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Abstract: Traditional high-quality OCTA images require multi-repeated scans (e.g., 4-8 repeats)

in the same position, which may cause the patient to be uncomfortable. We propose a deep-

learning-based pipeline that can extract high-quality OCTA images from only two-repeat OCT

scans. The performance of the proposed image reconstruction U-Net (IRU-Net) outperforms

the state-of-the-art UNet vision transformer and UNet in OCTA image reconstruction from a

two-repeat OCT signal. The results demonstrated a mean peak-signal-to-noise ratio increased

from 15.7 to 24.2; the mean structural similarity index measure improved from 0.28 to 0.59,

while the OCT data acquisition time was reduced from 21 seconds to 3.5 seconds (reduced by

83%).

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is a non-invasive, label-free, real-time, in vivo imaging

technique [1]. With broadband infrared lasers (e.g., 1300± 100 nm), the OCT can provide

theoretically 2-10 µm axial resolution tomographic structural images with depth information

up to 2-3 mm in biological tissue [2]. In the past two decades, OCT has developed well in

ophthalmology [3], dermatology [4] and intravascular imaging [5]. In the application of skin

disease diagnosis and monitoring, OCT structural imaging has been used in non-melanoma skin

cancer [6], basal cell carcinomas [7] and actinic keratosis [8]. Besides traditional structural

images, OCT can be extended with different functions, among which the OCT-Angiography

(OCTA) imaging attracted the most attention because skin vasculature is altered in diseased skin

[9]. OCTA can pick out moving red blood cells from the relatively static tissue from the temporal

change of the sequence scan and suppress the static signal. Hence, OCTA imaging assists in

identifying diseased or healthy skin areas by assessing vasculature rather than relying on surface

appearance [10].

The conventional OCT data processing pipelines can be used to extract OCTA images by

suppressing the static signals from tissues. Those algorithms were based on the phase signal

[11], intensity signal [12–14] and complex signal [15]. However, the noise ratio of the processed

OCTA image of those algorithms was highly dependent on the number of repeated OCT scans in

the same positions (i.e., the number of repeat (NR) scans can improve the image signal-to-noise

ratio (SNR) by a factor
√

NR) [16]. Hence, more repeat B-scans and more scanning times (e.g.,

8-12 repeat scans in 14-21 seconds for a 200 k swept rate OCT system) were required to obtain a

high-quality skin OCTA image. However, in non-invasive multi-repeat OCTA scans (e.g., six

repeat scans), the unpredictable movement of the patient and complex distribution of reflection

angles can lead to an SNR gap in skin OCTA images [17]. It is essential to keep repeated scan

requirements to a minimum to reduce those negative influences. Hence, there is a trade-off
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between OCT scanning time and OCTA image quality in skin applications in the conventional

processing flow.

Artificial neural networks (ANN) are widely used for OCT image processing, such as lesion

segmentation [18], detection [19], classification [20], and image denoising [21]. OCTA image

reconstruction research communities are starting to use ANN as a way of reducing SNR in

reconstructed OCTA images. For instance, the Denoising Convolution Neural Network (DnCNN)

has been proven to be able to reconstruct the OCTA image using a two-repeat OCT scan

method. [22]. However, their method has not been able to reduce the artifacts caused by

intensity non-uniformity between angiogram slides. Another work using the U-Net for OCT

reconstruction on retinal blood flow maps showed very clear vascular structure images [23].

Furthermore, a residual-based network was proposed to reconstruct high-quality retinal OCTA

images [24]. Tavakkoli et al. [25] also demonstrated that generative adversarial network can

produce high-quality retinal OCTA images. However, their proposed works were focusing on

the retinal OCTA images in the field of ophthalmology; hence, rather than solely concentrating

on image reconstruction performance, the CNN model has to relearn the different signatures

present in skin OCTA images for dermatology applications. While optimising neural network

structure can improve the quality of image reconstruction, loss function optimisation has been

ignored in the OCTA image reconstruction publications. The loss functions commonly used in

the published OCTA image reconstruction method were mean square error and mean absolute

error. Those two loss functions are not generalisable to find details in high-frequency textures

that are widely presented in OCTA images.

