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Aims Diabetes mellitus (DM) increases heart failure incidence and worsens prognosis, but its molecular basis is poorly defined in humans. 
We aimed to define the diabetic myocardial transcriptome and validate hits in their circulating protein form to define disease me
chanisms and biomarkers.

Methods 
and results

RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project was used to define differentially expressed genes 
(DEGs) in right atrial (RA) and left ventricular (LV) myocardium from people with vs. without DM (type 1 or 2). DEGs were va
lidated as plasma proteins in the UK Biobank cohort, searching for directionally concordant differential expression. Validated plas
ma proteins were characterized in UK Biobank participants, irrespective of diabetes status, using cardiac magnetic resonance 
imaging, incident heart failure, and cardiovascular mortality. We found 32 and 32 DEGs associated with DM in the RA and LV, re
spectively, with no overlap between these. Plasma proteomic data were available for 12, with ERBB3, NRXN3, and HSPA2 (all LV 
hits) exhibiting directional concordance. Irrespective of DM status, lower circulating ERBB3 and higher HSPA2 were associated 
with impaired LV contractility and higher LV mass. Participants in the lowest quartile of circulating ERBB3 or highest quartile of 
circulating HSPA2 had increased incident heart failure and cardiovascular death vs. all other quartiles.

Conclusion DM is characterized by lower Erbb3 and higher Hspa2 expression in the myocardium, with directionally concordant differences in 
their plasma protein concentration. These are associated with LV dysfunction, incident heart failure, and cardiovascular mortality.
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1. Introduction
The global prevalence of diabetes mellitus (DM) was estimated at 9.3% of 
adults (463 million people) in 2019 and is expected to rise to 10.9% (700 mil
lion people) by 2045.1 While the incidence of most microvascular and macro
vascular complications of DM continues to decline, the incidence of heart 
failure (HF) is static.2 Epidemiological studies suggest that people with DM ex
perience at least a doubled incidence of HF, both for those with type 1 or type 
2 DM, with comparable incidence rates for HF with preserved or reduced 
ejection fraction.3,4 Moreover, the prognosis of people with HF who also 
have DM is worse, with doubled rates of all-cause mortality5 and 50% greater 
rates of HF hospitalization, compared to individuals with normal glucose me
tabolism.6 While obesity is an important risk factor for HF in people with DM, 
it is notable that even those people without obesity or other modifiable risk 
factors experience increased risk of HF and myocardial dysfunction.2,7 This 
suggests that existing risk factor modification strategies are not fully addres
sing the pathophysiology of diabetic heart disease.

Our understanding of the molecular basis of myocardial disease asso
ciated with DM largely comes from animal models that do not recapitulate 
many of the phenotypic and treatment characteristics of people with 
DM.8–10 This reflects the challenges of collecting myocardial biopsies, espe
cially of the left ventricle, from large cohorts of people with and without 
DM. Moreover, many studies apply a biased approach to molecular char
acterization, focusing on predefined genes or pathways, which further in
creases the risk of missing unappreciated pathophysiological processes. 
We aimed to address this by using RNA-sequencing (RNA-seq) data 
from the Genotype-Tissue Expression (GTEx) project, which collected 
multi-organ biopsy material from a large cohort of organ donors.11

Differentially expressed genes (DEGs) associated with DM were defined 
separately in right atrial (RA) and left ventricular (LV) tissue. These were 
further explored using plasma proteomic data from the UK Biobank 
(UKB) cohort to seek concordant hits with potential use as biomarkers 
and to inform understanding of pathophysiology.

2. Methods
2.1 Myocardial RNA-seq data from 
GTEx project
The GTEx project was established by the Broad Institute of MIT and 
Harvard with a primary goal of defining associations between genomic vari
ation and gene expression in 54 tissues across the human body.11 Tissues 
were retrieved post-mortem from organ donors following consent from 
family decision-makers. RNA-seq was performed as described in detail 
on the GTEx project website (https://gtexportal.org/home/methods). RA 
appendage and LV apex RNA-seq data are available from 429 and 432 do
nors, although our analyses pertain to 425 RA and 428 LV samples after 
exclusion due to missing metadata required as covariates in differential 
gene expression analysis. Bulk RNA-seq raw count data were downloaded 
directly from the GTEx portal (https://www.gtexportal.org/home/), using 
GTEx version 8 release on 18 July 2022. This includes metadata on donor 
age, sex, ischaemic time (between death and sample collection), and Hardy 
score (mode of death classification). For sensitive metadata, pertaining to 
comorbidities, a protected access data application was granted by dbGaP 
(https://www.ncbi.nlm.nih.gov/gap/) #32524 ‘Defining tissue-specific tran
scriptional profiles associated with diabetes’.

