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Key Points

• Geography, rather than

disease, has a greater

influence on genome-

wide EBV variation.

• Variation in EBV

genomes predicts

altered viral peptide

binding to major

histocompatibility

complex, necessitating

tailored vaccine and

cellular therapy

strategies.

Epstein-Barr virus (EBV) is a potent carcinogen linked to hematologic and solid

malignancies and causes significant global morbidity and mortality. Therapy using

allogeneic EBV-specific lymphocytes shows promise in certain populations, but the impact

of EBV genome variation on these strategies remains unexplored. To address this, we

sequenced 217 EBV genomes, including hematologic malignancies from Guatemala, Peru,

Malawi, and Taiwan, and analyzed them alongside 1307 publicly available EBV genomes

from cancer, nonmalignant diseases, and healthy individuals across Africa, Asia, Europe,

North America, and South America. These included, to our knowledge, the first natural

killer (NK)/T-cell lymphoma (NKTCL) EBV genomes reported outside of East Asia. Our

findings indicate that previously proposed EBV genome variants specific to certain cancer

types are more closely tied to geographic origin than to cancer histology. This included

variants previously reported to be specific to NKTCL but were prevalent in EBV genomes

from other cancer types and healthy individuals in East Asia. After controlling for

geographic region, we did identify multiple NKTCL-specific variants associated with a 7.8-

fold to 21.9-fold increased risk. We also observed frequent variations in EBV genomes that

affected peptide sequences previously reported to bind common major histocompatibility

complex alleles. Finally, we found several nonsynonymous variants spanning the coding

sequences of current vaccine targets BALF4, BKRF2, BLLF1, BXLF2, BZLF1, and BZLF2.

These results highlight the need to consider geographic variation in EBV genomes when

devising strategies for exploiting adaptive immune responses against EBV-related cancers,

ensuring greater global effectiveness and equity in prevention and treatment.
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Introduction

Epstein-Barr virus (EBV), which infects 95% of the world’s adult
population, is classified as a group 1 carcinogen by the Interna-
tional Agency for Research on Cancer.1 However, only a small
fraction of the population will develop EBV-associated cancer.

Furthermore, the incidence of specific EBV-associated cancers is
strongly associated with geographic regions. Examples include
Burkitt lymphoma (BL) in regions with holoendemic Plasmodium
falciparum malaria in Sub-Saharan Africa, nasopharyngeal carci-
noma (NPC) in East Asia, and natural killer (NK)/T-cell lymphoma
(NKTCL) in East Asia, Central America, and Western South
America. These patterns suggest that regional host or EBV varia-
tion influences the pathogenesis of these malignancies. Indeed,
geographic variation in the EBV genome has been demonstrated in
several studies.2 Single nucleotide polymorphisms (SNPs) in
RPMS1, BALF2, and EBER2 were shown to be associated with a
high risk for developing NPC in NPC-endemic areas.3-5 Several
nonsynonymous mutations were also associated with NKTCL,6

however, this was limited to a single region and did not include
genomes from other NKTCL global hot spots. A significant chal-
lenge to uncovering potential EBV variants that might influence the
development or natural history of hematologic malignancies has
been the difficulty in dissociating regional viral variants from
disease-specific variants, especially for diseases that are prevalent
in understudied populations such as those in Central and South
America and Sub-Saharan Africa.

EBV has been considered a promising therapeutic target for nearly
30 years in hematologic and nonhematologic malignancies. Autol-
ogous or allogeneic T cells that target EBV-encoded peptides first
showed efficacy in posttransplant lymphoproliferative disorder.7-12

Since then, cellular therapies targeting peptides derived from EBV
proteins, including latent membrane protein 1 (LMP1), latent
membrane protein 2 (LMP2), BARF1, Epstein-Barr nuclear antigen
1 (EBNA1), BMLF1, and BZLF1 for the treatment of NPC,13-17

NKTCL,18 and EBV–associated rituximab-refractory lymphoma,18

have demonstrated limited efficacy. Many of these approaches
are major histocompatibility complex (MHC) restricted and depend
on cellular selection using in vitro exposure to the full-length EBV
reference genome B95-8 or peptides derived from EBV reference
genomes. The design and development of prophylactic vaccine
strategies similarly have been dependent on reference genomes
using EBV antigens important to viral entry into the cell, including
gp350 (encoded by BLLF1),19 and messenger RNA–based stra-
tegies that additionally targeting glycoprotein (gp)42 (encoded by
BZLF2), glycoprotein (g)B (encoded by BALF4), glycoprotein (g)H
(encoded by BXLF2), and glycoprotein (g)L (encoded by BKRF2)
(ClinicalTrials.gov identifier NCT05164094). The efficacy of these
approaches for a global population makes 2 assumptions: (1)
variation in the EBV sequences that encode these antigenic targets
will not affect the desired immune response and (2) binding across
HLA types will be effective.

