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Abstract

Software systems log massive amounts of data, recording important runtime information.
Such logs are used, for example, for log-based anomaly detection, which aims to automati-
cally detect abnormal behaviors of the system under analysis by processing the information
recorded in its logs. Many log-based anomaly detection techniques based on deep learning
models include a pre-processing step called log parsing. However, understanding the impact
of log parsing on the accuracy of anomaly detection techniques has received surprisingly

little attention so far. Investigating what are the key properties log parsing techniques should

ideally have to help anomaly detection is therefore warranted. In this paper, we report on

a comprehensive empirical study on the impact of log parsing on anomaly detection accu-

racy, using 13 log parsing techniques, seven anomly detection techniques (five based on

deep learning and two based on traditional machine learning) on three publicly available

log datasets. Our empirical results show that, despite what is widely assumed, there is no

strong correlation between log parsing accuracy and anomaly detection accuracy, regardless

of the metric used for measuring log parsing accuracy. Moreover, we experimentally confirm

existing theoretical results showing that it is a property that we refer to as distinguishability

in log parsing results—as opposed to their accuracy—that plays an essential role in achieving

accurate anomaly detection.

Communicated by: Mika Mäntylä

Part of this work was done while Lionel C. Briand was with the University of Luxembourg

B Zanis Ali Khan

zanis-ali.khan@uni.lu

Donghwan Shin

d.shin@sheffield.ac.uk

Domenico Bianculli

domenico.bianculli@uni.lu

Lionel C. Briand

lbriand@uottawa.ca; lionel.briand@lero.ie

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg

2 University of Sheffield, Sheffield, United Kingdom

3 University of Ottawa, Ottawa, Canada

4 The Lero SFI Centre for Software Research, Limerick, Ireland

5 University of Limerick, Limerick, Ireland

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10533-w&domain=pdf
http://orcid.org/0000-0002-3935-2148
http://orcid.org/0000-0002-0840-6449
http://orcid.org/0000-0002-4854-685X
http://orcid.org/0000-0002-1393-1010


  139 Page 2 of 33 Empirical Software Engineering           (2024) 29:139 

Keywords Logs · Log parsing · Template identification · Anomaly detection

1 Introduction

Software system execution logs provide valuable information about the runtime behavior of

the system, which is essential for monitoring and troubleshooting. Among many log analysis

approaches, log-based anomaly detection has been actively studied to automatically detect

abnormal behaviors of the system under analysis by processing the information recorded

in logs (He et al. 2021). Recently, anomaly detection techniques based on Deep Learning

(DL) models, such as Long Short-Term Memory (LSTM) (Du et al. 2017; Meng et al. 2019;

Zhang et al. 2019) and Convolutional Neural Networks (CNNs) (Lu et al. 2018), have shown

promising results.

One common aspect of most anomaly detection techniques is having a pre-processing step

called log parsing (also known as log template identification). This step is needed because

anomaly detection techniques require structured logs to automatically process them, whereas

input logs are often free-formed or semi-structured, as generated by logging statements (e.g.,

printf() and logger.info()) in the source code. Many log parsing techniques have

also been developed to automatically convert unstructured input logs into structured logs (Zhu

et al. 2019).

The frequent combination of log parsing and anomaly detection clearly implies the impor-

tance of the former for the latter. Nevertheless, assessing in a systematic way the impact of log

parsing on anomaly detection has received surprisingly little attention so far. Only recently,

Shin et al. (2021) investigated what ideal log parsing results are in terms of accurate anomaly

detection, but purely from a theoretical standpoint. Le and Zhang (2022) empirically showed

that different log parsing techniques, among other potential factors, can significantly affect

anomaly detection accuracy, but the accuracy of log parsing results was not adequately mea-

sured, and the correlation between log parsing accuracy and anomaly detection accuracy

was not reported. Fu et al. (2023) attempted to address the issue by evaluating log pars-

ing and anomaly detection accuracy. However, they relied on a single log parsing accuracy

metric (Khan et al. 2022), and the log parsing results used to evaluate anomaly detection

techniques were based on less than 1% of all logs used, which limits the validity of the

findings.

To systematically investigate the impact of log parsing on anomaly detection while

addressing the issues of the aforementioned studies, this paper reports on an empirical study,

in which we performed a comprehensive evaluation using 13 log parsing techniques, seven

anomaly detection techniques—five based on deep learning and two based on traditional

machine learning—on three publicly available log datasets. We considered all three log pars-

ing accuracy metrics (i.e., grouping accuracy (Zhu et al. 2019), parsing accuracy (Dai et al.

2020), and template accuracy (Khan et al. 2022)) proposed in the literature.

Against all assumptions, our results show that there is no strong correlation between log

parsing accuracy and anomaly detection accuracy, regardless of the metric used for measuring

log parsing accuracy. In other words, accurate log parsing results do not necessarily increase

anomaly detection accuracy. To better understand the phenomenon at play, we investigated

another property of log parsing, distinguishability, a concept proposed by Shin et al. (2021)

that was theoretically shown to relate to anomaly detection accuracy. Our empirical results

confirm that, as far as anomaly detection is concerned, distinguishability in log parsing results

is the property that really matters and should be the key target of log parsing.
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In summary, the main contributions of this paper are:

– the systematic and comprehensive evaluation of the impact of log parsing on anomaly

detection;

– the investigation of the impact of the distinguishability of log parsing results on anomaly

detection.

The rest of the paper is organized as follows. Section 2 provides basic information used

throughout the paper, including the definitions of logs, messages, and templates, as well as an

overview of log parsing and anomaly detection. Section 3 motivates our study and introduces

the research questions. Section 4 describes the experimental design, including the log datasets,

log parsing techniques, and anomaly detection techniques used in the experiments. Section 5

presents the experimental results. Section 6 discusses the practical implications, derived from

the results, for the application of log parsing in the context of anomaly detection. Section 7

surveys the related work. Section 8 concludes the paper and provides directions for future

work.

2 Background

In this section, we provide an overview of the main concepts that will be used throughout

the paper. We first introduce the definitions of logs, messages, and log templates (§ 2.1).

We then explain the concept of log parsing (also known as log template identification) and

illustrate different log parsing accuracy metrics proposed in the literature (§ 2.2). We discuss

log-based anomaly detection and the corresponding accuracy metrics in § 2.3. Finally, we

summarize the recent theoretical results on ideal log parsing for accurate anomaly detection,

introducing the concept of distinguishability for log parsing results (§ 2.4).

2.1 Logs, messages, and templates

A log is a sequence of log entries1. A log entry contains various information about

the event being logged, including a timestamp, a logging level (e.g., INFO, DEBUG),

and a log message. A log message can be further decomposed into fixed and variable

parts since it is generated by executing a logging statement that can have both fixed

(hard-coded) strings and program variables in the source code. For example, the execu-

tion of the logging statement “logger.info("Deleting block " + blkID + "

file " + fileName)” when the program variables blkID and fileName evaluate

to blk-1781 and /hadoop/dfs, respectively, will generate a log entry “11:22:33

INFO Deleting block blk-1718 file /hadoop/dfs” where the log mes-

sage “Deleting block blk-1718 file /hadoop/dfs” can be decomposed into

the fixed parts (i.e., “Deleting block” and “file”) and the variable parts (i.e.,

“blk-1718” and “/hadoop/dfs”). A (log message) template masks the various ele-

ments of each variable part with a special character “<*>”; this representation is widely

used in log-based analyses (e.g., log parsing (He et al. 2017; Jiang et al. 2008), anomaly

detection (Zhang et al. 2019; Du et al. 2017), and log-based testing (Elyasov 2012; Jeong

et al. 2020)) when it is important to focus on the event types captured by a log message.

1 Note that a log is different from a log file. In practice, one log file may contain many logs representing the

execution flows of different components/sessions. For example, an HDFS (Hadoop Distributed File System)

log file contains many logs, distinguished by file block IDs, each representing an independent execution for a

specific block.

123



  139 Page 4 of 33 Empirical Software Engineering           (2024) 29:139 

For instance, the template corresponding to the example log message “Deleting block

blk-1178 file /hadoop/dfs” is “Deleting block <*> file <*>”.

2.2 Log parsing (Log Template Identification)

Although software execution logs contain valuable information about the run-time behavior

of the software system under analysis, they cannot be directly processed by log-based analysis

techniques that require structured input logs (containing templates) instead of free-formed

log messages. Extracting log templates from log messages is straightforward when the source

code with the corresponding logging statements is available. However, often the source code

is unavailable, for example, due to the usage of 3rd-party, proprietary components. This

leads to the problem of log parsing (log template identification): How can we identify the log

templates of log messages without accessing the source code?

To address this problem, many automated log-parsing approaches, which take as input log

messages and identify their log templates using different heuristics, have been proposed in

the literature (e.g., AEL (Jiang et al. 2008), Drain (He et al. 2017), IPLoM (Makanju et al.

2009), LenMa (Shima 2016), LFA (Nagappan and Vouk 2010), LogCluster (Vaarandi and

Pihelgas 2015), LogMine (Hamooni et al. 2016), Logram (Dai et al. 2020), LogSig (Tang

et al. 2011), MoLFI (Messaoudi et al. 2018), SHISO (Mizutani 2013), SLCT (Vaarandi 2003),

and Spell (Du and Li 2016)).