2.2 RNA-seq analysis pipeline for GTEx data
Differential gene expression analysis was conducted using R (Version 4.1.1) 
and the DESeq2 package (Version 1.36.0).12 We sought DEGs associated 
with diabetes. Donors with type 1 or type 2 diabetes were pooled to cre
ate a single diabetes variable, since multiple donors were recorded as hav
ing both forms of diabetes and detailed treatment data were not available. 
Those with diabetes status unknown were excluded. Covariates in DESeq2 
analyses were age (20–29, 30–39, 40–49, 50–59, 60–69, and 70–79); sex; 
race; ischaemic time as categories of 300 min (0–299, 300–599, 600–899, 
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900–1199, and 1200–1499); Hardy score; BMI which was classed as normal 
weight (18.5–24.9 kg/m2), overweight (25–29.9 kg/m2), and obese 
(>30 kg/m2); medical history indication of hypertension and myocardial in
farction; and RNA integrity score (RIN; 5.1–6, 6.1–7, 7.1–8, 8.1–9, and 9.1– 
10). Technical factors including ischaemic time, defined by GTEx as ‘time 
from death or withdrawal of life-support until the time the sample is placed 
in a fixative solution or frozen’, Hardy score, and RIN were included. 
Biological cofactors of age, sex, race, and BMI were included because these 
are also known to alter cardiac gene expression. Genes were filtered to in
clude only those with greater than 10 read counts in at least the same num
ber of samples as included in the diabetes subgroup. Effect size shrinkage 
using the apeglm method was applied for visualization and ranking of 
genes.13 False discovery rate (FDR)–adjusted P values produced by 
DESeq2 using the Benjamini–Hochberg method were used, with adjusted 
P < 0.05 defined as statistically significant. Functional profiling of DEGs was 
performed using gProfiler (https://biit.cs.ut.ee/gprofiler/gost). DEGs were 
run as queries, with significance threshold calculated using Benjamini– 
Hochberg FDR. Driver terms were highlighted in the output as the most 
relevant Gene Ontology (GO) terms and exported.

2.3 UK Biobank cohort
UKB is a prospective observational cohort study of 502 462 participants 
aged 37–73 years, recruited from 22 assessment centres across the UK be
tween 2006 and 2010. It is an open access resource developed using UK 
Government and biomedical research charity funding which linked wide- 
ranging phenotypic and healthcare record data. The UKB resource is 
open to all bona fide researchers. Full details of its design and conduct 
are available online (https://www.ukbiobank.ac.uk). UKB received ethical 
approval from the NHS Research Ethics Service (11/NW/0382); we con
ducted this analysis under application number 105351. All participants pro
vided written informed consent, and the research was conducted in line 
with the Declaration of Helsinki. All analyses were conducted via the 
UKB Research Analysis Platform (https://ukbiobank.dnanexus.com).

2.4 Definition of diabetes in UKB
Baseline sociodemographic characteristics and comorbidities were recorded 
by participants completing a touchscreen and nurse-led interview at study re
cruitment and used as we have previously described.14 Data from 
face-to-face nurse-led interview was used to ascertain baseline comorbidities 
and medication. Diabetes was classified as any of ‘diabetes’ (UK Biobank field 
ID ‘1220’); ‘type 1 diabetes mellitus’ (‘1222’); ‘type 2 diabetes mellitus’ 
(‘1223’); ‘diabetic eye disease’ (‘1276’); ‘diabetic neuropathy/ulcers’ (‘1468’), 
and ‘diabetic nephropathy’ (‘1607’), as we have previously described.7

2.5 Plasma proteomic data in UKB
A recent update to UKB is the addition of plasma proteomic profiles from 
54 219 UKB participants.15 These were measured with the Olink Explore 
3072 panel, a proximity extension assay using paired antibodies and com
plimentary oligonucleotides, which quantifies 2923 unique proteins includ
ing clinically relevant biomarkers of cardiac stress and/or injury including 
NT-proBNP and TNNI3 (troponin I). Details of UKB quality control pro
cedures for plasma proteomics have been descried by Sun and collea
gues.15 Protein concentration is provided as normalized protein 
expression (NPX) values. Where proteins were below the limit of assay 
detection in specific samples, these are recorded as missing data. NPX va
lues were converted to Z-scores, defined as z = (x−μ)/σ, where x = pro
tein NPX, μ = population mean, and σ = population standard deviation. 
We used proteomic data collected at the initial assessment centre visit.

2.6 Cardiovascular magnetic resonance 
imaging data in UKB
From 2014, ∼50 000 participants have taken part in multimodality imaging 
assessment, which included cardiovascular magnetic resonance imaging 
(MRI).16–18 Expression of ERBB3 was compared against MRI parameters 

to determine if protein expression related to MRI markers of cardiac func
tion. MRI parameters used were LV ejection fraction (LVEF; UKB field ID: 
‘22 420’), LV circumferential strain global (UKB field ID: ‘24 157’), LV longi
tudinal strain global (‘24181’), LV radial strain global (‘24174’), LV myocardial 
mass (‘24105’), and myocardial wall thickness global (‘24140’). Of the UKB 
participants who had ERBB3 protein expression data, there were LV imaging 
data on ∼5000 of these (ranging from 4986 participants for LV longitudinal 
strain global to 5122 participants for LV myocardial mass). Additionally, car
diac contractility index (CCI) was used as an additional measure of cardiac 
functionality. CCI was derived by systolic blood pressure (UKB field 
‘4080’) divided by LV end-systolic volume (LVESV) index, calculated as 
LVESV (‘22422’) normalized to body surface area (‘22427’) as previously de
scribed.7 When calculating CCI, six participants with LVESV < 20 mL were 
excluded as outliers of >3 standard deviations from the mean.

