lead unfeasibility to existing timetable. (2) the second 
step is the allocation of rolling stock and human resources. 
This step involves assigning appropriate resources to the 
new trains, such as locomotives, coaches, and crew 
members. The allocation of  these resources must be done 
in such a way that the new service(s) do not interfere with 
the existing schedule on rolling stock and crew members. 
The resources must be allocated efficiently to ensure that 
they are used to their full capacity. (3) the third step is to 

ensure that the insertion does not adversely affect the 
overall quality of service of the railway system. The new 
trains must be scheduled in such a way that they do not 
cause delays or cancellations to existing trains.  

Step 3: Post-adjustment of existing timetable

(ensure optimal robustness of the new timetable)

Step 1: identify the optimal time slot for the extra 

trains

(decide the time and the allocation of infrastructure)

Step 2: generate the schedule of rolling stock and 

crew

(decide the rolling stock circulation and crew 

scheduling and rostering)

 

Fig. 1 the scheduling process for adding extra services 

The challenge of scheduling additional train services on an 
existing railway timetable is considered difficult due to the 
fixed robustness aspect of train timetables, because adding  
extra trains into an existing timetable can lead to significant 
degradation of network resilience and makes both the existing 
and extra services are sensitive to hazards during real-time 
operations. During the resolution process, constructing a 
railway timetable in one attempt is also challenging, since it 
requires negotiation among numerous railway operators, and 
conflicts may arise in their operation objectives. The final 
decision may not always be optimal, as the negotiation is 
limited by the operational scope of each operator and the 
limited time of this process. Moreover, this scheduling 
problem is not a typical scheduling or rescheduling problem 
in terms of railway operation and usually cannot be solved by 
existing optimization technique for train scheduling; as in 
practice, post-adjustments to existing train timetables are 
usually necessary for better timetable robustness once the time 
slots of the inserted trains are decided, which makes the 
operational constraints for both existing and additional trains 
inherently flexible for this whole optimization process, and 
would need several rounds of optimizations to split, relax, and 
narrow-down detailed constraints to make the final decision. 
Finally, timetable robustness is post-measurement, namely, 
the robustness of newly generated timetable can be assessed 
only after the timetable is executed, and the timetable resolved 
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by empirical knowledge is usually not reliable due to the high 
uncertainties of rail operation circumstance.  

The main contribution of this paper is the application of 
actor-critic reinforcement learning algorithm in solving the 
train insertion problem. We use the spatiotemporal lateness 
distribution data from the current timetable to train the critic 
agent, creating a refined version of the critic agent that 
undergoes iterative updates during the learning process. As a 
result, the critical agent can proficiently steer the actor agent 
in making well-informed decisions pertaining to the 
introduced train. This process factors in the resilience of the 
timetable, consequently greatly shorten the decision-making 
procedure for incorporating additional trains into the 
timetable. 

II. RELATED WORKS 

Extensive efforts have been dedicated to solving the 
railway scheduling and rescheduling problems. In the 
subsequent section, we outline previous research that is 
particularly pertinent to this study. If the readers are interested, 
the surveys [1][2][3] can provide a comprehensive scope on 
objective identification and formulation, mathematical 
modelling and resolution algorithm of the railway scheduling 
and/or rescheduling problem, and the review paper [4] 
summarizes taxonomy, regulation, and further application of 
A.I. in railway 

Liu et al. describes a multi-agent framework for solving 
railway train rescheduling problem, the framework provides a 
comprehensive architecture for a multi-agent system which 
can tackle the train rescheduling problem in decentralize way 
[5]. The study was extended for a railway bottleneck section 
in and compared with centralized resolution system to show 
its computational efficiency [6].  

Burdett and Kozan proposed novel approach to solve train 
inserting problem using a hybrid job-shop formulation [7]. 
The problem in this study considers the competition for 
railway infrastructure between the inserted train(s) and 
existing trains in different operators and solve this problem 
with a meta-heuristic scheduling technique. The time 
constraints in this study are optional viewed as ‘soft’ or ‘hard’ 
constraints. If the time constraints are viewed as ‘soft’, these 
constraints are primarily enforced by penalizing the total time 
window violations in the objective, otherwise (i.e., the time 
constrains are ‘hard’), timing conditions should be strictly 
enforced by defining an operation as fixed and then 
disallowing any time window violation associated with fixed 
operations to occur.  