Three different accuracy metrics have been proposed to evaluate the accuracy of log

parsing approaches: Grouping Accuracy (GA) Zhu et al. (2019), Parsing Accuracy (PA) Dai

et al. (2020), and Template Accuracy (TA) Khan et al. (2022).

Zhu et al. (2019) observed that log parsing can be considered as a clustering process where

log messages with the same template are clustered into the same group. Based on this idea,

they proposed the GA metric to assess if log messages are correctly grouped. Specifically,

GA is defined as the ratio of log messages correctly parsed by the log parsing approach under

evaluation over the total number of log messages, where a log message is correctly parsed

when its log message group is the same as the ground truth (i.e., a group generated by oracle

templates).

Dai et al. (2020) later proposed PA, to address the issue that GA only considers message

groups, not the equivalence between the templates identified by the log parsing approach

under evaluation and the oracle templates. Although having correctly grouped messages

would be enough in some cases (e.g., detecting anomalies based on the sequence of template

IDs without considering the content of the templates (Du et al. 2017)), correctly identified

templates (i.e., templates identical to the corresponding oracle ones) matter when the fixed

parts of templates are used (e.g., detecting anomalies based on the semantic information in

the templates (Zhang et al. 2019)). To this end, PA replaces the definition of a correctly parsed

log message in GA as follows: a log message is correctly parsed when its identified template

is identical to the oracle template.

Khan et al. (2022) recently proposed the TA metric, since both GA and PA are defined

based on the number of correctly parsed log messages and, therefore, can be misleading,

especially when there are many repeated messages (e.g., heartbeat messages). Specifically,

they introduced Precision-TA (PTA) and Recall-TA (RTA), where PTA is defined as the

number of correctly identified templates over the total number of identified templates and

RTA is defined as the number of correctly identified templates over the total number of oracle

templates. Moreover, FTA (short for “F1-measure TA”) is the harmonic mean of PTA and

RTA.
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2.3 Anomaly detection

(Log-based) anomaly detection is a technique that aims to identify anomalous patterns,

recorded in input logs, that do not conform to the expected behaviors of the system under

analysis (He et al. 2021). It takes as input a sequence of log templates and determines whether

the given sequence represents a normal behavior of the system or not.

With the recent advances in Deep Learning (DL), many anomaly detection approaches,

which leverage DL models to learn various aspects of log template sequences of normal and

abnormal behaviors and classify them, have been proposed in the literature; for example,

DeepLog (Du et al. 2017), LogAnomaly (Meng et al. 2019), and LogRobust (Zhang et al.

2019) are based on Long Short-Term Memory based (LSTM), CNN (Lu et al. 2018) is based

on Convolutional Neural Network, and PLELog (Yang et al. 2021) is based on Gated recurrent

units (GRUs).

To assess the accuracy of anomaly detection approaches, it is common practice to use

standard metrics from the information retrieval domain, such as Precision, Recall, and F1-

Score. These metrics are defined as follows: Precision = TP
TP+FP

, Recall = TP
TP+FN

, and

F1-score = 2×Precision×Recall
Precision+Recall

where TP (True Positive) is the number of abnormal logs

correctly identified by the model, FP (False Positive) is the number of normal logs incorrectly

identified as anomalies by the model, and FN (False Negative) is the number of abnormal

logs incorrectly identified as normal.

2.4 Ideal log parsing results for accurate anomaly detection

Given the dependency of anomaly detection on log parsing, Shin et al. (2021) presented a

theoretical analysis on ideal log parsing results for accurate anomaly detection. The idea

behind the analysis is that log parsing can be regarded as the abstraction of log messages,

where some tokens in the messages are converted to variable parts. Then, if normal and

abnormal logs are over-abstracted by log parsing so that they are indistinguishable from each

other, it is clear that anomaly detection, which takes as input the parsed logs (i.e., abstracted

logs, sequences of templates), cannot distinguish normal from abnormal logs. Based on this

idea, they formally defined the concept of distinguishability as a property of log parsing

results and showed that it is an essential condition for ideal log parsing results.

Specifically, let M be a set of log messages and L be a set of logs where a log l ∈ L

is a sequence of log messages 〈m1, m2, . . . , mn〉. Also, let Ln ⊆ L be a set of normal logs

and La ⊆ L be a set of abnormal logs such that Ln ∩ La = ∅ and Ln ∪ La = L . Given M

and a set of templates (i.e., log parsing results) T , an abstraction function τ : M → T that

represents a generic log parsing approach can be defined. Based on τ , an abstraction of a log

l = 〈m1, m2, . . . , mn〉 can be defined as τ ∗(l) = 〈τ(m1), τ (m2), . . . , τ (mn)〉. Similarly, an

abstraction of a set of logs L can be defined as τ ∗∗(L) = {τ ∗(l) | l ∈ L}. Notice that τ ∗∗(L)

represents a log parsing result for a set of logs L .

The notion of distinguishability can be defined as follows: τ distinguishes Ln and La if and

only if τ ∗∗(Ln)∩τ ∗∗(La) = ∅. In other words, a log parsing approach distinguishes between

normal and abnormal logs if and only if they are still distinguishable after log parsing. When

τ distinguishes Ln and La , τ ∗∗(L) for L = Ln ∪ La is called d-maintaining, meaning that

the distinguishability between Ln and La is maintained in the log parsing result.
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3 Motivation

As discussed in Section 2, log parsing converts unstructured logs into structured ones, which

can then be processed by log-based analysis techniques like anomaly detection. It is quite nat-

ural to speculate that log parsing results can affect anomaly detection results. Intuitively, the

research literature has assumed that inaccurate log parsing results leads to inaccurate anomaly

detection results. However, this hypothesis has not been fully investigated in the literature,

except for one empirical study (Le and Zhang 2022) and one analytical investigation (Shin

et al. 2021).

Le and Zhang (2022) recently presented an empirical work investigating several aspects

that can impact Deep Learning (DL)-based anomaly detection approaches, such as training

data selection, data grouping, class distribution, data noise, and early detection ability. One

of their experiments considering data noise assessed the impact of noise deriving from log

parsing results. Specifically, they used four log parsing techniques (Drain (He et al. 2017),

Spell (Du and Li 2016), AEL (Jiang et al. 2008), and IPLoM (Makanju et al. 2009)) to generate

log parsing results for two log datasets (BGL (Oliner and Stearley 2007) and Spirit (Oliner

and Stearley 2007)). Then, for each log dataset, they used the different log parsing results as

input of five anomaly detection approaches (DeepLog (Du et al. 2017), LogAnomaly (Meng

et al. 2019), PLELog (Yang et al. 2021), LogRobust (Zhang et al. 2019), and CNN (Lu et al.

2018)), and measured the accuracy of the latter. Their experimental results showed that log

parsing approaches highly influence the accuracy of anomaly detection; for example, the F1-

Score of DeepLog on Spirit logs (Oliner and Stearley 2007) decreases from 0.755 to 0.609

when Drain is used instead of IPLoM for log parsing.

Although this is the first clear evidence showing the impact of log parsing results on

anomaly detection accuracy, the scope of the underlying study is limited. For example, it

simply uses different log parsing results (produced by different tools) without quantitatively

assessing the accuracy of the log parsing tools; therefore, the relationship between log parsing

accuracy and anomaly detection accuracy remains unclear. To this end, we define our first

research question as follows: RQ1 - To which extent does the accuracy of log parsing affect

the accuracy of anomaly detection?

As summarized in Section 2.4, Shin et al. (2021) recently proposed a theoretical frame-

work determining the ideal log parsing results for anomaly detection by introducing the

concept of “distinguishability” for log parsing results. It is argued that, rather than accuracy

as previously assumed, what really matters is the extent to which log parsing results are

distinguishable. However, to the best of our knowledge, there is no empirical work assessing

quantitatively distinguishability in log parsing results and its impact on anomaly detection

accuracy. Therefore, we define our second research question as follows: RQ2 - How does

the accuracy of anomaly detection vary with distinguishability of log parsing results?

Answering the above questions will have a significant impact on both research and industry

in the field of log-based anomaly detection. For example, if the answer to the first question

is that, regardless of the log parsing accuracy metrics, there is no relationship between log

parsing accuracy and anomaly detection accuracy, then it means that there is no need to

use the existing accuracy metrics to evaluate log parsing results for anomaly detection. This

would completely change the way log parsing tools are evaluated. Similarly, if the answer to

the second question is that the distinguishability of log parsing results indeed affects anomaly

detection, as expected from the recent theoretical analysis (Shin et al. 2021), then this must be

the focus of log parsing evaluations. As a result, our answers will provide essential insights

on better assessing the quality of log parsing techniques for more accurate anomaly detection.
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4 Experimental design

All experiments presented in this paper were carried out using the HPC facilities of the

University of Luxembourg (see https://hpc.uni.lu). Specifically, we used Dual Intel Xeon

Skylake CPU (8 cores) and 64GB RAM for running individual log parsing and anomaly

detection techniques.

