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Abstract
One of the components of a new model, called INTRAMOD, for Indonesia’s domestic freight transport is the logistics model.
The logistics model describes shipment size choice and the choice between five different transport chain alternatives involv-
ing four main modes: truck, train, vessel, and plane. This paper presents the work to forecast the disaggregate transport chain
and shipment size choices for Indonesia’s domestic shipments by applying a deterministic and a stochastic approach. Using a
standard economic order quantity model with a consolidation assumption, a deterministic approach is used to determine the
transport chain and shipment size, minimizing total logistics cost. As an alternative for this, a stochastic model aims to
improve the logistics choice modeling by employing data on the manufacturer’s revealed preferences and stated preferences
about only the transport chain choice. The chosen specification for the stochastic approach is utilizing the multinomial logit
model. Using the demand elasticities for all alternatives with respect to changes in its transport cost, a comparison will be
made between the two approaches. In addition, it is concluded that the deterministic model is susceptible to sticky and flip-
flop behaviors. In contrast, this characteristic is absent from the stochastic approach.
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Improving model reliability is an essential component of
developing a national freight transport model, and model
outputs need to be solidly based on reality to accurately
forecast the actions of various actors (e.g., shipper and
carriers). The incorporation of logistics operations into
the freight modeling framework in the form of a logistics
module is one path that has been identified as a potential
direction for freight model development (1). A simplified
portrayal of the relation between the choices that freight
transport actors make in logistics operations and the
causes that lie behind those choices is what is meant by
the term ‘‘logistics model.’’ Some important aspects of
the logistics model include an analysis of the inventory
options and the transport options available on a multi-
modal transport network (2–4).

According to Abate et al. in 2014, freight transport
models that include logistics decisions often rely on opti-
mization theory (5). In this theory, companies attempt to
minimize the annual total logistics cost. These kinds of

logistics models can be found in the version of the
national freight model that was designed in the first
decade of the 21st century for the countries of Norway
and Sweden (6, 7). The Norwegian and Swedish national
freight models were developed within the aggregate–dis-
aggregate–aggregate (ADA) model framework. These
models estimate the shipment size and transport chain
choices of firms following the economic order quantity
(EOQ) concept by trading-off the costs of inventory,
order costs, and transport costs to achieve the minimum
annual logistics cost. When it comes to the creation of
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Indonesia’s National Freight Transport Model
(INTRAMOD), a strategy very much like this one is
taken into consideration.

The INTRAMOD is constructed with three different
modules: (1) an aggregate zone-to-zone demand model, (2)
a disaggregate logistics model, and (3) an aggregate net-
work assignment model. The first module, the aggregate
zone-to-zone demand model, is used to model the zonal
trade flow distribution, moving from the production zone
to the consumption zone. In the second phase, a first sub-
task is conducted to disaggregate the zone-to-zone flows
into hypothetical firm-to-firm flows. This is done as mod-
eling particular firms’ choices of transport chains (the sec-
ond subtask) requires this step to be completed before
proceeding. After that, aggregation to origin–destination
(OD) flows (subtask 3 of phase 2) takes place before con-
ducting network assignment. Having a micromodel by
including shipper behavior in the development of a logis-
tics model is intended to bring the model closer to reality,
where freight flows depend on many individual decisions.
However, an insufficient sample size and the near-absence
of data on the freight flows of individual shippers covering
an entire nation mean that a fully developed micromodel
for all phases is a major challenge. Accordingly, the ADA
approach that we use here aims at balancing the model’s
plausibility with the limited data that are available for
Indonesia’s freight transport system. This paper focuses on
the primary logistics model. The deterministic method was
utilized in the development of the INTRAMOD logistics
model that is in use today (i.e., it follows the EOQ theory).
This kind of deterministic model is simple to construct,
and the necessary data are readily available; nevertheless,
it does not have an empirical foundation because it simply
assumes that companies will select the transport network
and shipment size combination that has the lowest cost. In
contrast to this, a stochastic model (such as a logit discrete
choice model) is typically estimated on observed beha-
vioral data. This type of model has the potential to more
accurately reflect the actual process of logistics choice deci-
sion making (8), but a disadvantage is that exhaustive dis-
aggregate data collection is necessary. In this context, the
purpose of this article is to improve the predictions of the
existing INTRAMOD logistics model by taking into
account the observed behavior of the manufacturers with
regard to their choice of transport chain to enable deeper
and more realistic policy analysis.

A transport chain is the sequence of modes used in the
process of shipping goods from the point of production P
to the consumption location C (PC flows), during which the
goods may pass through logistics hubs such as warehouses,
distribution centers, and transport terminals (1, 4, 9).
According to Huber in 2017, most freight transfers involve
more than one dedicated form of transportation (4). The

reason for this is because it is not always possible to move
freight directly from the location of production to the loca-
tion where it will be consumed (e.g., because there is both
land and sea in between). In addition to this, direct delivery
is frequently not cost-effective (i.e., high transport cost). In
light of these concerns, researchers have been placing a
greater emphasis on the significant problem of transport
chain choice and investigating its possibilities to improve
the performance of freight transport models (8, 10).

On the topic of transport chain (which is sometimes
referred to only as transport mode) choices, there are
exhaustive literature evaluations (4, 11, 12). The authors
contend that the logistics of the supply chain are quite
complicated. Therefore, it is absolutely necessary to iden-
tify several significant aspects that play a role in the devel-
opment of the options for the transport chain. In general,
there are three basic considerations that need to be taken
into account: First, we need to take into account the play-
ers and the complicated dynamics between them. There is
potential for many actors to be involved in the organiza-
tion of the transport chain, each of whom would play a
unique function. This results in the formation of compli-
cated interactions, some of which may be interdependent
on one another. Second, there is the importance of features
of the shipment, such as the dimensions of the shipment
(m3), its weight and value, the frequency of the shipments,
the amount of time it takes to deliver, and so on. Last but
not least come characteristics of the transportation system
(e.g., the transportation network and transport terminals).

A relatively small number of national freight transport
models are found to accommodate logistics, according to
the findings of Huber in 2017, who conducted an analysis
of the logistics models present in existing national freight
transport models. Only fourteen of the 126 freight trans-
port models that were accessible internationally and that
were evaluated involve improvements to multimodal
transportation, and almost all of those fourteen freight
models were established in industrialized countries (4).
Tuğdemir Kök and Deveci in 2019 conducted an in-depth
analysis of previously published freight transport choice
models utilizing the stated preference (SP) technique (12).
A more comprehensive review on the topic is covered in
De Tremerie in 2018 (11). This review examines many dif-
ferent aspects, including the transport mode that is being
predicted, the most used explanatory variables, the actors
that are being studied the most, and the approaches
(models) that are being applied the most. Both De
Tremerie (11) and Tuğdemir Kök and Deveci (12) come
to the same conclusion, which is that the cost of trans-
port, the time of transport, the reliability of transport,
and the frequency of transport are the most frequently
used and powerful variables in explaining the choice of
transport mode (11, 12). In light of this, the variables and
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approach utilized in this research were chosen after care-
fully considering the aforementioned reviews.