Capture-based sequencing has rapidly expanded the number and
diversity of EBV genomes available for study. However, many
regions worldwide are still underrepresented in the publicly avail-
able genomes, and these regions have a high incidence of EBV-
associated malignancies. Therefore, in the first phase of our
study, we sought to improve global representation by generating, to

our knowledge, the first EBV genomes from Malawi and the first
from any country in Central or Western South America. We then
incorporated these genomes into the previous analysis of disease-
specific variants to determine if specific EBV variants can explain
the incidence of specific EBV-associated hematologic malig-
nancies. We next analyzed variation among EBV peptides across
geographic regions and predicted binding to the most common
HLA subtypes. Finally, we evaluated the global variability of EBV
loci that encode the current vaccine targets.

Materials and methods

Selection of publicly available EBV genomes

The National Center for Biotechnology Information (NCBI) data-
base was queried using the search terms “Human gamma-
herpesvirus 4” and filtered by sequence lengths of 120 000 to
200 000 base pairs. If genomes were not well annotated to include
country of origin and phenotype or multiple genomes were
sequenced from the same patient, preference was given to biopsy
samples, and the remaining genomes were excluded (n = 96). After
a literature review, we included 37 genomes6 that were not in the
NCBI database but that were included in an alternative database
(www.biosino.com) and 1 additional genome20 of 119 450 bp
excluded in our original search, comprising a total of 1307 publicly
available genomes.

Selection of novel EBV+ lymphomas for sequencing

Novel genomes were generated from cohorts previously identified
and phenotyped.21,22 All novel cases were approved by institutional
review boards of the Fred Hutchinson Cancer Center, The Ohio
State University, Stanford University, the La Liga Nacional Contra el
Cáncer y Instituto Nacional de Cancerología, the Malawian College
of Medicine Research and Ethics Committee, the National Taiwan
University Hospital, and the Instituto Nacional de Enfermedades
Neoplásicas Peru. The research was conducted according to the
Declaration of Helsinki.

DNA isolation, quantification of EBV, and case

selection

Blocks from cases identified as EBV+ NKTCL, EBV+ classical
Hodgkin lymphoma (cHL), or EBV+ diffuse large B-cell lymphoma
(DLBCL) were identified, and 2 × 10 mm sections were cut. DNA
was isolated using the AllPrep DNA/RNA FFPE (Qiagen). DNA
quantification and the presence of EBV was confirmed by reverse
transcriptase polymerase chain reaction or droplet digital poly-
merase chain reaction. Detailed methods and results are in the
supplementary text.

Library preparation and sequencing

Standard next-generation sequencing (NGS) used fragmented
DNA using a Covaris S Series sonicator. A unique barcode was
added to each DNA sample using the KAPA HyperPrep Kit from
Roche. Samples were pooled based on the EBV load and prepared
according to the xGen hybridization capture of DNA libraries for the
NGS sequencing enrichment protocol. Duplex sequencing was
conducted using the Enzymatic Fragmentation Module and Duplex-
sequencing Universal Kit (Twinstrand Biosciences). The capture
probes were synthesized as custom hybridization capture panels
designed for EBV type 1 and EBV type 2. EBV capture samples
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were sequenced using a NovaSeq 6000 (Illumina). Two samples
were sequenced on standard NGS and duplex-sequencing sys-
tems (E0205 and E0981).

Genome assembly and sequencing quality

assessment

Quality control of the raw Illumina paired-end targeted and whole-
genome sequencing reads was performed using BBDuk.23 Stan-
dard Illumina adapters and low-quality sequences (Q ≤ 6) were
trimmed across paired-end reads. Paired reads with a read length of
<100 bases were removed. The filtered reads were mapped to the
hg38 human reference genome with the EBV-associated contigs
removed. Reads unmapped to the host genome were extracted from
the BAM files and stored as paired-end FASTQ files.