Cacchiani et al. proposed a novel approach to maximize 
the utilization of railway infrastructure by scheduling freight 
trains on passenger lines [8]. The proposed approach involves 
modeling the problem as an integer linear programming and 
is solved by using a Lagrangian heuristic based algorithm. The 
algorithm first identifies the optimal time window for freight 
trains and then optimizes the timetable by inserting as many 
freight trains as possible within that window. This approach 
has the potential to significantly improve the efficiency of 
railway systems and enhance the overall transportation 
network. 

Jiang et al. presented a novel approach to address the issue 
of increasing passenger demand by scheduling additional 
trains [9]. The goal of this approach is to dispatch these trains 
as quickly as possible to congested areas, where they can 

alleviate the passenger volume. To achieve this, the authors 
propose a skip-stop heuristic rule that shortens the journey of 
these trains by skipping stops where dwelling is not necessary. 
This rule is employed to solve the problem of scheduling these 
additional trains efficiently. 

Ljunggren et al. developed a framework to tackle path 
searching problem for train inserting problem [10]. Within the 
framework, railway network is represented with a graph 
formulation and the shortest path is searched by a variant of 
Dijkstra’s algorithm. In the test experiments, maximizing 
timetable robustness is set as the objective function and pre-
processing is applied to omit train driver’s maximum allowed 
workload. 

III. PROBLEM DESCRIPTION 

A general railway network is usually represented by a 
mixed multi-graph 𝐺 = (𝑁, 𝐸 ∪ 𝐴) in which 𝐸 and 𝐴 are the 
edge and the arc set. Each node 𝑛 ∈ 𝑁 represents a station in 
the network, each edge 𝑒𝑛,𝑛′ ∈ 𝐸 represents a bi-directional 

track between station 𝑛 and 𝑛′ where trains can travel in both 
directions, and each arc 𝑎𝑛,𝑛′ ∈ 𝐴 stands for a mono-direction 

track between station 𝑛 and 𝑛′, 𝑛, 𝑛′ ∈ 𝑁. Moreover, 𝑘 ∈ 𝐸 ∪𝐴.  

For the trains considered in this train insertion problem, 
given that 𝑇 = 𝑇𝑒𝑥 ∪ 𝑇𝑖𝑛 , where 𝑇𝑒𝑥  is the set of train in 
existing timetable, and 𝑇𝑖𝑛 is the set of trains to be inserted. 
For each train 𝜏 ∈ 𝑇𝑒𝑥, its operational timetable 𝕥𝜏 is usually 
decided in planning stage and organised with corresponding 
arrival and departure times in stations, i.e., 𝕥𝜏 ={𝑡𝜏,𝑛𝑎 , 𝑡𝜏,𝑛𝑑 … 𝑡𝜏,𝑛′𝑎 , 𝑡𝜏,𝑛′𝑑 }, 𝜏 ∈ 𝑇𝑒𝑥 , 𝑛, 𝑛′ ∈ 𝑁, where 𝑡𝜏,𝑛𝑎  and 𝑡𝜏,𝑛𝑑  

stand for the arrival and departure times for train  𝜏 at station 𝑛, respectively. For the train to be inserted, i.e., 𝜏′ ∈ 𝑇𝑖𝑛, its 
timetable shall be generated as , 𝕥𝜏′ ={𝑡𝜏′,𝑛𝑎 , 𝑡𝜏′,𝑛𝑑 … 𝑡𝜏′,𝑛′𝑎 , 𝑡𝜏′,𝑛′𝑑 }, 𝜏′ ∈ 𝑇𝑖𝑛 , 𝑛, 𝑛′ ∈ 𝑁.  

