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Abstract— Functional Near-Infrared Spectroscopy (fNIRS) 

is a neuroimaging method which can be implemented with a 

wearable form factor. However, the data of fNIRS can be 

affected by motion artifact, which is conventionally processed 

offline using MATLAB-based software package via a bulky PC. 

This study trains a Support Vector Machine (SVM) algorithm 

and proposes a hardware design approach based on an FPGA 

to achieve the first real-time fNIRS motion artifact detection. 

The SVM hardware architecture proposed here utilizes a 

partially sequential–partially parallel implementation of the 

classification algorithm where Support Vector channels are 

consolidated into a single oversampled channel. A high 

classification accuracy of 97.42%, low FPGA resource 

utilization of 38,354 look-up tables and 6024 flip-flops with 10.92 

us latency is achieved, outperforming conventional CPU SVM 

methods. These results show that an FPGA-based fNIRS motion 

artifact detector can be exploited whilst meeting real-time and 

resource constraints that are crucial in high-performance 

reconfigurable hardware systems. 

Keywords— fNIRS, machine learning, motion artifact 

detection, real-time, support vector machines (SVM), Field-

programmable gate array (FPGA) 

I. INTRODUCTION 

Functional Near-Infrared Spectroscopy (fNIRS) serves as 

a non-invasive optical neuroimaging modality, quantifying 

the concentrations of oxygenated and deoxygenated 

hemoglobin proximate to the brain's surface, thereby 

enabling the inference of relative alterations in neural 

activation [1]. The advantages of fNIRS, epitomized by its 

relatively superior spatial resolution, cost-effectiveness, and 

portability, contribute to its broad spectrum of applications, 

encompassing cognitive neuroscience, clinical neurology, 

and personalized healthcare [1]. However, fNIRS data is 

prone to contamination by motion artifacts, which 

significantly deteriorates the quality of the recorded optical 

signals. These artifacts emerge from changes in the 

orientation or distance of the sources and detectors relative to 

the skull, induced by movements, thereby altering the 

impedance and inducing perturbations in the fNIRS signal. 

Consequently, these perturbations may engender 

misidentification of functional cortical activity [2]-[3]. 

Fig. 1(a) delineates a conventional neuroimaging system, 

wherein the green area represents the signal processing 

stream with standard fNIRS toolkits. Fig. 1(b) illustrates the 

comprehensive system design for an FPGA-based motion 

artifact detector in this study. A Support Vector Machine 

(SVM) has been seamlessly integrated into an FPGA chip, 

functioning as a real-time motion artifact detection module. 

Prevailing methodologies for processing and mitigating 
motion artifacts in fNIRS data predominantly rely on robust, 
stationary hardware such as desktop PCs or workstations, 
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Fig. 1. (a) Conventional neuroimaging scheme for control applications. The 

green area specifically highlights the segment of imaging development that 

is addressed by this study. (b) Whole system design for FPGA motion artifact 
detector. The green area indicates our novelty motion artifact detection 

module. 
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operating in an entire offline mode. These methodologies, 
although derived from various methods proposed in 
preceding studies, harbor inherent limitations as they are 
predicated on specific assumptions to characterize motion 
artifacts, coupled with a distinctive selection of parameters 
[4]. Such constraints curtail the broader applicability of 
fNIRS technology, relegating its utilization to controlled 
settings like laboratories or hospitals. Additionally, real-time 
fNIRS signal processing is imperative for expeditious 
decision-making in clinical scenarios, fluid interaction in 
Brain-Computer Interfaces (BCIs) and ensuring efficacy and 
data integrity in neuroscientific/clinical research. Herein, we 
introduce a real-time motion artifact detection module based 
on FPGA, meticulously crafted for wearable fNIRS systems, 
marking a pioneering attempt to furnish online, real-time 
hardware classification of fNIRS motion artifacts. This 
endeavor leverages a Machine Learning (ML) approach, 
employing SVM, which constitutes a cadre of rapid and 
reliable supervised machine learning classification 
algorithms, acclaimed for their superior classification 
velocities and memory efficiency. Their adeptness in swiftly 
learning and generalizing from training data renders them 
particularly propitious for real-time classification in 
embedded hardware applications. While SVMs have found 
applications in various fNIRS studies [5]-[6], it merits noting 
that none have addressed real-time classification of motion 
artifacts hitherto.  