Extracted reads were de-duplicated and sorted using Samtools.24

Reads were assembled using Unicycler, and the contigs obtained
were merged and ordered using Abacas.25 Prokka26 was used to
annotate the draft assemblies.

Variant detection

Variant calling on whole-genome sequencing data sets was per-
formed using the BAM files containing host-removed, EBV-aligned
paired reads using the GATK HaplotypeCaller framework.27 Vari-
ants were annotated using SnpEff28 in which we first created a
database for EBV variant annotation using the EBV type 1 refer-
ence genome from the NCBI (NC_007605). Annotated variant
calls from SnpEff28 were used to generate a consensus assembly
from the VCF using the FastaAlternateReferenceMaker utility from
GATK.27

Phylogenetic analysis

Geographic regions were identified and classified as previously
described.29 Complex repeats in the type I EBV genome were
identified, and corresponding regions in the draft de novo assem-
blies and consensus assemblies were masked using Repeat-
Masker.30 Prokka26 was used to annotate the masked genomes.
Draft assemblies with an LGA50 ≤2 and number of misassemblies
≤1, determined using Quast,31 were selected for phylogenetic
analysis. A phylogenetic tree of the selected draft assemblies was
performed using ParSnp.32

Identification of EBV variants in peptide targets

We identified a set of 30 peptide sequences from different regions
of the EBV genome that are currently being studied for their effi-
cacy in eliciting and/or serving as targets for CD8+ or CD4+ T-cell
responses.13,33-35 We identified the variations within each of the
30 epitopes in the draft or consensus assemblies by creating a
Basic Local Alignment Search Tool (BLAST) reference database of
the assembly using makeblastdb36 and querying the 30 peptide
sequences against this reference using tblastn.37 BLAST hits with
an evalue ≤0.05 and percentage identity ≥75% were retained for
further analysis.

Prediction of EBV T-cell epitope binding affinity to

MHC molecules

We calculated the binding affinity of a given MHC allele with all
variations of the reference epitope sequence observed in the draft
or consensus assemblies using NetMHCpan.38 We also assessed

the binding affinity of each putative epitope sequence against
different MHC class I and class II alleles to understand the effect of
variation in the MHC alleles on MHC restriction.

Validation of EBV T-cell epitope binding affinity to

MHC molecules

Reference genome encoded and variant peptides for 2 HLA-
A*02:01-restricted T-cell epitopes encoded by BMLF1
(GLCTLVAML,33 GLCTLMAML, and GLCTLVGML) and LMP2-2A
(FLYALALLL13,34,35 and FLYKLALLL) were synthesized (Gen-
Script, Piscataway, NJ) and reconstituted to 10 mg/mL in dimethyl
sulfoxide (Invitrogen). Binding of reference genome encoded and
variant peptides to HLA-A*02 was assessed by quantifying the
extent to which each peptide could stabilize the expression of HLA-
A*02 on the surface of T2 cells. Aliquots of 50 000 T2 cells were
incubated in 200 mL LCL media supplemented with each peptide
at serial 10-fold dilutions from 1 mM to 10 pM for 20 hours at
37◦C. The cells were washed twice, stained with 1:50 dilution of
anti-human HLA-A2-PE antibody (clone BB7.2, BD Biosciences,
San Jose, CA), resuspended in DAPI (4′,6-diamidino-2-
phenylindole) solution, and analyzed by flow cytometry (BD FAC-
Symphony, BD Biosciences). The mean fluorescence intensity of
the DAPI-negative live population was calculated.

NKTCL disease–specific variant detection

We identified and eliminated all variants that were present in >95%
or <3% of the genomes. There were 2 geographic regions, namely
Africa and Oceania, where there were no NKTCL cases, and these
regions were excluded. A binomial generalized linear model was
used in which cases were classified as either NKTCL or non-NKTCL
and controlled for geographic region. A Bonferroni adjustment was
applied to all P values to account for multiple comparisons.