2.7 Definition of outcome measures in UKB
Time-to-HF was defined as the time between date of baseline assessment 
centre visit (when plasma proteins were measured) and the date that HF 
first reported (UKB field IDs 131354 and 131355), excluding participants 
with pre-existing heart failure. Self-reported HF codes were excluded 
(UKB code IDs 50 and 51 in data field 131355) to focus solely on events 
confirmed in medical records, including the death register, primary care, 
and hospital admission reports (UKB code IDs 20, 21, 30, 31, 40, and 41 
in data field 131355). Cardiovascular mortality was defined I00–I99, ex
cluding those related to infection mortality, as previously described.7

2.8 Statistical analysis of UKB
Categorical data are presented as number (percentage of denominator), 
and continuous data are presented as mean (standard deviation). 
Statistical significance was defined as P < 0.05 using two-sided tests. 
Normality was determined by skewness and kurtosis tests using the 
Moments (v0.14.1) R package (https://cran.r-project.org/web/packages/ 
moments/index.html). Correlations between ERBB3 or HSPA2 and other 
continuous variables were calculated using Spearman’s rank test. 
Comparisons across ERBB3 or HSPA2 quartile groups were made using 
χ2 tests followed by pairwise proportional tests for categorical data, and 
one-way ANOVA followed by Tukey post hoc tests for continuous data. 
Where a one-way ANOVA was not appropriate due to non-normality 
of data, Welch’s ANOVA followed by Games–Howell post hoc tests 
were used as an alternative. Time-to-event analyses were performed using 
the R package Survival (v3.2.13),19 The censorship date for these analyses 
was 30 Aug 2023. As the proportional hazard assumptions were not met 
by Cox regression models, Poisson regression models including exposure 
time were generated instead. ROC curves were generated using the pROC 
package (1.18.5) using binary logistic regression models.20

3. Results
Bulk RNA-seq data from GTEx was used to identify differentially expressed 
genes (DEGs) in samples from people with DM vs. people without DM. Of 
RA donors 23.5% had DM, whilst this was 23.3% for LV donors. Overall, 
there was a greater proportion of men than women, and the majority of 
donors were white. There was a greater prevalence of prior myocardial in
farction and hypertension in the DM donors (see Supplementary material 
online, Table S1). BMI, ischaemic time, and Hardy score were comparable in 
donors with and without DM. As all covariates in Supplementary material 
online, Table S1, have important implications for gene expression in individ
ual samples, they were included as covariates in differential gene expression 
analyses, even if data were similar in groups with and without DM.

3.1 DEGs associated with diabetes in the LV 
and RA
After accounting for confounding covariates, we identified 46 and 72 DEGs 
associated with DM (FDR-adjusted P < 0.05) in the LV and RA, respectively 
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(Figure 1; Supplementary material online, Tables S2–S3). Of these, 32 LV 
and 32 RA DEGs had a log2 fold change > 0.32 or < −0.32 (corresponding 
to a 25% difference in gene expression, although our use of effect size 
shrinkage means differences are likely to be larger). Notably, there was 
no overlap in DEGs in the LV and RA, suggesting that DM has different 

pathophysiological implications in ventricular vs. atrial myocardium. To ex
plore the biological themes within DEGs, functional enrichment analysis 
was performed using g:Profiler.21 In RA, this detected enrichment of im
mune system terms including IgG and IgA immunoglobulin complexes 
(GO terms: GO:0019814, GO:0071735, and GO:0071745). In LV, IgG im
munoglobulin complex (GO:0071735) was also altered, but the several 
altered LV GO terms related to neuronal activity such as neuroligin family 
binding protein and structural constituent of myelin sheath (GO:0097109 
and GO:0019911; see Supplementary material online, Tables S4–S5).

3.2 Validation of DEGs using UKB plasma 
proteomics
To corroborate the DEGs observed in GTEx, we used the orthogonal ap
proach of defining these genes at their protein level in the circulation, which 
may also aid the translation of these findings to clinically relevant biomar
kers. UKB used Olink technology to measure 2923 proteins in the plasma 
of 52 705 participants. Of the 64 DEGs observed in either LV or RA, prote
omic data were available for 12 (Table 1). Eleven exhibited statistically sig
nificant differences in plasma protein expression between DM and 
non-DM participants. However, only ERBB3 (lower in DM), NRXN3 (low
er in DM), and HSPA2 (higher in DM) exhibited a directionally concordant 
change in myocardial RNA expression and plasma protein concentration 
(Table 1). Moreover, DM was not associated with altered expression of 
these genes in non-cardiac tissues (see Supplementary material online, 
Table S6). Hence, these plasma proteins warrant further exploration as bio
markers of cardiac disease associated with DM.