To better reconstruct the skin OCTA image while reducing the repeat numbers of the OCT

scan, we propose a novel deep-learning-based pipeline for OCTA image reconstruction. In this

study, we developed an encoder-decoder architecture network, called image reconstruction U-Net

(IRU-Net), to reconstruct skin OCTA images by using the fast two-repeat OCT scan method. In a

traditional two-repeat OCT scan, the angiography images were seriously degraded by high-level

shot noise, and the contrast of the vessel signal was low due to an insufficient number of repeats

and movement from the in vivo human skin (i.e., SNR is 1.6 in two-repeat scans and 2.7 in

six-repeat scans.).

This study demonstrates the performance of the IRU-Net in the OCTA image reconstruction

task compared with a series of state-of-the-art networks (e.g., UNet [26], UNet-ViT [27] and

SRResNet [28]). We also investigate the influence of the VGG19-based content loss on the

network optimization under different control weights and output layers settings and the way

of optimising training parameters. Based on the quantitative results, the proposed method

demonstrated the capability of reducing OCT scanning time, while maintaining the quality of the

OCTA image reconstruction. Finally, the counterpart skin OCTA datasets used in this study and

trained networks will be published to allow further investigations.

2. Data preparation

2.1. System setup and participants

The imaging system used in this study was a laboratory-built, portable, and non-invasive swept-

source OCT (SSOCT) system with a hand-held probe. Figure 1 is a demonstration of the SSOCT

system setup. The system and its hand-held probe have been detailed and described in our previous

publication [17]. In brief, the light source in this system is a swept laser source (SL132120,

Thorlabs Inc.) with a central wavelength of 1310± 100 nm, and a swept rate of 200kHz. The

focus length of the sample arm lens is 35 mm (LSM03, Thorlabs Inc.). This system has a lateral

resolution of 19.68 µm and a theoretical axial resolution of 7.4 µm in air. For the determination

of ground truth, we used OCTA images that were generated from 12-repeat OCT scans (∼21

seconds of data acquisition time) as reference images [29]. These OCTA images, generated from

12-repeat OCT scans, represent high SNR (i.e., in this study, the high-quality OCTA images have
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an SNR greater than 3.0) and exhibit good vascular connectivity and architecture. One OCT

scanned volume consists of 600 B-scans; one B-scan consists of 600 A-lines, and one A-line

contains ∼2.0 mm depth information. The field of view was set as 5.16 mm × 5.16 mm. The

scanning positions are the forearm, palm thenar, and back of the palm. Each position of the

single participant was scanned by the SSOCT device three times, and the images with the least

motion artefacts and highest image quality were selected.

Fig. 1. The swept-source optical coherence tomography system schematic. The scan

positions were palm thenar, back of the palm and forearm. The scanning was based on the

hand-held probe shown in the right figure. The scanning probe was fixed and stable during

the data acquisition. (LSM03, Thorlabs Inc.; CCD: charge-coupled device).

The data collection of the volunteers was approved by the School of Science and Engineering

Research Ethics Committee of University of Dundee (Approval Number: UOD-SSREC-PGR-

2022-003), which also conformed to the tenets of the Declaration of Helsinki. There are seven

health participants from the age range of 20 to 35 (two females and five males). All participants

had to give their informed consent before entering the lab for the data collection, and the data

collected in this article had obtained the informed consent of the participants. The collected data

were anonymised, and the participant’s identification was removed.

2.2. Data pre-processing

In total, 21 high-quality raw OCT data were obtained after the data collection. Figure 2 (Stage A)

was the pre-processing pipeline for the single OCT raw data. The OCT raw data with twelve

repeat scans are used to generate the ground-truth images. The corresponding high noise and

low SNR input images were generated by selected first two repeat scans from the raw OCT data.

Considering that the skin structure contains complicated multi-surface layers, the regression

algorithm was also applied to the input images to previously subtract part of the static signals. A

fast Fourier transformation (FFT)-based non-rigid B-spline transformation was used to reduce

speckle noise during the OCT scanning and suppress participants’ motion-induced artefacts.