Results

Frequency and characteristics of novel EBV+ cases

In the Guatemala cohort, a total of 636 cases of lymphoma were
previously identified with interpretable Epstein-Barr encoded RNA
(EBER) staining, including 169 (26.6%) that were EBV+. The EBV+

cohort included 24 of 252 DLBCL (9.5%), 65 of 89 (73%) cHL, 3
of 5 (60%) BL, and 55 of 55 (100%) NKTCL.22 The cohort iden-
tified from Malawi were all EBV+ , representing cHL (n = 1), BL
(n = 80), lymphoma undefined (n = 6), and miscellaneous (leuke-
mia, lymphoid leukemia, non-HL not otherwise defined, neuroblas-
toma, hepatocellular carcinoma, nongonadal germ cell tumor, and
rhabdomyosarcoma). We identified additional EBV+ NKTCL lym-
phoma cases from Peru (n = 8), Taiwan (n = 3), and the United
States (n = 16).

EBV genomes show a strong association with the

geographic region rather than with phenotype

Novel sequences were combined with all publicly available EBV
genomes for further analysis (supplemental Table 1). Among these
EBV genomes, 1192 of 1307 (91%), and among novel sequences,
184 of 217 (85%) passed the predetermined quality metrics
(Figure 1A). These represented 25 unique countries in the initial
cohort and in those filtered for quality metrics (Figure 1B). Phylo-
genetic analysis demonstrated that EBV genomes primarily
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EBV positive cases from Guatemala:
-DLBCL (n = 24)
-cHL (n = 65)
-BL (n = 3)
-NKTCL (n = 54)

Tissue available with at least 700
copies of EBV (n = 62/116)
-DLBCL (n = 14/24)
-cHL (n = 27/65)
-BL (n = 3/5)
-NKTCL (n = 18/22)

EBV positive cases from
Malawi (n = 96):
-cHL (n = 1)
-BL (n = 80)
-lymphoma undefined (n = 6)
-misc (n = 9)

Additional NKTCL cases
(n = 27)
-Peru (n = 8)
-Taiwan (n = 3)
-United States (n = 16)

NKTCL cases from
Guatemala (n = 32)

Standard NGS sequencing (n = 155)

Duplex Sequencing (n = 62)

Publicly Available EBV genomes
(n = 1,307)
-DLBCL (n = 16)
-cHL (n = 15)
-BL (n = 96)
-NKTCL (n = 101)
-CAEBV (n = 140)
-GC (n = 40)
-Healthy (n = 314)
-IM (n = 44)
-NPC (n = 366)
-PTLD (n = 43)
-Other (n = 132) 

Novel Sequences (n = 217)

Total cases (n = 1524)

Total cases passing sequencing QC (n = 1,376)
-Novel (n = 184, 85% passed QC)
-Public (n = 1,192, 91% passed QC)
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Figure 1.
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clustered based on geographic origin (Figure 2). The region with
clades furthest from the type 1 reference genome were East Asian
samples, representing the largest regional cohort in our analysis.
Most cases were from Mainland China (n = 407) or Hong Kong
(n = 245) and were distributed evenly throughout this clade. Most
cases from Japan (61/79) all clustered into the same subclade,
whereas the remaining 18 clustered together within East Asia.
Novel cases in our cohort were from Malawi, Guatemala, Peru,
Taiwan, and the United States. This led to an enrichment of cases
from both America and Africa to the global EBV genome. We found
that the largest cluster of samples from Guatemala clustered with
each other and with the largest cluster of samples from Peru and
also clustered more broadly with samples from East Asia. In
contrast, most samples from Malawi clustered within the same
major clade that included other samples from Africa, America, and
most cases from West Eurasia (Figure 2).

Consistent with visual clustering, the phylogenetic positioning of
each genome was more strongly associated with geographic origin
than with phenotype as quantified with a permutational analysis of
variance pseudo-F statistic (F = 83.5 vs F = 26.6).39

Variants and disease phenotype

In agreement with previous work, we saw the highest frequency of
variant calls in EBNA (highest in EBNA-3B/3C followed by EBNA-
1), LMP-1, LMP-2, and BPLF1.40,41

Additional hot spots were at BARF0, BLLF1, BNRF1, BOLF1, and
BRRF2 (Figure 3A). NKTCL and DLBCL samples from America
had more variant calls, but these cohorts were mostly represented
by duplex sequencing, which has greater sensitivity for detecting
variants. We verified this by sequencing 1 of our novel samples

Figure 1. Selection of novel and publicly available EBV genomes for analysis. (A) Schematic illustrating the source, histologic type, and number of EBV+ hematologic

malignancies from Guatemala, Peru, Malawi, Taiwan, and the United States that underwent EBV-genome sequencing and the source of publicly available reference and cancer-

associated EBV genomes that were utilized for this study. (B) Maps demonstrating the country of origin and number of EBV genomes after filtering based on sequence quality.

