
This is a repository copy of Schedule Extra Train(s) into Existing Timetable Using Actor-
Critic Reinforcement Learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/216424/

Version: Accepted Version

Proceedings Paper:
Liu, J. orcid.org/0000-0002-3808-5957 and Liu, R. orcid.org/0000-0003-0627-3184 (2024)
Schedule Extra Train(s) into Existing Timetable Using Actor-Critic Reinforcement Learning.
In: 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC).
2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC),
24-28 Sep 2023, Bilbao, Spain. IEEE , pp. 1166-1171. ISBN 979-8-3503-9947-9

https://doi.org/10.1109/itsc57777.2023.10422338

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Schedule Extra Train(s) into Existing Timetable
Using Actor-Critic Reinforcement Learning

Jin Liu*, Ronghui Liu
Institute for Transport Studies

University of Leeds

Leeds, LS2 9JT,United Kingdom
Email: J.Liu12@leeds.ac.uk

Abstract— Train scheduling is a crucial part of railway

operations, where trains are allocated to particular routes and

times to ensure a sustainable utilization of the railway network.

Decisions of train scheduling are usually made in well advanced

after considering various factors such as expected passenger and

freight demand, infrastructure availability, and operational

constraints. Nonetheless, scheduling extra train services, being

it for passengers or freight, to accommodate unexpected

demand in the railway system remains a persistent challenge.

This is due to the fact that the existing timetable is typically

designed with predetermined robustness, and the introduction

of additional trains can adversely impact the robustness of the

timetable. To address this issue, this paper presents an approach

using an actor-critic reinforcement learning algorithm that

takes into account the aspect of timetable robustness in solving

the problem of scheduling additional trains. A case study of this

method demonstrates that the proposed algorithm can take into

account the importance of robustness in the decision-making

process, resulting in well-informed decisions and a more reliable

timetable.

Keywords—reinforcement learning, actor-critic

reinforcement learning, train scheduling, railway traffic

management

I. INTRODUCTION

Scheduling extra train services is a crucial process in
railway transportation that involves adding additional trains to
an existing timetable to meet ad-hoc demand or respond to
unexpected disruptions. The goal of scheduling extra train
services is to create an effective and efficient timetable that
meets the needs of passengers and the railway system while
minimizing costs and maximizing revenue.

In practice, the scheduling process for adding one or
more extra trains usually includes three steps (shown in
Fig.1): (1) the first step is to identify the optimal timing for
the new trains. This step involves analyzing the existing
timetable and identifying the best periods to meet the
demand or congestion. The new trains must be scheduled at
a time that minimizes disruptions to the existing schedule
while meeting the demand of passengers. The timing of the
new trains must also consider the allocation of
infrastructure resources such as track elements, routes,
platform, sidings, etc. which ensures the extra services will
not lead unfeasibility to existing timetable. (2) the second
step is the allocation of rolling stock and human resources.
This step involves assigning appropriate resources to the
new trains, such as locomotives, coaches, and crew
members. The allocation of these resources must be done
in such a way that the new service(s) do not interfere with
the existing schedule on rolling stock and crew members.
The resources must be allocated efficiently to ensure that
they are used to their full capacity. (3) the third step is to

ensure that the insertion does not adversely affect the
overall quality of service of the railway system. The new
trains must be scheduled in such a way that they do not
cause delays or cancellations to existing trains.

Step 3: Post-adjustment of existing timetable

(ensure optimal robustness of the new timetable)

Step 1: identify the optimal time slot for the extra

trains

(decide the time and the allocation of infrastructure)

Step 2: generate the schedule of rolling stock and

crew

(decide the rolling stock circulation and crew

scheduling and rostering)