Within this study, the proposed reinforcement learning 
algorithm shall generate the timetables for inserted trains, 𝕥𝜏𝑗 , 

into the existing timetable, 𝕥𝜏𝑖 . As discussed in section I, the 

new schedule including all the existing trains and inserted 
trains shall consider the robustness aspect in practice 
operational, so the timetable of existing trains might require 
further adjustment when consider the extra trains. Let the 
adjustment for timetable of train 𝜏𝑖  is 𝕖𝜏 ={𝜖𝜏,𝑛𝑎 , 𝜖𝜏,𝑛𝑑 , … , 𝜖𝜏,𝑛′𝑎 , 𝜖𝜏,𝑛′𝑑 }, 𝜏 ∈ 𝑇𝑒𝑥 , 𝑛, 𝑛′ ∈ 𝑁 , where 𝜖  is the 

adjustment value of a single time point. The adjusted timetable 
for train 𝜏𝑖 in final decision is then derived as 𝕥𝜏′ = 𝕥𝜏 + 𝕖𝜏, 
and thus, the final decided timetable including the inserted 
trains is 𝕥′ = 𝕥𝜏′ ∪ 𝕥𝜏′ .  

The train insertion problem requires careful evaluation of 
the robustness of a given timetable, which encompasses all 
trains 𝕥′. However, as timetable robustness is typically a post-
measurement, to overcome this challenge, we will employ a 
data-driven approach in this study, leveraging historical delay 
distribution data from the same network to predict the 
robustness of a newly developed timetable. Here we quantify 
the robustness of a certain timetable with an indicator between 
0 and 1, i.e., ℛ(𝕥′, 𝐻) ∈ [0,1] , where 𝐻  is the historical 
spatiotemporal delay distribution data for the considered 
network, the value of ℛ(∙) with respect to the robustness of 
the considered timetable spans for 0 to 1 where 0 stands for 
unfeasible timetable and 1 stands for the optimal robustness. 
Then the train insertion problem can be formulated as follows:  



Objectives: 

Max. 𝑂1 = ℛ(𝕥′, 𝐻) (1) 

Min. 𝑂2 = ∑ |𝕖𝜏|𝜏∈𝑇𝑒𝑥  (2) 

Constraints:  𝑡𝜏,𝑛′𝑎 ≥ 𝑡𝜏,𝑛𝑑 + 𝑡𝜏(𝑘𝑛,𝑛′) (3) 

𝑡𝜏,𝑛𝑑 ≥ 𝑡𝜏,𝑛𝑎 + 𝑡𝜏,𝑛𝑝
 (4) 

𝑡𝜏′,𝑛𝑎 + 𝑀 ∙ (1 − 𝑖𝜏,𝜏′𝑛 ) ≥ 𝑡𝜏,𝑛𝑎 + 𝛿𝑛(𝜏, 𝜏′) (5) 

𝑡𝜏,𝑛𝑎 + 𝑀 ∙ 𝑖𝜏,𝜏′𝑛 ≥ 𝑡𝜏′,𝑛𝑎 + 𝛿𝑛(𝜏, 𝜏′) (6) 

𝑡𝜏′,𝑛𝑑 + 𝑀 ∙ (1 − 𝑖𝜏,𝜏′𝑛 ) ≥ 𝑡𝜏,𝑛𝑑 + 𝛿𝑛(𝜏, 𝜏′) (7) 

𝑡𝜏,𝑛𝑑 + 𝑀 ∙ 𝑖𝜏,𝜏′𝑛 ≥ 𝑡𝜏′,𝑛𝑑 + 𝛿𝑛(𝜏, 𝜏′) (8) 

𝑖𝜏,𝜏′𝑛 = {1, if 𝜏 prior to 𝜏′ at station 𝑛0, otherwise  

 

(9) 