Publicly available EBV genomes are indicated in black, and novel EBV genomes generated by this study are indicated in red. CAEBV, chronic active EBV disease; GC, gastric

cancer; IM, infectious mononucleosis; misc, miscellaneous; PTLD, posttransplant lymphoproliferative disorder; QC, quality control.
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using both NGS and duplex sequencing, which showed that
duplex sequencing detected >10-fold more variants (Figure 3B).
However, the relative hot spots for variant detection were
unchanged. Variant allele frequency ranged from 50% to 100%
in standard NGS and could be detected at a frequency of <10%
in duplex samples. Despite the lack of clear disease clustering
from phylogenetic analysis, we sought to determine if individual
variants were associated with disease as previously suggested.
Previous reports have demonstrated that SNPs in RPMS1
(G155391A, resulting D51N), BALF2 (T162476C, resulting
I613V), BALF2 (C163364T, resulting V317M), and a 4 bp
deletion in EBER2 (7188-7191) were associated with an
increased risk for NPC.3-5 Our approach confirmed that these
variants were present in nearly 100% of NPC cases from East
Asia. We also found that nearly 100% of cases of pulmonary
lymphoepithelioma-like carcinoma carried these same 3 variants.
In agreement with previous studies, these variants were found in
50% or less of all other EBV genomes from East Asia. Africa
was the only other region with an NPC–derived EBV genome,
and these variants were not present in this single genome
(Figure 3C).

Previous reports have suggested that specific variants are asso-
ciated with NKTCL.6,40 Similar to NPC, these previous reports
were exclusively from East Asian populations. Although these
variants were present in NKTCL samples from East Asia, they
were not specific to NKTCL. Instead, these variants were found in
most cases from East Asia regardless of the disease phenotype
and were also found in EBV sequences from healthy donors.
Furthermore, several variants previously associated with NKTCL
were present across phenotypes and geographic regions
(Figure 3C), making it unlikely that these variants are specific to
NKTCL.

Alternatively, our novel sequences contained 74 NKTCL cases
outside East Asia, and 2 additional cases were publicly available
from West Eurasia. East Asia, America, and West Eurasia had
768, 83, and 89 cases of EBV genomes not associated with
NKTCL, respectively. Among these genomes, there were 16 380
nonsynonymous mutations. After excluding those that occurred in
<3% or >95% of cases, 1307 variants remained. We then used a
bimodal general linearized regression model to compare the EBV
genomes from cases of NKTCL and other EBV genomes while
controlling for geographic region. After Bonferroni adjustment,
103 variants had P values <.05 and log(overall risk [OR]) >1.5
or < −1.5.

Fifteen variants demonstrated a log(OR) >2 (Figure 4A). Two of
the top 5 high-risk variants for NKTCL were the BFRF1 mutations
L59I and F332V with a log(OR) of 3.1 and 2.7, respectively, and
they were weakly correlated with each other (Pearson correlation
coefficient, 0.16; Figure 4B; supplemental Tables 2 and 3). Genes
containing the highest frequency of high-risk variants, defined as
those with a log(OR) >1.5, included BPLF1 (12), LMP-1 (11), and
BcRF1 (6) (supplemental Figure 1). The BPLF1 variants S2696T
and G2248R and the BcRF1 variant N133S had a log(OR) >2. An
additional BPLF1 variant, H481, had been identified previously by
Peng et al,40 but it was not reported when the Peng et al data set
was combined with novel EBV genomes from NKTCL cases by
Xiong et al.6 This was also found for the BRLF1 variant T288S and
the EBNA3B/3C variant P803T.

EBV heterogeneity and HLA variations predict

modified responses to therapeutic targets

We identified 30 peptide sequences encoded by BMLF1, BZLF1,
EBNA1, EBNA3, LMP1, and LMP2 that have been used previously
to induce a therapeutic immune response.13,33-35 Using our novel
and publicly available sequences, we found variants at all peptide
sequences with specific variant sequences occurring in 0.07% to
98.98% of the genomes.