Then, the complex-signal-based eigen-decomposition (ED)-OCTA algorithm was utilized to

extract the OCTA image [30]. Compared with the phase-compensation technique, the results

from the ED-OCTA algorithm were shown to be less sensitive to tissue motion and have better

performance in static tissue suppression [31]. Finally, the selected depth of the enface OCTA

images was between 0.2 mm and 1.2 mm in depth axis (z-axis) to ensure most of the vascular

signals were included. In our data collected in this study, the enface OCTA images shallower

than 0.2 mm predominantly represent epidermis images without vascular signals, and images

with a depth exceeding 1.2 mm exhibit weak vascular signals. Based on considerations related to

training efficiency and neural network performance mentioned in this study, we decided to use a

selection depth ranging from 0.2 mm to 1.2 mm. Equation (1) and Eq. (2) are the descriptions of
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the ED-OCTA algorithm.

E ∧ EH
=

∑︂N

i=1
λB(i)eB(i)eH

B (i) (1)

where H is the Hermitian transpose operation. N is the number of repeated scans. E =

[eB(1), eB(2), . . . , eB(N)] is the N×N unitary matrix of eigenvectors,∧=[λB(1), λB(2), . . . , λB(N)]
is the N × N diagonal matrix of eigenvalues. The eigenvalues ∧ are sorted in descending order.

And the static signal components are the main contribution of the first K-th eigenvectors. Thus,

the extraction of the moving signals (e.g., blood signals) by the ED-OCTA algorithm can be

written as the (2).

Xm =

[︂

I −
∑︂K

i=1
eB(i)eH

B (i)
]︂

X (2)

where the X is the tissue signal from the OCT data. I is the identity matrix. The value of K

depends on the number of repeated scans. For the generating of ground-truth images, the K is

set as 7 when the number of repeated OCT scans is 12 since K= 7 can provide the best quality

of OCTA images in this study. In terms of input images, the K is set as 1 when the number of

repeated OCT scans is 2. eB(i) is the 1 × N unitary matrix of eigenvectors. H is the Hermitian

transpose operation. Xm represents the moving signals from the OCT signals after subtracting the

static signals. After the pre-processing by the pipeline in Fig. 2 (Stage A), 1784 pairs of enface

OCTA images were generated from twenty-one raw OCT files. 77% of images (1384 pairs of

images) from 17 raw OCT files were used as training datasets. The remaining 23% of images

(400 pairs of images) from the other 4 raw OCT files were used as validation datasets.

Fig. 2. (Stage A) The OCTA data pre-process pipeline to generate the neural network

train datasets and validation datasets. One volume of OCT data with a shape of 600 ×
600 × 360. The input image is generated based on the two volumes of OCT scan data,

and the ground-truth image with higher SNR is generated based on twelve volumes

of OCT scan data. (Stage B) The simple demonstration of the supervised training

pipeline for the neural networks. The implementation details of the loss functions

were different in the network training. (Stage C) The testing stage of the neural

networks. The high-quality OCTA image is generated based on the fast two-repeat

OCT scan data. IRResNet is the modified version of the SRResNet, which remove the

upsample pixel-shuffler layer.
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3. Image reconstruction methods

3.1. Image reconstruction methods

Inspired by the comparative result in [32], the encoder-decoder architecture was utilized in

the IRU-Net. Based on the encoder-decoder architecture [26], we proposed the IRU-Net to

reconstruct the high-quality OCTA image from the two-repeat B-scan OCTA image. Figure 3 is

the IRU-Net architecture, and Fig. 2 (Stage B) is the supervised training pipeline for the IRU-Net.

To improve the performance of the image reconstruction, the residual learning strategy [33] and

densely connected method [34] were used to stabilize the network training and strengthen the

extracted features sharing ability between the shallow layer and the deep layer. Based on the

residual dense block (RDB) [35], we replaced the receptive field from 1× 1 to the 3× 3 in the last

layer of RDB to stabilise the training and called modified RDB (mRDB), which is also depicted

in Fig. 3. In mRDB, the batch normalization layer was removed to increase the performance and

reduce the computational cost in the image reconstruction task [36,37]. The output from the

mRDB and the concatenate layer were used to provide the extracted feature from the encoder to

better reconstruct the OCTA images.