4.1 Datasets

To answer the research questions introduced in Section 3, we used publicly available datasets

based on the LogHub benchmark (He et al. 2020), which contains a large collection of log

messages from various types of systems including operating systems (Linux, Windows, and

Mac), distributed systems (BGL, Hadoop, HDFS, Thunderbird, and OpenStack), standalone

programs (Proxifier and Zookeeper), and mobile systems (Android). The benchmark has

been widely used in various studies focused on log parsing (Khan et al. 2022; Zhu et al.

2019; Dai et al. 2020) and anomaly detection (Le and Zhang 2022; Fu et al. 2023).

Among the benchmark datasets, we selected HDFS, Hadoop, and OpenStack datasets

because of the following reasons: (1) they have labels for normal and abnormal logs to be

used for assessing the accuracy of anomaly detection techniques and (2) the source code of

the exact program version used to generate the logs is publicly available; this allows us to

extract correct oracle templates (i.e., ground truth templates) for each log message. The oracle

templates are especially important in our study as we need to carefully assess both log parsing

accuracy and anomaly detection accuracy. Although the benchmark provides some oracle

templates for all log datasets, they are manually generated (without accessing the source

code) and cover only 2K log messages randomly sampled for each dataset. As discussed by

Khan et al. (2022), those manually generated oracle templates are error-prone; therefore, we

used the logging statements in the source code to extract correct oracle templates. Table 1

shows all the log datasets in the LogHub benchmark and whether they meet each of the

above-mentioned criteria; the rows highlighted in gray meet both criteria.

During our preliminary evaluation, we found an issue with HDFS. The original HDFS

logs were too large (11.2M log messages) to be processed by the slowest anomaly detection

technique (i.e., LogAnomaly (Meng et al. 2019)) when setting a two-day timeout. Due to

the large number of experiments we needed to conduct (i.e., all combinations of log parsing

and anomaly detection techniques with additional repeats for distinguishable and indistin-

guishable log parsing results, see § 4.4 and § 4.5), we decided to reduce the log dataset size.

As we found that the slowest log parsing technique (i.e., LogAnomaly) could process up to

n = 300K messages within 2 h, we randomly and iteratively removed logs (i.e., sequences

of log messages) from the HDFS dataset to reduce it until the total number of remaining mes-

sages was less than 300K. Notice that each HDFS log is a sequence of log messages having

the same block ID, representing either a normal or abnormal sequence of events. To preserve

individual (normal or abnormal) sequences, we randomly selected and removed them by

sequence, not by message. Although the resulting reduced dataset is much smaller than the

original dataset, it is still representative of the original dataset in terms of the distribution

of normal and abnormal log messages. Specifically, the original HDFS dataset consists of

11 175629 log messages, with 97.43% normal and 2.57% abnormal log messages, and the

reduced HDFS dataset mirrors this distribution, with 97.60% normal and 2.40% abnormal

log messages.
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Table 1 Datasets in LogHub

benchmark (He et al. 2020)
Datasets Anomaly Label Source Code

Android ✗ ✗

Apache ✗ ✗

BGL ✓ ✗

HDFS ✓ ✓

HPC ✗ ✗

Hadoop ✓ ✓

HealthApp ✗ ✗

Linux ✗ ✗

Mac ✗ ✗

OpenSSH ✗ ✗

OpenStack ✓ ✓

Proxifier ✗ ✗

Spark ✗ ✗

Spirit ✓ ✗

Thunderbird ✓ ✗

Windows ✗ ✗

Zookeeper ✗ ✗

Table 2 reports on the size of our datasets, in terms of the number of oracle templates (O),

the number of all logs (Lall ), the number of normal logs (Ln), the number of abnormal logs

(La), the number of all messages (Mall ), the number of messages in normal logs (Mn), and

the number of messages in abnormal logs (Ma). Note that the number of log messages is the

same as the number of log entries (see Section 2.1 for details).

4.2 Log Parsing Techniques

We aimed to use as many log parsing techniques as possible, among those available in the

literature. Since (Khan et al. 2022) recently provided a comprehensive evaluation of 14 log

parsing techniques (i.e., AEL (Jiang et al. 2008), Drain (He et al. 2017), IPLoM (Makanju

et al. 2009), LenMa (Shima 2016), LFA (Nagappan and Vouk 2010), LKE (Fu et al. 2009),

LogCluster (Vaarandi and Pihelgas 2015), LogMine (Hamooni et al. 2016), Logram (Dai et al.

2020), LogSig (Tang et al. 2011), MoLFI (Messaoudi et al. 2018), SHISO (Mizutani 2013),

SLCT (Vaarandi 2003), and Spell (Du and Li 2016)), we decided to reuse their replication

package, including all the aforementioned techniques.

Table 2 Size information of the log datasets used in our experiments. Number of oracle templates (O); Number

of all logs (Lall ); Number of normal logs (Ln ); Number of abnormal logs (La ); Number of all messages (Mall );

Number of messages in normal logs (Mn ); Number of messages in abnormal logs (Ma )

Dataset O Lall Ln La Mall Mn Ma

HDFS (reduced) 26 15295 15026 269 299971 292776 7195

Hadoop 175 54 11 43 109968 14392 95576

OpenStack 21 2068 2064 4 79925 79817 108

123



Empirical Software Engineering           (2024) 29:139 Page 9 of 33   139 

However, we had to exclude LKE since our preliminary evaluation results showed that it

could not complete its run for all of our log datasets within the 2-day timeout. Notice that

we have already reduced our log datasets (in particular, HDFS), as discussed in Section 4.1,

based on the slowest anomaly detection technique (i.e., LogAnomaly). Although we could

additionally reduce the datasets based on the slowest log parsing technique (i.e., LKE), we

found that it would result in small logs that are not representative of the size and complexity

of real-world logs.

As a result, we considered 13 log parsing techniques in our experiments. For all the log

parsing techniques, we used their default parameters.

4.3 Anomaly Detection Techniques

Similar to the case of log parsing techniques, we considered the work of Le and Zhang

(2022), a recent empirical study that evaluated five DL-based anomaly detection techniques

(i.e., DeepLog (Du et al. 2017), LogAnomaly (Meng et al. 2019), LogRobust (Zhang et al.

2019), PLELog (Yang et al. 2021), and CNN (Lu et al. 2018)), and decided to use their

replication package, including all the aforementioned techniques. For all anomaly detection

techniques, we used their default parameters. These techniques are representative of the state

of the art of DL-based anomaly detection techniques.

In addition to deep learning models, we included two representative traditional machine

learning models, namely Support Vector Machine (SVM) (Hearst et al. 1998) and Random

Forest (RF) Breiman (2001)2 since they are known for their effectiveness in anomaly detection

tasks on the HDFS dataset (Wu et al. 2023; Jia et al. 2023).

We want to note that the seven anomaly detection techniques used in this paper all require

log parsing as a preliminary step. Although a few recent studies (Le and Zhang 2021; Mvula

et al. 2023; Nedelkoski et al. 2020) have proposed anomaly detection techniques that do not

require log parsing, we did not consider them in our work. This is mainly because our focus

is on assessing the impact of log parsing on anomaly detection techniques. We leave the

evaluation of techniques that do not require log parsing for future work.

4.4 Methodology for RQ1

Recall that RQ1 investigates to what extent the accuracy of log parsing affects the accuracy

of anomaly detection. To answer RQ1, for each dataset, we first executed the log parsing

techniques to generate log parsing results and computed their accuracy in terms of GA, PA,

and FTA (see § 2.2). We then executed the anomaly detection techniques on each of the log

parsing results and computed their accuracy in terms of precision (PR), recall (RE), and F1

score. By doing so, we obtained a tuple of accuracy values 〈G A, P A, FT A, P R, RE, F1〉

for each combination of datasets, log parsing results, and anomaly detection techniques.

For log parsing, we executed each of the log parsing techniques with a 2-day timeout. Since

MoLFI is non-deterministic, we executed it three times. In total, we obtained 16 log parsing

results (three from the three different executions of MoLFI and 13 from the remaining log pars-

ing techniques) for each dataset. For each log parsing result, we computed 〈G A, P A, FT A〉

using the oracle templates (and the messages matching them) for the corresponding datasets.

For anomaly detection, we divided the individual log parsing results into two disjoint

sets, i.e., a training set and a test set, using a split ratio of 80:20. Considering the data

2 We used the implementations from the scikit-learn library Pedregosa et al. (2011).
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leakage problem mentioned by Le and Zhang (2022), we used the first 80% of the logs

(in chronological order) for training and the remaining 20% for testing. We trained the

anomaly detection techniques on each of the training sets with a 2-day timeout, and used

the corresponding test sets to compute 〈P R, RE, F1〉. To account for the randomness of

anomaly detection techniques, we repeated the train-and-test process five times and used the

average F1 score.

As a result, we obtained 224 tuples 〈G A, P A, FT A, P R, RE, F1〉 from the combinations

of two datasets, 16 log parsing results, and seven anomaly detection techniques.