Fig. 1 the scheduling process for adding extra services

The challenge of scheduling additional train services on an
existing railway timetable is considered difficult due to the
fixed robustness aspect of train timetables, because adding
extra trains into an existing timetable can lead to significant
degradation of network resilience and makes both the existing
and extra services are sensitive to hazards during real-time
operations. During the resolution process, constructing a
railway timetable in one attempt is also challenging, since it
requires negotiation among numerous railway operators, and
conflicts may arise in their operation objectives. The final
decision may not always be optimal, as the negotiation is
limited by the operational scope of each operator and the
limited time of this process. Moreover, this scheduling
problem is not a typical scheduling or rescheduling problem
in terms of railway operation and usually cannot be solved by
existing optimization technique for train scheduling; as in
practice, post-adjustments to existing train timetables are
usually necessary for better timetable robustness once the time
slots of the inserted trains are decided, which makes the
operational constraints for both existing and additional trains
inherently flexible for this whole optimization process, and
would need several rounds of optimizations to split, relax, and
narrow-down detailed constraints to make the final decision.
Finally, timetable robustness is post-measurement, namely,
the robustness of newly generated timetable can be assessed
only after the timetable is executed, and the timetable resolved

mailto:J.Liu12@leeds.ac.uk

by empirical knowledge is usually not reliable due to the high
uncertainties of rail operation circumstance.

The main contribution of this paper is the application of
actor-critic reinforcement learning algorithm in solving the
train insertion problem. We use the spatiotemporal lateness
distribution data from the current timetable to train the critic
agent, creating a refined version of the critic agent that
undergoes iterative updates during the learning process. As a
result, the critical agent can proficiently steer the actor agent
in making well-informed decisions pertaining to the
introduced train. This process factors in the resilience of the
timetable, consequently greatly shorten the decision-making
procedure for incorporating additional trains into the
timetable.

II. RELATED WORKS

Extensive efforts have been dedicated to solving the
railway scheduling and rescheduling problems. In the
subsequent section, we outline previous research that is
particularly pertinent to this study. If the readers are interested,
the surveys [1][2][3] can provide a comprehensive scope on
objective identification and formulation, mathematical
modelling and resolution algorithm of the railway scheduling
and/or rescheduling problem, and the review paper [4]
summarizes taxonomy, regulation, and further application of
A.I. in railway

Liu et al. describes a multi-agent framework for solving
railway train rescheduling problem, the framework provides a
comprehensive architecture for a multi-agent system which
can tackle the train rescheduling problem in decentralize way
[5]. The study was extended for a railway bottleneck section
in and compared with centralized resolution system to show
its computational efficiency [6].

Burdett and Kozan proposed novel approach to solve train
inserting problem using a hybrid job-shop formulation [7].
The problem in this study considers the competition for
railway infrastructure between the inserted train(s) and
existing trains in different operators and solve this problem
with a meta-heuristic scheduling technique. The time
constraints in this study are optional viewed as ‘soft’ or ‘hard’
constraints. If the time constraints are viewed as ‘soft’, these
constraints are primarily enforced by penalizing the total time
window violations in the objective, otherwise (i.e., the time
constrains are ‘hard’), timing conditions should be strictly
enforced by defining an operation as fixed and then
disallowing any time window violation associated with fixed
operations to occur.

Cacchiani et al. proposed a novel approach to maximize
the utilization of railway infrastructure by scheduling freight
trains on passenger lines [8]. The proposed approach involves
modeling the problem as an integer linear programming and
is solved by using a Lagrangian heuristic based algorithm. The
algorithm first identifies the optimal time window for freight
trains and then optimizes the timetable by inserting as many
freight trains as possible within that window. This approach
has the potential to significantly improve the efficiency of
railway systems and enhance the overall transportation
network.

Jiang et al. presented a novel approach to address the issue
of increasing passenger demand by scheduling additional
trains [9]. The goal of this approach is to dispatch these trains
as quickly as possible to congested areas, where they can

alleviate the passenger volume. To achieve this, the authors
propose a skip-stop heuristic rule that shortens the journey of
these trains by skipping stops where dwelling is not necessary.
This rule is employed to solve the problem of scheduling these
additional trains efficiently.

Ljunggren et al. developed a framework to tackle path
searching problem for train inserting problem [10]. Within the
framework, railway network is represented with a graph
formulation and the shortest path is searched by a variant of
Dijkstra’s algorithm. In the test experiments, maximizing
timetable robustness is set as the objective function and pre-
processing is applied to omit train driver’s maximum allowed
workload.