3.3 Cardiovascular outcomes of directionally 
concordant hits in UKB
Next, we asked if plasma ERBB3, NRXN3, and HSPA2 were associated 
with long-term development of major cardiovascular events (2234 incident 
HF events during 719 262 person-years follow-up and 1139 cardiovascular 
deaths during 733 833 person-years follow-up). Kaplan–Meier curves illus
trate a higher incidence of heart failure in the lowest quartile of ERRB3 
(Figure 2A) and highest quartile of HSPA2 (Figure 2B); there were no inter
quartile differences for NRXN3 (Figure 2C). Kaplan–Meier curves again il
lustrate a higher incidence of cardiovascular mortality in the lowest quartile 
of ERRB3 (Figure 2D) and highest quartile of HSPA2 (Figure 2E); there were 
no interquartile differences for NRXN3 (Figure 2F). Hence, we prioritized 
our ongoing focus on ERBB3 and HSPA2.

Poisson regression was used to explore whether ERBB3 and HSPA2 
remained associated with these events after accounting for potential 
confounding factors (Table 2). After adjustment for age, sex, BMI, SBP, and 
DM, adverse outcomes persisted in the lowest quartile of ERBB3 and highest 
quartile of HSPA2. However, further inclusion of NT-proBNP in these mod
els resulted in loss of associations, except for higher cardiovascular mortality 
in the highest quartile of HSPA2. We also explored whether ERBB3 or 
HSPA2 added prognostic value to NT-proBNP as continuous variables using 
ROC analyses; these showed no statistically significant increase in the c-stat
istic, implying no added value to the already robust performance of 
NT-proBNP (see Supplementary material online, Figures S1–S2). However, 
in clinical practice, NT-proBNP is dichotomized to define high-risk popula
tions, and so we asked if ERBB3 and HSPA2 were associated with adverse 
outcomes after excluding participants in the upper decile of NT-proBNP. 
This showed that cardiovascular mortality was higher in lowest quartile of 
ERBB3 and the highest quartile of HSPA2, after adjustment for age, sex, 
BMI, and diabetes (see Supplementary material online, Table S7), although 
there was no association with incident heart failure.

As ERBB3 signals by heterodimerizing with other ERBB family members, 
we conducted similar analyses for ERBB2 and ERBB4 as UKB proteomic 
data are also available for these. We found similar, although less robust, 
patterns for both ERBB2 and ERBB4, with participants in the lowest quar
tile having higher risks of incident heart failure and cardiovascular mortality 
than some other quartiles when adjusted for age, sex, BMI, and DM. (see 
Supplementary material online, Figures S3–S4 and Tables S8–S9).

Figure 1 Differential gene expression associated with diabetes in the 
RA and LV. Volcano plots illustrating differential gene expression for 
DM vs. without DM for RA (A: n = 120 vs. 305 participants) and LV 
(B: n = 100 vs. 329 participants). Each dot represents a gene, with red colour 
denoting those that achieve Benjamini–Hochberg FDR-adjusted P < 0.05 
and log2 fold change > 0.32 or < −0.32 (corresponding to a 25% difference 
in gene expression). Raw data are presented in Supplementary material 
online, Tables S1 and S2. LV, left ventricle; RA, right atrium.
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3.4 Participant characteristics associated 
with ERBB3 and HSPA2 in UKB
To examine the wider characteristics of participants according to circulat
ing ERBB3 or HSPA2 concentrations, we divided UKB participants into 
quartiles, with quartile 1 (Q1) representing the lowest concentration. As 

shown in Table 3, lower ERBB3 was associated with older age, male sex, 
marginally lower BMI, higher prevalence of DM, prior MI and HF, and great
er use of a range of cardiovascular and diabetes medications. As shown in 
Table 3, higher HSPA2 was associated with older age, female sex, higher 
BMI, higher prevalence of DM, prior MI and HF, and greater use of a range 
of cardiovascular and diabetes medications.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 1 Validation of GTEx myocardial RNA-seq hits using UKB plasma proteomics

Gene GTEx UKB

No DM DM
Tissue pAdj Log2 FC Z-score Z-score pAdj

CGA RA 0.028 0.89 0.006 (0.004) −1.04 (0.004) 7.7e−11
MZB1 RA 0.010 −0.78 −0.02 (0.004) 0.352 (0.005) 3.2e−65

SLAMF7 RA 0.009 −0.59 −0.019 (0.004) 0.335 (0.005) 3.2e−65

COL28A1 LV 0.003 −0.5 −0.007 (0.004) 0.11 (0.005) 1.5e−7
PCDH7 RA 0.030 −0.46 −0.007 (0.005) 0.132 (0.005) 9.6e−10

ERBB3 LV 0.0004 −0.45 0.004 (0.004) −0.068 (0.005) 8.4e−4

NRXN3 LV 0.004 −0.43 0.003 (0.005) −0.052 (0.005) 9.8e−3
L1CAM LV 0.003 −0.41 −0.009 (0.004) 0.162 (0.005) 1.0e−14

SLITRK2 LV 0.021 −0.41 −0.015 (0.004) 0.255 (0.005) 3.0e−38

WFDC1 RA 0.043 −0.38 −0.008 (0.005) 0.138 (0.005) 8.7e−13
HSPA2 LV 0.034 0.35 −0.014 (0.005) 0.238 (0.005) 3.2e−27

NUDT10 RA 0.031 −0.34 0.002 (0.005) −0.029 (0.004) NS

Z-scores presented as mean (SEM). GTEx analysis of RA represents 120 participants with DM vs. 305 participants without DM, and LA represents 100 participants with DM vs. 329 participants 
without DM. UKB analysis represents data from cohort of 52 705 participants. 
DM, diabetes mellitus; FC, fold change; GTEx, Genotype-Tissue Expression project; NS, non-significant; UKB, United Kingdom Biobank.

