
This is a repository copy of A Real-Time Machine Learning Module for Motion Artifact
Detection in fNIRS.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/216110/

Version: Accepted Version

Proceedings Paper:
Ercan, R., Xia, Y., Zhao, Y. et al. (3 more authors) (2024) A Real-Time Machine Learning
Module for Motion Artifact Detection in fNIRS. In: 2024 IEEE International Symposium on
Circuits and Systems (ISCAS). 2024 IEEE International Symposium on Circuits and
Systems (ISCAS), 19-22 May 2024, Singapore. IEEE International Symposium on Circuits
and Systems (ISCAS) . IEEE ISBN 979-8-3503-3100-4

https://doi.org/10.1109/iscas58744.2024.10557996

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Real-Time Machine Learning Module for Motion

Artifact Detection in fNIRS

Renas Ercan

HUB of Intelligent Neuro-Engineering

(HUBIN)(UCL)&Department of

Physics(University of Cambridge)

University of Cambridge

Cambridge, UK

re378@cam.ac.uk

Rui Loureiro

Division of Surgery & Interventional

Science(DSIS)

University College London(UCL)

London, UK

r.loureiro@ucl.ac.uk

Yunjia Xia

HUB of Intelligent Neuro-engineering

(HUBIN), DSIS

University College London(UCL)

London, UK

yunjia.xia.18@ucl.ac.uk

Shufan Yang

Institute of Medical & Biological

Engineering, School of Mechanical

Engineering

University of Leeds

Leeds, UK

s.f.yang@leeds.ac.uk

Yunyi Zhao

HUB of Intelligent Neuro-engineering

(HUBIN), DSIS

University College London(UCL)

London, UK

yunyi.zhao.21@ucl.ac.uk

Hubin Zhao

HUB of Intelligent Neuro-engineering

(HUBIN), DSIS

University College London(UCL)

London, UK

hubin.zhao@ucl.ac.uk

Abstract— Functional Near-Infrared Spectroscopy (fNIRS)

is a neuroimaging method which can be implemented with a

wearable form factor. However, the data of fNIRS can be

affected by motion artifact, which is conventionally processed

offline using MATLAB-based software package via a bulky PC.

This study trains a Support Vector Machine (SVM) algorithm

and proposes a hardware design approach based on an FPGA

to achieve the first real-time fNIRS motion artifact detection.

The SVM hardware architecture proposed here utilizes a

partially sequential–partially parallel implementation of the

classification algorithm where Support Vector channels are

consolidated into a single oversampled channel. A high

classification accuracy of 97.42%, low FPGA resource

utilization of 38,354 look-up tables and 6024 flip-flops with 10.92

us latency is achieved, outperforming conventional CPU SVM

methods. These results show that an FPGA-based fNIRS motion

artifact detector can be exploited whilst meeting real-time and

resource constraints that are crucial in high-performance

reconfigurable hardware systems.

Keywords— fNIRS, machine learning, motion artifact

detection, real-time, support vector machines (SVM), Field-

programmable gate array (FPGA)

I. INTRODUCTION

Functional Near-Infrared Spectroscopy (fNIRS) serves as

a non-invasive optical neuroimaging modality, quantifying

the concentrations of oxygenated and deoxygenated

hemoglobin proximate to the brain's surface, thereby

enabling the inference of relative alterations in neural

activation [1]. The advantages of fNIRS, epitomized by its

relatively superior spatial resolution, cost-effectiveness, and

portability, contribute to its broad spectrum of applications,

encompassing cognitive neuroscience, clinical neurology,

and personalized healthcare [1]. However, fNIRS data is

prone to contamination by motion artifacts, which

significantly deteriorates the quality of the recorded optical

signals. These artifacts emerge from changes in the

orientation or distance of the sources and detectors relative to

the skull, induced by movements, thereby altering the

impedance and inducing perturbations in the fNIRS signal.

Consequently, these perturbations may engender

misidentification of functional cortical activity [2]-[3].

Fig. 1(a) delineates a conventional neuroimaging system,

wherein the green area represents the signal processing

stream with standard fNIRS toolkits. Fig. 1(b) illustrates the

comprehensive system design for an FPGA-based motion

artifact detector in this study. A Support Vector Machine

(SVM) has been seamlessly integrated into an FPGA chip,

functioning as a real-time motion artifact detection module.