Recent years have seen a proliferation of research
focused on shifting away from deterministic models and
toward stochastic ones (1, 5, 8, 13). The stochastic tech-
nique makes use of the random utility discrete choice
model to calculate the chance that a particular combina-
tion of shipment size and transport chain will be selected
by a shipper. The deterministic model has an inherent flaw
that the stochastic approach seeks to circumvent to
achieve its goal. The all-or-nothing property that charac-
terizes the deterministic model might have a problem
known as ‘‘overshooting’’ or ‘‘sticky’’ decisions (13).
Overshooting happens when the logistics cost function is
relatively flat, which means that even small shifts in the
cost might result in drastically different options. A ‘‘sticky’’
choice, on the other hand, is made when one alternative is
noticeably more cost-effective than the others. Therefore,
the improvement of another alternative will not have an
influence on this alternative’s mode share unless this alter-
native ultimately becomes the cheapest option, which then
leads to a dramatically different model result. To the best
of our understanding, there has been limited focus on
studying the selection of transport chains in the context of
developing nations within the existing literature on freight
transport chain choice. Prior research studies in developing
countries primarily focus on improving the logistics perfor-
mance of specific respondents using disaggregate mode
choice data (see Filla [14]). Other studies often have a lim-
ited scope, focusing on urban or regional freight mode
choice rather than national applications (see Nugroho
[15]). This paper aims to bridge the gap in the literature on
freight transport chain choice in the context of an emer-
ging country, as well as compare the deterministic and sto-
chastic approaches for estimating shippers’ logistics
choice, thereby providing valuable insights in modeling the
logistics aspect of freight transportation systems.

The following outline introduces the remaining por-
tions of this paper. In the second section, a summary is
given of the logistics model within INTRAMOD, cover-
ing both the deterministic and stochastic approaches.
The datasets that were used are discussed in the next sec-
tion. In the subsequent two sections, the results of the
deterministic model and the stochastic analysis are pre-
sented. A cost elasticities comparison between these two
outcomes is then offered. Last but not least, the conclu-
sions and suggestions for future work are presented in
the final section.

Logistics Model

Deterministic

Within the ADA model system, the logistics model plays
a crucial role in defining the logistics decisions by the

transport actors, in this case the shipper’s selection of
transport chain and shipment size, to transfer the result
of the trade model (i.e., PC) flows into mode-specific OD
flows (16, 17). The optimal shipment size can be derived
from inventory theory, which addresses the subject of
optimal supply chain management. The calculation of
shipment size is directly tied to numerous transport-
related decisions, including the selection of the transport
chain and the pivotal role played by consolidation of
shipments.

The EOQ is a concept created by Ford W. Harris in
1913 to minimize the overall inventory cost and order-
ing cost within inventory management (18). In the con-
text of freight transport, this strategy recognizes that
the utilization of big-capacity vehicles reduces unit
transport costs for large shipments. Nonetheless, large
shipment quantities result in increased holding costs
because the products must be stocked. The EOQ will
therefore identify the optimal shipping size by balan-
cing these two costs. The logistics cost function applied
to INTRAMOD for shipping from zone r to zone s
with the type of commodity k, shipment size q, and
transport chain l is given by Equations 1–6. The total
logistics cost (Grskql) consists of the order cost (Okq),
transport cost (Trskql), capital cost during transit (Yrskl),
inventory cost (Ikq), and capital cost of inventory (Kkq).
The following equations apply cost variables in the
total logistics cost in the national freight transport
model of Norway, and are also implemented for
INTRAMOD.

Grskql =Okq + Trskql + Yrskl + Ikq +Kkq ð1Þ

Okq = ok

Qk

qk

� �
ð2Þ

Trskql = crsl:C:
qk

C
:
Qk

qk

ð3Þ

Yrskl = i:trsl:vk :Qkð Þ=365 ð4Þ

Ikq =wk : qk=2ð Þ ð5Þ

Kkq = i:vk : qk=2ð Þ ð6Þ

The variables in the aforementioned formulas are unit
order cost (ok), annual demand (Qk), shipment size (qk),
discount rate (i), transport unit cost (crsl), vehicle capac-
ity (C), transport time (trsl), value of goods (vk), and unit
storage cost (wk). Other variables besides shipment size
are known. Therefore, the shipment size must be speci-
fied before the overall logistics cost can be calculated.
The EOQ formula specifies the optimal shipment size as
the quantity of purchased product with the lowest total
logistics cost, which may be computed by setting the
derivative of total logistics cost to zero. From the
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aforementioned equations, the optimal shipping size is
calculated as Equation 7:

qk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:ok :Qk

wk + i:vkð Þ

s
ð7Þ

The unit order cost for Indonesia includes phone
expenses, administrative tasks, and the cost of pen and
paper, and is estimated to be £15.72 per order. Based on
the typical bank interest rates for business and invest-
ment loans, the discount rate is considered to be 10.87%.
The storage cost per unit comprises warehousing costs,
utility bills, and employee salaries, which are estimated
to be 20% of the value of the items.

The shipment size generating module in
INTRAMOD first determines the shipment size (qk)
without considering the transport cost (Trskql) by apply-
ing the original EOQ function in Equation 1. Because
qk cancels out of this equation, the transport cost has
no bearing on the optimal shipment size, as shown by
Equation 3. In actual situations, however, qk

C
(i.e., the

number of vehicles) is not equal to shipment frequency
(Qk

qk
). In reality, a partially loaded vehicle will incur the

same transportation costs as a fully loaded vehicle.
This results in scenarios in which the best shipment
size, considering transport costs, may differ from the
previous optimization result. Therefore, we employ a
comprehensive strategy that takes into account the
impact of transport costs on total logistics expenses
and optimal shipment size. In this method, the initial
qk (rounded to integer values) from Equation 1 is used
as a starting point to compute the shipment frequency,
which is known as the base frequency. Then, twenty
potential shipping frequencies are developed in an
effort to reduce total logistics expenses.

Because of the low unit order cost in Indonesia, the
original EOQ formulation frequently results in small
shipment sizes, therefore increasing shipment fre-
quency. Some frequencies exceed 365 shipments per
year, which appears unlikely in practice. As a result, a
maximum delivery frequency of 365 shipments per year
is imposed as the program’s limitation. After that, the
twenty potential frequencies in the range [1 to 20] for
base frequency 20 and in the range [0.2 Qk

qk
, 1.15 Qk

qk
] for

base frequency .20 are determined. Using the twenty
potential frequencies for Equation 1, trial computa-
tions have been undertaken to determine the total
logistics cost with a consolidation assumption. The
consolidation assumption refers to the situation in
which a carrier combines multiple smaller shipments
from various shippers into a single truck load to reduce
transport costs.

Stochastic

The multinomial logit (MNL) model, being widely used
for such estimation, was then applied as a starting point
for running NGene software to obtain the efficient experi-
mental design for a SP experiment. The same type of
model is also used for analysis after the SP data have been
collected (together with revealed preference [RP] data).
Such MNL models have error terms which are distributed
independently and identically across alternatives and
respondents, following the type I extreme value distribu-
tion, which leads to the logit formula (19). Employing the
utility function with a single parameter per attribute and
alternative specific constants for each alternative (minus 1
for normalization), the utility of each SP-alternative can
be expressed by Equation 8 below. Category (i) is a choice
alternative using a specific transport chain type.