4.5 Methodology for RQ2

Recall that RQ2 investigates the relationship between the distinguishability of log parsing

results and anomaly detection accuracy. To answer RQ2, we need distinguishable and indis-

tinguishable log parsing results to compare in terms of anomaly detection accuracy. Although

the log parsing results generated for RQ1 are available, they are mostly (but not all) distin-

guishable, leading to unbalanced data for RQ2. To systematically assess the impact of the

distinguishability of log parsing results on anomaly detection accuracy using balanced data,

we generate pairs of distinguishable and indistinguishable log parsing results.

Specifically, let d(R) be the distinguishability — expressed as a Boolean value, either true

(T ) or false (F) — of a log parsing result R. For each log parsing result R (i.e., the result of

executing a log parsing technique for a dataset) generated in the context of RQ1 (i.e., 16 log

parsing results for each of the two datasets), we first created a pair of log parsing results 〈R, R′〉

by artificially generating R′ from R such that d(R′) = ¬d(R) using Algorithms 1 and 2,

detailed further below. By definition, if R is distinguishable then R′ will be indistinguishable

and vice versa. For the sake of simplicity, we denote the distinguishable result (be it R or

R′) as Rdst and the indistinguishable one (respectively, either R′ or R) as Rind . We then

executed, for all pairs 〈Rdst , Rind〉, all the considered anomaly detection techniques twice:

the first time using Rdst as input and the second time using Rind as input; for each run of

each anomaly detection technique we computed its accuracy in terms of precision, recall,

and F1 score. By doing so, we obtained the anomaly detection accuracy scores for pairs of

distinguishable (Rdst ) and indistinguishable (Rind ) versions of log parsing results, and then

compared them.

For the generation of R′ from R, it is important to minimize the difference between R and

R′ (in terms of both training and testing datasets) while achieving d(R′) = ¬d(R). This is to

ensure that if there is a difference in anomaly detection scores between R and R′, it is mostly

due to distinguishability and not to other differences between R and R′ (e.g., the number of

templates or the size of log parsing results). Furthermore, the testing datasets for R and R′

should remain the same. To do this, we need to distinguish the two cases when d(R) = T

and when d(R) = F , as described below.

4.5.1 Generation of Indistinguishable from Distinguishable Log Parsing Results

When d(R) = T (i.e., R = Rdst ), it means that templates for different log messages in R

are different enough to distinguish between normal and abnormal logs in R, as explained in

Section 2.4. For example, let us consider two logs l1 = 〈m1, m2〉 and l2 = 〈m3, m4〉 where

the templates of the four messages are identified as τ(m1) = t1, τ(m2) = t2, τ(m3) = t3,

and τ(m4) = t2, respectively, using a log parsing technique τ . Figure 1 shows the logs,

messages, and templates. In this case, the log parsing result of τ for {l1, l2} is distinguishable,
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Fig. 1 An example of making a distinguishable log parsing result indistinguishable by merging templates

as highlighted in blue in the figure, since τ ∗(l1) = 〈τ(m1), τ (m2)〉 = 〈t1, t2〉 and τ ∗(l2) =

〈τ(m3), τ (m4)〉 = 〈t3, t2〉 are different (due to τ(m1) �= τ(m3), i.e., t1 �= t3). However, if the

templates of m1 and m3 were the same, then the log parsing result would be indistinguishable.

In other words, as highlighted in red in the figure, we can make the distinguishable log parsing

result of τ indistinguishable by merging the templates of m1 and m3 (e.g., by introducing a

dummy log parsing technique τ ′ that behaves the same as τ except for τ ′(m1) = τ ′(m3) =

t13). Notice that τ ′ changes only (a few) templates, not the corresponding log messages,

meaning that the original datasets remain the same. Using this idea, to generate R′ = Rind

from R = Rdst , we generated the templates of Rind by iteratively merging the templates of

Rdst until d(Rind) = F . Furthermore, to minimize the difference between Rdst and Rind in

terms of the number of templates (i.e., to minimize the number of templates being merged),

we start with merging the templates with the highest number of matching messages in the

log. This is based on the intuition that the more messages affected by merging templates, the

more likely normal and abnormal logs are to become indistinguishable. Recall that we only

change the templates, not their log messages.

Although merging templates to generate indistinguishable log parsing results might look

artificial, it is indeed realistic to some extent. In practice, a log parsing result would be

indistinguishable only when a log parsing technique fails to identify proper templates that can

sufficiently “distinguish” normal and abnormal log sequences. Therefore, merging templates

in the distinguishable log parsing results mimics the behavior of such imperfect log parsing

techniques, leading to indistinguishable log parsing results.

One might also object that artificially merging templates corresponding to different mes-

sages could introduce incorrect templates in Rind , leading to an unfair comparison between

Rdst and Rind . However, it is common for the log parsing techniques to identify many tem-

plates that are already incorrect Khan et al. (2022). Furthermore, the focus of RQ2 is not

the correctness of templates but rather the distinguishability of log parsing results. Our goal

is to generate a pair of Rdst and Rind that are as similar as possible except for the distin-

guishability property. Indeed, the testing datasets for Rdst and Rind are the same in terms of

log messages and their order. The only difference lies in how individual log messages are

mapped to the templates, affecting the distinguishability of log parsing results. Consequently,

the only difference between Rdst and Rind is in their distinguishability, ensuring that no bias

is introduced when evaluating the model’s performance.

Algorithm 1 summarizes the above-mentioned idea into the pseudocode for generating

Rind from Rdst . After initializing Rind (line 1) as a copy of Rdst , the algorithm extracts the set

of templates T of Rdst (line 2) and sorts the templates in T in ascending order by the number

of matching messages (line 3). The algorithm then iteratively merges the last n templates

(starting from n = 2 as initialized at line 4) in the sorted templates list Ts (i.e., merging the

top-n templates that have the highest number of matching templates) until Rind becomes

indistinguishable (lines 5–8). Notice that the while loop does not continue endlessly since

Rind must be indistinguishable when n becomes |Ts | (i.e., all templates are merged into one)

by definition. The algorithm ends by returning Rind .
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Algorithm 1 Generating an indistinguishable log parsing result from a distinguishable

one
Input : Distinguishable Log Parsing Result Rdst

Output: Indistinguishable Log Parsing Result Rind

1 Log Parsing Result (Set of Parsed Logs) Rind ← copy(Rdst )

2 Set of Templates T ← getTemplates(Rdst )

3 Sorted List of Templates Ts ← sortByNumMessages(T )

4 Integer n ← 2

5 while d(Rind ) = True do

6 Set of Templates Tm ← getLastTemplates(Ts , n)

7 Rind ← mergeTemplates(Tm , Rdst )

8 n ← n + 1

9 return Rind

4.5.2 Generation of Distinguishable from Indistinguishable Log Parsing Results

When d(R) = F (i.e., R = Rind ), although one could do the dual of merging templates

(i.e., dividing templates), it would require to determine which templates to divide and how

many templates to generate from a given template. Instead, we adopted another heuristic:

we removed the normal (or abnormal) logs that are indistinguishable from abnormal (or

normal) logs. This is based on our observation that, when d(R) = F , only a small number

of normal and abnormal logs are indistinguishable. To minimize the impact of removing

logs, we removed normal logs when the total number of normal logs is larger than that of

abnormal logs (as it is the case for the HDFS dataset); otherwise, we removed abnormal

logs (in the case of the Hadoop dataset). Specifically, only MoLFI, SLCT, LogCluster, and

LFA generated indistinguishable log parsing results for HDFS in the first place, and we only

removed 5, 5, 9, and 2 logs, respectively, out of 15026 normal logs.

Algorithm 2 shows how to generate Rdst from Rind based on the above idea. It first extracts

the set of indistinguishable logs L ind from Rind (line 1). It then removes either normal or

abnormal logs in L ind from Rind to generate Rdst depending on the total number of normal

and abnormal logs (lines 2–5). Since Rdst is the result of removing indistinguishable (normal

or abnormal) logs from Rind , Rdst is distinguishable. The algorithm ends by returning Rdst .

Algorithm 2 Generating a distinguishable log parsing result from an indistinguishable

one
Input : Indistinguishable Log Parsing Result Rind
Output: Distinguishable Log Parsing Result Rdst

1 Set of Indistinguishable Logs L ind ← getIndistLogs(Rind)

2 if numNormalLogs(Rind) ≥ numAbnormalLogs(Rind) then

3 Set of Parsed Logs Rdst ← Rind \ getNormalLogs(L ind)

4 else

5 Set of Parsed Logs Rdst ← Rind \ getAbnormalLogs(L ind)

6 return Rdst
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4.5.3 Treatment for Anomaly Detection Techniques using Semantic Information

of Templates

Some of the anomalydetection techniques (i.e., LogRobust (Zhang et al. 2019), PLELog (Yang

et al. 2021), LogAnomaly (Meng et al. 2019)) use the semantic information of templates,

instead of simply using template IDs, by converting them into semantic vectors (Jurafsky and

Martin 2019). For these techniques, two templates are considered “identical” if their semantic

vectors are similar enough. Therefore, the notion of “identical” templates for determining

the distinguishability of log parsing results must be revised in terms of the semantic vectors

used by these anomaly detection techniques; otherwise, simply determining the distinguisha-

bility based on their template IDs would be meaningless for these techniques. To do this, for

each log parsing result R, we applied a clustering algorithm to the semantic vectors of all

templates and considered the templates in the same cluster to be identical. Specifically, we

used DBSCAN (Backlund et al. 2011) for clustering since it does not require the number

of clusters as an input parameter. For instance, in the above example τ with m1 and m3, if

the semantic vectors of τ(m1) and τ(m3) belong to the same cluster, then the templates of

m1 and m3 are considered the same. Note that the semantic vectors are carefully designed to

capture subtle semantic nuances and are able to identify semantically similar log templates

while distinguishing different ones (Zhang et al. 2019). Therefore, clustering these semantic

vectors can effectively identify “identical” templates for the semantic-based anomaly detec-

tion techniques. We then followed the same heuristics described above to generate R′ from

R based on the clustered templates.