Prevailing methodologies for processing and mitigating
motion artifacts in fNIRS data predominantly rely on robust,
stationary hardware such as desktop PCs or workstations,

This research is supported by The Royal Society Research Grant

(RGS/R2/222333), Engineering and Physical Sciences Research Council

Grant (13171178 R00287), European Research Council (ERC) under the

European Union’s Horizon Europe Research and Innovation Program (No.
101099093), Department of Orthopaedics and Musculoskeletal Science/the

Wellcome Trust/EPSRC through the WEISS Centre of UCL(203145Z/16/Z),

SHED project Royal Academy of Engineering (IF2223-172) and Innovate
UK KTP (013191). (Renas Ercan and Yunjia Xia are co-first authors.)

Fig. 1. (a) Conventional neuroimaging scheme for control applications. The

green area specifically highlights the segment of imaging development that

is addressed by this study. (b) Whole system design for FPGA motion artifact
detector. The green area indicates our novelty motion artifact detection

module.

(b)

(a)

operating in an entire offline mode. These methodologies,
although derived from various methods proposed in
preceding studies, harbor inherent limitations as they are
predicated on specific assumptions to characterize motion
artifacts, coupled with a distinctive selection of parameters
[4]. Such constraints curtail the broader applicability of
fNIRS technology, relegating its utilization to controlled
settings like laboratories or hospitals. Additionally, real-time
fNIRS signal processing is imperative for expeditious
decision-making in clinical scenarios, fluid interaction in
Brain-Computer Interfaces (BCIs) and ensuring efficacy and
data integrity in neuroscientific/clinical research. Herein, we
introduce a real-time motion artifact detection module based
on FPGA, meticulously crafted for wearable fNIRS systems,
marking a pioneering attempt to furnish online, real-time
hardware classification of fNIRS motion artifacts. This
endeavor leverages a Machine Learning (ML) approach,
employing SVM, which constitutes a cadre of rapid and
reliable supervised machine learning classification
algorithms, acclaimed for their superior classification
velocities and memory efficiency. Their adeptness in swiftly
learning and generalizing from training data renders them
particularly propitious for real-time classification in
embedded hardware applications. While SVMs have found
applications in various fNIRS studies [5]-[6], it merits noting
that none have addressed real-time classification of motion
artifacts hitherto.

The seminal contributions of this paper encompass the

formulation of a novel SVM module, realized through a

software/hardware co-development paradigm, transcending

the limitations inherent in software scheduling by proffering

an online processing modality. Moreover, our Register

Transfer Level (RTL) implementation exudes efficiency,

obviating the necessity for instructions or shared memories.

Although FPGAs provide flexible digital circuit design and
expansive parallel computational prowess, previous
endeavors to harness these attributes have encountered
noteworthy limitations [7]-[8]. These attempts frequently
resorted to an array of simplification methods to ameliorate
hardware complexity, albeit at the expense of classification
accuracy. Additionally, the architectures devised in these
attempts were devoid of both flexibility and scalability.
Hence, this study aspires to provide a significantly more
optimized solution for FPGA-based, real-time MA detection.

II. SYSTEM IMPLEMENTATION

The SVM algorithm creates a decision boundary that can
segregate n-dimensional space into classes so that new data
points are easily classified into the correct category using soft
margin or hard margin. The implementation process
commenced with an architectural design phase conducted
within the MATLAB R2020b and Simulink environment,
laying down the foundational framework for the SVM aimed
at motion artifact classification. Subsequent model
development was rigorously validated using a Simulink
testbench with the fNIRS motion artifact dataset, which had
undergone Principal Component Analysis (PCA) for
denoising and acceleration of model training. Insights
derived from the validation phase informed iterative
refinements, leading to a robust SVM implementation
proficient in motion artifact classification, thereby achieving
a high degree of accuracy and reliability in performance. In

the evaluation of SVM model, all mis-classification errors are
calculated to provide a value for the classification rate of each
architecture.

Raw fNIRS data was obtained from a study wherein subjects
wearing the fNIRS device were given tasks such as walking.
The data was passed through an fNIRS specific data
processing toolbox called Homer3 and a function called
‘hmrMotionArtifact’ to determine periods of motion artifact
[9]. The purpose of finding these periods of motion artifacts
was to provide labelled data for the training of the SVM
model. Training datasets were created through the down
sampling and balancing of a larger fNIRS dataset. The dataset
includes 4 features as input and binary output to indicate
motion artifacts and normal signal.