The seminal contributions of this paper encompass the 

formulation of a novel SVM module, realized through a 

software/hardware co-development paradigm, transcending 

the limitations inherent in software scheduling by proffering 

an online processing modality. Moreover, our Register 

Transfer Level (RTL) implementation exudes efficiency, 

obviating the necessity for instructions or shared memories. 

Although FPGAs provide flexible digital circuit design and 
expansive parallel computational prowess, previous 
endeavors to harness these attributes have encountered 
noteworthy limitations [7]-[8]. These attempts frequently 
resorted to an array of simplification methods to ameliorate 
hardware complexity, albeit at the expense of classification 
accuracy. Additionally, the architectures devised in these 
attempts were devoid of both flexibility and scalability. 
Hence, this study aspires to provide a significantly more 
optimized solution for FPGA-based, real-time MA detection. 

II. SYSTEM IMPLEMENTATION

The SVM algorithm creates a decision boundary that can 
segregate n-dimensional space into classes so that new data 
points are easily classified into the correct category using soft 
margin or hard margin. The implementation process 
commenced with an architectural design phase conducted 
within the MATLAB R2020b and Simulink environment, 
laying down the foundational framework for the SVM aimed 
at motion artifact classification. Subsequent model 
development was rigorously validated using a Simulink 
testbench with the fNIRS motion artifact dataset, which had 
undergone Principal Component Analysis (PCA) for 
denoising and acceleration of model training. Insights 
derived from the validation phase informed iterative 
refinements, leading to a robust SVM implementation 
proficient in motion artifact classification, thereby achieving 
a high degree of accuracy and reliability in performance. In 

the evaluation of SVM model, all mis-classification errors are 
calculated to provide a value for the classification rate of each 
architecture.  

Raw fNIRS data was obtained from a study wherein subjects 
wearing the fNIRS device were given tasks such as walking. 
The data was passed through an fNIRS specific data 
processing toolbox called Homer3 and a function called 
‘hmrMotionArtifact’ to determine periods of motion artifact 
[9]. The purpose of finding these periods of motion artifacts 
was to provide labelled data for the training of the SVM 
model. Training datasets were created through the down 
sampling and balancing of a larger fNIRS dataset. The dataset 
includes 4 features as input and binary output to indicate 
motion artifacts and normal signal.  

A. Training the SVM model 
High-level language, Python, was used to program the SVM 
ML model algorithm as an easy way to tune parameters. 
Upon constructing the finished model, the support vectors 
were extracted with 55 support vectors generated, and the 
associated Lagrange multiplier coefficients and bias value 
were obtained. 

B. System Design 

The combined fNIRS data pre-processing and RBF kernel 
SVM algorithm architecture was simulated within the 
Simulink environment. This project utilized MATLAB and 
Simulink's automatic HDL code generation to convert the 
digital system architecture to HDL code, such HDL code 
creation methods generally produce Verilog code that is 
highly optimized and efficient whilst requiring minimal 
changes; these overall allows for a fast development time. 

The RBF kernel in the SVM algorithm assumes that incoming 
data has been centered and scaled [8]. Therefore, the data is 
pre-processed so that incoming fNIRS signals need to be 
normalized. Data preprocessing is designed to use an 
exponentially weighted running mean and standard deviation 
blocks for fixed sample windows. An exponentially weighted 
running mean in the frequency domain can be represented as 
a real pole of which the implementation in the time domain is 
straightforward. Therefore, a single-pole IIR filter circuit can 
be created. Then, taking the z transform, we find the transfer 
function:  𝐻𝐻(𝑧𝑧) =  

𝑎𝑎
1 − (1 − 𝑎𝑎)𝑧𝑧−1  (1) 

Here,  0 < 𝑎𝑎 < 1 is a constant that determines the effective 
length of the running average. To go to the continuous 
domain, we make the substitution 𝑧𝑧 =  𝑒𝑒𝑠𝑠𝑠𝑠 , where 𝑇𝑇  is the 

sample time and solve to find a pole at 𝑠𝑠 =  
1𝑠𝑠 log(1 − 𝑎𝑎).