4.5.4 Additional Analysis: Degree of Distinguishability

So far, we have described how to compare distinguishable and indistinguishable log parsing

results to answer RQ2, treating distinguishability as a binary property (i.e., either distinguish-

able or indistinguishable) following the original definition (Shin et al. 2021). Although we

have effectively minimized the difference between distinguishable and indistinguishable log

parsing results to make a fair comparison, we have applied an artificial process for generating

indistinguishable log parsing results from distinguishable ones (or vice versa). To address

this limitation, we present an additional analysis on the degree of distinguishability of the

log parsing results generated for RQ1.

However, defining a metric to measure the degree of distinguishability is not straightfor-

ward, mainly because the original definition of distinguishability is too strict; for example,

the log parsing result of two log sequences representing the same behavior can be considered

distinguishable simply when they are different in length. Therefore, we present a metric to

measure the degree of distinguishability based on the number of common templates between

normal and abnormal log sequences. This is based on the observation that a higher number

of shared templates between normal and abnormal log sequences indicates weaker distin-

guishability.

Specifically, recall that we can consider a log parsing result τ ∗∗(L) of a set of log sequences

L for a log parsing technique τ . Let c(τ ∗∗(L)) be the number of unique templates in τ ∗∗(L).

We define the distinguishability score distScore(τ, L) of L for τ as the ratio of the number of

common templates generated by τ between normal and abnormal log sequences to the number

of unique templates in all log sequences in L , i.e., distScore(τ, L) = 1 −
c(τ∗∗(Ln)∩τ∗∗(La))

c(τ∗∗(L))
,

where Ln and La are the sets of normal and abnormal log sequences in L , respectively. Since

c(τ ∗∗(L)) = c(τ ∗∗(Ln))∪ c(τ ∗∗(La)), the distinguishability score is effectively the Jaccard

123



  139 Page 14 of 33 Empirical Software Engineering           (2024) 29:139 

distance between Ln and La in terms of their templates. For example, the number of unique

templates identified by Drain for the HDFS dataset is 31. Among them, 13 templates appear

in both normal and abnormal log sequences. Therefore, the distinguishability score of Drain

for the HDFS dataset is 1 − 13
31

= 0.57.

We want to note that, ideally speaking, this additional analysis should allow us to measure

the impact of distinguishability on anomaly detection accuracy in a more fine-grained manner

without generating artificial log parsing results. However, our metric is a heuristic and may

not fully capture the various aspects of distinguishability. Therefore, we will use this new

analysis as a complementary study to the main analysis (treating distinguishability as a binary

property), to provide a more comprehensive understanding of the impact of distinguishability

on anomaly detection accuracy.

5 Results

5.1 RQ1: Relationship between Log Parsing Accuracy and Anomaly Detection

Accuracy

All 13 log parsing techniques and 7 anomaly detection techniques completed their executions

on the HDFS and Hadoop datasets. However, none of the anomaly detection techniques

detected abnormal logs in the OpenStack dataset (i.e., the F1 score is zero). This could be

due to the very small number of abnormal logs in the dataset (only 4 out of 2068, as reported

in Table 2). Therefore, we disregard the results for OpenStack.

For all tuples 〈G A, P A, FT A, P R, RE, F1〉 we collected for HDFS and Hadoop, Figs. 2

and 3 show the relationship between 〈G A, P A, FT A〉 (x-axis) and F1 (y-axis) for HDFS

and Hadoop, respectively, in the form of a scatter plot. To additionally distinguish the main

results for different anomaly detection techniques, we used different shapes and colors:

= DeepLog, = LogAnomaly, = LogRobust, = CNN, = PLELog, = SVM, and =

RF. For example, the top left subfigure in Fig. 2 shows 13 data points where 13 log parsing

techniques are used in combination with DeepLog. All the raw data are available in the

replication package on Figshare Khan et al. (2024).

Table 3 additionally shows the values of the Spearman’s rank correlation coefficient

σ 〈X , Y 〉 between X = 〈G A, P A, FT A〉 and Y = F1 for each pair of anomaly detection

technique and dataset. The value of σ 〈X , Y 〉, ranging between −1 and +1, is an indication

of the strength of the monotonic (not necessarily linear) relationship between X and Y ; when

σ 〈X , Y 〉 ≥ +0.7 (or σ 〈X , Y 〉 ≤ −0.7), there is a strong positive (or negative) correlation

between X and Y Ali Abd Al-Hameed (2022). Note that, on the Hadoop dataset, σ 〈X , Y 〉

could not be computed for DeepLog, LogAnomaly, LogRobust, and CNN since the F1 score

does not vary at all with 〈G A, P A, FT A〉, indicating no relationship.

Overall, Figs. 2, 3, and Table 3 clearly show that there is no strong correlation between

〈G A, P A, FT A〉 and F1 in all the cases where 〈G A, P A, FT A, P R, RE, F1〉 tuples were

successfully collected. For example, in Fig. 2, LogAnomaly ( ) achieved an F1 score ranging

between 0.2 and 0.5 regardless of the GA score. This means that increasing log parsing

accuracy does not necessarily increase (or decrease) anomaly detection accuracy. This is

counter-intuitive since anomaly detection uses log parsing results, and having “better” log

parsing results is expected to increase anomaly detection accuracy. However, this happens

because even inaccurate log parsing results can lead to accurate anomaly detection results,

for reasons explained below.
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Fig. 2 Relationship between TI accuracy and AD accuracy (HDFS)
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Fig. 3 Relationship between TI accuracy and AD accuracy (Hadoop)
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To better understand the reason for the above results, let us consider the following two

extreme cases separately:

(C1) The log parsing accuracy values for input logs are the same, but the resulting anomaly

detection accuracy values are different (i.e., the data points located on the same vertical

lines in Figs. 2 and 3).

(C2) The log parsing accuracy values for input logs are different, but the resulting anomaly

detection accuracy values are the same (i.e., the data points located on the same hori-

zontal lines in Figs. 2 and 3).

To identify the root cause of C1, we manually investigated several pairs of data points in

Figs. 2 and 3, such as two different HDFS log parsing results having almost the same log

parsing accuracy value (GA scores of 0.37 and 0.40) but resulting in significantly different

anomaly detection accuracy values (F1 scores of 0.73 and 0.10) for the same anomaly detec-

tion technique (DeepLog). It turned out that, although the log parsing accuracy values are

similar, the sets of correctly parsed log messages are different. This happened because the

log parsing accuracy metrics (GA, PA, and FTA) summarize the log parsing results based on

an implicit assumption that all log messages (and templates) are equally important. However,

this assumption does not hold when it comes to anomaly detection, which must discriminate

different log message templates to learn abnormal sequences of templates. Therefore, this

mismatch of assumptions between log parsing and anomaly detection leads to case C1.

As for case C2, similar to the above case, we manually investigated several pairs of data

points in Figs. 2 and 3, such as two different Hadoop log parsing results having signifi-

cantly different log parsing accuracy values (GA scores of 0.12 and 0.77) but resulting in the

same anomaly detection value (F1 score of 0.98) for the same anomaly detection technique

(DeepLog). We found that anomaly detection techniques can distinguish between normal and

abnormal patterns even when input log message templates are incorrect. To best explain this

using a simplified example, let us consider a normal log ln = 〈mn
1, mn

2, . . . 〉 and an abnormal

log la = 〈ma
1, ma

2, . . . 〉, where mx
i indicates the i-th log message in lx for x ∈ {n, a}. Using

oracle templates, we can group the log messages having the same template and represent

ln and la as groups; specifically, let gorc(lx ) be a sequence of message group indices (i.e.,

the i-th element of gorc(lx ) is the message group index of mx
i ). In this context, let us take

two logs from the Hadoop dataset as a concrete example where gorc(ln) = 〈1, 2, 3, 4, . . . 〉

and gorc(la) = 〈5, 5, 5, 6, . . . 〉. When templates generated by LogMine are used to group

messages instead of oracle templates, the sequences of message group indices change to

gL M (ln) = 〈1, 2, 3, 3, . . . 〉 and gL M (la) = 〈7, 8, 9, 10, . . . 〉. These are clearly different

Table 3 Spearman correlation coefficients between log parsing accuracy (GA, PA, and FTA) and anomaly

detection accuracy (F1 score)

AD technique HDFS (reduced) Hadoop

GA PA FTA GA PA FTA

DeepLog −0.166 0.259 0.198 – – –

LogAnomaly 0.431 0.455 0.527 – – –

LogRobust 0.216 −0.134 −0.162 – – –

CNN 0.276 0.262 0.195 – – –

PLELog 0.171 0.656 0.628 −0.180 −0.003 −0.069

SVM 0.633 0.371 0.650 −0.011 0.053 −0.346

RF 0.118 0.205 −0.063 −0.303 –0.136 −0.569
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from gorc(ln) and gorc(la), respectively; in particular, mn
3 and mn

4 are incorrectly grouped

together in gL M (ln) while ma
1 , ma

2 , and ma
3 are incorrectly separated in gL M (la). The incor-

rect groupings of LogMine clearly reduce the GA score (as well as PA and TA scores since

incorrect groupings imply incorrect templates). However, even the incorrect gL M (ln) and

gL M (la) are still different enough from each other for anomaly detection techniques to dis-

tinguish between normal and abnormal patterns. This example not only shows why case C2

happened, but also demonstrates the importance of distinguishability in log parsing results

for anomaly detection; we will further investigate this aspect in RQ2.