A. Training the SVM model
High-level language, Python, was used to program the SVM
ML model algorithm as an easy way to tune parameters.
Upon constructing the finished model, the support vectors
were extracted with 55 support vectors generated, and the
associated Lagrange multiplier coefficients and bias value
were obtained.

B. System Design

The combined fNIRS data pre-processing and RBF kernel
SVM algorithm architecture was simulated within the
Simulink environment. This project utilized MATLAB and
Simulink's automatic HDL code generation to convert the
digital system architecture to HDL code, such HDL code
creation methods generally produce Verilog code that is
highly optimized and efficient whilst requiring minimal
changes; these overall allows for a fast development time.

The RBF kernel in the SVM algorithm assumes that incoming
data has been centered and scaled [8]. Therefore, the data is
pre-processed so that incoming fNIRS signals need to be
normalized. Data preprocessing is designed to use an
exponentially weighted running mean and standard deviation
blocks for fixed sample windows. An exponentially weighted
running mean in the frequency domain can be represented as
a real pole of which the implementation in the time domain is
straightforward. Therefore, a single-pole IIR filter circuit can
be created. Then, taking the z transform, we find the transfer
function: 𝐻𝐻(𝑧𝑧) =

𝑎𝑎
1 − (1 − 𝑎𝑎)𝑧𝑧−1 (1)

Here, 0 < 𝑎𝑎 < 1 is a constant that determines the effective
length of the running average. To go to the continuous
domain, we make the substitution 𝑧𝑧 = 𝑒𝑒𝑠𝑠𝑠𝑠 , where 𝑇𝑇 is the

sample time and solve to find a pole at 𝑠𝑠 =
1𝑠𝑠 log(1 − 𝑎𝑎).

Where we choose 𝑎𝑎 as 𝑎𝑎 = 1 − exp (
2⋅𝜋𝜋⋅𝑠𝑠𝜏𝜏), where 𝜏𝜏 is given

to be the averaging time constant. The optimum value of 𝜏𝜏 and
subsequently 𝑎𝑎 was found through a comprehensive brute
force search that evaluates classification accuracy as a result;

Fig. 2. Data preprocessing module (submodule in Fig.3 below).

the final value taken forward was 𝑎𝑎 = 0.01. Given that the
transfer function (1) calculates the exponentially weighted
running mean, it can be used s to efficiently compute the
variance and the standard deviation. The variance and
standard deviation outputs of these computations are the pre-
processed fNIRS data. The Simulink architecture used to
process a single feature of the input fNIRS signal is shown in
Fig. 2. Each feature of the fNIRS data (of which this work uses
two) has a pre-processing RTL channel following the
architecture given in Fig. 2 and explained above. It is noted
that two pre-processing channels are operating in parallel.

We design the streaming SVM architecture based on the
functional decomposition of the SVM kernel. Here the
fundamental arithmetic operations of the gaussian radial basis
function kernel (2) are directly mapped to Simulink arithmetic
blocks. The proposed SVM hardware design, which is
segmented into three principal blocks (as shown in Fig. 3): a
kernel realization (A), inner-product addition with an adder
tree (B), and a threshold comparison (C) [8]. The support
vector values, and Lagrange multiplier coefficients were pre-
defined using software SVM. Fig. 3 shows the data pre-
processing feeding processed fNIRS inputs into the SVM
algorithm architecture. The pre-processed fNIRS data is
streamed into square difference units with the fifty-five
support vectors. These calculate the square difference between
the fNIRS signal and the support vectors before being passed
to exponential function units, which perform the calculations

required to achieve the RBF kernel function. The adder tree
and multipliers construct the classification function (1).
Finally, the classification results are forecasted using the
output of the adder tree and a relational operator compared to
'0' - the classification that indicated the presence of a motion
artifact.

III. DESIGN AND SIMULATION

The RTL digital design is evaluated using Xilinx Vivado and

then generated bitstream to download into Xilinx Zynq

Ultrascale+ MPSoC AXU3EG development board [10].

Simulink tools generate arithmetic modules and capture the

digital design in Verilog code. In this work a zero-latency

strategy was pursued, and all HDL was written in the

IEEE754 32-bit single-precision floating-point format.