III. PROBLEM DESCRIPTION

A general railway network is usually represented by a
mixed multi-graph 𝐺 = (𝑁, 𝐸 ∪ 𝐴) in which 𝐸 and 𝐴 are the
edge and the arc set. Each node 𝑛 ∈ 𝑁 represents a station in
the network, each edge 𝑒𝑛,𝑛′ ∈ 𝐸 represents a bi-directional

track between station 𝑛 and 𝑛′ where trains can travel in both
directions, and each arc 𝑎𝑛,𝑛′ ∈ 𝐴 stands for a mono-direction

track between station 𝑛 and 𝑛′, 𝑛, 𝑛′ ∈ 𝑁. Moreover, 𝑘 ∈ 𝐸 ∪𝐴.

For the trains considered in this train insertion problem,
given that 𝑇 = 𝑇𝑒𝑥 ∪ 𝑇𝑖𝑛 , where 𝑇𝑒𝑥 is the set of train in
existing timetable, and 𝑇𝑖𝑛 is the set of trains to be inserted.
For each train 𝜏 ∈ 𝑇𝑒𝑥, its operational timetable 𝕥𝜏 is usually
decided in planning stage and organised with corresponding
arrival and departure times in stations, i.e., 𝕥𝜏 ={𝑡𝜏,𝑛𝑎 , 𝑡𝜏,𝑛𝑑 … 𝑡𝜏,𝑛′𝑎 , 𝑡𝜏,𝑛′𝑑 }, 𝜏 ∈ 𝑇𝑒𝑥 , 𝑛, 𝑛′ ∈ 𝑁, where 𝑡𝜏,𝑛𝑎 and 𝑡𝜏,𝑛𝑑

stand for the arrival and departure times for train 𝜏 at station 𝑛, respectively. For the train to be inserted, i.e., 𝜏′ ∈ 𝑇𝑖𝑛, its
timetable shall be generated as , 𝕥𝜏′ ={𝑡𝜏′,𝑛𝑎 , 𝑡𝜏′,𝑛𝑑 … 𝑡𝜏′,𝑛′𝑎 , 𝑡𝜏′,𝑛′𝑑 }, 𝜏′ ∈ 𝑇𝑖𝑛 , 𝑛, 𝑛′ ∈ 𝑁.

Within this study, the proposed reinforcement learning
algorithm shall generate the timetables for inserted trains, 𝕥𝜏𝑗 ,

into the existing timetable, 𝕥𝜏𝑖 . As discussed in section I, the

new schedule including all the existing trains and inserted
trains shall consider the robustness aspect in practice
operational, so the timetable of existing trains might require
further adjustment when consider the extra trains. Let the
adjustment for timetable of train 𝜏𝑖 is 𝕖𝜏 ={𝜖𝜏,𝑛𝑎 , 𝜖𝜏,𝑛𝑑 , … , 𝜖𝜏,𝑛′𝑎 , 𝜖𝜏,𝑛′𝑑 }, 𝜏 ∈ 𝑇𝑒𝑥 , 𝑛, 𝑛′ ∈ 𝑁 , where 𝜖 is the

adjustment value of a single time point. The adjusted timetable
for train 𝜏𝑖 in final decision is then derived as 𝕥𝜏′ = 𝕥𝜏 + 𝕖𝜏,
and thus, the final decided timetable including the inserted
trains is 𝕥′ = 𝕥𝜏′ ∪ 𝕥𝜏′ .

The train insertion problem requires careful evaluation of
the robustness of a given timetable, which encompasses all
trains 𝕥′. However, as timetable robustness is typically a post-
measurement, to overcome this challenge, we will employ a
data-driven approach in this study, leveraging historical delay
distribution data from the same network to predict the
robustness of a newly developed timetable. Here we quantify
the robustness of a certain timetable with an indicator between
0 and 1, i.e., ℛ(𝕥′, 𝐻) ∈ [0,1] , where 𝐻 is the historical
spatiotemporal delay distribution data for the considered
network, the value of ℛ(∙) with respect to the robustness of
the considered timetable spans for 0 to 1 where 0 stands for
unfeasible timetable and 1 stands for the optimal robustness.
Then the train insertion problem can be formulated as follows:

Objectives:

Max. 𝑂1 = ℛ(𝕥′, 𝐻) (1)