Within this study, the objective function 𝑂1 (Equation (1)) 
shall maximise the robustness of the final developed timetable 
and the objective function 𝑂2 (Equation (2)) shall minimize 
the post adjustment of timetable of existing trains. So the 
algorithm shall trade-off between the two objective functions 
in the optimisation process. The constraints of the 
optimisation is discussed in Equation (3) to (9). Equation (3) 
indicates the operational constraints for train 𝜏  between 
station 𝑛 and 𝑛′, i.e., the travelling for train 𝜏 from station 𝑛 
to 𝑛′ should not be small than the estimated constant traveling 
time 𝑡𝜏(𝑘𝑛,𝑛′) , where 𝑘𝑛,𝑛′ ∈ 𝐸 ∪ 𝐴 . Equation (4) is the 

dwelling constraint for train 𝜏 at station  𝑛, where 𝑡𝜏,𝑛𝑝
 is the 

minimum dwelling time for train 𝜏 at station  𝑛. Equation (5)-
(8) are the headway constraints for two neighbouring train 𝜏 
and 𝜏′at station 𝑛, these constraints are organised using big-M 
approach and 𝑖𝜏,𝜏′𝑛  is a binary indicator which indicates the 

passing sequence of arrival or departure actions of train 𝜏 and 𝜏′ . 𝛿𝑛(𝜏, 𝜏′)indicates the headway between train 𝜏 and 𝜏′at 
station 𝑛.  

IV. ACTOR-CRITIC REINFORMENT LEARNING 

ALGORITHM 

Actor-critic is a new branch reinforcement learning 
algorithm that combines elements of both policy-based and 
value-based methods. In actor-critic, there are two 
components: the actor agent and the critic agent. 

• The actor agent is responsible for selecting actions to take 
in the environment based on the current state. It learns a 
policy that maps states to actions. This is done using a 
stochastic policy gradient method, such as Trust Region 
Policy Optimization (TRPO), Proximal Policy 
Optimization (PPO) algorithm, etc. 

• The critic agent, on the other hand, is responsible for 
estimating the value function of the current state, which 
represents the expected cumulative reward that can be 

obtained from that state. The critic uses the temporal 
difference (TD) learning method to estimate the value 
function, by computing the difference between the 
predicted value of the next state and the actual observed 
value. 

The actor and critic agents are usually approximated by 
neural networks and trained synchronously, with the critic 
providing feedback to the actor about the quality of its actions. 
This feedback is used to update the policy function of agent in 
a way that improves the expected cumulative reward. Fig. 2 
provides an overview of the architecture of the proposed actor 
critic reinforcement learning.  

Environment

Critic agent

Actor agent

Input Layer    ¹⁶ Hidden Layer    ¹² Hidden Layer    ¹⁰ Output Layer    ²

Input Layer    ¹⁶ Hidden Layer    ¹² Hidden Layer    ¹⁰ Output Layer    ²

State

State Action

Reward

TD error TD error 

 

Fig. 2 The framework of Actor-critic reinforcement learning 
algorithm and the data flow within it 

A. Actor agent  

In this study, we propose an actor-agent that is trained to 
create a timetable for a train by learning how to map a 
promising action to the observed state of the train through its 
policy function, 𝜋: 𝑠 → 𝛼. The algorithm takes into account 
the extra trains and first determines the timetables of the 
inserted trains before adjusting the schedules of the existing 
trains. The state of a train is abstracted at every station where 
the inserted train departs, dwells, and terminates. Let the train 
to be inserted is train 𝜏∗The state of a train is represented as a 
tuple consisting of (1) current time, which indicating the peak 
or off-peak hour that the inserted train will be operated. (2) the 
arrival/departure time of neighbouring trains at the current 
time (including those that arrive/depart prior to and after the 
current time) which indicating the potential time slot for the 
inserted train. (3) minimum dwelling period of the inserted 

train, i.e., 𝑠 = {𝑡, 𝑡𝜏,𝑛𝑎 , 𝑡𝜏,𝑛𝑑 , 𝑡𝜏′,𝑛𝑎 , 𝑡𝜏′ ,𝑛𝑑 , 𝑡∗𝑝}, 𝑠 ∈ 𝑆 , where 𝑠 

stands for the state vector and 𝑆 is the set of states. The action 
of the actor agent includes the candidate arrival and departure 
times of the train to be inserted at the considered station, i.e., 𝛼𝑛 = {𝑡𝜏∗,𝑛𝑎 , 𝑡𝜏∗,𝑛𝑑 }, 𝛼𝑛 ∈ 𝒜 where 𝛼𝑛 is the action at station 𝑛 

and 𝒜 is the set of actions.  