All published peptide sequences were accompanied by MHC
restriction annotated at 2- or 4-digit resolution based on in vitro T-
cell activation assays.13,33-35 We sought to determine if the vari-
ants identified in our global EBV genome cohort would affect
binding within and outside the previously published MHC-restricted
subtypes using a previously validated MHC binding platform,
NetMHCpan-4.0.42 We first verified if previously demonstrated
HLA type and peptide pairs showed high-affinity binding. For
example, the HLA-A*02:01-binding peptide BSLF2/BMLF1
GLCTLVAML showed weak predicted binding affinity across all
HLA-A*02 subtypes with decreasing affinity for other HLA types.
Similarly, the HLA-B*35-binding peptide EBNA-1 HPVGEADYFEY
showed high predicted affinity for all HLA-B*35 subtypes, but poor
predicted binding to HLA- A*02 (Figure 5A). Indeed, the predicted
binding of peptides strongly depended on the MHC allele with very
few peptides showing strong binding outside their designated
MHC allele and most having no predicted binding. There were 12
peptides with 15 unique variants in >10% of all cases in each
geographic region (supplemental Table 4).

Variants in EBNA-1 (RPQKRPSCI > RPKKRPSCI, IPQCRLTPL >
VPQCRITPL, and YNLRRGTAL > YNLRRGIAL), LMP-1
(YLLEMLWRL > YLLEILWRL), and LMP-2A (SSCSSCPLSK >
SSCSSCPLTK) had strong predicted binding. The LMP-2A variant
VMSNTLLSAW > MMTNTLLSAW had higher predicted binding.
However, several peptides and their variants, including the BSLF2/
BMLF1 variant GLCTLVAML, EBNA-1 variants HPVGEADYFEY
and RPQKRPSCIGC, LMP-1 variant ALLVLYSFA, and LMP-2A
variant IEDPPFNSL, were predicted to have no binding, weak
binding, or strong binding that was dependent on both the
sequence of the variant peptide and the specific MHC allele
(Figure 5A).

To validate our HLA binding predictions for a subset of peptides,
we measured the extent to which 2 reference (NC_007605) EBV
peptides (BMLF1: GLCTLVAML, LMP-2A: FLYALALLL), both of
which are known to bind HLA-A*02, and their variants
(GLCTLVGML, GLCTLMAML, and FFYKLALLL) could stabilize the
expression of HLA-A*02 on T2 cells (supplemental Figure 2). The
peptide predicted by our analysis as a strong binder to HLA-A*02
(FLYALALLL) was 100-fold more potent at stabilizing HLA-A*02
expression on the surface of T2 cells than the 2 predicted
nonbinding peptides (FFYKLALLL and GLCTLVGML). The 2
predicted weak binders to HLA-A*02 (GLCTLVAML and
GLCTLMAML) were sixfold more potent at stabilizing HLA-A*02
expression on T2 cells than the predicted nonbinding peptides.

We next sought to leverage the data to select the most globally
conserved peptide candidates in each region. We set a threshold
for peptides preserved in at least 75% of cases in each region.
There were no peptides that met these criteria for the African
region. Six peptides were present in at least 75% of samples from
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the remaining regions: BSLF2/BMLF1 (GLCTLVAML), LMP-1
(IALYLQQNW, YLQQNWWTL), LMP-2A (PYLFWLAA/PYLFW-
LAAI, RRRWRRLTV), and EBNA-1 (LSRLPFGMA). These were
specific to HLA-A*02:01, HLA-B*57/58, HLA-A*02/68/69, HLA-
A*24:02/23:01, HLA-B*27, and HLA-B*57, respectively. We then
accessed an HLA frequency database (allelefrequencies.net) to
generate the top 50 haplotypes in 2 distinct country populations,
Guatemala and China, that were well represented in our data
set.43,44 The majority of haplotypes would only be reactive to 2 of 5
peptides. HLA-B*27 and HLA-B*57 were not present in the top 50
haplotypes in either country, indicating likely futility in activating a
response with the conserved peptides RRRWRRLTV and
LSRLPFGMA in LMP-2A and EBNA-1, respectively (Figure 5B).