Min. 𝑂2 = ∑ |𝕖𝜏|𝜏∈𝑇𝑒𝑥 (2)

Constraints: 𝑡𝜏,𝑛′𝑎 ≥ 𝑡𝜏,𝑛𝑑 + 𝑡𝜏(𝑘𝑛,𝑛′) (3)

𝑡𝜏,𝑛𝑑 ≥ 𝑡𝜏,𝑛𝑎 + 𝑡𝜏,𝑛𝑝
 (4)

𝑡𝜏′,𝑛𝑎 + 𝑀 ∙ (1 − 𝑖𝜏,𝜏′𝑛) ≥ 𝑡𝜏,𝑛𝑎 + 𝛿𝑛(𝜏, 𝜏′) (5)

𝑡𝜏,𝑛𝑎 + 𝑀 ∙ 𝑖𝜏,𝜏′𝑛 ≥ 𝑡𝜏′,𝑛𝑎 + 𝛿𝑛(𝜏, 𝜏′) (6)

𝑡𝜏′,𝑛𝑑 + 𝑀 ∙ (1 − 𝑖𝜏,𝜏′𝑛) ≥ 𝑡𝜏,𝑛𝑑 + 𝛿𝑛(𝜏, 𝜏′) (7)

𝑡𝜏,𝑛𝑑 + 𝑀 ∙ 𝑖𝜏,𝜏′𝑛 ≥ 𝑡𝜏′,𝑛𝑑 + 𝛿𝑛(𝜏, 𝜏′) (8)

𝑖𝜏,𝜏′𝑛 = {1, if 𝜏 prior to 𝜏′ at station 𝑛0, otherwise

(9)

Within this study, the objective function 𝑂1 (Equation (1))
shall maximise the robustness of the final developed timetable
and the objective function 𝑂2 (Equation (2)) shall minimize
the post adjustment of timetable of existing trains. So the
algorithm shall trade-off between the two objective functions
in the optimisation process. The constraints of the
optimisation is discussed in Equation (3) to (9). Equation (3)
indicates the operational constraints for train 𝜏 between
station 𝑛 and 𝑛′, i.e., the travelling for train 𝜏 from station 𝑛
to 𝑛′ should not be small than the estimated constant traveling
time 𝑡𝜏(𝑘𝑛,𝑛′) , where 𝑘𝑛,𝑛′ ∈ 𝐸 ∪ 𝐴 . Equation (4) is the

dwelling constraint for train 𝜏 at station 𝑛, where 𝑡𝜏,𝑛𝑝
 is the

minimum dwelling time for train 𝜏 at station 𝑛. Equation (5)-
(8) are the headway constraints for two neighbouring train 𝜏
and 𝜏′at station 𝑛, these constraints are organised using big-M
approach and 𝑖𝜏,𝜏′𝑛 is a binary indicator which indicates the

passing sequence of arrival or departure actions of train 𝜏 and 𝜏′ . 𝛿𝑛(𝜏, 𝜏′)indicates the headway between train 𝜏 and 𝜏′at
station 𝑛.

IV. ACTOR-CRITIC REINFORMENT LEARNING

ALGORITHM

Actor-critic is a new branch reinforcement learning
algorithm that combines elements of both policy-based and
value-based methods. In actor-critic, there are two
components: the actor agent and the critic agent.

• The actor agent is responsible for selecting actions to take
in the environment based on the current state. It learns a
policy that maps states to actions. This is done using a
stochastic policy gradient method, such as Trust Region
Policy Optimization (TRPO), Proximal Policy
Optimization (PPO) algorithm, etc.

• The critic agent, on the other hand, is responsible for
estimating the value function of the current state, which
represents the expected cumulative reward that can be

obtained from that state. The critic uses the temporal
difference (TD) learning method to estimate the value
function, by computing the difference between the
predicted value of the next state and the actual observed
value.

The actor and critic agents are usually approximated by
neural networks and trained synchronously, with the critic
providing feedback to the actor about the quality of its actions.
This feedback is used to update the policy function of agent in
a way that improves the expected cumulative reward. Fig. 2
provides an overview of the architecture of the proposed actor
critic reinforcement learning.