Where we choose 𝑎𝑎 as 𝑎𝑎 = 1 − exp (
2⋅𝜋𝜋⋅𝑠𝑠𝜏𝜏 ), where 𝜏𝜏 is given 

to be the averaging time constant. The optimum value of 𝜏𝜏 and 
subsequently 𝑎𝑎  was found through a comprehensive brute 
force search that evaluates classification accuracy as a result; 

Fig. 2. Data preprocessing module (submodule in Fig.3 below). 

 



the final value taken forward was 𝑎𝑎 = 0.01. Given that the 
transfer function (1) calculates the exponentially weighted 
running mean, it can be used s to efficiently compute the 
variance and the standard deviation. The variance and 
standard deviation outputs of these computations are the pre-
processed fNIRS data. The Simulink architecture used to 
process a single feature of the input fNIRS signal is shown in 
Fig. 2. Each feature of the fNIRS data (of which this work uses 
two) has a pre-processing RTL channel following the 
architecture given in Fig. 2 and explained above. It is noted 
that two pre-processing channels are operating in parallel. 

We design the streaming SVM architecture based on the 
functional decomposition of the SVM kernel. Here the 
fundamental arithmetic operations of the gaussian radial basis 
function kernel (2) are directly mapped to Simulink arithmetic 
blocks. The proposed SVM hardware design, which is 
segmented into three principal blocks (as shown in Fig. 3): a 
kernel realization (A), inner-product addition with an adder 
tree (B), and a threshold comparison (C) [8]. The support 
vector values, and Lagrange multiplier coefficients were pre-
defined using software SVM. Fig. 3 shows the data pre-
processing feeding processed fNIRS inputs into the SVM 
algorithm architecture. The pre-processed fNIRS data is 
streamed into square difference units with the fifty-five 
support vectors. These calculate the square difference between 
the fNIRS signal and the support vectors before being passed 
to exponential function units, which perform the calculations 

required to achieve the RBF kernel function. The adder tree 
and multipliers construct the classification function (1). 
Finally, the classification results are forecasted using the 
output of the adder tree and a relational operator compared to 
'0' - the classification that indicated the presence of a motion 
artifact. 

III. DESIGN AND SIMULATION

The RTL digital design is evaluated using Xilinx Vivado and 

then generated bitstream to download into Xilinx Zynq 

Ultrascale+ MPSoC AXU3EG development board [10]. 

Simulink tools generate arithmetic modules and capture the 

digital design in Verilog code. In this work a zero-latency 

strategy was pursued, and all HDL was written in the 

IEEE754 32-bit single-precision floating-point format. 

The overarching philosophy utilizing a RTL design was to 
gradually replace critical blocks designed and tested in the 
Simulink architecture with synthesizable Verilog blocks, 
ultimately creating a streaming architecture. The entire gate-
level design employs this streaming architecture where the 
output of a subsystem is fed directly to the input of the next 
subsystem. Hence, we can attain a low latency, as the results 
of each subsystem are not stored in off-chip memory but 
instead can be immediately used. 

The underlying principle of the SVM classifier architecture 

Fig. 4.The new and final architecture of the SVM RTL demonstrating the 

serial singular and oversampled channel. 

Fig. 5. Visual depiction of the key FPGA resource of SVM and the utilization 

of these resources within the FPGA. 

Fig. 3. Simulink architecture of the SVM algorithm in its three key units: kernel realization (A), inner-product addition with an adder tree (B), and a '0' 

threshold comparison (C). 



was to exploit the FPGA’s parallel computational power and 
resources to execute the decision function most efficiently; 
computation of this function involves highly parallelizable 
vector operations. Consequently, the data pre-processing and 
RBF Simulink designs were partitioned into core floating-
point arithmetic operations that form the real pole IIR filter 
and parallel Support Vector channels. The proposed gate-level 
HDL design for the SVM classifier mirrors the digital 
Simulink architecture illustrated in Fig. 3. It employs the 
parallelism inherent in FPGAs, enabling all fifty-five Support 
Vector channels to operate concurrently and thus facilitating a 
parallelized classification system. The raw fNIRS input signal 
is streamed into the FPGA and processed through the pre-
processing units. Subsequently, the kernel calculation, which 
forms the foundation of the SVM algorithm's RTL, is 
undertaken.  