Heterogeneity at EBV loci encoding proposed vaccine

targets

Several EBV-encoded proteins have been proposed as potential
vaccines, including BXLF2 (gpH), BALF4 (gpB), BKRF2 (gp85),
BLLF1 (gp350/250), BZLF1 (bzlf1), and BZLF2 (bzlf2). These
include peptide-based strategies and, more recently, microRNA-
based vaccines, which can deliver the entire coding sequence of
1 or more targeted antigenic proteins, thereby allowing for endog-
enous presentation of peptides. To determine if there is heteroge-
neity at the EBV loci encoding proposed vaccine targets, we
evaluated these genes across geographic regions. BXLF2 had the
most variants, but most of these occurred in <10% of cases across
each geographic region. In contrast, BZLF1 had the fewest variants,
but these variants occurred at higher frequencies (Figure 6).

Discussion

EBV is a critical driver in both hematologic and nonhematologic
malignancies. Given the persistent expression of at least some EBV
antigens across malignancies, these antigens would seem like ideal
therapeutic targets. Despite great interest in preventive and
disease-focused therapeutic strategies, success has been elusive.
However, the decreasing cost of sequencing and advances in
sequencing technology have dramatically increased the number
and diversity of available EBV genomes for analysis. We used novel
sequencing technology to add nearly 200 high-quality EBV
genomes from poorly represented populations and disease phe-
notypes. We then combined our data with all publicly available EBV
genomes to perform, to our knowledge, the largest global analysis
of EBV phylogeny and genetic variation. Our analysis revealed that
(1) EBV genomes are more closely associated with geographic
region than with disease phenotype; (2) previous evaluations of
disease-specific variants were limited and biased by the available
genomes from specific regions, leading to confounding of associ-
ations between EBV genome variants and disease phenotypes;
and (3) variants in the EBV genome are present in previously tar-
geted EBV peptides with a variable impact on MHC binding.

We found that despite 11 broadly categorized EBV-associated
phenotypes, the geographic origin of the EBV genome, rather
than the phenotype, predicted where the genome would cluster in

our phylogenetic tree. Our work, and others, is limited by where
one draws distinctions for global regions. Instead of relying on
arbitrary, politically influenced geographic borders, we based our
analysis on the previous work that analyzed the phylogeny of
diverse global populations.29 We found a striking parallel between
EBV genomes and human genomic ancestry. Although many
populations from America were admixed populations from Africa
and West Eurasia, most of our novel sequences from Central and
Western South America demonstrated a close phylogenetic rela-
tionship to samples from East Asia. Indeed, most of these samples
came from populations within or partially within the indigenous
communities with a common ancestor closely related to Asian
regions.45 This parallel persisted despite the increasingly mobile
global populations and EBV being an infection from childhood
through young adulthood.

However, inferring associations based on self-reported and
sociologically driven classifications can further complicate analysis
and lead to unintended generalizations.46

Several groups have hypothesized that disease-specific variants
may explain the pathogenesis and epidemiologic patterns. To our
knowledge, our data are the first to include EBV genome
sequencing from NKTCL cases outside of East Asia. We demon-
strated that the previously suggested variants were not disease-
specific but rather common to EBV in East Asia.

The difference between our data and those of Xiong et al6 is that, in
the latter data set, EBV genomes from other disease phenotypes
were not of East Asian origin, leaving geographic variation unac-
counted for. Indeed, geography rather than disease was shown to
be the strongest predictor of genome clustering within the global
phylogeny of EBV. This does not eliminate the potential for disease
variants to be identified but suggests that even greater represen-
tation in geographic diversity and disease phenotypes is needed to
identify them and control for region-specific variants. The latter
scenario is supported by our confirmation of previous studies on
NPC in which there was an increase in variant frequency for several
genes in NPC when compared with other phenotypes in East
Asia included in the previous studies. Notably, pulmonary
lymphoepithelioma-like carcinoma, not included in previous work,
also demonstrated a high frequency of these variants, suggesting
that variants could drive specific disease groups. It should be noted
that none of these variants were present in our single NPC case
from outside East Asia.

Therefore, future studies outside East Asia are needed to deter-
mine the global importance of these variants. We identified several
variants that were high risk for NKTCL, but the impact of these
variants on EBV infection and malignant transformation is unknown.

Previous work has established that the response to specific EBV
peptides is variable based on the presence of specific MHC
polymorphisms. Genetic variants in the class I locus have been
associated with both variability in the response to infection and
the risk for EBV-associated malignancies.47-54 Indeed, when we
evaluated the predicted binding affinity of previously proposed

Figure 4. Specific EBV genome variants are enriched in or depleted from NKTCL. (A) Volcano plot demonstrating all variants identified. Variants above the horizontal red

line indicate variants with a Bonferroni corrected P value <.05. Significant variants with log(OR) less than −1.5 are shown in red (lower risk), and log(OR) >1.5 in blue (higher risk).