Umni =ASCi +bcostCostmni +btimeTimemni

+breliabilityReliabilitymni + ei ð8Þ

where
Umni=Utility of choosing a discrete transport chain

alternative i by shipper q (this index is not shown to
reduce complexity) for shipment from m (origin) zone to
n (destination) zone

ASCi=Alternative specific constant for alternative i
bcost=Parameter of transport cost
Costmni=Transport cost of a discrete transport chain

alternative i for shipment from m to n
btime=Parameter of transport time
Timemni=Transport time of a discrete transport

chain alternative i for shipment from m to n
breliability=Parameter of reliability
Reliabilitymni=Reliability of a discrete transport

chain alternative i for shipment from m to n
ei=Error term

The values of the transport cost and transport time
attributes presented to the respondents are varied around
base values which depend on the location of the goods’
origin and destination. As no available data supported
these fundamental attributes, a tool to calculate ‘‘base
value’’ data on transport cost and transport time between
all zones for each type of transport chain alternative was
developed, called ‘‘the transport chain builder’’ (TC
builder). A brief explanation of the TC builder is pro-
vided in the next section. The last attribute is the reliabil-
ity, which is defined as the percentage value of ‘‘how
often the shipment is delivered on time.’’ For example, if
a shipper makes five shipments within a month, in a case
where a shipment is delayed once a month (not consider-
ing the length of the delay), the reliability is 80%.
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Moving from Deterministic to Stochastic

There are several reasons for extending the current deter-
ministic model within INTRAMOD to a random utility
logistics model (i.e., stochastic). First the behavior of
transport actors in a deterministic model is not based on
observed data, but on the assumption that shipper will
select the transport chain that minimizes costs under cer-
tain conditions (from the point of view of the modeler
this is dependent on the transport network, the possibil-
ity of using transhipment, and the unit transport cost).
This assumption is not entirely false, especially for ship-
ments in bulk markets. Second, it is problematic that we
do not have access to complete information for all fac-
tors that shippers consider when making decisions.
Instead of using actual (observed) transport costs, the
logistics model assumes that transport costs can be calcu-
lated from network information. Therefore, we need a
way to account for the lack of actual cost information.
Caspersen et al. in 2016 suggested that having the empiri-
cal RP data at the level of individual shipments can serve
as the foundation for an econometric analysis (20).

Still according to Caspersen et al., explanatory factors
that are not included in the calculated logistics costs may
cause problems because the selection of a transport chain
could also depend on reliability and mode flexibility (20).
It is difficult to determine the extent to which these fac-
tors influence the perceived costs of the shipper. To
include, for instance, reliability as a component of the
logistics cost, it is necessary to have a meaningful conver-
sion between some metric of measured reliability and
monetary units. Here, the RP and SP data have the
advantage that they can provide this information
directly. The RP data include observed choice informa-
tion that is the result of all relevant factors, allowing for
the estimation of constants per transport chain alterna-
tive. Further, the SP data are presumably powerful to
estimate coefficients for factors such as reliability of
modes. Estimation of a joint model with SP and RP data
is widely found in studies on the value of time and value
of reliability in freight transport (21–24).

Lastly the main disadvantage of a deterministic model
is that the impact of changes in transport policy variables
(e.g., a new road, railway, or terminal) can lead to
implausibly large responses, or so-called ‘‘overshooting’’
or ‘‘flip-flopping’’ behavior. This occurs when the rele-
vant portion of the logistics cost function is relatively
flat, so that a small change in logistics costs can result in
a shift to a different optimal shipment size and transport
chain. In case of the Norwegian freight transport model,
this phenomenon does not always occur and can be miti-
gated to some extent by employing multiple firm-to-firm
(f2f) flows in the model that do not need to move in the
same direction (20). In addition, if the optimal option
has significantly lower logistics costs than the second-

best option, the model’s behavior could be quite stable
(but this could be an exaggeration as well: ‘‘sticky’’
behavior).

In summary, by estimating disaggregate random util-
ity models with available SP and RP data, all of these
issues can be resolved. The observed of disaggregate
shipment data will then serve as the empirical basis for
the model’s behavioral coefficients. These are probabilis-
tic models by definition, as they incorporate a stochastic
component to account for the impact of omitted factors.
Effectively, a deterministic model assumes that the sto-
chastic component can be ignored, that is, that the
researcher has complete knowledge of all the drivers of
behavior and that there is no randomness in actual beha-
vior. As a result of adding the stochastic component
from random utility modeling, the response functions
(now expressed as probabilities) become smooth, as
opposed to being aggregated between 0 and 1 in a deter-
ministic model.

Data Analysis

We begin this section by introducing the main module of
the intermodal transportation network within
INTRAMOD, which we will denote as the TC builder,
to generate the explanatory values for the variables of
the deterministic logistics model (i.e., transport cost and
transport time). The TC builder model portrays the
interaction between transportation network and possible
transport chain combinations and the level of service
connecting origin and destination location. In the TC
builder, a node could represent a TC zone (i.e., the cen-
troid of a group of subdistrict areas), a transport termi-
nal, and a road junction. The link acts as a connector
between nodes that depict the roads, railways, sea routes,
and flight routes. The transport chain’s determination
follows the Dijkstra shortest path algorithm based on
the minimum total transport cost. From this path, then
the total transport length and transport time will be cal-
culated. Apart from the unit transport cost per kilo-
meters and speed variable, the total transport cost and
total transport time also consider the handling cost and
waiting time at the mode interchange location (i.e., rail-
way station/terminal).

On the other hand, the data for the stochastic
approach use both the TC builder result and the online
RP/SP survey. There are three parts in the online survey,
the first part being an inquiry about the respondent’s
company details. In the second part, there are three sec-
tions related to the shipment: (1) type of commodity, (2)
details of the current choices of shipment transport chain
and shipment size (RP data), and (3) the SP scenarios.
The third part is a question related to the effect of the
pandemic on their shipment choices. Both the RP
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shipment data and the SP responses will be considered in
this paper. For this main survey, 3,374 potential respon-
dents were invited. This resulted in 178 respondents who
completed the questionnaire partly or fully, with an aver-
age response rate of 5.5%. From those respondents, 236
responses were obtained relating to the commodity type
and the OD pair of the shipment, and 179 responses for
the valid RP of transport chain and shipment size (i.e.,
RP shipment). The response is higher than the number
of respondents as the possibility of multiple shipments
per respondents was offered. Meanwhile, with regard to
the SP choices, 624 valid choice observations were gath-
ered to be input for the stochastic approach.

The breakdown of respondents according to
Indonesia’s five largest islands is as follows: Java 116
respondents (65%), Sumatra twenty-eight (16%), and
Sulawesi fifteen (8%), with Bali and Kalimantan having
the lowest share of about 5% each with ten and nine
respondents, respectively. The distribution of partici-
pants based on the main islands is considerably uneven,
with the western islands (Java and Sumatera) having the
highest portion. Nevertheless, there are a few partici-
pants that are representing the eastern region of
Indonesia. Meanwhile, based on the type of commodity
group according to first-digit standard goods classifica-
tion transport statistics (NST/R numbers 0 to 9), the
highest number of respondents are the shipper of NSTR
9 (101 respondents), followed by NSTR 0/1 (ninety-six
respondents), NSTR 7/8 (twenty-three respondents), and
NSTR 6 (six respondents). The least respondents are
from NSTR 2/3 and NSTR 5 (five respondents), whereas
there was no respondent at all for NSTR 4. Because of
the absence of participants for NSTR 4, it is not possible
to execute the calibration of the logistics model for this
specific NSTR type. As for the purposes of model devel-
opment of other modules (beyond the logistics model),
this NSTR 4 (ores and metal waste) will be assumed to
have characteristics close to NSTR 5 (metal products).