Fig. 3. The architecture of the IRU-Net. The setting of the filter size in the convolution

layers of each mRDB was equal to the channel number of the input tensor. In the network,

all convolution neural layers were not included with bias, and each convolution neural layer

was applied the kernel initializer with a mean was 0, and a standard deviation was 0.02. (In

the modified residual dense block (mRDB), the filter size of the convolution layer (blue

blocks) was equal to the number of the feature channels of the input tensor. The kernel size

was set as 3 × 3, and the strides was set as 1 × 1, and the padding was set as ‘same’ padding.

The red arrow was the concatenate operation in the feature channel dimension. The black

dotted arrow was the skip connection for the element-wise summation operation.

3.2. Loss function

In the image reconstruction task, the mean absolute error (MAE, or L1) loss and mean square

error (MSE, or L2) loss were the most used loss functions to optimize the reconstructed images

pixel-by-pixel. Equation (3) and Eq. (4) are the L1 loss function and L2 loss function, respectively.

L1(y, ŷ) = 1

n

∑︂n

i=1
|yi − ŷi | (3)
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L2(y, ŷ) = 1

n

∑︂n

i=1
(yi − ŷi)2 (4)

where y is the ground-truth image, ŷ is the network reconstructed image, n is the total number of

the pixel in the y and ŷ, and i in the yi and ŷi means the No.i pixel. Although many studies showed

that the L2 loss will cause the reconstructed image to become blurry [37,38], in this study, the

L2 loss was utilized because it can stabilize the network training and the network convergence

was better. Moreover, the experiment results in Fig. 6 show that L2 loss can reduce the noise in

the reconstructed OCTA image, and the result in [22] also supports this advantage. The content

loss has been used to enhance the high-frequency detail of the reconstructed image and reduce

the negative influence from the L2 loss [39]. The content loss had performed outstandingly in

the image super-resolution [37] and reconstruction [40] by optimizing the network based on

the extracted feature maps from the pre-trained network. The Lcontent loss function is shown in

Eq. (5).

L content(y, ŷ) = 1

CiHjWk

∑︂Hj

h=1

∑︂Wk

w=1

∑︂Ci

c=1
(G(yh,w,c) − G(ŷh,w,c))2 (5)

C, H, W are the channel, height and weight of the reconstructed image and the ground-truth

image. i, j, k are the number of pixels in each dimension of the image. G is the pre-trained

network output layer to extract the image features from the input tensor. Inspired by [28,37],

the low computing cost ImageNet pre-trained VGG19 network [41] was used as G in Eq. (5) to

provide an extracted feature map. Figure 4 is the demonstration of the skin OCTA image feature

maps extracted by a pre-trained VGG19 network. Considering the computing cost and limited

memory in the graphics card, the ResNet-32 and ResNet-50, which have larger weights, are not

used as G for content loss.

Fig. 4. The extracted feature maps of the OCTA image by VGG19 network. (A) The input

OCTA image for the VGG-19 network; (B) The output from the VGG-19 ‘block1_conv2’,

the shape was 512 × 512 × 64; (C) The output from the VGG-19 ‘block2_conv2’, the

shape was 256 × 256 × 128; (D) The output from the VGG-19 ‘block3_conv4’, the shape

was 128 × 128 × 256; (E) The output from the VGG-19 ‘block4_conv4’, the shape was

64×64×512; (F) The output from the VGG-19 ‘block5_conv4’, the shape was 32×32×512.

Scale: 645 µm.