The existing train schedule, which includes the arrival and 
departure times at all stations under consideration, is regarded 
as the environment in which the reinforcement learning 
algorithm operates. The algorithm interacts with the 



environment through the actor agent to determine the 
timetable for an additional train, from its starting station to its 
destination. Once the actor agent has made decisions for all 
necessary extra trains, the current episode will be concluded, 
and the trajectory of the actor agent is formulated as 𝜑 ={(𝑠𝑛1 , 𝛼𝑛1), (𝑠𝑛2 , 𝛼𝑛2), … (𝑠𝑁 , 𝛼𝑁)}. 

In this study, we use policy gradient approach to update 
the neural network within actor agent, which is identified by 
parameters 𝜃 . The reward is defined to quantify the 
performance of the action, 𝛼𝑛, made by actor agent at station 𝑛 with respect to the objective function 𝑂1, and 𝑟(𝑛) (i.e., the 
value of reward at the station 𝑛) is decided as the same value 
derived by the objective function 𝑂1 . The total rewards 
through 𝜑 can be derived as:  𝑅(𝜑) = ∑ 𝛾 ∙𝜑  𝑟(𝑛) (10) 

where 𝛾 ∈ (0,1] is a discount factor. Because the reward for 
the actor agent is supported by the critic agent rather than the 
‘true’ reward identified as, 𝑟(𝑛) , finally evaluated by the 
algorithm (here, we call the reward provided by critic agent as 
baseline reward, identified as 𝑏(𝑛) ), so the distinction 
between the  𝑅(𝜑)  and 𝐵(𝜑)  will be viewed as temporal 
difference error which will be used to update the neural 
network in actor agent, then the objective function can be 
approximated as:  𝑂1′ (𝜃) = 𝑬𝜑~𝜋𝑅(𝜑)= ∑ 𝑃(𝜑; 𝜃)𝜑∙ ∑ (𝑟(𝑛) − 𝑏(𝑛))𝑁

𝑛    
 

(11) 

and then the gradient of the expected rewards can be derived 
as: ∇𝜃𝑂1′ (𝜃) = ∑ ∇𝜃𝑃(𝜑; 𝜃)𝑅(𝜑)𝜑 = 𝑬𝜑~𝜋∇𝜃 log 𝑃(𝜑; 𝜃)∙ ∑ (𝑟(𝑛) − 𝑏(𝑛))𝑁

𝑛  

 

(12) 

At the end of an episode, the parameters 𝜃 will be updated as:  𝜃 ← 𝜃 + 𝑙 ∙ ∇𝜃𝑂1′ (𝜃) (13) 

where 𝑙 is the learning rate, i.e., 𝑙 ∈ (0,1].  
B. Critic agent 

In actor-critic reinforcement learning algorithms, the critic 
agent is responsible for estimating the value function for a 
given policy. The value function represents the expected 
return (i.e., cumulative reward) that an agent would receive 
starting from a particular state, and following a particular 
policy thereafter. In this study, the critic agent is organized to 
benchmark and quantify the robustness of a timetable. 
Usually, evaluating a railway timetable is typically a 
challenging task due to the fact that its robustness can only be 
quantified post-execution through the accumulation of 
operational data covering various hazards that may occur in 
the railway network. 

The critic agent is approximated by a neural network 
parameterized by 𝜔, which aims to determine the robustness 
of a newly inserted timetable against the existing ones at a 
single station. The neural network takes several inputs, 
including (1) the ID of the station being considered, 𝑛, (2) the 
timetable of the inserted train generated by the actor agent, {𝑡𝜏∗,𝑛𝑎 , 𝑡𝜏∗,𝑛𝑑 }, and the timetables of the trains that run prior to 

and after the inserted train at the same station {𝑡𝜏𝑖,𝑛𝑎 , 𝑡𝜏𝑖,𝑛𝑑 , 𝑡𝜏𝑗,𝑛𝑎 , 𝑡𝜏𝑗,𝑛𝑑 }. Here, 𝜏𝑖  and 𝜏𝑗  refer to the trains that 

pass before and after the train 𝜏∗, respectively, at station 𝑛. 
Moreover, the output is the quantified robustness (i.e., a value 

between 0 and 1) for the considered timetable {𝑡𝜏∗,𝑛𝑎 , 𝑡𝜏∗,𝑛𝑑 }.  