In addition, data related to freight flows were obtained
from the Commodity Flow Survey (CFS) carried out by
the Ministry of Transportation in 2016. There are thirty-
three commodity types, as provided in Table 1. These
commodities then will be simplified into 1-digit of
NSTR. The CFS data available are at the aggregate level,
or the flows between provinces. These data may have
some faults, such as not covering some regions, and there
are some missing data. However, these data form the
most up-to-date dataset we could obtain at the moment,
classified by type of commodity, as the previous CFS
data were gathered in 2011, which may no longer be rele-
vant. There could be major changes in flows and in the
transport network as it was obtained more than a decade
ago, and it is not classified by type of commodity. In
other words, these CFS data are the best alternative we
have at hand. However, as we have no detailed informa-
tion in regard to the analysis process of these data, their
reliability to some degree remains unclear. Table 1 dis-
plays the grouping of available commodity types into 1-
digit NSTRs. In the meantime, the Indonesian statistics
provide information about the number and type of
establishments.

Results from the Deterministic Approach

Deterministic Transport Chain and Shipment Size
Choice

The results of applying the deterministic method with
regard to shipment size and frequency, transport chain
options, and shipment size option are presented in Tables
2, 3, and 4, respectively. The value of shipment size (q)
without an index number in Table 2 represents the results
of the standard EOQ calculation, while the index number
indicates the result of the iteration. As shown in NSTR
2/3 and NSTR 7/8, the modification of EOQ to account
for transport costs (by applying twenty possible shipment

Table 1. Grouping of Available Commodity Type in Indonesia CFS 2016 into 1-digit NSTR

NSTR Indonesia CFS 2016

0/1 Agriculture product & live animals, Foodstuff
& animal fodder

Fruit (20), Vegetable (21), Agricultural grain (24), Other grain (25), Rice (27),
Meat and livestock (22), Fish (23), Coffee (26), Sugar (18), Cooking oil (9),
General food cargo (28), CPO (8), Wooden logs (6), Rubber (29)

2/3 Solid mineral fuels and petroleum products Coal (4), Crude oil (1), Fuel (3)
4 Ores and metal waste Metal ores (13)
5 Metal products Iron and steel (14)
6 Crude & manufactured minerals Salt (19), Cement (12), Other mining (5),
7/8 Fertilizer and Chemicals Chemical (10), Fertilizer (11)
9 Machinery & Other goods Spare parts (15), Motorcycle / tri-cycle (16), Four-wheel vehicles (17), General

cargo for non-food product (31), Audio and telecommunications (32),
Electronics (33), Wood products (7), Textile (30)

6 Transportation Research Record 00(0)



frequency values) results in larger shipment sizes and
consequently lower shipment frequencies to achieve the
lowest total logistics cost. However, the changes only
have a minor effect on the model, also because only five
possible transport chain alternatives are present.

The values that are provided as shipment size in Table
2 are the shipment size averages of several types of f2f
relationships. In the model, we assume that the relation-
ship between zones (TaZ) could be shown by different
types of f2f relationships, such as large firms to large
firms (LL), large firms to medium firms (LM), large
firms to small firms (LS), and so on, until small firms to
small firms (SS). The distinction between types of firms
is determined by the number of employees. The magni-
tude of the trade is assumed to be proportional to the
total product of number of employees between the firms’
relation, therefore generates distinct flows for each type
of firm relationship. Apart from the number of employ-
ees, these synthetic f2f relations in Indonesia’s ADA
model require other input variables such as a list of prov-
inces and zones, the number of establishments (by size
category) of a certain commodity in a zone, an input–
output table, and the zone-to-zone PC matrices.
Consequently, by having this synthetic f2f flow, the LL
relationship may have a very large shipment size because
the total trade flows (Q– ton/year) are also large,
whereas the SS relationship will have a modest shipment
size as its Q is small. Please refer to De Jong et al. (6) for
the methodology and how this methodology is applied
for INTRAMOD. For the NSTR 0/1, the LL type of

firms’ relation, the largest cargo size is approximately
5.08 tons per shipment, whereas the smallest shipment
size is estimated to be 1.1 kg per shipment for the SS type
of firms’ relation. Moreover, for bulk-type commodities
such as NSTR 2/3, the largest cargo size for LL firms is
up to 3,103.6 tons/shipment and the smallest shipment
size is approximately 620kg/shipment. This result is
obtained by disaggregating PC into f2f flows; thus, this
result is dependent on the flows between zones, and the
number of establishments and their magnitude within a
zone.

Continuing with Table 2, we also present the average
shipment value as an outcome of the survey (median
value of the RP data). The data reveal the self-reported
shipment size data of firms. The median value is selected
as the number of data is small, thus the median value is
more representative than the mean value. In comparison
with the results of the deterministic approach, the biggest
shipment size for NSTR 0/1 was significantly lower than
the actual RP data; this may be because of the excessive
number of SS firms’ relationships within the f2f flows
hypothesis. As we presume that PC flows are distributed
based on the available firms’ relation option, the more
the small firms’ combination, the lower the shipment
size. The same condition was also applied to NSTR 9.

Table 3 displays the market share results based on the
chosen transport chain in ton-kilometers. It demonstrates
the mode share of four modes based on five alternative
transport chains: alt1 (truck), alt 2 (truck–train–truck),
alt 3 (truck–vessel–truck), alt 4 (truck–plane–truck), and

Table 2. An Outcome of the Logistics Model for EOQ Shipment Size (q), Shipment Size Choice (q1) and Shipment Frequency (Q/q1)

Variables NSTR 0/1 NSTR 2/3 NSTR 4 NSTR 5 NSTR 6 NSTR 7/8 NSTR 9

q (ton/shipment) 0.327 10.779 7.436 1.583 1.248 1.682 0.069
q1 (ton/shipment) 0.327 13.815 7.436 1.583 1.248 1.735 0.069
Revealed preference data (ton/shipment) 9 12.50 NA 7.25 7.5 4 2
Q/q1 (times/year) 3 25 1 7 1 8 1

Note: EOQ = economic order quantity; NA = not available.

Table 3. Mode Shares based on the Transport Chain Choice (ton.km)

Mode share NSTR 0/1 NSTR 2/3 NSTR 4 NSTR 5 NSTR 6 NSTR 7/8 NSTR 9 Total
Data

from MoT

Truck (alt 1) 35.86% 32.31% 47.14% 55.02% 29.77% 37.84% 49.09% 33.30% 26.22%
Train (alt 2 & alt 5) 3.28% 0.41% 2.56% 2.73% 1.73% 1.20% 14.60% 1.18% 6.55%
Vessel (alt 3 & alt 5) 55.76% 64.27% 50.14% 38.09% 63.91% 59.52% 35.18% 62.13% 67.12%
Plane (alt 4) 5.10% 3.00% 0.17% 4.16% 4.60% 1.44% 1.13% 3.39% 0.10%
Total 100% 100% 100% 100% 100% 100% 100% 100% 100%

Note: MoT = Ministry of Transport.
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alt 5 (truck–vessel–train–truck) or (truck–train–vessel–
truck). The last column was added to compare the
observed data in ton.km by mode for all freight commod-
ity types in Indonesia provided by the ministry of trans-
port (MoT). The outcome of the deterministic model is
quite reasonable in comparison with the available data.
All transport chain alternatives involve truck transport;
consequently, when calculating the mode share for goods
transported via alternative 3, for instance, these feeder
flows are added to the mode share for truck transport
(i.e., truck). In the meantime, the flows for alternative 5
will be implemented via truck, train, and ship. This table
also reveals that sea transport is the most popular mode
of transportation in Indonesia, which makes sense given
that it is an archipelagic nation. The NSTR 4 demon-
strates an intriguing result in which the market share of
road and sea transport are nearly equal. NSTR 9 is the
commodity type making the highest proportional utiliza-
tion for rail transport, although across all commodity
types, the primary customer of rail is NSTR 2/3. This
condition in NSTR 4 may be affected by approximately
80% of the freight distribution being intra-island, so a
connector mode (such as a vessel) will in many cases not
be required. In the case of NSTR 9, the selection of rail
as the primary mode of transport is primarily because of
the extensive distribution of goods in the Java and
Sumatera Island region, where rail logistics is more devel-
oped than on other islands.