In the content loss, the convolution neural layer output before the ReLU activation layer was

used to reduce the influence of the activation function [37]. The ′Block5_Conv4′ in the VGG19

network was used as the default output layer as G in (5) to calculate the Lcontent. Finally, the

combined object function (Lc) for the IRU-Net is shown in (6):

Lc(y, ŷ) = α∗L2(y, ŷ) + β∗Lcontent(y, ŷ) (6)

where α and β were the parameters to control the weight of loss function.
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4. Experiments

4.1. Implementation details

Before the network training, the input images and ground-truth images were resized from

600 × 600 to 512 × 512 and then normalized to between 0 and 1. The Gaussian noise with

σ=0.4 was applied to the input images in training datasets to enhance the generalization of the

trained network and simulate the shot noise generated from the balance photon detector. The

default setup of the applied loss function Eq. (6) was α=1 and β=0.01, and the output layer in (5)

was ′block5_conv4′. Adam [42] was used as the optimizer to update the IRU-Net, and it was set

as learning rate = 1 × 10−4, beta1 = 0.8 and beta2 = 0.999. The learning rate was decayed by

a factor of 0.95 every 1 × 104 training steps. The batch size was set as 4, and the training epoch

was set as 400. The early stopping was used to stop the network training when the calculated

validation loss did not improve for 20 consecutive epochs. The validation loss is calculated at the

end of each training epoch. The network training was under an NVIDIA RTX 3090 graphic card.

4.2. Comparison with state-of-the-art neural networks

To evaluate the performance of the IRU-Net, we first compared our IRU-Net with several public

networks, including the DnCNN [22], U-Net [32], DRU-Net [43], UNet-ViT [27] and SRResNet

[28]. Figure 2 (Stage C) demonstrates the test pipeline. The architecture of the SRResNet

was proposed for the image super-resolution task, and it also performed well in medical image

denoising [44]. Hence, we modified the SRResNet by removing the pixel-shuffler blocks, and the

modified version of the network was called the image reconstruction residual network (IRResNet).

There were 12 convolution to transformer blocks in UNet-ViT, and the number of heads in

the transformer block was set as 6. The architectures and loss function of the other compared

networks were the same as the public. To provide a fair comparison and ensure the compared

networks were well trained, the implementation details of those networks were: batch size was

set as 8; the epoch was set as 400; the early stopping was used when the loss of the network was

not updated under the 20 epochs. The optimizers for the networks were Adam [42].

4.3. Performance of the loss function

The VGG19-based content loss has been proven can enhance the image quality of the reconstrued

image in perception and visualization [37]. However, there was still a lack of studies to provide

the optimal setting of the content loss in the OCTA image reconstruction task. Therefore, in

this section, the aim was to investigate the performance of the proposed loss function under the

two different settings: 1) Different control weight settings of the content loss (i.e., β in (6)); 2)

Different VGG19 network output layer settings of the content loss (i.e., G in (5)). The default

implementation details mentioned above were set as the baseline group for comparison. In each

experiment, only one parameter (i.e., the output layer setting or control weight setting) of content

loss was changed to reduce the influence of other parameters (e.g., batch size and learning rate).

To investigate the performance of the loss function in the different settings of the control

weight, the parameters β in Eq. (6) were changed, as Table 1 shows. The L4
c was the baseline

group. The other implementation details were the same. A further experiment was designed to

investigate the content loss performance in different output layer settings. The different setup of

the output layer in Lcontent in Eq. (5) was shown in Table 2. The aim was to investigate which

setting of the content loss output layers can provide the best performance for the OCTA image

reconstruction. The L5
content was the baseline group. The other implementation details were the

same.
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Table 1. The different Settings of the Control Weights in
the Loss Function

Control Weights Setting Loss Function

α = 1; β = 0 L1
c (y, ŷ) = L2(y, ŷ)

α = 1; β = 1 × 100 L2
c (y, ŷ) = L2(y, ŷ) + 1∗Lcontent(y, ŷ)

α = 1; β = 1 × 10−1 L2
c (y, ŷ) = L2(y, ŷ) + 0.1∗Lcontent(y, ŷ)

α = 1; β = 1 × 10−2 L4
c (y, ŷ) = L2(y, ŷ) + 0.01∗Lcontent(y, ŷ)

α = 1; β = 1 × 10−3 L5
c (y, ŷ) = L2(y, ŷ) + 0.001∗Lcontent(y, ŷ)

Table 2. The Difference Setup of the Content Loss Output Layers

Symbol Output Layer Setting

L
1
content

′block1_conv2′

L
2
content

′block2_conv2′

L
3
content

′block3_conv4′

L
4
content

′block4_conv4′

L
5
content

′block5_conv4′

L
6
content

′block4_conv4′ + ′block5_conv4′

L
7
content

′block1_conv2′ + ′block2_conv2′ + ′block3_conv4′ + ′block4_conv4′ + ′block5_conv4′

4.4. Evaluation metrics

The metrics method was necessary to quantitatively evaluate the reconstructed image result and

evaluate the performance of the network for parameter tuning. In this study, the evaluation

metrics were peak-signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM)

[45]. The equation of the PSNR is in (7), and the equation of the SSIM is shown in (8).