Figure 2 Incident HF and cardiovascular mortality in plasma ERBB3, HSPA2, and NRXN3 quartiles. Kaplan–Meier curves illustrating probability of freedom 
from HF (A–C) or cardiovascular mortality (D–F) during long-term follow-up of the UKB cohort stratified into quartiles of plasma ERBB3 (A and D), HSPA2 
(B and E), and NRXN3 (C and F ). Quartile 1 represents the lowest quartile of expression and quartile 4 the greatest; each quartile includes 12 833 participants 
for ERBB3, 11 114 participants for HSPA2, and 10 890 participants or NRXN3.
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To assess association with baseline cardiac function, we defined correl
ation with cardiac MRI metrics (Table 4), focusing on measures of LV func
tion given ERBB3 and HSPA2 were differentially expressed in LV 
myocardium. Lower ERBB3 was associated with markers of impaired LV 
contractility and higher LV mass; these correlations were weak, but of a 
magnitude similar to those noted for NT-proBNP (see Supplementary 
material online, Table 10). These associations lost statistical significance 
when adjusting for age, sex, and indicators of current cardiometabolic dis
ease. Similarly, higher HSPA2 was associated with impaired LV contractility 
and higher LV mass, albeit with weak correlation coefficients, and the asso
ciation with LV mass persisted in adjusted analyses.

We finally explored associations with clinically used circulating biomar
kers of cardiometabolic status (Table 4). Lower ERBB3 was associated with 
higher concentrations of NT-proBNP (a marker of increased ventricular 
wall stress) and troponin I (a marker of cardiomyocyte injury), higher sys
tolic blood pressure, and higher urinary microalbumin (a marker of diabetic 
microvascular disease), but did not correlate with HbA1c (a marker of 

glycaemic control); the association with NT-proBNP and urinary microal
bumin persisted in adjusted analyses. Higher HSPA2 was also associated 
with higher NT-proBNP, troponin I, systolic blood pressure, urinary mi
croalbumin, and HbA1c, all of which persisted in adjusted analyses. 
Overall these data suggest that ERBB3 and HSPA2 are associated with im
portant elements of cardiometabolic status, in addition to their association 
with cardiovascular outcomes.

4. Discussion
We set out to identify myocardial transcriptomic signatures associated 
with DM and then validate hits in their plasma protein form to identify po
tential biomarkers. The transcriptomic hits we identified in RA and LV 
myocardium did not overlap, suggesting distinct pathological processes in 
these chambers, which may have important therapeutic implications and 
also emphasizes that RA biopsies are not a reliable proxy for studying 
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Table 2 Cardiovascular outcomes associated with plasma ERBB3 and HSPA2

Model ERBB3 (Q1 vs. Q2–4) HSPA2 (Q4 vs. Q1–3)

Incident heart failure Cardiovascular mortality Incident heart failure Cardiovascular mortality

IRR (CI) P value IRR (CI) P value IRR (CI) P VALUE IRR (CI) P value

Unadjusted 1.66 (1.53–1.81) <2e−16 1.92 (1.71–2.17) <2e−16 1.55 (1.4–1.71) <2e−16 2.01 (1.76–2.29) <2e−16
+sex 1.44 (1.32–1.58) 9.6e−16 1.53 (1.35–1.73) 2.1e−11 1.41 (1.28–1.56) 6.9e−12 1.76 (1.55–2.01) <2e−16

+age 1.19 (1.08–1.3) 2.5e−4 1.22 (1.07–1.39) 2.5e−3 1.27 (1.15–1.4) 2.0e−6 1.59 (1.39–1.81) 6.2e−12

+BMI 1.2 (1.09–1.31) 1.6e−4 1.24 (1.09–1.41) 1.2e−3 1.17 (1.06–1.29) 2.0e−3 1.48 (1.29–1.69) 9.5e−9
+SBP 1.22 (1.1–1.34) 9.3e−5 1.34 (1.17–1.54) 2.9e−5 1.16 (1.05–1.28) 4.4e−3 1.45 (1.27–1.66) 5.0e−8

+DM 1.22 (1.11–1.34) 7.4e−5 1.23 (1.17–1.54) 2.4e−5 1.16 (1.05–1.29) 4.9e−3 1.5 (1.3–1.73) 1.9e−8

+NT-proBNP 1.02 (0.92–1.12) NS 1.08 (0.94–1.24) NS 1.08 (0.98–1.2) NS 1.42 (1.23–1.64) 2.0e-6