Environment

Critic agent

Actor agent

Input Layer ¹⁶ Hidden Layer ¹² Hidden Layer ¹⁰ Output Layer ²

Input Layer ¹⁶ Hidden Layer ¹² Hidden Layer ¹⁰ Output Layer ²

State

State Action

Reward

TD error TD error

Fig. 2 The framework of Actor-critic reinforcement learning
algorithm and the data flow within it

A. Actor agent

In this study, we propose an actor-agent that is trained to
create a timetable for a train by learning how to map a
promising action to the observed state of the train through its
policy function, 𝜋: 𝑠 → 𝛼. The algorithm takes into account
the extra trains and first determines the timetables of the
inserted trains before adjusting the schedules of the existing
trains. The state of a train is abstracted at every station where
the inserted train departs, dwells, and terminates. Let the train
to be inserted is train 𝜏∗The state of a train is represented as a
tuple consisting of (1) current time, which indicating the peak
or off-peak hour that the inserted train will be operated. (2) the
arrival/departure time of neighbouring trains at the current
time (including those that arrive/depart prior to and after the
current time) which indicating the potential time slot for the
inserted train. (3) minimum dwelling period of the inserted

train, i.e., 𝑠 = {𝑡, 𝑡𝜏,𝑛𝑎 , 𝑡𝜏,𝑛𝑑 , 𝑡𝜏′,𝑛𝑎 , 𝑡𝜏′ ,𝑛𝑑 , 𝑡∗𝑝}, 𝑠 ∈ 𝑆 , where 𝑠

stands for the state vector and 𝑆 is the set of states. The action
of the actor agent includes the candidate arrival and departure
times of the train to be inserted at the considered station, i.e., 𝛼𝑛 = {𝑡𝜏∗,𝑛𝑎 , 𝑡𝜏∗,𝑛𝑑 }, 𝛼𝑛 ∈ 𝒜 where 𝛼𝑛 is the action at station 𝑛

and 𝒜 is the set of actions.

The existing train schedule, which includes the arrival and
departure times at all stations under consideration, is regarded
as the environment in which the reinforcement learning
algorithm operates. The algorithm interacts with the

environment through the actor agent to determine the
timetable for an additional train, from its starting station to its
destination. Once the actor agent has made decisions for all
necessary extra trains, the current episode will be concluded,
and the trajectory of the actor agent is formulated as 𝜑 ={(𝑠𝑛1 , 𝛼𝑛1), (𝑠𝑛2 , 𝛼𝑛2), … (𝑠𝑁 , 𝛼𝑁)}.

In this study, we use policy gradient approach to update
the neural network within actor agent, which is identified by
parameters 𝜃 . The reward is defined to quantify the
performance of the action, 𝛼𝑛, made by actor agent at station 𝑛 with respect to the objective function 𝑂1, and 𝑟(𝑛) (i.e., the
value of reward at the station 𝑛) is decided as the same value
derived by the objective function 𝑂1 . The total rewards
through 𝜑 can be derived as: 𝑅(𝜑) = ∑ 𝛾 ∙𝜑 𝑟(𝑛) (10)

where 𝛾 ∈ (0,1] is a discount factor. Because the reward for
the actor agent is supported by the critic agent rather than the
‘true’ reward identified as, 𝑟(𝑛) , finally evaluated by the
algorithm (here, we call the reward provided by critic agent as
baseline reward, identified as 𝑏(𝑛)), so the distinction
between the 𝑅(𝜑) and 𝐵(𝜑) will be viewed as temporal
difference error which will be used to update the neural
network in actor agent, then the objective function can be
approximated as: 𝑂1′ (𝜃) = 𝑬𝜑~𝜋𝑅(𝜑)= ∑ 𝑃(𝜑; 𝜃)𝜑∙ ∑ (𝑟(𝑛) − 𝑏(𝑛))𝑁

𝑛

(11)

and then the gradient of the expected rewards can be derived
as: ∇𝜃𝑂1′ (𝜃) = ∑ ∇𝜃𝑃(𝜑; 𝜃)𝑅(𝜑)𝜑 = 𝑬𝜑~𝜋∇𝜃 log 𝑃(𝜑; 𝜃)∙ ∑ (𝑟(𝑛) − 𝑏(𝑛))𝑁