With regard to shipment size using the deterministic
approach, as shown in Table 4, shipment size distribu-
tions for each commodity type could also be estimated.
It can be concluded that approximately 70% of all ship-
ment weights are less than 500kg, with the exception of
NSTR 2/3 (solid mineral) and NSTR 4 (ores and metal
waste). In the case of commodity NSTR 2/3, NSTR 4,
and NSTR 5 (metal products), the range of shipment
sizes is quite broad, whereas NSTR 01 and NSTR 9
(consumer goods) predominantly ship small quantities.
We are also interested in determining the relationship

between transport chain selection and shipment size, as
shown in Table 5. The table presents the distribution of
shipment size based on the selected transport chain.
Because of space limitations, only NSTR 1, NSTR 5,
NSTR 6, and NSTR 9 will be displayed. It can be
inferred from the table that air transport primarily con-
sists of small shipments, which makes sense given that
the air transport modeled here is a combination of
limited-capacity freight and passenger transport. The
low level of service of Indonesia’s freight rail network
(i.e., the limited number of wagons and freight stations,
the restricted route, and the unbalanced rail logistics
development between Java and other islands) may make
this mode of transport less popular for large shipments.
In contrast, because of their adaptability and capacity,
both land and sea transport can typically accommodate
a broader range of shipment sizes.

Sensitivity Analysis and Updated
Assumption of the Deterministic Approach

In this section, we will provide a sensitivity analysis tack-
ling the impact of input value variations on the model’s
output, which in this case is the input value of order cost
variable. For this analysis, we considered three possible
values for the order cost: the base order cost specified in
the ‘‘Deterministic’’ section, 25% less than the base order
cost, and 25% more than the base order cost.

Table 6 demonstrates the effect of varying order cost
values on shipment value (q1). From this table, we can
conclude that a decrease in order cost will result in a
reduction in shipment size and an increase in shipment
frequency. In contrast, a higher order cost will inevitably
increase shipment volume, leading to a decrease in ship-
ment frequency. This effect is consistent with Equation 7,
which states that the order cost is proportional to ship-
ment size. Meanwhile, changes in order cost do not have
a large impact on the choice of transport chain in the
deterministic approach; this may be because of the small

Table 4. Shipment Size Choice Category based on Deterministic Approach

Category (in tons) NSTR 0/1 NSTR 2/3 NSTR 4 NSTR 5 NSTR 6 NSTR 7/8 NSTR 9

\0.025 2% 1% 0% 30% 0% 4% 29%
0.025–0.1 57% 6% 24% 22% 4% 9% 49%
0.1–0.5 39% 16% 36% 33% 70% 64% 21%
0.5–1 1% 21% 9% 4% 20% 17% 1%
1–2 0% 21% 6% 3% 4% 4% 0%
2–3 0% 11% 5% 2% 1% 1% 0%
3–5 0% 8% 6% 2% 0% 1% 0%
5–10 0% 7% 6% 3% 0% 0% 0%
10–100 0% 10% 7% 1% 0% 0% 0%
ø 100 0% 0% 0% 0% 0% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100%
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magnitude of order cost in comparison with other cost
components such as transport cost and inventory cost.

As previously mentioned, a problem with the original
EOQ is that the average shipment size result of the model
is far lower than the RP data. To cope with this condi-
tion, we applied an assumption to update the EOQ
model. The first update is combining small relations ship-
ments into a single shipment. The new assumption is that
all shipments which originate from small firms will be
consolidated into a single shipment (this applies to small–
small [SS], small–medium [SM], and small–large [SL]).
This group is aggregated for shipments with the same ori-
gin and destination zone. This update was applied to all
NSTR types except for NSTR 2/3, which already had a
number close to the RP data, and NSTR 4, for which we
do not have the target number because of the lack of RP
data. Small shipment size estimated, mostly less than
1 ton/shipment on these firms’ relation categories, ratio-
nalize this assumption.

The second variation within this version is reducing
the number of receivers per sender. Theoretically, reduc-
ing the number of recipients per sender will increase the
size of the shipment. This change was implemented for
NSTR 0/1, NSTR 5, NSTR 6, and NSTR 9.
Furthermore, if after reducing the number of receivers
per sender the deterministic shipment size is still signifi-
cantly below the target value, the third adjustment will
be applied. The third is increasing the order costs,
decreasing inventory costs, or both. The value of order
cost in the model for INTRAMOD averages around
£16per order; therefore, it is preferable to order in small
quantities. Order cost is the expense incurred related to
placing the order which generally includes shipping
(transport and transhipment cost) and handling.
However, based on the EOQ equation applied in this
original model, the derivative of transport cost to ship-
ment size is zero, which means no effect of transport cost
on the optimal shipment size calculation (as we assume

Table 6. Result of Sensitivity Analysis by having Multiple Order Cost Values in Relation to Shipment Size Result

q1 NSTR 0/1 NSTR 2/3 NSTR 4 NSTR 5 NSTR 6 NSTR 7/8 NSTR 9

225% 0.283 12.717 6.440 1.371 1.085 1.515 0.059
base 0.327 13.804 7.436 1.583 1.253 1.730 0.069
+ 25% 0.366 14.790 8.314 1.770 1.401 1.915 0.077

Table 5. Shipment Size Category for Transport Chain for NSTR 4, NSTR 5, NSTR 6, and NSTR 9

Transport chain \ 0.025 0.025–0.1 0.1–0.5 0.5–1 1–2 2–3 3–5 5–10 10–100 ø 100

NSTR 1
Alt 1 1.66% 56.15% 39.83% 2.16% 0.17% 0.03% 0.01% 0.00% 0.00% 0.00%
Alt 2 0.85% 69.37% 29.70% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Alt 3 3.39% 47.05% 47.54% 1.90% 0.11% 0.00% 0.00% 0.00% 0.00% 0.00%
Alt 4 2.26% 69.57% 27.74% 0.41% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00%
Alt 5 0.00% 45.03% 52.83% 2.11% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00%

NSTR 5
Alt 1 0.00% 12.02% 14.73% 1.55% 8.53% 9.30% 15.12% 37.60% 1.16% 0.00%
Alt 2 0.00% 34.41% 65.59% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Alt 3 5.69% 33.60% 43.39% 6.04% 2.28% 2.85% 2.73% 2.28% 1.14% 0.00%
Alt 4 57.57% 15.98% 22.65% 2.40% 1.05% 0.10% 0.10% 0.15% 0.00% 0.00%
Alt 5 0.00% 0.00% 4.88% 31.71% 28.05% 9.76% 17.68% 3.66% 4.27% 0.00%