Models represent incremental complexity by addition of each variable to all those listed above them. Each quartile includes 12 833 participants for ERBB3 and 11 114 participants for HSPA2. 
IRR, incidence rate ratio; CI, confidence interval; BMI, body mass index; DM, diabetes mellitus; NS, non-significant; SBP, systolic blood pressure.
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Table 3 Baseline characteristics of plasma ERBB3 and HSPA2 quartiles

ERBB3 HSPA2

Q1 (Low) Q2 Q3 Q4 (High) P value Q1 (Low) Q2 Q3 Q4 (High) P value

Age (years) 57.8 (0.08) 56.5 (0.07) 56.4 (0.07) 56.7 (0.07) <0.0001 55.7 (0.08) 56.5 (0.08) 57.2 (0.08) 57.9 (0.08) <0.0001

Male (%) 67.2 (8618) 49.3 (6329) 38.2 (4912) 29.2 (3756) <0.0001 65.3 (7274) 57.2 (6374) 51.6 (5746) 42.1 (4691) <0.0001

BMI (kg/m2) 27.3 (0.04) 27.3 (0.04) 27.5 (0.04) 27.9 (0.04) 0.002 26.9 (0.04) 27.3 (0.04) 27.5 (0.05) 28.1 (0.05) <0.0001
DM (%) 6.8 (869) 5.0 (643) 4.5 (579) 5.6 (724) <0.0001 3.9 (439) 4.8 (535) 5.3 (583) 7.6 (847) <0.0001

Prior MI (%) 4.6 (591) 2.4 (316) 1.9 (243) 1.7 (213) <0.0001 1.8 (204) 2.4 (263) 2.6 (290) 3.6 (397) <0.0001

Prior HF (%) 0.9 (102) 0.5 (69) 0.3 (45) 0.4 (47) <0.0001 0.4 (46) 0.7 (82) 0.9 (100) 1.6 (179) <0.0001
Systolic BP (mmHg) 136.4 (0.2) 136.8 (0.2) 137.9 (0.2) 139.8 (0.2) <0.0001 136.0 (0.2) 137.0 (0.2) 138.0 (0.2) 140.0 (0.2) <0.0001

Diastolic BP (mmHg) 80.6 (0.1) 81.6 (0.1) 82.5 (0.1) 83.7 (0.1) 0.002 81.2 (0.1) 82.1 (0.1) 82.5 (0.1) 82.9 (0.1) <0.0001

ACE inhibitor (%) 11.5 (1473) 8.7 (1112) 7.9 (1016) 8.4 (1080) <0.0001 7.2 (799) 7.8 (871) 9.2 (1022) 11.6 (1287) <0.0001
Beta-blocker (%) 10.3 (1317) 6.9 (890) 6.0 (769) 6.3 (804) <0.0001 6.1 (680) 6.1 (680) 7.7 (852) 9.1 (1015) <0.0001

CCB (%) 8.7 (1114) 7.7 (985) 7.0 (893) 8.4 (1080) <0.0001 6.2 (688) 6.9 (765) 7.8 (864) 10.5 (1168) <0.0001

Thiazide (%) 6.7 (863) 6.8 (878) 7.2 (924) 8.8 (1134) <0.0001 6.5 (724) 6.7 (747) 7.3 (818) 9.2 (1025) <0.0001
Loop diuretic (%) 1.9 (244) 1.4 (185) 1.3 (167) 1.6 (206) 0.006 0.9 (104) 1.1 (120) 1.4 (151) 2.5 (283) <0.0001

Metformin (%) 3.8 (491) 2.8 (357) 2.8 (365) 3.4 (436) <0.0001 2.3 (261) 2.8 (308) 3.1 (347) 4.5 (502) <0.0001

Sulphonylurea (%) 1.6 (203) 1.1 (147) 1.2 (151) 1.4 (174) 0.008 1.0 (109) 1.1 (119) 1.2 (131) 1.9 (208) <0.0001
Insulin (%) 1.4 (178) 1.2 (156) 1.0 (123) 1.2 (151) 0.017 0.6 (64) 1.0 (108) 1.0 (108) 2.0 (217) <0.0001

Data presented as mean (SEM) for continuous data and % (n) for categorical data, compared with ANOVA or χ2 tests, respectively. ERBBB3 quartiles were defined as Z-scores of below −0.628 for 
Q1, −0.628 to −0.013 for Q2, −0.013 to 0.595 for Q3, and above 0.595 for Q4; each quartile includes 12 833 participants. HSPA2 quartiles were defined as Z-scores of below −0.601 for Q1, 
−0.601 to −0.055 for Q2, −0.055 to 0.496 for Q3, and above 0.497 for Q4. 
ACE, angiotensin-converting enzyme; BP, blood pressure; CCB, calcium channel blocker.
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LV disease. Many of the DEGs and GO terms we identified have not pre
viously been linked to diabetic heart disease and will be important to ex
plore in future studies. In this analysis, we focused on ERBB3, NRXN3, 
and HSPA2 as the only myocardial DEGs (all detected in LV) to show dir
ectionally concordant differential expression as a plasma protein and asso
ciation with cardiovascular outcomes. In the whole UKB plasma 
proteomics cohort, including participants without diabetes, we found low
er plasma ERBB3 and higher HSPA2 to be associated with impaired LV 
contractility, incident HF, and cardiovascular mortality. This is particularly 
interesting as cardiotoxicity is known to arise from cancer therapies target
ing ERBB3 (and related family members) and because other studies have 
implicated HSPA2 in other forms of myocardial disease.22–24