PSNR = 10log10

(︃

I2
max

MSE(I, Î)

)︃

(7)

where I is the ground-truth image, Î is the reconstructed image from the network. Imax is the

maximum value in the images. MSE is the mean square error in (4).

SSIM(I, Î) = Cl(I, Î)αCc(I, Î)βCs(I, Î)γ (8)

where I is the ground-truth image, Î is the reconstructed image from the network. α>0, β>0, γ>0,

and they are the parameters to adjust the weights of Cl, Cc and Cs. Cl(I, Î), Cc(I, Î) and Cs(I, Î)
are the comparison of luminance, contrast, and structure between the I and Î.

5. Results

5.1. Comparison with state-of-the-art networks

Figure 5 shows the quantitative comparison of the results for different types of networks. Figure 6

is the visual results of the reconstructed enface OCTA image from different networks. The visual

results were from two different raw OCT files in the validation datasets. The yellow and orange

arrows in Fig. 6 show that the reconstructed result from our proposed method (G1/G2) can present

the best vascular texture details (PSNR: 23.979; SSIM: 0.503) than the other public methods

(B1/B2, C1/C2, D1/D2, E1/E2). Furthermore, compared with the (A1/ A2) ground-truth images,

the results from the encoder-decoder architecture networks (E-G) have a higher contrast and

less noise (PSNR> 23). Based on the quantitative result, compared with the state-of-the-art
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networks, the results from the IRU-Net (PSNR: 24.23± 0.83; mean SSIM:0.59± 0.09) had the

best performance in OCTA image reconstruction, and the standard deviation was the smallest,

showing that our method has good generalization in the image reconstruction.

Fig. 5. The quantitative results comparison of the different networks. (SD: standard

deviation).

5.2. Comparison with the different control weights

Figure 7 is the performance of the IRU-Net under training in the different settings of the control

weights in the proposed loss function. Figure 8 is the visual results of the reconstructed enface

OCTA image from different settings of the loss function. Based on the result in Fig. 7, the

IRU-Net had the best performance (PSNR: 24.23± 0.83; SSIM: 0.59± 0.09) when β = 1 × 10−2

in the content loss. Nevertheless, the performance of the IRU-Net with the proposed loss function

will be worse than L2 loss-only (PSNR: 23.56± 0.95; SSIM: 0.56± 0.09) when the setting of the

β was larger than the 1 × 10−2. However, when the β setting was too small (i.e., β ≤ 1 × 10−3),

the performance of IRU-Net (PSNR: 23.5± 1.18; SSIM: 0.56± 0.09) will be worse than proposed

setting (β=0.01). Based on the visual result in Fig. 8, compared with the ground truth image

(Fig. 8 (A)), the reconstruction enface OCTA images in Fig. 8 (B-F) have less noise and higher

contrast in visual observation. The quantitative result in (E) has the best performance (PSNR: 24;

SSIM: 0.53).

5.3. Comparison with different output layers

Figure 9 is the quantitative results comparison of the content loss under the different selections

of the output layers. Figure 10 is the visual comparison results of the reconstructed enface OCTA

image from different settings of the output layers selection. Based on the VGG19 architecture

and extracted feature maps in Fig. 4, we define L1
content and L2

content are the content loss based

on the shallow-level feature maps, and L3
content is the content loss based on the middle-level

feature maps, and L4
content and L5

content are the content loss based on the deep-level feature maps.

Moreover, L6
content and L7

content used the combined output from the different output layers. In Fig. 9,

the L5
content (PSNR: 24.23± 0.83; SSIM:0.59± 0.09) had the best performance for the IRU-Net.