Before we conclude RQ1, one might be curious to know why DeepLog, LogAnomaly,

LogRobust, and CNN result in the same anomaly detection accuracy value on the Hadoop

dataset (as shown in Fig. 3 [GA-Hadoop] and Table 3). This happens because (1) the test set

of Hadoop contains only 11 logs (1 normal and 10 abnormal logs, although the number of log

messages is in the same order of magnitude as HDFS; see Table 2 for more details) and (2)

the four anomaly detection techniques classified all the 11 logs in the test set as abnormal. We

speculate that PLELog shows different results from the other anomaly detection techniques

because PLELog uses a very different deep learning model (i.e., an attention-based GRU (Cho

et al. 2014)). Notice that, in all cases, the results still corroborate that log parsing accuracy

and anomaly detection accuracy do not have any strong relationship.

We want to note that the log parsing accuracy results shown in Figs. 2 and 3 are inconsistent

with the ones reported in previous studies Zhu et al. (2019); Dai et al. (2020) since the latter

only considered 2K log messages, randomly sampled from the original logs, to assess log

parsing accuracy.

The answer to RQ1 is that there is no strong correlation between log parsing accuracy

and anomaly detection accuracy; increasing log parsing accuracy does not necessarily

increase anomaly detection accuracy, regardless of the metric (GA, PA, or TA) used

for measuring log parsing accuracy.

5.2 RQ2: Log Parsing Distinguishability and Anomaly Detection Accuracy

5.2.1 Distinguishability as a Binary Property

Tables 4 and 5 show the anomaly detection accuracy values (F1 scores) when different log

parsing techniques (rows) and anomaly detection techniques (columns) are used together

on the HDFS (reduced) dataset; under each of the anomaly detection technique columns,

sub-columns Rdst and Rind indicate the F1 scores for distinguishable and indistinguishable

log parsing results, respectively, and � indicates the difference between Rdst and Rind . For

example, if we choose AEL for log parsing and DeepLog for anomaly detection, the F1

score decreases from 0.747 to 0.561 when Rind is used instead of Rdst . The same structure

applies to Tables 6 and 7, which show the results on the Hadoop dataset. In Table 6, except

for PLELog, SVM, and RF, the values for all anomaly detection techniques are identical due

to the reasons explained in the last paragraph of Section 5.1. We do not provide results for

the OpenStack dataset due to the reasons mentioned in Section 5.1.

In all cases, � is non-negative, ranging from 0 (LogCluster-SVM on the HDFS dataset) to

0.9 (Drain/SHISO-PLELog on the Hadoop dataset). This means that the anomaly detection

accuracy decreases up to 90 percentage points (pp) when Rind is used instead of Rdst . To

see if the differences between Rdst and Rind are significant, we applied the non-parametric
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Table 4 Impact of the distinguishability log parsing results on anomaly detection accuracy for the HDFS (reduced) dataset (DL-based anomaly detection techniques)

Log Parser DeepLog (F1) LogAnomaly (F1) LogRobust (F1) CNN (F1) PLELog (F1)

Rdst Rind � Rdst Rind � Rdst Rind � Rdst Rind � Rdst Rind �

AEL 0.747 0.561 0.186 0.509 0.320 0.189 0.663 0.456 0.207 0.772 0.662 0.110 0.760 0.033 0.727

Drain 0.714 0.523 0.191 0.499 0.400 0.099 0.703 0.454 0.250 0.757 0.682 0.075 0.796 0.286 0.510

IPLoM 0.760 0.590 0.170 0.481 0.268 0.213 0.556 0.380 0.176 0.810 0.588 0.222 0.849 0.041 0.808

LFA 0.803 0.693 0.110 0.606 0.378 0.228 0.355 0.299 0.056 0.755 0.548 0.207 0.100 0.000 0.100

LenMa 0.808 0.625 0.184 0.484 0.285 0.199 0.659 0.436 0.223 0.814 0.607 0.207 0.681 0.271 0.411

LogCluster 0.263 0.097 0.166 0.380 0.243 0.138 0.542 0.300 0.241 0.498 0.306 0.192 0.426 0.317 0.108

LogMine 0.732 0.552 0.180 0.453 0.363 0.090 0.554 0.329 0.225 0.792 0.612 0.179 0.817 0.439 0.378

Logram 0.202 0.025 0.177 0.290 0.143 0.148 0.696 0.460 0.236 0.699 0.523 0.176 0.787 0.034 0.753

MoLFI 0.794 0.630 0.164 0.427 0.282 0.144 0.565 0.319 0.246 0.781 0.621 0.160 0.172 0.109 0.063

SHISO 0.778 0.629 0.149 0.544 0.238 0.306 0.679 0.446 0.233 0.796 0.589 0.207 0.839 0.341 0.498

SLCT 0.743 0.570 0.173 0.268 0.160 0.108 0.394 0.244 0.150 0.743 0.607 0.136 0.725 0.534 0.191

Spell 0.765 0.598 0.167 0.289 0.176 0.113 0.401 0.241 0.160 0.805 0.616 0.189 0.665 0.304 0.361

Average 0.676 0.508 0.168 0.436 0.271 0.164 0.564 0.364 0.200 0.752 0.580 0.172 0.635 0.226 0.409

1
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Table 5 Impact of the

distinguishability of log parsing

results on anomaly detection

accuracy for the HDFS (reduced)

dataset (ML-based anomaly

detection techniques)

Log Parser SVM (F1) RF (F1)

Rdst Rind � Rdst Rind �

AEL 0.968 0.928 0.040 0.947 0.679 0.269

Drain 0.968 0.928 0.040 0.954 0.679 0.276

IPLoM 0.968 0.928 0.040 0.961 0.679 0.282

LFA 0.968 0.928 0.040 0.947 0.679 0.269

LenMa 0.968 0.928 0.040 0.947 0.679 0.269

LogCluster 0.000 0.000 0.000 0.222 0.000 0.222

LogMine 0.947 0.928 0.019 0.947 0.782 0.165

Logram 0.868 0.708 0.160 0.968 0.602 0.366

MoLFI 0.968 0.928 0.040 0.959 0.679 0.280

SHISO 0.961 0.928 0.033 0.940 0.679 0.262

SLCT 0.968 0.928 0.040 0.940 0.679 0.262

Spell 0.968 0.928 0.040 0.947 0.679 0.269

Average 0.876 0.832 0.044 0.890 0.624 0.266

Wilcoxon signed rank test (Wilcoxon 1992) for paired samples to the F1 scores of Rdst and

Rind , for each of the seven anomaly detection techniques and the two datasets. The results

show that, for all the anomaly detection techniques and datasets, the differences between

Rdst and Rind are significant (p-value < 0.005) in terms of anomaly detection accuracy.

Considering the definition of distinguishability for log parsing results, it is intuitive that

indistinguishable log parsing results should lead to lower anomaly detection accuracy. How-

ever, it is surprising that this decrease in accuracy is, in some cases, rather limited, e.g., only

0.011 for SHISO on the Hadoop dataset when SVM is used for log parsing. This happens

because an indistinguishable log parsing result may only have a few logs that are indistin-

guishable in terms of normal and abnormal behavior. Recall that we did not explicitly control

the number of indistinguishable logs since we aimed to minimize the difference between

distinguishable and indistinguishable versions of each log parsing result as described in Sec-

tion 4.5. Nevertheless, the results shown in Tables 4 and 6 are sufficient to confirm the strong

impact of distinguishability in log parsing results on anomaly detection accuracy.

The answer to RQ2 is that the impact of the distinguishability of log parsing results

on anomaly detection accuracy is significant for all anomaly detection techniques.