While many animal studies have set out to explore how experimentally 
induced DM impacts upon cardiac gene expression, few human studies 
have addressed this issue, largely because of the challenge of accessing tis
sue, especially from the LV.25 The largest published analysis of 
DM-associated LV gene expression profiles was conducted by Liu et al., 
who compared seven people with type 2 DM and HF against 12 controls 
with only HF.10 They identified focal adhesions, vascular endothelial growth 
factor signalling, and mitogen-activated protein kinase signalling in pathway 
analyses. Our analysis did not highlight these pathways, possibly as Liu et al. 
focussed on DM associated with HF. The larger sample size of our tran
scriptomic cohort and validation of hits using an alternate cohort and tech
nology suggest our main findings are likely to be robust. The wider 
transcriptomic themes that we identified could not be studied using 
UKB plasma proteomic data and so require external validation using emer
ging transcriptomic cohorts or alternate approaches. In particular, a focus 
on immunoglobulin gene expression (presumably in B lymphocytes and 
plasma cells) is warranted, given enriched GO terms in RA and LV, along 
with emerging roles of B lymphocytes in heart.26,27 Moreover, our data 
suggest that separate studies of atrial and ventricular myocardium are es
sential, given that the transcriptomic signature of DM differed between 
these sites. Our data also suggest that human post-mortem samples offer 
a valid route to biomarker and mechanism discovery, if technical factors are 
appropriately considered during analysis, potentially facilitating larger tran
scriptomic studies of LV myocardium which is difficult to acquire surgically.

Our finding that low circulating ERBB3 protein is associated with LV 
dysfunction and heart failure is further supported by data from patients re
ceiving cancer therapeutics targeting ERBB2. Breast cancers commonly 
overexpress ERBB2 and agents that hinder epidermal growth factor 
signalling involving ERBB2 (e.g. trastuzumab) can improve survival.28

ERBB2 signals by heterodimerizing with other ERBB family members, 
including ERBB329; indeed, the cancer therapeutic pertuzumab hinders 
ERBB2-ERBB3 heterodimerization.30 Trastuzumab and pertuzumab in
crease the risk of reduced LVEF or even HF;31 this risk is greater in people 
with DM.32 This led to the discovery that myocardial ERBB family recep
tors, including ERBB3, bind the ligand Neuregulin-1 (NRG1) that is released 
by cardiac endothelial cells in response to diverse stressors.33

Unfortunately UKB proteomic data do not include NRG1. However, re
combinant forms of NRG1 have shown promise in augmenting LV con
tractility in HF, with some undergoing early phase clinical trials;33,34 they 
have also shown promise in a rat diabetic cardiomyopathy model.35 A re
cent multiomics study of human HF also implicated myocardial Erbb2 sig
naling;36 our analysis extends this to people without HF, provides broader 
coverage of the ERBB receptor family, and includes outcome data. The bio
logical activity of circulating ERBB3 (e.g. as a decoy) is also unclear. In vitro 
studies suggest cleavage of ERBB3 by the protease ADAM17,37 but the role 
of ERBB family cleavage in myocardial biology is unknown. However, myo
cardial ADAM17 knockout mice develop less myocardial dysfunction asso
ciated with diet-induced diabetes, and it would be interesting to explore 
the role of ERBB3 in this phenotype.38 Irrespective of this uncertainty, 
we show that circulating ERBB3 can define people with early myocardial 
dysfunction and at risk of progression to HF. However, our data suggest 
that ERBB3 at best adds limited prognostic value to the established clinical 
biomarker NT-proBNP in all-comers. Whether it may offer greater value 
in defining patients at risk of cardiotoxicity from HER2-targetted cancer 
therapy and in identifying potential responders to recombinant NRG1 in 
clinical trials requires further research.

Little is known about the role of HSPA2 in myocardial biology. However, 
multiple studies have shown it to be increased in the myocardium at RNA 
and protein level in ischaemic, dilated, and hypertrophic cardiomyopathy 
vs. controls.22–24 It is a non-stress inducible member of HSP70 family, 
which support normal protein folding; it is released in extracellular vesicles 
during stressful conditions and may facilitate cell-cell communication.39 We 
show for the first time that it is increased in the myocardium of people with 
diabetes and that it may be a biomarker for CV death, although this needs 
more thorough assessment of any incremental value beyond NT-proBNP 
or value in targeting specific interventions.