The training of the critic agent is structured into two 
phases. The first phase involves off-line training using 
previously accumulated data in the network, while the second 
phase involves on-line training through iterative interactions 
within reinforcement learning. During the first phase, the 
critic agent acquires a basic understanding of the system's 
robustness based on historical data, but it is important to note 
that relying solely on past knowledge may not be sufficient to 
support decision-making processes for new situations. 
Therefore, in phase 2, the critic agent further develops its 
knowledge to accumulate information that can help it 
benchmark the robustness for new timetables across the whole 
network.  

 

Fig.3 Train delay distribution over spatiotemporal information of the 
network 

During phase 1, the previously collected data is organized 
into mock data in the same way and fed into the neural 
network. If the considered train is the first scheduled train, the 
timetable of the train prior is considered as {0,0}. In this study, 
the robustness value, which represents the expected output of 
the neural network, is evaluated using a percentage value that 
is quantified by the probability of neighboring trains being 
affected by the historical delay distribution of the considered 
train. Fig. 3 provides an example of train delay distribution 
over spatiotemporal information of rail network. Considering 
two neighboring train, 𝜏𝑖 and 𝜏𝑗, passing the same station 𝑛𝑖, 
and their delay distributions at the station over time are 𝑃𝜏𝑖(𝑡) 

and 𝑃𝜏𝑗(𝑡) which are approximated by (reversed) exponential 

distribution, respectively. Let the considered time 𝑡′  is the 
target time stamp we are trying to insert the train, then the 
robustness for 𝑡′ is quantified by the minimum value of the 
possibility value from 𝑡𝜏𝑖,𝑛𝑑  to 𝑡′  and 𝑡′  to 𝑡𝜏𝑗,𝑛𝑎  which is 



identified in the lower part of equation (14). Furthermore, if 
the time  𝑡′ equals either 𝑡𝜏𝑖,𝑛𝑖𝑑  or 𝑡𝜏𝑗,𝑛𝑖𝑎 . The time should be 

infeasible, and thus, the value of robustness equals to zero. ℛ([𝑡𝜏𝑖,𝑛𝑑 , 𝑡′ , 𝑡𝜏𝑗,𝑛𝑎 ], 𝐻)= {min𝑡′ (𝑃𝜏𝑖(𝑡), 𝑃𝜏𝑗(𝑡) ) , 𝑡𝜏𝑖,𝑛𝑑 < 𝑡′ < 𝑡𝜏𝑗,𝑛𝑎0, otherwise  
(14) 

In Phase 2, the critic agent will try to further develop this 
knowledge on benchmarking robustness on a new timetable, 
and quantifies a temporal difference error to update the actor 
agent. At the end of each episode, the parameters of critic 
neural network will be updated as 𝜔 ← 𝜔 + 𝑙 ∙ ∑ (𝑟(𝑛) − 𝑏(𝑛))𝑁𝑛  (15) 

 

V. CASE STUDY 

The proposed algorithm is tested using a British rail 
corridor covering from Newcastle to London Kings Cross. 
The rail corridor covers 7 main stations from northern England 
to central London area. Fig. 4 provides an overview of the 
corridor.  

 

 

Fig. 4 Overview of network 

The original timetable of this case study considered the 
schedule from 9:00 to 16:00, and one extra freight trains are 
expected to be inserted into the schedule. Both the actor and 
critic agents are approximate using two fully connected neural 
networks which are setup with the following parameters. In 
proposed actor-critic reinforcement learning algorithm is 
implemented Python (v3.10) on a windows PC with AMD 
Ryzen 7 4800U processor and 24GB RAM, TensorFlow is 
called to organize the neural networks in the reinforcement 
learning algorithm. 