However, the performance of the IRU-Net results based on the middle-level feature maps (i.e.,

L3
content) was seriously degraded (PSNR: 21.1± 0.93; SSIM: 0.4± 0.08). In Fig. 9, from L1

content

to L5
content, the content loss based on deep-level features maps (PSNR: 25.09; SSIM: 0.448) and

shallow-level features maps (PSNR: 24.05; SSIM: 0.416) have a better performance than the

content loss based on the middle-level features maps. Moreover, the results from L6
content and

L7
content showed that the more combination output from the different layers, the performance of the

content loss would be worse (compared with L5
content result, PSNR< 25). In Fig. 10, compared

with the ground-truth image in (A), the results (b, c, e-g) show the acceptable performance of

micro-vascular texture details reconstruction. However, the artefacts in Fig. 10 (D)(H) were

obvious, while the results in Fig. 10 (B)(F) had less noise and better image quality.
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Fig. 6. Comparison results of the high SNR ground-truth image with corresponding

reconstruction results from the different networks. Ground-truth image from the validation

set (Based on the independent raw OCT datasets); (A1, A2) Low-quality two-repeat OCTA

input image; (B1, B2) DnCNN; (C1, C2) IRResNet; (D1, D2) DRU-Net; (E1, E2) U-Net;

(F1, F2) UNet-ViT; (G1, G2) IRU-Net (ours); The scale bar was the 645 µm.
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Fig. 7. The quantitative results comparison of the different settings of the loss function

control weights. (SD: standard deviation of the results).

Fig. 8. Comparison results of the high SNR ground-truth image with corresponding

reconstruction results from the different loss function settings of the control weights. (A)

Ground-truth image from the validation set (Based on the independent raw OCT datasets);

(B) α=1 and β=0; (C) α=1 and β=1; (D) α=1 and β=0.1; (E) α=1 and β=0.01 (compared

group); (F) α=1 and β=0.001; The red scale bar was the 645 µm. The α and β were the

weights for in Eq. (6).

Fig. 9. The quantitative results comparison of the different selections of the output layers.

(SD: standard deviation of the results).



Research Article Vol. 14, No. 8 / 1 Aug 2023 / Biomedical Optics Express 3910

Fig. 10. Comparison results of the high SNR ground-truth image with corresponding

reconstruction results from the different output layers setting in content loss. (A) Ground-

truth image from the validation set (Based on the independent raw OCT dataset); (B) L
1
content

;

(C) L
2
content

; (D) L
3
content

; (E) L
4
content

; (F) L
5
content

(compared group); (G) L
6
content

; (H)

L
7
content

. The red scale bar was 645 µm. The definition of L
X

content
and the counterpart

settings are in Table 2.

6. Conclusion and discussion

In this work, we proposed an IRU-Net to achieve a fast OCT-angiography scan (∼3.5 seconds)

while maintaining the field of view and image quality of vascular texture. We introduced the

dense connection blocks to IRU-Net to improve the quality of the reconstructed OCTA images.

We also investigate a VGG19-based content loss and provide the optimal setup for OCTA image

reconstruction tasks. The main contribution of our work is to provide a fast deep-learning-based

scan pipeline for wide field of view (6 mm× 6 mm) OCTA scan in skin applications. Under this

scan pipeline, the motion artefact from the patients can be prevented while the field of view and

image resolution are moderated for the clinical scan. Furthermore, the OCT-signal processing

speed is reduced by 83% because only two-repeated scan (3.5 seconds for OCTA scan) is used

in this scan pipeline, and it also decreases the size of data acquired from the SSOCT device,

reducing the pre-processing time (from 3mins to 1 min).

Based on the error bar in Fig. 5, the encoder-decoder network (e.g., U-Net, IRU-Net) has better

performance than the end-to-end architecture network (e.g., DnCNN). That might be because

of the significant difference in vascular structure in the enface OCTA images. However, the

mean± standard deviation SSIM results were low in all results. We hypothesize that it might be

because the contrast of the reconstructed OCTA image was changed by the batch normalization

layer. Furthermore, the reconstructed OCTA images have a lower noise level which might be

because of the utilises of the L2 loss [22].