𝑛

(12)

At the end of an episode, the parameters 𝜃 will be updated as: 𝜃 ← 𝜃 + 𝑙 ∙ ∇𝜃𝑂1′ (𝜃) (13)

where 𝑙 is the learning rate, i.e., 𝑙 ∈ (0,1].
B. Critic agent

In actor-critic reinforcement learning algorithms, the critic
agent is responsible for estimating the value function for a
given policy. The value function represents the expected
return (i.e., cumulative reward) that an agent would receive
starting from a particular state, and following a particular
policy thereafter. In this study, the critic agent is organized to
benchmark and quantify the robustness of a timetable.
Usually, evaluating a railway timetable is typically a
challenging task due to the fact that its robustness can only be
quantified post-execution through the accumulation of
operational data covering various hazards that may occur in
the railway network.

The critic agent is approximated by a neural network
parameterized by 𝜔, which aims to determine the robustness
of a newly inserted timetable against the existing ones at a
single station. The neural network takes several inputs,
including (1) the ID of the station being considered, 𝑛, (2) the
timetable of the inserted train generated by the actor agent, {𝑡𝜏∗,𝑛𝑎 , 𝑡𝜏∗,𝑛𝑑 }, and the timetables of the trains that run prior to

and after the inserted train at the same station {𝑡𝜏𝑖,𝑛𝑎 , 𝑡𝜏𝑖,𝑛𝑑 , 𝑡𝜏𝑗,𝑛𝑎 , 𝑡𝜏𝑗,𝑛𝑑 }. Here, 𝜏𝑖 and 𝜏𝑗 refer to the trains that

pass before and after the train 𝜏∗, respectively, at station 𝑛.
Moreover, the output is the quantified robustness (i.e., a value

between 0 and 1) for the considered timetable {𝑡𝜏∗,𝑛𝑎 , 𝑡𝜏∗,𝑛𝑑 }.

The training of the critic agent is structured into two
phases. The first phase involves off-line training using
previously accumulated data in the network, while the second
phase involves on-line training through iterative interactions
within reinforcement learning. During the first phase, the
critic agent acquires a basic understanding of the system's
robustness based on historical data, but it is important to note
that relying solely on past knowledge may not be sufficient to
support decision-making processes for new situations.
Therefore, in phase 2, the critic agent further develops its
knowledge to accumulate information that can help it
benchmark the robustness for new timetables across the whole
network.

Fig.3 Train delay distribution over spatiotemporal information of the
network

During phase 1, the previously collected data is organized
into mock data in the same way and fed into the neural
network. If the considered train is the first scheduled train, the
timetable of the train prior is considered as {0,0}. In this study,
the robustness value, which represents the expected output of
the neural network, is evaluated using a percentage value that
is quantified by the probability of neighboring trains being
affected by the historical delay distribution of the considered
train. Fig. 3 provides an example of train delay distribution
over spatiotemporal information of rail network. Considering
two neighboring train, 𝜏𝑖 and 𝜏𝑗, passing the same station 𝑛𝑖,
and their delay distributions at the station over time are 𝑃𝜏𝑖(𝑡)

and 𝑃𝜏𝑗(𝑡) which are approximated by (reversed) exponential

distribution, respectively. Let the considered time 𝑡′ is the
target time stamp we are trying to insert the train, then the
robustness for 𝑡′ is quantified by the minimum value of the
possibility value from 𝑡𝜏𝑖,𝑛𝑑 to 𝑡′ and 𝑡′ to 𝑡𝜏𝑗,𝑛𝑎 which is

identified in the lower part of equation (14). Furthermore, if
the time 𝑡′ equals either 𝑡𝜏𝑖,𝑛𝑖𝑑 or 𝑡𝜏𝑗,𝑛𝑖𝑎 . The time should be

infeasible, and thus, the value of robustness equals to zero. ℛ([𝑡𝜏𝑖,𝑛𝑑 , 𝑡′ , 𝑡𝜏𝑗,𝑛𝑎], 𝐻)= {min𝑡′ (𝑃𝜏𝑖(𝑡), 𝑃𝜏𝑗(𝑡)) , 𝑡𝜏𝑖,𝑛𝑑 < 𝑡′ < 𝑡𝜏𝑗,𝑛𝑎0, otherwise
(14)