NSTR 6
Alt 1 0.00% 2.48% 66.30% 24.97% 4.79% 1.38% 0.06% 0.02% 0.01% 0.00%
Alt 2 0.00% 4.32% 79.35% 12.78% 3.52% 0.03% 0.00% 0.00% 0.00% 0.00%
Alt 3 0.21% 4.94% 66.14% 19.87% 5.71% 1.31% 1.11% 0.60% 0.10% 0.00%
Alt 4 0.42% 3.77% 70.41% 22.09% 2.59% 0.53% 0.09% 0.10% 0.00% 0.00%
Alt 5 0.00% 2.73% 60.32% 23.68% 7.10% 1.95% 2.56% 1.35% 0.31% 0.00%

NSTR 9
Alt 1 11.12% 56.16% 30.45% 2.20% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00%
Alt 2 18.98% 53.80% 26.66% 0.56% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Alt 3 39.05% 47.77% 12.98% 0.19% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%
Alt 4 80.80% 18.21% 0.96% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Alt 5 35.18% 52.17% 12.40% 0.11% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00%
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that shipping cost is not a fixed cost as it depends on the
volume of the shipment). This is, among others, a limita-
tion in using the EOQ. Accordingly, the update on the
order cost is introduced to remove or reduce this limita-
tion. If the results of previous changes are still unsatis-
factory, the final update is implemented. The final
update is a restriction on the maximum shipment fre-
quency. In the original deterministic model, the maxi-
mum shipment frequency is 365, which implies that in
some cases there will be daily shipments. Consequently,
tiny shipment sizes are permitted, which may lead to
high transport costs. In certain NSTRs where small ship-
ments predominate (as a result of the model), such as in
NSTR 0/1 and NSTR 9, we now limit the maximum fre-
quency of shipments. This last update will have an effect
on the standard EOQ calculation: because the shipment
sizes are forced to a certain value, the total logistics cost
will no longer be optimal. One may, however, interpret
this as adding the influence of transport cost to the EOQ
calculation, which will tend to make the shipment sizes
larger to reduce transport cost and benefit from econo-
mies of scale in transport. In summary, the best adjust-
ment applied on the original EOQ model is as in Table
7; these assumptions are obtained through trial and
error.

Table 8 shows the results comparison of the updated
EOQ version with the previous models (modified EOQ
version) on the deterministic logistics model. From Table
8, we can infer that the result of the EOQ update version
is now close to the targeted shipment size values.
Consequently, having different shipment sizes will affect
the freight mode share and the proportion of the ship-
ment size category as given in Table 9 and Table 10. It is
inferred that the updated versions have quite different
transport chain choices compared with the modified
EOQ version, in which there is a lot of shifting from
truck to vessel as shown in NSTR 01, NSTR 5, NSTR 6,
and NSTR 9; meanwhile, NSTR 7/8 only has slight
changes to the modified version (see Table 3).
Considering the shipment size category, it is clearly
shown that the shipment size for the updated EOQ ver-
sion is leaning to bigger shipment size compared with the
modified version (see Table 4). To maintain the consis-
tent flow of this paper, all the analysis given by the deter-
ministic logistics model will subsequently be derived
from the updated EOQ version (i.e., the result provided
in Table 11 for the cost elasticities analysis).

Stochastic Approach: Discrete Choice
Model Estimation for Transport Chain

This section will discuss the results of the primary esti-
mation of the MNL model for the RP/SP data. In con-
trast to the deterministic model, the discrete choice in theT
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stochastic approach only models the transport chain
choice and not the shipment size choice, as data analysis
for shipment size category is not yet complete. Table 12
displays the estimation results for RP data only, SP data
only, and combined RP/SP data. The explanatory vari-
ables are listed in the first column, followed by the esti-
mated coefficients using the dataset mentioned. Table 12
shows the outcome of the MNL model with variable
coefficients per alternative is also displayed.

The result of MNL for a single dataset of RP data
does not include the reliability variables, as even though
respondents provided reliability values for their preferred
transport chain alternative, we lack data on the reliability
of the other options. This case illustrates one of the dis-
advantages of relying solely on RP data, in which we lack

complete information on variables of non-selected alter-
natives. As a result, contrary to the alternative specific
constant (ASC) value, some coefficients are insignificant

Table 8. Shipment Size Result Comparison between Revealed Preference (RP) Data, Original EOQ Version, and the Updated EOQ
Version

Variables NSTR 0/1 NSTR 2/3 NSTR 4 NSTR 5 NSTR 6 NSTR 7/8 NSTR 9

RP data (ton/shipment) 9 12.50 NA 7.25 7.5 4 2
Original version 0.327 13.815 7.436 1.583 1.248 1.735 0.069
Updated version 4.878 NA NA 6.471 7.095 3.512 1.115

Note: EOQ = economic order quantity; NA = not available.

Table 9. Mode Shares based on the Transport Chain Choice (ton.km) of the Updated EOQ Version

Mode share NSTR 0/1 NSTR 2/3 NSTR 4 NSTR 5 NSTR 6 NSTR 7/8 NSTR 9 Total Data from MoT

Truck (alt 1) 23.93% 32.31% 47.14% 30.49% 19.67% 26.87% 38.82% 30.68% 26.22%
Train (alt 2 & alt 5) 3.55% 0.41% 2.56% 4.04% 2.31% 1.41% 15.67% 1.19% 6.55%
Vessel (alt 3 & alt 5) 66.96% 64.27% 50.14% 60.97% 71.09% 69.81% 44.30% 64.65% 67.12%
Plane (alt 4) 5.56% 3.00% 0.17% 4.50% 6.93% 1.91% 1.21% 3.48% 0.10%
Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100%

Note: EOQ = economic order quantity; MoT = Ministry of Transport.

Table 10. Shipment Size Choice Category based on Deterministic Approach of Updated EOQ Version

Category (in tons) NSTR 0/1 NSTR 2/3 NSTR 4 NSTR 5 NSTR 6 NSTR 7/8 NSTR 9

\0.025 0% 1% 0% 0% 0% 3% 0%
0.025–0.1 2% 6% 24% 16% 0% 2% 7%
0.1–0.5 49% 16% 36% 24% 1% 67% 50%
0.5–1 35% 21% 9% 19% 6% 19% 27%
1–2 11% 21% 6% 20% 8% 6% 13%
2–3 2% 11% 5% 3% 19% 1% 2%
3–5 0% 8% 6% 4% 20% 1% 1%
5–10 0% 7% 6% 4% 29% 1% 0%
10–100 0% 10% 7% 9% 17% 0% 0%
ø 100 0% 0% 0% 1% 0% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100%

Note: EOQ = economic order quantity.

Table 11. The Value of Time for each Main Mode of Alternative

Value of time (USD per ton/h) RP/SP

Truck 0.104
Rail 0.301
Vessel 0.710
Plane 19.110
rail–vessel 0.496

Note: RP = revealed preference; SP = stated preference.
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and have unreasonably signed explanatory variables in
the results. This could be because of a small sample size
of observations. On the other hand, with the exception of
the ASC, the majority of explanatory variables have the
expected sign when only the SP dataset is utilized.
Moreover, at the 95% confidence level, the majority of
the coefficients of the explanatory variables (transport
cost, transport time, and reliability) are also significant.