Table I. structure of actor and critic neural network 

The Nth Layer No. of nodes Activation 
function 

Critic Neural Network 

1st Normalized Input Layer 6 ReLU (rectified 
linear unit) 

2nd Dense layer dims 256 ReLU 

3rd Dense layer dims 256 ReLU 

4th Dense layer dims 128 ReLU 

5th Dense layer dims  64 ReLU 

6th Dense layer dims  32 ReLU 

7th Dense layer dims  1 Linear 

Actor Neural Network  

1st Normalized Input layer 6 ReLU 

2nd Dense layer dims 128 ReLU 

3rd Dense layer dims 128 ReLU 

4th Dense layer dims 64 ReLU 

5th Dense layer dims  32 ReLU 

6th Dense layer dims  1 tanh 

Table II. Parameter settings of actor-critic reinforcement learning  

Parameters  Value  

Replay buffer size 50 

Batch size  64 

Delay episode for training  512 

Update step  64 

Discount factor  0.9 

Actor learning rate  0.003 

Critic learning rate  0.001 

 

 

Fig. 5. The resultant timetable for the extra train 

In this study, we use longest headway dispatching rule, a 
rule-based approach, as the benchmark. The rule-based 
approach will schedule the extra train only with the support of 
existing timetables, and the arrival and departure times of the 
inserted train will be selected ensuring equally longest time 
interval between the inserted train and its neighbouring trains 



at stations. Fig. 5 provides the scheduling results generated by 
the benchmark approach and the proposed actor-critic 
reinforcement learning algorithm, and Table III illustrates the 
detailed timetable generated by both algorithms.  

In Fig. 5, the red lines represent the timetables of existing 
trains, while the red polygons describe the robustness 
boundaries of each train within the station area. These 
robustness boundaries are generated based on historical 
lateness data of the trains. It is worth noting that there is 
significant lateness of trains at Darlington and York stations 
during peak hours (7:00 - 9:30 a.m.). Therefore, all trains 
passing through York station around peak hours shall 
incorporate an extra time interval in their headway to ensure 
the robustness of the existing trains' timetables. However, 
when observing the results generated by the rule-based 
approach (upper part of Fig. 5), it is evident that the timetable 
of the extra train has a slight overlap with the robustness 
boundary of the second train at Darlington station. This 
overlap has the potential to compromise the timetable 
robustness of the second train and increase the likelihood of 
readjusting its timetable during real-time operation. In 
contrast, the timetable generated by the reinforcement 
learning algorithm for the extra train (lower part of Fig. 5) 
takes into account the fluctuation of the departure time of the 
second train. As a result, the algorithm makes a decision to 
slightly postpone the departure time of the inserted train at 
Darlington station. Similar decisions are also made for the 
departure times at York station and Peterborough station. By 
considering the potential conflicts with existing train 
timetables and making appropriate adjustments, the 
reinforcement learning algorithm demonstrates its ability to 
improve robustness and minimize the need for real-time 
readjustments in train operations. 

VI. CONCLUSIONS 

This paper presents a novel actor-critic reinforcement 
learning algorithm to address the challenge of scheduling 
additional trains into existing timetables. The main difficulty 
in this train insertion problem lies in the unknown robustness 
aspect, which is a post-measurement during railway 
operations and challenging to incorporate during the planning 
stage. Within the actor-critic reinforcement learning 
algorithm, the critic agent uses historical lateness data to 
measure timetable robustness for the considered network. This 
information is then used to provide the reward to the actor 
agent, enabling better decision-making and ensuring 
improved robustness. We illustrate the effectiveness of our 
approach through a case study, showcasing a successful pilot 

test of the proposed reinforcement learning algorithm and its 
promising capabilities in solving practical train insertion 
problems in railway corridors. 
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Table III Timetable for the extra train generated by rule-based algorithm and the reinforcement learning algorithm 

Stations NCL DHM DAR YORK DON PBO KGX 

Rule-based algorithm 

Arrival  7:18 7:40 8:18 9:29 11:30 14:58 17:57 

Departure 7:18 7:40 8:37 10:37 12:08 15:25 17:57 

Actor-critic reinforcement learning algorithm 

Arrival  7:18 7:40 8:18 9:40 11:39 14:58 18:09 

Departure 7:18 7:40 8:48 10:46 12:08 15:37 18:09 