In Fig. 8, the difference from (B) to (F) was slightly and hard to classify in the aspect of

visualized results, and the error bar in Fig. 7 shows that the proposed implementation details

of the loss function can provide the optimal reconstructed results. In Fig. 9 and Fig. 10, the

content loss based on the deep-level (L5
content

) and shallow-level (L1
content) features maps had

better performance than the other groups (L3
content

, L
4
content, L

6
content

, L
7
content). In Fig. 10 yellow

arrow, result in (B) can provide more vascular details than (F). However, compared with the

ground-truth image (A), the result in (F) is more similar to the ground-truth image (A) than the

(B) in visual and quantitative aspects. It is hard to clarify if the more vascular details provided in

Fig. 10 (B) are true or generated by the neural network. We authorize that situation might be

because of the content loss based on the shallow-level feature maps (i.e., L1
content and L2

content in
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Fig. 4) is aimed to optimize more vascular texture details in the reconstructed images. Hence,

based on the experiment observation, to ensure that the reconstructed results from the IRU-Net

are more closely related to the ground-truth images, and the consideration of the stability and

efficiency of network training, we proposed that the implementation details of loss should be the

same as the default setting.

Based on the IRU-Net architecture, we tried to increase the network depth and applied more

residual connections or dense connections to improve reconstruction image quality. However,

the network deeper than IRU-Net had worse performance than before. We also investigate the

full densely connection network proposed by [37], called SRDenseNet, but the result (SSIM:

0.391 (mean)± 0.063 (std); PSNR: 20.25 (mean)± 1.32 (std)) is worse than the IRResNet after

fine-tuning details with the different loss function (L1 and L2) and training strategy (early stopping

and reducing learning rate with epoch).

Our study has limitations. First, the network architecture was based on the convolution neural

layer, which cannot provide long-term information and limit the receptive field during the feature

extraction. UNet-ViT introduced a transformer block to U-Net, but the performance is not

better than IRU-Net. Hence, it is essential to investigate a better network architecture for image

reconstruction, while lightweight and high performance. Secondly, in the network training

strategy, we also investigated the performance of the IRU-Net under unsupervised training. The

loss function used in unsupervised training was combined between the mean-squared-error loss

and adversarial loss (i.e., generative adversarial network (GAN) [46] and relativistic average

standard GAN (RaSGAN) [47]). Inspired by [37], the weight for adversarial loss was set as 0.001,

and the weight for L2 loss was 1. However, the unsupervised training strategy cannot provide

higher performance and reduce the stabilization of the training. In the RaSGAN train, the PSNR

is 22.35± 1.30, and the SSIM is 0.525± 0.08. In the standard-GAN, the PSNR is 22.04± 1.04,

and the SSIM is 0.512± 0.08 (result in mean± standard deviation format). We also investigated

the different weights of adversarial loss (from 0.1 to 0.001) to stabilize the network training, but

the result was not better than the IRU-Net result based on supervised training. It is necessary to

investigate further training strategies for OCTA image reconstruction. Thirdly, the experiment

results in this study were based on the data collected from health participants; hence, we concern

it will be a series of potential risks when applying on diseased subjects: 1) low-quality of the

collected data due to high motion artefacts from patients; 2) further investigation of the IRU-Net

performance on diseased skin OCTA images is essential in future clinical studies. Fourthly, the

size of data used in this study is 1784 pairs of images. We are concerned that the limited data

size will lead to an over-fitting problem of the neural networks examined in this study. In the

future, we plan to increase the size of the OCTA data that should help improve the robustness

and generalizability of our proposed method.

Our proposed pipeline has achieved a well comparative result in image reconstruction for

low-quality OCTA images acquired by a fast two-repeated OCTA scan in skin application. The

fast OCTA scan can prevent motion artifacts from patients, and the processing time of the fast

scan data is reduced by 60%. In the future, we will introduce this fast OCTA scan pipeline to

oral and retinal scans to achieve a high-quality OCTA scan with low motion artifacts and fast

OCT-signal processing.
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