The joint RP/SP data yield a superior ASC for the RP
observation, where all coefficients are significant and
have reasonable signs, whereas the ASC for the SP
demonstrates the opposite. Except for the cost attribute
for alternative 4, the coefficients for the transport cost,
transport time, and reliability attributes have the
expected sign. Further examination of the value of the
RP scale parameter reveals that the scale factor is

significant and greater than 1; according to Lavasani
et al. in 2017, this indicates that the SP data have less
noise (less variance) than the RP data (25).

This result can be used to calculate the value of time
(VOT), which is calculated as btime/bcost. The outcome
of the VOT is shown in Table 11. Compared with the
result by Tao and Zhu (23) and Binsuwadan et al. (24),
the VOT from the SP dataset and joint RP/SP data
seems plausible. The VOT for trucks is the lowest com-
pared with other modes of transportation, such as rail,
as was determined by a study Arunotayanun and Polak
(26). Air transport has the highest VOT, as demonstrated
by a study by Binsuwadan et al. (24). Having the lowest
VOT for trucks when compared with other modes seems
counterintuitive, yet this could be the case for Indonesia
for various reasons. First, the rail system, which is the

Table 12. Estimation Results for Multinomial Logit Model for all Commodity Types

Attributes

RP data SP data RP/SP data

Coefficient t-test Coefficient t-test Coefficient t-test

asc_alt1 0.000 NA NA NA 0.000 NA
asc_alt2 24.387 36.351** NA NA 22.808 24.961**
asc_alt3 22.559 21.052 NA NA 21.813 23.660**
asc_alt4 28.665 24.090** NA NA 23.580 23.724**
asc_alt5 21.767 20.218 NA NA 24.324 23.157**
asc_alt1_SP NA NA 0.000 NA 0.000 NA
asc_alt2_SP NA NA 3.421 2.106** 2.916 1.494
asc_alt3_SP NA NA 1.379 0.921 1.307 0.898
asc_alt4_SP NA NA 4.352 1.758* 2.450 1.181
asc_alt5_SP NA NA 1.544 0.674 1.293 0.629
b_cost1 0.010 2.294** 20.003 26.073** 20.003 22.103**
b_time1 27.754 23.108** 20.098 20.501 20.105 20.595
b_rel1 NA NA 0.068 5.956** 0.058 1.973**
b_cost2 0.038 1.573 20.002 23.705** -0.002 21.901**
b_time2 222.289 21.295 20.244 21.019 -0.222 20.952
b_rel2 NA NA 0.026 2.474** 0.022 1.555
b_cost3 20.001 20.221 20.001 21.946** -0.001 21.491
b_time3 20.906 21.191 20.292 23.132** -0.263 21.712*
b_rel3 NA NA 0.043 3.493** 0.037 1.801*
b_cost4 0.000 21.630 0.000 23.012** 0.000 21.700*
b_time4 0.339 0.345 21.060 21.957** -0.551 21.351
b_rel4 NA NA 0.007 0.360 0.013 0.709
b_cost5 0.002 0.239 20.001 21.741** -0.001 21.392
b_time5 22.050 20.718 20.248 21.560 -0.225 21.245
b_rel5 NA NA 0.036 1.485 0.033 1.211
mu_RP NA NA NA NA 1.000 NA
mu_SP NA NA NA NA 1.161 2.049**
Statistics

Observations 179 624 803
LL(start) 2155.4 2733.54 2888.94
LL(final) 261.89 2561.06 2630.78
Rho-squared (0) 0.602 0.235 0.290
Adj Rho-squared (0) 0.524 0.220 0.263

Note: alt1 = truck, alt2 = train, alt3 = vessel, alt4 = plane, alt5 = train–vessel. RP = revealed preference; SP = stated preference; LL = Log-Likelihood; NA =

not available; Adj = adjusted.
*Significance at the level of 10%.
**Significance at the level of 5%.
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main competitor for trucks for land transport, is not well
developed. The lack of continuous rail track and the
presence of a single operator providing service, thus
inducing high transport costs, are reasons why this mode
is not so popular in Indonesia. Unlike the situation in
many Western countries, in Indonesia rail is not a low-
cost mode. A second reason is the archipelagic condition
and unbalanced regional economic development between
Indonesia’s west and east regions, which may contribute
to the high cost of maritime transport. In sea freight
shipment, it is impossible to isolate the cost of producing
services in one direction from the cost of bringing the
ship back. Because of the disparities in economic devel-
opment between regions, eastbound trade in Indonesia is
weaker than westbound trade; this imbalanced trade
leads to the emergence of a phenomenon in which the
fronthaul trip may bear the entire cost of round trips,
whereas the backhaul trip can only cover a small portion
of transport costs.

The comparison between the results from the MNL
model and the CFS data is given in Table 13. However,
the data given by the MoT are not at the shipper level, so
we could not perform an apple-to-apple comparison.
Table 13 provides an estimation of the transport chain’s
choice of shipper based on the sample size we gathered in
RP survey. It is shown in Table 13 that the result of the
stochastic approach is quite close to the data from the
transport ministry, in which sea transport has the biggest
share, whereas the lowest share is for air transport.

Cost Elasticities

A fascinating aspect of developing a model is under-
standing the response of the outcome, here the selected
transport chain alternative, to changes in the input data
(i.e., simulation or model application). In this section, we
compare the deterministic model with the stochastic
model (joint RP/SP model) in relation to demand elasti-
cities for all transport chain alternatives, relative to trans-
port cost changes. The cost changes for calculating the

elasticities are assumed to be segregated, which means
that the increase in transport cost for alternative 1 (i.e.,
truck) will have no effect on the cost of the other alterna-
tives, despite each transport chain alternative including
truck mode. The effect of transport cost changes in the
selected transport chain will then be examined at the ton-
kilometers per alternative.

The results of direct and cross-elasticities for determi-
nistic and stochastic approaches are displayed in Table
14. The direct elasticities are highlighted in bold. In the
deterministic approach, elasticities are differentiated
based on the type of commodity, whereas in the stochas-
tic approach, there are insufficient data to distinguish
commodities, resulting in a single value. However,
although the estimation results from the RP–SP model
are used here, these elasticity values are calculated sepa-
rately as RP and SP results. The direct elasticities for the
deterministic model have a reasonable sign, as shown in
Table 14. There are too many perfectly inelastic demands
in NSTR 5, resulting in an intriguing result. The inelastic
condition indicates that changes in commodity costs will
have no effect on the selected alternative; this is to be
expected for NSTR 5 (metal products), which involves
considerable heterogeneity (i.e., shipping steel in the
form of a beam differs from shipping steel in the form of
a coil, and shipping steel for construction may also dif-
fer, such that the nature of the shipment may vary based
on its form). NSTR 9 also has some similar characteris-
tics. However, the majority of the products in this cate-
gory are consumables such as textiles, electronics, and
wood products that do not require special handling dur-
ing shipment; therefore, the inelastic demand may be evi-
dence of sticky choice problems in the deterministic
approach, where the model is too stable, and the chosen
alternative has significantly lower logistics costs than the
second-best alternative. Contrary to the deterministic
method, this phenomenon does not exist in the stochastic
model.

Considering the elasticities results for each mode of
transport in the deterministic approach, it is possible to
conclude that freight modes have inelastic demand.
However, some modes have absolutely low elasticities
(such as air transport), which demonstrates a sticky
choice behavior, whereas others can suddenly change
their share (such as sea transport in the scenario with
15% off the alt 3 cost), which demonstrates a flip-
flopping behavior. In the stochastic model, the elastici-
ties for all modes are relatively elastic and stable.