The overarching philosophy utilizing a RTL design was to
gradually replace critical blocks designed and tested in the
Simulink architecture with synthesizable Verilog blocks,
ultimately creating a streaming architecture. The entire gate-
level design employs this streaming architecture where the
output of a subsystem is fed directly to the input of the next
subsystem. Hence, we can attain a low latency, as the results
of each subsystem are not stored in off-chip memory but
instead can be immediately used.

The underlying principle of the SVM classifier architecture

Fig. 4.The new and final architecture of the SVM RTL demonstrating the

serial singular and oversampled channel.

Fig. 5. Visual depiction of the key FPGA resource of SVM and the utilization

of these resources within the FPGA.

Fig. 3. Simulink architecture of the SVM algorithm in its three key units: kernel realization (A), inner-product addition with an adder tree (B), and a '0'

threshold comparison (C).

was to exploit the FPGA’s parallel computational power and
resources to execute the decision function most efficiently;
computation of this function involves highly parallelizable
vector operations. Consequently, the data pre-processing and
RBF Simulink designs were partitioned into core floating-
point arithmetic operations that form the real pole IIR filter
and parallel Support Vector channels. The proposed gate-level
HDL design for the SVM classifier mirrors the digital
Simulink architecture illustrated in Fig. 3. It employs the
parallelism inherent in FPGAs, enabling all fifty-five Support
Vector channels to operate concurrently and thus facilitating a
parallelized classification system. The raw fNIRS input signal
is streamed into the FPGA and processed through the pre-
processing units. Subsequently, the kernel calculation, which
forms the foundation of the SVM algorithm's RTL, is
undertaken.

This computation employs basic floating-point processing
units such as adders and multipliers. These units utilize the
FPGA's native parallelism to significantly expedite the SVM
decision function computation. The system design is
conscious of resource utilization, integrating a scheme that
transforms the fully parallel design into a hybrid model that
operates partially in parallel and partially serially. The fifty-
five Support Vector channels are then integrated into a
singular stream of time-multiplexed samples on a single
channel, optimizing the resource-intensive kernel and inner-
product accumulation RTL hardware, shown in Fig. 4.

To maintain effective timing for each channel in this
streaming design, the single shared channel's RTL is
oversampled at 55 times the base clock rate of the overall
model. As a result, the model's latency is only extended by one
cycle of the base rate. However, this necessitates a reduced
base rate of 45.45 kHz to accommodate the 200 MHz clock
speed for the oversampled channel, leading to a decrease in
the model's running speed. Consequently, this design choice
optimizes resource consumption at the cost of increased
complexity, more intricate scheduling, and elevated model
latency. After processing the data from the fifty-five Support
Vector channels at the oversampled rate, the data are
momentarily stored in CLB flip-flops. At the end of each base
clock cycle, the samples are deserialized back into a parallel
format for propagation through the adder tree, preparing them
for classification.

IV. RESULTS AND DISCUSSION

The overarching metric used for model evaluation was

classification accuracy. When each of the datasets was

applied to the model, we used the number of motion artifacts

as determined by the digital architectural or gate-level error

counter. The fewer motion artifacts incorrectly identified, the

better the model performance. In addition, the metrics of

FPGA resource allocation is used as complementary values

to evaluate each model, particularly when looking at the

work's real-time objectives.

Classification accuracy and FPGA resource utilization form
the key performance metrics in this study. Derived from
Simulink architecture simulations and synthesis, the average
classification accuracy for digital architectural and gate-level
simulations stand at 91.33% and 97.42% respectively, as
outlined in Table I.

The criticality of FPGA resource utilization comes into play
when considering area requirements. If these requirements are
not met, the RTL design cannot be transferred onto the
hardware device. Different digital designs and work
objectives dictate the value of various resources. Given the
real-time objectives of our neuroimaging FPGA, the priority
is to minimize the utilization of specific resources.
Consequently, memory logic utilization remains intentionally
low. Fig. 5 illustrates overall FPGA resource utilization.

Our results highlight a substantial underutilization of a crucial
resource, the Look-Up Tables (LUTs), with a consumption
rate of only 54% in the final RTL design. This underutilization
is a consequence of adopting a single-channel oversampling
architecture. The benefits of this approach extend beyond a
good fit for our RTL design on the FPGA used, making the
SVM RTL highly transferable to numerous other FPGAs in
the market.