5.2.2 Degree of Distinguishability

As explained in Section 4.5.4, let us consider the degree of distinguishability of the log parsing

results generated for RQ1 (without considering the artificially generated pairs of Rdst and

Rind .) We focus on the HDFS dataset for this analysis since we know from the RQ1 results

that (1) none of the anomaly detection techniques detected abnormal logs in the OpenStack

dataset, and (2) most of the anomaly detection techniques have achieved the same accuracy

on the Hadoop dataset. Nevertheless, to avoid drawing conclusions based on a single dataset,

we also include another dataset, BGL, in this analysis. Although it was excluded from the

previous analyses due to the unavailability of source code (which is essential to measure
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Table 6 Impact of the distinguishability of log parsing results on anomaly detection accuracy for the Hadoop dataset (DL-based anomaly detection techniques)

Log Parser DeepLog (F1) LogAnomaly (F1) LogRobust (F1) CNN (F1) PLELog (F1)

Rdst Rind � Rdst Rind � Rdst Rind � Rdst Rind � Rdst Rind �

AEL 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.785 0.507 0.278

Drain 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.900 0.000 0.900

IPLoM 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.848 0.000 0.848

LFA 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.888 0.799 0.090

LenMa 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.900 0.505 0.395

LogCluster 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.952 0.180 0.772

LogMine 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.848 0.530 0.318

Logram 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.842 0.799 0.043

MoLFI 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.900 0.739 0.161

SHISO 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.900 0.000 0.900

SLCT 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.842 0.000 0.842

Spell 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.703 0.188 0.515

Average 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.859 0.354 0.505

1
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Table 7 Impact of the

distinguishability of log parsing

results on anomaly detection

accuracy for the Hadoop dataset

(ML-based anomaly detection

techniques)

Log Parser SVM (F1) RF (F1)

Rdst Rind � Rdst Rind �

AEL 0.960 0.912 0.048 0.952 0.718 0.234

Drain 0.952 0.912 0.040 0.910 0.862 0.047

IPLoM 0.949 0.912 0.037 0.891 0.862 0.029

LFA 0.940 0.912 0.027 0.901 0.862 0.038

LenMa 0.952 0.912 0.040 0.952 0.718 0.234

LogCluster 0.952 0.912 0.040 0.952 0.718 0.234

LogMine 0.960 0.912 0.048 0.952 0.718 0.234

Logram 0.952 0.852 0.100 0.798 0.643 0.155

MoLFI 0.949 0.912 0.037 0.952 0.718 0.234

SHISO 0.924 0.912 0.011 0.936 0.862 0.074

SLCT 0.937 0.912 0.024 0.936 0.862 0.074

Spell 0.960 0.912 0.048 0.952 0.718 0.234

Average 0.949 0.907 0.042 0.924 0.772 0.152

log parsing accuracy), it can be used to investigate the relationship between the degree of

distinguishability and anomaly detection accuracy. To use the BGL dataset, we first reduced

it following the same methodology we used for the other datasets (see Section 4.1). Since

the dataset has only one extremely long normal log, we created log sequences using a sliding

window with a window size of 10, following existing studies (Yang et al. 2021; Le and

Zhang 2022). We then labelled each log sequence as normal or abnormal as follows: If a log

sequence contains at least one abnormal log message, it is considered abnormal; otherwise,

it is considered normal. In total, we used 275 306 normal and 16 413 abnormal log sequences

from the BGL dataset.

HDFS dataset Figure 4 shows the relationship between the degree of distinguishability (i.e.,

the dist Score, shown in the x-axis) and the anomaly detection accuracy (i.e., the F1-score,

shown in the y-axis) for the HDFS dataset. Each sub-figure corresponds to a different anomaly

detection technique, and each data point represents a log parsing technique. The Spearman

correlation coefficient between the dist Score and the F1-score is also shown in each sub-

figure. For DeepLog, LogAnomaly, LogRobust, and CNN, the F1-score mostly increases

with the distinguishability score, except for an outlier around dist Score = 0.99. This means

that the anomaly detection accuracy mostly improves when the log parsing results are more

distinguishable, except for the outlier. This outlier is due to LogCluster, which generates

an exceptionally high number of templates, 39 998, while the number of oracle templates

is only 26 as noted in Table 2. Although such a large number of templates leads to a high

degree of distinguishability between normal and abnormal log sequences due to the high

specificity of the templates, it also leads to an excessive number of “features” to consider

for the learning-based anomaly detection techniques, making the learning from training

data more difficult, resulting in decreased anomaly detection accuracy. For the ML-based

anomaly detection techniques, i.e., SVM and RF, the F1-score remains similar regardless

of the distinguishability score, except for the same outlier discussed above. We suspect that

this is mainly because the traditional ML-based techniques are more sensitive to the number

of features they use for learning (i.e., the number of templates, which typically range from

26 to 201) than to the degree of distinguishability. However, LogCluster notably identifies

a significantly higher number of templates, totaling 39 998. For PLELog, the F1-score does
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Fig. 4 Relationship between dist Score and AD Accuracy (HDFS)

not show a clear correlation with the distinguishability score. This could be mainly due to

the unique architecture of PLELog, which uses Gated Recurrent Units (GRUs) to model the

log sequences, as discussed in Section 5.1.

BGL dataset Figure 5 shows the results for the BGL dataset. The structure of the figure is

the same as that of Fig. 4. Overall, the F1-score mostly increases with the distinguishability

score, except for LogAnomaly and SVM. However, their Spearman correlations are very

weak (only −0.06 and −0.13, respectively). In other cases, the Spearman correlations are

positive, ranging from 0.16 (RF) to 0.70 (LogRobust). This implies that the findings from

the HDFS dataset are generally consistent with those from the BGL dataset.

To sum up, although the degree of distinguishability of log parsing results is not always

positively related to anomaly detection accuracy, most of the deep learning-based tech-

niques show moderate and positive correlations between the distinguishability degree and the

anomaly detection accuracy. Considering the heuristic nature of the proposed distinguisha-

bility score, defining a more sophisticated and precise metric that can better capture the

relationship between the distinguishability of log parsing results and the anomaly detection

accuracy is an interesting direction for future work.

The additional analysis for RQ2 shows that the degree of distinguishability of log

parsing results is positively and moderately correlated with the accuracy of most

deep learning-based anomaly detection techniques, but not for traditional machine

learning-based techniques. This implies that distinguishability should be considered

for deep learning-based log parsing for anomaly detection, and calls for defining

more sophisticated metrics for measuring the degree of distinguishability.
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Fig. 5 Relationship between dist Score and AD Accuracy (BGL)

5.3 Threats to Validity

The used oracle templates determine log parsing accuracy values. For example, as noted

by Khan et al. (2022), manually extracting oracle templates by investigating log messages

without accessing the corresponding source code could result in biased, incorrect oracle

templates. This could be a significant threat to the validity of our results. To mitigate this,

we perused the source code (of the exact version that generated the logs) for each software

system and used the templates directly extracted from the source code. Although this made

us exclude a few log datasets whose source code was unavailable, it was beneficial to ensure

the validity of our results.

Individual log parsing and anomaly detection techniques have distinct hyper-parameters,

which might significantly affect the log parsing and anomaly detection results. To mitigate

this, we used the same hyper-parameter values proposed by the authors, when available;

otherwise, we ran preliminary experiments and used the values that resulted in the same

results reported in the corresponding papers.

Using a specific set of log datasets is a potential threat to external validity. Though the

datasets we considered include the logs of various systems, we had to select HDFS, Hadoop,

and OpenStack due to the reasons discussed in Section 4.1. Therefore, even though the

datasets have been widely used in existing literature Le and Zhang (2022); Chen et al. (2021)

on log-based anomaly detection, they may not capture diverse characteristics of log data.

Further experiments with different datasets are required to improve the generalizability of

our results.

In RQ2, we artificially generated pairs of distinguishable and indistinguishable log parsing

results to systematically assess the impact of the distinguishability of log parsing results on
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anomaly detection accuracy using balanced data. To mitigate any bias introduced during the

process, we carefully designed Algorithms 1 and 2 to minimize the difference between each

pair of log parsing results, except for their distinguishability property. Note that, although

the pair generation process (by merging templates) might look unrealistic, it reflects what

frequently happens in real-world scenarios; for example, it is not uncommon for log parsing

techniques to misidentify templates so that messages with different oracle templates are

mapped to the same (misidentified) template.

6 Findings and Implications

One of the most surprising results from our evaluation is that, using all existing log parsing

accuracy metrics in the literature, we did not find any significant correlation with anomaly

detection accuracy. In other words, more accurate log parsing results are not necessarily

better for anomaly detection accuracy. This implies that log parsing accuracy is not a good

indicator of the quality of log parsing results for anomaly detection purposes. As explained

with an example in Section 5.1, this happens because inaccurate log parsing results can still

be useful for anomaly detection as long as normal and abnormal logs are distinguishable.

At the extreme, a log parsing result R50 with 50% accuracy could be better for anomaly

detection than a log parsing result R100 with 100% accuracy if R50 distinguishes normal and

abnormal logs while R100 does not. This could happen when, for example, the log quality

is poor (e.g., because of inconsistencies between the developers’ intentions and concerns

on logging and the actual logging statements in the source code (Rong et al. 2020)) to the

point that even using oracle templates cannot fully distinguish all normal log sequences from

abnormal ones.

This surprising finding leads to an important practical implication: When used for anomaly

detection purposes, we can no longer choose a log parsing technique based on accuracy.