Conclusion and Further Work

This paper’s findings provide the foundation for the
development of a logistics model for Indonesia’s national
freight transport model system (INTRAMOD). Starting

Table 13. Mode Share Comparison between RP Data using
Multinomial Logit Model (in Ton.km)

Mode share
RP

estimation
SP

estimation MoT

Truck (alt 1) 32.19% 13.18% 26.22%
Train (alt 2 & alt 5) 9.77% 11.73% 6.55%
Vessel (alt 3 & alt 5) 51.88% 74.94% 67.12%
Plane (alt 4) 6.16% 0.14% 0.10%
Total 100% 100% 100%

Note: RP = revealed preference; SP = stated preference; MoT = Ministry

of Transport.
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with the deterministic method to estimate the transport
chain selection and shipment size, the findings were com-
parable to the MoT’s published freight mode market
share. The deterministic logistics model assumes that
shippers select the most cost-effective total logistics cost.
A modified EOQ (i.e., making use of twenty possible
shipment frequencies) applied to the consolidation
assumption yielded plausible results in simulating the
shipper’s decision about the transport chain and ship-
ment size. In addition, we also perform the comparison
in view of mode share between the results of the modi-
fied EOQ with the RP data. The result is that the modi-
fied EOQ predicts shipment sizes far smaller than the
data. Consequently, we updated the EOQ into a new ver-
sion by applying some adjustments and assumptions to
the cost variables so that the results are now closer to the
data. The outcome of the deterministic method also
reveals the distribution of shipment size for each com-
modity category and how shipment size influences the
selection of the transport chain. In conclusion, a natural
resource commodity has a greater variation in shipment

size, whereas consumable items are typically transported
in small quantities. In addition, it has been determined
that small shipments utilize air transport exclusively
because of the limited capacity of air transport.
Meanwhile, the popularity of rail transport for large
shipment sizes may be adversely affected by the low level
of service of the freight rail network in Indonesia. On the
other hand, road and sea transport have a wider range
of cargo size variations owing to their adaptability and
capability of handling large capacity.

This work confirms that one of the issues with the
deterministic approach to the logistics model, as pre-
sented in transport chain simulation (results for elasti-
city), is the occurrence of ‘‘sticky’’ and ‘‘flip-flop’’
behaviors to some degree. Such overly stable behavior
occurs when the logistics cost function for the selected
alternative is significantly distinct from that of the
second-best alternative, so that even substantial changes
in cost have no influence on demand. On the other hand,
relatively flat cost functions for alternatives are the main
reason for flip-flop behavior. The disaggregate stochastic

Table 14. Direct and Cross-demand Elasticities in Deterministic and Stochastic Approaches with Respect to the Changes of Alternative’s
Cost

NSTR Alternative

alt 1 alt 2 alt 3 alt 4

10% 215% 10% 215% 10% 215% 10% 215%

Deterministic
NSTR 01 Alt 1 20.32 20.72 0.31 0.24 0.13 0.13 0.00 0.00

Alt 2 0.32 0.27 20.30 20.59 0.20 0.05 0.00 0.00
Alt 3 0.01 0.42 0.00 0.35 21.00 20.66 0.00 0.00
Alt 4 0.00 0.00 20.01 20.01 0.01 0.00 0.00 0.00
Alt 5 0.00 0.03 0.00 0.00 0.66 0.47 0.00 0.00

NSTR 5 Alt 1 20.01 20.01 0.00 0.00 0.00 20.05 0.00 0.00
Alt 2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Alt 3 0.01 0.00 0.00 0.00 0.00 23.06 0.00 0.00
Alt 4 0.00 0.00 0.00 0.00 0.00 20.02 0.00 0.00
Alt 5 0.00 0.00 0.00 0.00 0.00 3.14 0.00 0.00

NSTR 9 Alt 1 21.12 22.10 1.46 0.78 0.09 0.20 0.00 0.00
Alt 2 1.10 1.43 21.44 21.93 0.40 0.26 0.00 0.00
Alt 3 0.00 0.44 20.01 1.16 20.92 20.83 0.00 0.00
Alt 4 0.00 0.01 0.00 20.01 0.00 0.00 0.00 0.00
Alt 5 0.03 0.22 20.01 0.00 0.44 0.37 0.00 0.00

Stochastic
RP elasticities

All commodities
Alt 1 20.14 20.19 0.02 0.02 0.00 0.00 0.01 0.01

Alt 2 0.95 1.41 20.81 20.74 0.82 0.78 0.01 0.01
Alt 3 0.36 0.53 0.02 0.02 20.27 20.25 0.15 0.15
Alt 4 0.37 0.53 0.02 0.02 0.50 0.42 20.85 20.76
Alt 5 0.13 0.22 0.01 0.01 0.72 0.64 0.20 0.21

SP elasticities
All commodities

Alt 1 20.51 20.45 0.21 0.19 0.05 0.04 0.02 0.02

Alt 2 0.33 0.32 20.48 20.42 0.05 0.06 0.03 0.03
Alt 3 0.33 0.33 0.22 0.24 20.45 20.38 0.14 0.13
Alt 4 0.28 0.27 0.22 0.22 0.22 0.20 20.60 20.54
Alt 5 0.23 0.25 0.13 0.18 0.36 0.31 0.20 0.21

Note: RP = revealed preference; SP = stated preference.
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logistics model is developed in an effort to address this
issue. The outcome of the elasticities demonstrates that
the stochastic approach is a possible solution to this
problem. However, we need to bear in mind that the sto-
chastic approach does require detailed data on shipment
characteristics, which is rarely available for developing
countries such as Indonesia.

In addition, this paper included research into the con-
struction of a stochastic logistics model for
INTRAMOD. Using the RP/SP data, parameter estima-
tion was carried out with a basic MNL model with dif-
ferent coefficients for each attribute and alternative. In
contrast to the deterministic model, the current stochas-
tic approach currently only considers the choice of ship-
per in the transport chain and not the shipment size. The
results of the model indicate a significant SP to RP scale
parameter with a value greater than 1, indicating greater
variations in the RP data. The parameters of the MNL
model for the RP dataset alone suggest significant and
appropriate ASC values, but odd and insignificant trans-
port time and cost coefficients. In contrast, the MNL
result with only SP data reveals an unexpected ASC
value, with alternative 2 (rail) and alternative 4 (plane)
being the most attractive modes of transport for freight
shipment if the cost, time, and reliability differences are
controlled for (this may not be portraying the real situa-
tion). Nonetheless, it exhibits credible and substantial
coefficient parameter values. Consequently, utilizing
both RP and SP datasets is anticipated to enhance the
stochastic model. The MNL result of the combined data-
set demonstrates a small improvement over the previous
analysis. With regard to the VOT calculation, the joint
RP/SP model is consistent with the findings of a prior
study on the freight mode VOT for Indonesia.

Further research will be conducted to investigate more
complex stochastic methods, such as modeling the dis-
crete choice of joint transport chain and shipment size.
Other model specifications, such as the nested logit
model, may also be estimated alongside the MNL model.
Finally, a comprehensive logistics model for
INTRAMOD using both deterministic and stochastic
approaches will be utilized later on to estimate aggre-
gated OD flows.
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