Our study includes the largest described analysis of myocardial tran
scriptomic signatures associated with DM, followed by validation of hits 
in a very large plasma proteomic cohort that also allowed consideration 
of myocardial imaging and clinical outcomes for our principal hit. 
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Table 4 Cardiometabolic biomarkers associations with ERBB3 and HSPA2 in UKB

ERBB3 HSPA2

Unadjusted R Unadjusted P value Adjusted P value Unadjusted R Unadjusted P value Adjusted P value

LVEF (%) 0.05 9.6e−5 NS −0.07 1.3e−5 NS

LV global radial strain (%) 0.1 6.6e−12 NS −0.07 8.6e−5 NS

LV global longitudinal strain (%) −0.06 2.6e−5 NS 0.04 1.5e−2 NS
LV global circumferential strain (%) −0.08 1.8e−9 NS 0.08 4.4e−6 NS

Myocardial mass (g) −0.14 <2.2e−16 NS 0.16 <2.2e−16 NS

Myocardial wall thickness (mm) −0.08 3.6e−9 NS 0.18 <2.2e−16 3.0e−2
CCI (SBP/LVESVi) 0.06 1.6e−5 NS 0.01 NS NS

TNNI3 (troponin I) (NPX) −0.02 4.4e−7 NS 0.09 <2.2e−16 <2.2e−16

NT-proBNP (NPX) −0.08 <2.2e−16 8.9e−5 0.04 6.3e−15 6.3e−5
SBP (mmHg) 0.06 <2.2e−16 NS 0.07 <2.2e−16 3.0e−3

Urine albumin (mg/L) 0.17 <2.2e−16 1e−10 0.11 <2.2e−16 4.9e−13

HbA1c (mmol/mol) −0.01 NS NS 0.08 <2.2e−16 <2.2e−16

UKB analysis represents data from cohort of up to 52 705 participants. Adjusted model includes age, sex, creatinine, body mass index, cholesterol, systolic blood pressure (except when defining 
correlation with systolic blood pressure), prior MI, and prior hypertension. 
CCI, cardiac contractility index; LV, left ventricle; LVEF, left ventricular ejection fraction; LVESVI, left ventricular end-systolic volume index; NPX, normalized protein expression units; SBP, systolic 
blood pressure.

Novel heart failure biomarkers in diabetes                                                                                                                                                                     7
D

ow
nloaded from

 https://academ
ic.oup.com

/cardiovascres/advance-article/doi/10.1093/cvr/cvae181/7740546 by guest on 13 Septem
ber 2024



However, some limitations should be acknowledged. First, UKB proteomic 
data use Olink technology that quantifies proteins relative to the cohort 
mean concentration, rather than expressing these as absolute concentra
tions. This means that established cardiac biomarkers (troponin I and 
NT-proBNP) and novel plasma biomarkers have not been considered 
in light of clinically actionable thresholds, so further translational research 
is needed. It is also notable that this technology does not measure all cir
culating proteins, so it is not truly unbiased and contributed to our UKB 
analysis excluding 52 of 64 transcriptomic hits, which will need alternate 
validation approaches in future research. Second, our GTEx and UKB 
analyses could not stratify by type of DM due to the limitations of partici
pant phenotyping (and also presumably statistical power). Therefore, 
while our findings apply to DM as a whole, they are probably heavily 
biased towards insights regarding type 2 DM. Since we explored UKB 
data in all comers (i.e. with and without diabetes), we expect that our 
findings will have broad relevance, but again, we cannot make extensive 
subgroup analyses due to a lack of statistical power. Similarly, our assess
ment of HF cannot discern the subtypes with reduced or preserved EF, 
and so future studies will need to consider these important groups. 
Third, plasma ERBB3 and HSPA2 do not necessarily reflect myocardial 
gene expression patterns, even though we have noted directionally 

concordant differences in people with DM and no evidence of differential 
expression in multiple other tissues. Future works using paired myocar
dial gene expression and plasma protein quantification are needed to de
fine the relationship between these parameters. Finally, our study is 
observational and so cannot directly infer a causal role of ERBB3 or 
HSPA2 in myocardial dysfunction and adverse cardiovascular outcomes. 
Causal inference methods, such as Mendelian randomization, could be 
used to extend our analyses. However, we argue that more compelling 
data for the ERBB receptor family directly contributing to myocardial 
(dys)function come from the established cardiotoxicity of cancer therap
ies targeting these receptors and their signalling.

To conclude, we show that DM is associated with diverse myocardial 
transcriptomic signatures, which are broadly distinct in the RA and LV, al
though altered IgG immunoglobulin complex expression was noted in both 
sites. By assessing myocardial transcriptomic hits in their circulating protein 
form, we validated lower ERBB3 and higher HSPA2 in people with diabetes 
and found these to be associated with LV dysfunction, incident HF, and car
diovascular mortality. Together with wider evidence we discuss, these data 
suggest that ERBB signalling and HSPA2 may be important in the develop
ment of HF in people with diabetes, and warrant further exploration as 
biomarkers to target preventative therapies.

Translational perspective
This work found diabetes is characterized by lower Erbb3 and higher Hspa2 mRNA expression in myocardium, with directionally concordant differ
ences in their plasma protein concentration. These were linked to reduced LV contractility and future HF risk. Cancer therapies targeting ERBB3 are 
known to be cardiotoxic, while its ligand NRG1 may improve LVventricular contractility in HFrEF. High myocardial HSPA2 has also been found in 
diverse cardiomyopathies. Plasma ERBB3 and HSPA2 may help identify people at increased risk of developing HF and highlight unknown pathophysio
logical processes in diabetic heart disease.
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