(B) Heat map demonstrating a correlation between variants significantly enriched in NKTCL–derived EBV genomes with log(OR) >1.5.
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Figure 5. EBV genome variation in intervals encoding prototypic T-cell epitopes is predicted to generate variant peptides with altered binding to class I MHC

molecules. (A) Heat map of predicted binding affinity (BA) of 30 prototypic EBV- encoded CD8+ T-cell epitopes (rows) to 16 class I MHC alleles (columns) and of the

corresponding peptides encoded by EBV genome variants. The far-right column contains a heat map of the frequency of the EBV genome variant that encodes each peptide in the

1376 EBV genomes meeting predetermined quality metrics in this study. (B) Heat map indicating the presence (blue) or absence (white) of the class I MHC alleles known to

present 6 prototypic EBV-encoded peptides to CD8+ T cells in the 50 most frequent class I MHC haplotypes in Guatemala (left) and China (right). The associated class I MHC

allele is shown in bold beneath each peptide. NB, no binding; SB, strong binder; WB, weak binder.
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peptides to generate a therapeutic immune response, we found
dramatic differences within and across HLA types. Reassuringly,
the most high-frequency variants across EBV genomes in these
peptides did not affect class I binding when compared with the
reference sequence. However, this specificity of binding to
distinct MHC alleles reaffirms that peptide approaches must
account for both the EBV variants and the most common HLA
alleles in a given region. Unknown at this time is whether the use
of messenger RNA–based strategies, using sequences based on
reference genomes, will generate responses to peptides pre-
sented on infected cells that may vary based on an individual’s
EBV variant. A potential application of this work and the continued
sequencing of EBV genomes from diverse populations is to equip
vaccines with multiple variants of the vaccine target. Alternatively,
rational design of population-specific therapeutics may be
warranted.

Our study has several important limitations. Most public genomes
do not have raw sequencing data available, thereby preventing an
evaluation of the quality of the assemblies and variants. We
sought to overcome this by setting thresholds for alignment to the
reference genome, but this led to slightly biasing acceptable
genomes to type 1 vs type 2 EBV. In addition, because of the
limitations in short-read sequencing and the proximity of some
genes to repeat regions of the genome, parts of the EBV genome
could not be evaluated. Short-read sequencing also limits our
ability to determine if allele frequency differences are caused by
multiple strains or SNPs occurring secondary to rapid viral repli-
cation within the tumor. This could be resolved with targeted and/
or long-read sequencing of these genes, but these efforts will
require original sample material across the previously and still to
be sequenced global populations. Finally, most EBV genomes,
including several of our novel EBV genomes, were generated with
standard NGS rather than with duplex sequencing. Using the
latter technology, we were able to detect a greater number of
variants in the same sample. The increased sensitivity of duplex
sequencing for detecting rare variants means that studies using
this method may identify additional mutations not detected by
standard NGS. This difference complicates direct comparisons,
because it is not always clear whether detected variants were
truly absent in previous studies or simply missed because of lower
sensitivity.

To our knowledge, our study, in addition to contributing nearly
200 novel EBV genomes from previously poorly represented pop-
ulations and disease phenotypes, represents the largest global
analysis of EBV phylogeny and gene variants. Our analysis
emphasized that geographic region had a greater influence on EBV
genomes than disease phenotypes, raising caution about drawing
conclusions from variants identified in limited data sets. This
extensive genomic diversity analysis has important implications for
future therapeutic strategies, including cellular therapy and vaccine
development. Continued efforts in sequencing EBV genomes from
diverse populations will be pivotal in understanding the global
impact of genetic variation in EBV and advancing appropriate and
equitable therapeutic approaches.
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Figure 6. Frequency of nonsynonymous single nucleotide variants in 6 canonical protein-coding genes in EBV genomes from 6 global regions. All 6 genes have

been the focus of EBV vaccine development efforts. The frequency (%) is calculated as the (number of EBV genomes from each region carrying the indicated sequence variant)/

(total number of EBV genomes analyzed from that region) × 100.
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