Applying different optimization directives led to an increase
in latency (10.92 us) and a decrease in throughput, effectively
trading off with low resource utilization. Our system can
handle 45450 samples per second, allowing for a throughput
of 45.45 Kilosamples (or Kilobits) per second. Given a frame
rate of 15 frames per second in an fNIRS system, this equates
to 3030 real-time processing channels, thus enabling the
system to accommodate most commercially available fNIRS
systems for real-time motion artifact detection.

V. CONCLUSION

In conclusion, this work presents a notable advancement in
the machine-learning based real-time processing of fNIRS
data, crucial in real-world environments and seamless BCIs.
The designed FPGA-based SVM machine learning
classification algorithm offers a robust solution for the real-
time identification and detection of motion artifacts. This
study brings forward a specifically designed and
systematically tested FPGA machine learning platform for
fNIRS modality, marking its novelty. Demonstrating high
processing speed and accuracy in motion detection, the
developed architecture successfully maintains low area and
latency. Hence, the presented work here opens new
possibilities for effective real-time motion artifact detection
in commercially available fNIRS systems.

REFERENCES

[1] Zhao Y, Luo H, Chen J, et al. Learning based motion artefacts

processing in fNIRS: A mini review. Frontiers in Neuroscience,
17: 1280590.

[2] D. Perpetuini, D. Cardone, C. Filippini, A. M. Chiarelli, and A.

Merla, “A Motion Artifact Correction Procedure for fNIRS Signals

TABLE I. CLASSIFICATION ACCURACY RESULTS FOR THE SIMULINK

SVM MODEL AND RTL DESIGNS

Single Channel Oversampled SVM Model

Dataset Used in
Testing

Simulink
Classification

Accuracy

RTL
Classification

Accuracy

Balanced Dataset 1 91.94% 100.00%

Balanced Dataset 2 92.41% 97.80%

Unbalanced Dataset 1 91.14% 95.87%

Unbalanced Dataset 2 89.82% 96.00%

Average Classification
Accuracy

91.33% 97.42%

Based on Wavelet Transform and Infrared Thermography Video
Tracking,” Sensors, vol. 21, no. 15, p. 5117, Jul. 2021, doi:

10.3390/s21155117.
[3] R. J. Cooper et al., “A Systematic Comparison of Motion Artifact

Correction Techniques for Functional Near-Infrared

Spectroscopy,” Front Neurosci, vol. 6, 2012, doi:

10.3389/fnins.2012.00147.
[4] Y. Gao et al., “Deep learning-based motion artifact removal in

functional near-infrared spectroscopy,” Neurophotonics, vol. 9,

no. 04, Apr. 2022, doi: 10.1117/1.NPh.9.4.041406.
[5] B. Koo et al., “A hybrid NIRS-EEG system for self-paced brain

computer interface with online motor imagery,” J Neurosci

Methods, vol. 244, pp. 26–32, Apr. 2015, doi:
10.1016/j.jneumeth.2014.04.016.

[6] F. Putze et al., “Hybrid fNIRS-EEG based classification of

auditory and visual perception processes,” Front Neurosci, vol. 8,
Nov. 2014, doi: 10.3389/fnins.2014.00373.

[7] X. Song, H. Wang, and L. Wang, “FPGA Implementation of a

Support Vector Machine Based Classification System and Its
Potential Application in Smart Grid,” in 2014 11th International

Conference on Information Technology: New Generations, IEEE,

Apr. 2014, pp. 397–402. doi: 10.1109/ITNG.2014.45.
[8] S. Afifi, H. GholamHosseini, and R. Sinha, “FPGA

Implementations of SVM Classifiers: A Review,” SN Comput Sci,

vol. 1, no. 3, p. 133, May 2020, doi: 10.1007/s42979-020-00128-
9.

[9] T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas,
“HomER: A review of time-series analysis methods for near-

infrared spectroscopy of the brain,” Appl Opt, vol. 48, no. 10, Apr.

2009, doi: 10.1364/AO.48.00D280.
[10] “ALINX AXU3EG or AXU3EGB: Xilinx Zynq UltraScale+

MPSOC ZU3EG Ethernet FPGA development board.”

https://www.xilinx.com/products/boards-and-kits/1-
1cm64x4.html (accessed Jun. 14, 2023).

