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Abstract 

This work shows promising results using multiple instance learning on 
salivary gland tumours in classifying cancers on whole slide images. Utilising 
CTransPath as a patch-level feature extractor and CLAM as a feature 
aggregator, an F1 score of over 0.88 and AUROC of 0.92 are obtained for 
detecting cancer in whole slide images.

Introduction 

Salivary gland tumours (SGTs) are a relatively rare group of heterogeneous 
neoplasms. These tumours represent approximately 3% of all head and neck 
tumours [5, 6, 9]. Artificial intelligence methods such as deep learning have 
been applied to many digital histological datasets [4, 7] with very promising 
results. This includes high accuracy classification [12] and segmentation [10] 
of numerous types of cancers.
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Within the body of literature, there is a gap in knowledge regarding SGTs with 
applications using artificial intelligence. In particular, there is no work to the 
authors’ knowledge that utilises the entirety of the whole slide image (WSI) in 
applying artificial intelligence to SGTs. Incorporating knowledge of the entire 
WSI is important for capturing large-scale histological and morphological 
information across the whole tissue.

To solve this issue, this work proposes a multiple instance learning (MIL) 
approach applied to WSIs of SGTs. This work classifies benign/malignant 
tumours, as well as classification of a particular type of malignant tumour 
(adenoid cystic carcinoma). The work also compares the accuracy of 
the model when using two different feature extractors: ResNet-50 and 
CTransPath. It finds CTransPath to be the more accurate feature extractor, 
and predicts benign/malignant classification with an F1 score of 0.88 and 
AUROC of 0.92.

Background and Methodology 

Multiple instance learning (MIL) [3, 4] is a variation on supervised learning. For 
MIL in this work, annotations are made at the WSI level (also known as the 
bag level in literature).

Salivary gland tumours display a large amount of morphological diversity 
between tumour types. This can be a challenge for models to accurately 
classify SGTs. In addition, the relative rarity of SGTs means datasets are 
difficult to obtain for use in training machine learning models. Machine 
learning models have been successfully applied to SGTs at the patch level 
[11, 8], region of interest (ROI) scale [1], and using a graph-based approach 
[2]. These works are able to classify SGTs with good accuracy, but they can 
be time-consuming and problematic for cancer subtyping, as high grade 
tumours are more challenging to annotate accurately.

Within this work two tasks were performed: benign/malignant classification, 
and adenoid cystic carcinoma/other classification. The first task was tested 
using two different feature extractors: ResNet-50 and CTransPath. The 
second task used only CTransPath as the feature extractor.
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A dataset of 646 whole slide images of SGTs was used. Each WSI was labelled 
as either ’benign’ (402 cases) or ’malignant’ (242 cases). In addition, slides 
were categorised as adenoid cystic carcinoma (118 cases) or not (528 cases). 
More images from other clinical groups will be included in future work to 
help test the model robustness across different clinical workflows.

The workflow for these tasks was similar to other MIL approaches [3]. WSIs 
were split into smaller patches for feature extraction, then aggregated 
together utilising a feature aggregation model. For ResNet-50 feature 
extraction, the square patches were of side length 224 pixels and for 
CTransPath a patch was 256 pixels. Both ResNet-50 and CTransPath used the 
default weights of the model. CLAM was used for feature aggregation as was 
trained on the dataset. Training the CLAM model was performed using k-fold 
validation for hyperparameter tuning. A ratio of 80%-10%-10% was used for 
training, validation, and testing respectively. k=10 folds were used, each data 
point appearing only once in the validation and once in the testing set.

Results 

Figure 1 shows the two receiver operating characteristic (ROC) curves of 
binary classification of cancer. The blue curve is for features generated 
by ResNet-50. The orange curve is for features generated by CTransPath. 
It shows an area under the ROC (AUROC) of 0.92 for the method using 
CTransPath features, and 0.68 when using ResNet-50 features. For the 
CTransPath method the F1 score is 0.88, the precision is 0.90 and the recall is 
0.88. The specificity is 0.92. For the ResNet-50 method the F1 score is 0.72, 
the precision is 0.72, the recall is 0.77, and the specificity is 0.84.

The figure shows higher accuracy when utilising CTransPath as the feature 
extractor compared to ResNet-50. This might be due to the datasets they 
were trained on. CTransPath was trained using histological images, and 
the features extracted by CTransPath appear to be more useful for this 
classification task.
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The second task, Adenoid cystic carcinoma using CTransPath features with 
the CLAM feature aggregation model, achieved an AUROC of 0.96 and an F1 
score of 0.84, displaying strong initial findings that a high grade SGT can be 
accurately classified for WSIs. It has a corresponding precision of 0.84, the 
recall is 0.77, and the specificity is 0.97.

In conclusion, CTransPath features were found to provide greater accuracy 
in classification of cancer compared to ResNet-50 using a MIL approach. 
AUROCs of over 90% were obtained for both tasks utilising CTransPath 
together with CLAM. The applicability of the model to other tasks is still to 
be explored, as well as more general conclusions about the comparison 
across more classification tasks. Future work will compare against recent 
advancements of other architectures, including autoencoders and self-
supervised learning to contextualise its performance.

FIGURE 1

ROC curve of Benign/Malignant classification. The blue ROC curve is for ResNet-50 features. The orange 

curve is for CTransPath features.
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The use of the attention mechanism in the CLAM model provides a focus for 
future study, as it highlights spatial regions within the WSI that are important 
for classification (see figure 2). It attends differently between different tissue 
types, demonstrating its ability to account for pathological features. It 
follows that these regions are important in understanding the behaviour of 
cancer development within SGTs. This can be explored in future research to 
examine structural effects on important properties such as cancer behaviour, 
response to treatment, and patient survival.

FIGURE 2

Section of a whole slide image (WSI). Heatmap of attention. Areas highlighted in red are more important in 

deciding the categorisation of the whole image.
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