Instead, as shown in Section 5.2, the distinguishability of log parsing results should be

the main selection criterion. For example, since normal and abnormal logs are often used

for training anomaly detection models, candidate log parsing results should be compared

in terms of their capability to distinguish normal and abnormal logs. If there are multiple

techniques that can equally distinguish between normal and abnormal logs, then the one with

the lowest number of identified templates would be preferred since reducing the number of

templates would increase the performance of anomaly detection by reducing dimensionality

(i.e., the number of features considered in machine learning models) Shin et al. (2021).

Note that the notion of distinguishability for log parsing results is irrelevant if these results

are not used for anomaly detection. However, if anomaly detection needs log parsing (which

is frequently the case in practice), then considering distinguishability can help engineers

select the most suitable log parsing technique for anomaly detection.

One may rightfully think that it is intuitive that the distinguishability of log parsing results

is essential for learning-based anomaly detection techniques, which distinguish between

normal and abnormal log sequences by using the log parsing results (i.e., templates) as

learning features. However, despite the prevalent use of log parsing in anomaly detection, the

importance of distinguishability has been surprisingly ignored in the log analysis community.

This paper aims to highlight the significance of distinguishability in log parsing for anomaly

detection. Furthermore, this is the first work to empirically demonstrate the importance of

distinguishability after the theoretical framework proposed by Shin et al. (2021).
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Though our objective here is not to identify the “best” log parsing and anomaly detection

techniques, through our experiments, we found that there is no single best technique that

significantly outperforms the others in all cases. In the future, to develop better log parsing

techniques targeting anomaly detection, it would beneficial to focus on distinguishability,

which has not been the case so far.

7 RelatedWork

Although individual techniques for log parsing and anomaly detection have been studied

for a long time, systematic studies covering several techniques have only recently begun

to emerge. For example, the most comprehensive evaluation studies on many log parsing

techniques (Zhu et al. 2019; Dai et al. 2020; Khan et al. 2022) were conducted over the

last four years. Similarly, the relationship between log parsing and anomaly detection has

received little attention until very recently. Below, we summarize the recent studies related

to this topic.

Shin et al. (2021) presented the first theoretical study considering the relationship between

log parsing and anomaly detection. As described in Section 2.4, they established the concept

of ideal log parsing results for anomaly detection. We adopted their theoretical foundation,

especially the notion of distinguishability in log parsing results, and empirically showed that

distinguishability is indeed essential for anomaly detection. To the best of our knowledge,

our work is the first empirical study showing the importance of log parsing distinguishability

for anomaly detection.

As explained in Section 3, Le and Zhang (2022) presented an empirical study on factors that

could affect anomaly detection accuracy. Although a part of their study investigated the impact

of log parsing on anomaly detection accuracy, they investigated four log parsing techniques

but did not assess the impact of log parsing accuracy. As a result, they only showed that using

different log parsing techniques leads to different anomaly detection accuracy scores. In our

study, on the other hand, we explicitly measured log parsing accuracy, collected 160 pairs of

log parsing accuracy and anomaly detection accuracy values using different combinations of

log parsing and anomaly detection techniques, and showed that there is no strong correlation

between log parsing accuracy and anomaly detection accuracy.

During the writing of this paper, Fu et al. (2023) also presented an empirical study on

the impact of log parsing on anomaly detection performance. Although their motivation and

research questions are close to ours, there are several key differences. First, for measuring log

parsing accuracy, they used the manually generated, error-prone oracle templates (Khan et al.

2022) provided with the 2K log messages randomly sampled by Zhu et al. (2019). In other

words, only a very small fraction of the logs used for anomaly detection was used to measure

log parsing accuracy in their study. In our study, however, the same logs used for anomaly

detection are used to measure log parsing accuracy, and the oracle templates are directly

extracted from the corresponding source code. Second, they considered only one log parsing

accuracy metric (GA), whereas we considered all three log parsing metrics (GA, PA, and TA)

since different metrics assess complementary aspects of log parsing (Khan et al. 2022). Third,

log parsing distinguishability, which is an essential factor that substantially affects anomaly

detection accuracy (as shown in our RQ2), is only considered in our study. Finally, they only

considered two deep learning-based anomaly detection techniques (DeepLog and LogRo-

bust), and focused also on more traditional machine learning approaches (such as Principal

Component Analysis, clustering, logistic regression, and decision trees). Such differences
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Table 8 Comparison with related empirical studies

Category Le and Zhang (2022) Fu et al. (2023) Our work

Objective Investigate different factors that might

affect anomaly detection accuracy

Investigate the impact of log pars-

ing techniques on anomaly detection

accuracy

Evaluate the impact of log parsing

accuracy and the distinguishability of

log parsing results on anomaly detec-

tion accuracy

Log parsing accuracy metrics N/A PA PA, GA, and TA

Oracle templates N/A Manually generated for 2K sample log

messages

Extracted from the corresponding

source code

Logs used for measuring log parsing

accuracy

N/A Only a small fraction of logs actually

used for anomaly detection

All logs used for anomaly detection

Log parsing techniques Drain, Spell, IPLoM and AEL Drain, Spell, IPLoM, LFA, Logram,

and LenMa

Drain, Spell, IPLoM, AEL, LFA,

Logram, LenMa, LogSig, LogCluster,

LogMine, SHISO, MoLFI, and SLCT

Anomaly detection techniques DeepLog, LogRobust, LogAnomaly,

PLELog, and CNN

DeepLog, LogRobust, Principal Com-

ponent Analysis (PCA), LogCluster-

ing, Logistic Regression (LR), and

Decision Tree (DT)

DeepLog, LogRobust, LogAnomaly,

PLELog, CNN, SVM, and RF

Distinguishability Shin et al. (2021) Not considered Not considered Considered

1
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allow us to report new findings and provide concrete recommendations, as summarized in

Section 6.

Wu et al. (2023) recently presented an empirical study on the effectiveness of log rep-

resentation for machine learning-based anomaly detection. They considered different log

representation techniques, such as FastText (Joulin et al. 2016), Word2Vec (Mikolov et al.

2013), TF-IDF (Salton and Buckley 1988) and BERT (Devlin et al. 2018), used to convert

textual log data into numerical feature vectors for machine learning algorithms, such as Sup-

port Vector Machine, Logistic Regression, Random Forest, CNN, and LSTM. As a part of

their study, they investigated the impact of log parsing on anomaly detection when used with

different log representation techniques (in particular, FastText and Word2Vec). The empiri-

cal results showed that, in general, using log parsing (i.e., Drain (He et al. 2017)) improves

the quality of log representations (over raw, unparsed data) and thereby the performance

of anomaly detection; they also reported that some models (e.g., CNN and LSTM) are less

sensitive to whether the log data is parsed or not, possibly due to the strong feature extraction

and representation ability, and can offset the impact of noise generated by log parsing. In

addition to these results, they also investigated the impact of additionally refining log parsing

results using regular expressions and the impact of using different log parsing techniques.

The results showed that refining log parsing results do not significantly increase anomaly

detection performance but using different log parsing techniques yields slight variations in

anomaly detection performance. However, for these additional investigations, they used only

one anomaly detection technique (i.e., Logistic Regression) and two log parsing techniques

(i.e., Drain (He et al. 2017) and LogPPT (Le and Zhang 2023)). Furthermore, they did not

study the relationship between log parsing accuracy and anomaly detection accuracy. On the

contrary, we use 13 log parsing techniques and 5 DL-based anomaly detection techniques

to comprehensively investigate the relationship between log parsing accuracy and anomaly

detection accuracy.

Table 8 summarizes the key differences between the closely-related previous empirical

studies (i.e., Le and Zhang (2022); Fu et al. (2023)) and our work.

8 Conclusion and FutureWork

In this paper, we reported on a comprehensive empirical study investigating the impact of log

parsing on anomaly detection accuracy, using 13 log parsing techniques, five DL-based and

two ML-based anomaly detection techniques on three publicly available log datasets. When

analyzing log parsing results for anomaly detection, we were surprised not to find any signif-

icant relationship between log parsing accuracy and anomaly detection accuracy, regardless

of metric used for the former (including GA, PA, and FTA). This implies that, as opposed

to common research practice to date, we can no longer select a log parsing technique purely

based on its accuracy when used for anomaly detection. Instead, we experimentally confirmed

existing theoretical results showing that the distinguishability of log parsing results plays an

essential role in achieving accurate anomaly detection. It is therefore highly recommended to

consider distinguishability when utilizing log parsing results as input for anomaly detection.

As part of future work, we plan to extend our study with more publicly available datasets

and log parsing techniques (Le and Zhang 2023; Tao et al. 2023), which were published

during the writing of this paper, to increase the generalizability of our results. We also aim

to include state-of-the-art few-shot anomaly detection techniques (Huang et al. 2022; Pang

et al. 2021), which require only a limited amount of training data and could be more effective
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in practice. We also plan to provide a more granular analysis of distinguishability for log

parsing results by defining a new metric that assesses the degree of distinguishability. Finally,

we plan to assess the performance of anomaly detection techniques that do not require log

parsing (Le and Zhang 2021; Mvula et al. 2023; Nedelkoski et al. 2020).
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