This computation employs basic floating-point processing 
units such as adders and multipliers. These units utilize the 
FPGA's native parallelism to significantly expedite the SVM 
decision function computation. The system design is 
conscious of resource utilization, integrating a scheme that 
transforms the fully parallel design into a hybrid model that 
operates partially in parallel and partially serially. The fifty-
five Support Vector channels are then integrated into a 
singular stream of time-multiplexed samples on a single 
channel, optimizing the resource-intensive kernel and inner-
product accumulation RTL hardware, shown in Fig. 4.  

To maintain effective timing for each channel in this 
streaming design, the single shared channel's RTL is 
oversampled at 55 times the base clock rate of the overall 
model. As a result, the model's latency is only extended by one 
cycle of the base rate. However, this necessitates a reduced 
base rate of 45.45 kHz to accommodate the 200 MHz clock 
speed for the oversampled channel, leading to a decrease in 
the model's running speed. Consequently, this design choice 
optimizes resource consumption at the cost of increased 
complexity, more intricate scheduling, and elevated model 
latency. After processing the data from the fifty-five Support 
Vector channels at the oversampled rate, the data are 
momentarily stored in CLB flip-flops. At the end of each base 
clock cycle, the samples are deserialized back into a parallel 
format for propagation through the adder tree, preparing them 
for classification. 

IV. RESULTS AND DISCUSSION

The overarching metric used for model evaluation was 

classification accuracy. When each of the datasets was 

applied to the model, we used the number of motion artifacts 

as determined by the digital architectural or gate-level error 

counter. The fewer motion artifacts incorrectly identified, the 

better the model performance. In addition, the metrics of 

FPGA resource allocation is used as complementary values 

to evaluate each model, particularly when looking at the 

work's real-time objectives. 

Classification accuracy and FPGA resource utilization form 
the key performance metrics in this study. Derived from 
Simulink architecture simulations and synthesis, the average 
classification accuracy for digital architectural and gate-level 
simulations stand at 91.33% and 97.42% respectively, as 
outlined in Table I. 

The criticality of FPGA resource utilization comes into play 
when considering area requirements. If these requirements are 
not met, the RTL design cannot be transferred onto the 
hardware device. Different digital designs and work 
objectives dictate the value of various resources. Given the 
real-time objectives of our neuroimaging FPGA, the priority 
is to minimize the utilization of specific resources. 
Consequently, memory logic utilization remains intentionally 
low. Fig. 5 illustrates overall FPGA resource utilization. 

Our results highlight a substantial underutilization of a crucial 
resource, the Look-Up Tables (LUTs), with a consumption 
rate of only 54% in the final RTL design. This underutilization 
is a consequence of adopting a single-channel oversampling 
architecture. The benefits of this approach extend beyond a 
good fit for our RTL design on the FPGA used, making the 
SVM RTL highly transferable to numerous other FPGAs in 
the market. 

Applying different optimization directives led to an increase 
in latency (10.92 us) and a decrease in throughput, effectively 
trading off with low resource utilization. Our system can 
handle 45450 samples per second, allowing for a throughput 
of 45.45 Kilosamples (or Kilobits) per second. Given a frame 
rate of 15 frames per second in an fNIRS system, this equates 
to 3030 real-time processing channels, thus enabling the 
system to accommodate most commercially available fNIRS 
systems for real-time motion artifact detection.  

V. CONCLUSION 

In conclusion, this work presents a notable advancement in 
the machine-learning based real-time processing of fNIRS 
data, crucial in real-world environments and seamless BCIs. 
The designed FPGA-based SVM machine learning 
classification algorithm offers a robust solution for the real-
time identification and detection of motion artifacts. This 
study brings forward a specifically designed and 
systematically tested FPGA machine learning platform for 
fNIRS modality, marking its novelty. Demonstrating high 
processing speed and accuracy in motion detection, the 
developed architecture successfully maintains low area and 
latency. Hence, the presented work here opens new 
possibilities for effective real-time motion artifact detection 
in commercially available fNIRS systems. 
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