In Phase 2, the critic agent will try to further develop this
knowledge on benchmarking robustness on a new timetable,
and quantifies a temporal difference error to update the actor
agent. At the end of each episode, the parameters of critic
neural network will be updated as 𝜔 ← 𝜔 + 𝑙 ∙ ∑ (𝑟(𝑛) − 𝑏(𝑛))𝑁𝑛 (15)

V. CASE STUDY

The proposed algorithm is tested using a British rail
corridor covering from Newcastle to London Kings Cross.
The rail corridor covers 7 main stations from northern England
to central London area. Fig. 4 provides an overview of the
corridor.

Fig. 4 Overview of network

The original timetable of this case study considered the
schedule from 9:00 to 16:00, and one extra freight trains are
expected to be inserted into the schedule. Both the actor and
critic agents are approximate using two fully connected neural
networks which are setup with the following parameters. In
proposed actor-critic reinforcement learning algorithm is
implemented Python (v3.10) on a windows PC with AMD
Ryzen 7 4800U processor and 24GB RAM, TensorFlow is
called to organize the neural networks in the reinforcement
learning algorithm.

Table I. structure of actor and critic neural network

The Nth Layer No. of nodes Activation
function

Critic Neural Network

1st Normalized Input Layer 6 ReLU (rectified
linear unit)

2nd Dense layer dims 256 ReLU

3rd Dense layer dims 256 ReLU

4th Dense layer dims 128 ReLU

5th Dense layer dims 64 ReLU

6th Dense layer dims 32 ReLU

7th Dense layer dims 1 Linear

Actor Neural Network

1st Normalized Input layer 6 ReLU

2nd Dense layer dims 128 ReLU

3rd Dense layer dims 128 ReLU

4th Dense layer dims 64 ReLU

5th Dense layer dims 32 ReLU

6th Dense layer dims 1 tanh

Table II. Parameter settings of actor-critic reinforcement learning

Parameters Value

Replay buffer size 50

Batch size 64

Delay episode for training 512

Update step 64

Discount factor 0.9

Actor learning rate 0.003

Critic learning rate 0.001

Fig. 5. The resultant timetable for the extra train

In this study, we use longest headway dispatching rule, a
rule-based approach, as the benchmark. The rule-based
approach will schedule the extra train only with the support of
existing timetables, and the arrival and departure times of the
inserted train will be selected ensuring equally longest time
interval between the inserted train and its neighbouring trains

at stations. Fig. 5 provides the scheduling results generated by
the benchmark approach and the proposed actor-critic
reinforcement learning algorithm, and Table III illustrates the
detailed timetable generated by both algorithms.

In Fig. 5, the red lines represent the timetables of existing
trains, while the red polygons describe the robustness
boundaries of each train within the station area. These
robustness boundaries are generated based on historical
lateness data of the trains. It is worth noting that there is
significant lateness of trains at Darlington and York stations
during peak hours (7:00 - 9:30 a.m.). Therefore, all trains
passing through York station around peak hours shall
incorporate an extra time interval in their headway to ensure
the robustness of the existing trains' timetables. However,
when observing the results generated by the rule-based
approach (upper part of Fig. 5), it is evident that the timetable
of the extra train has a slight overlap with the robustness
boundary of the second train at Darlington station. This
overlap has the potential to compromise the timetable
robustness of the second train and increase the likelihood of
readjusting its timetable during real-time operation. In
contrast, the timetable generated by the reinforcement
learning algorithm for the extra train (lower part of Fig. 5)
takes into account the fluctuation of the departure time of the
second train. As a result, the algorithm makes a decision to
slightly postpone the departure time of the inserted train at
Darlington station. Similar decisions are also made for the
departure times at York station and Peterborough station. By
considering the potential conflicts with existing train
timetables and making appropriate adjustments, the
reinforcement learning algorithm demonstrates its ability to
improve robustness and minimize the need for real-time
readjustments in train operations.

VI. CONCLUSIONS

This paper presents a novel actor-critic reinforcement
learning algorithm to address the challenge of scheduling
additional trains into existing timetables. The main difficulty
in this train insertion problem lies in the unknown robustness
aspect, which is a post-measurement during railway
operations and challenging to incorporate during the planning
stage. Within the actor-critic reinforcement learning
algorithm, the critic agent uses historical lateness data to
measure timetable robustness for the considered network. This
information is then used to provide the reward to the actor
agent, enabling better decision-making and ensuring
improved robustness. We illustrate the effectiveness of our
approach through a case study, showcasing a successful pilot

test of the proposed reinforcement learning algorithm and its
promising capabilities in solving practical train insertion
problems in railway corridors.

REFERENCES

[1] V. Cacchiani et al., “An overview of recovery models and algorithms
for real-time railway rescheduling,” Transportation Research Part B:

Methodological, vol. 63. Elsevier Ltd, pp. 15–37, May 01, 2014. doi:

10.1016/j.trb.2014.01.009.

[2] F. Corman and L. Meng, “A review of online dynamic models and

algorithms for railway traffic management,” IEEE Trans. Intell.

Transp. Syst., vol. 16, no. 3, pp. 1274–1284, 2015, doi:

10.1109/TITS.2014.2358392.

[3] W. Fang, S. Yang, and X. Yao, “A Survey on Problem Models and
Solution Approaches to Rescheduling in Railway Networks,” IEEE

Trans. Intell. Transp. Syst., vol. 16, no. 6, pp. 2997–3016, 2015, doi:

10.1109/TITS.2015.2446985.

[4] N. Bešinović et al., “Artificial Intelligence in Railway Transport:

Taxonomy, Regulations and Applications,” IEEE Trans. Intell.

Transp. Syst., pp. 1–14, 2021, doi: 10.1109/TITS.2021.3131637.

[5] J. Liu, L. Chen, C. Roberts, Z. Li, and T. Wen, “A Multi-agent Based

Approach for Railway Traffic Management Problems,” in 2018

International Conference on Intelligent Rail Transportation, ICIRT

2018, 2019, pp. 1–5. doi: 10.1109/ICIRT.2018.8641621.

[6] J. Liu, L. Chen, C. Roberts, G. Nicholson, and B. Ai, “Algorithm and
peer-to-peer negotiation strategies for train dispatching problems in

railway bottleneck sections,” IET Intell. Transp. Syst., vol. 13, no. 11,

pp. 1717–1725, 2019, doi: 10.1049/iet-its.2019.0020.

[7] R. L. Burdett and E. Kozan, “Techniques for inserting additional
trains into existing timetables,” Transp. Res. Part B Methodol., vol.

43, no. 8–9, pp. 821–836, Sep. 2009, doi: 10.1016/j.trb.2009.02.005.

[8] V. Cacchiani, A. Caprara, and P. Toth, “Scheduling extra freight trains
on railway networks,” Transp. Res. Part B Methodol., vol. 44, no. 2,

pp. 215–231, 2010, doi: 10.1016/j.trb.2009.07.007.

[9] F. Jiang, V. Cacchiani, and P. Toth, “Train timetabling by skip-stop

planning in highly congested lines,” Transp. Res. Part B Methodol.,

vol. 104, pp. 149–174, Oct. 2017, doi: 10.1016/j.trb.2017.06.018.

[10] F. Ljunggren, K. Persson, A. Peterson, and C. Schmidt, “Railway
timetabling: a maximum bottleneck path algorithm for finding an

additional train path,” Public Transp., vol. 13, no. 3, pp. 597–623,

2021, doi: 10.1007/s12469-020-00253-x.

Table III Timetable for the extra train generated by rule-based algorithm and the reinforcement learning algorithm

Stations NCL DHM DAR YORK DON PBO KGX

Rule-based algorithm

Arrival 7:18 7:40 8:18 9:29 11:30 14:58 17:57

Departure 7:18 7:40 8:37 10:37 12:08 15:25 17:57

Actor-critic reinforcement learning algorithm

Arrival 7:18 7:40 8:18 9:40 11:39 14:58 18:09

Departure 7:18 7:40 8:48 10:46 12:08 15:37 18:09

