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A B S T R A C T

This study introduces the novel concept of local detouredness, i.e. detours on subsections of a
route, as a new phenomenon for understanding and modelling route choice. Traditionally, Sto-
chastic User Equilibrium (SUE) traffic assignment models have been concerned with judging the
attractiveness of a route by its total route cost. However, through empirical analysis we show that
considering solely the global properties of a route is insufficient. We find that it is important to
consider local detouredness both when determining realistic and tractable route choice sets and
when determining route choice probabilities. For example, analysis of observed route choice data
shows that route usage tends to decay with local detouredness, and that there is an apparent limit
on the amount of local detouredness seen as acceptable. No existing models can account for this
systematically and consistently, which is the motivation for the new route choice model proposed
in this paper: the Bounded Choice Model with Local Detour Threshold (BCM-LDT). The BCM-LDT
model incorporates the effect of local detouredness on route choice probability, and has an in-
built mechanism that assigns zero probabilities to routes violating a bound on total route costs
and/or a threshold on local detouredness. Thereby, the model consistently predicts which routes
are used and unused. Moreover, the probability expression is closed-form and continuous. SUE
conditions for the BCM-LDT are given, and solution existence is proven. Exploiting the special
structure of the problem, a novel solution algorithm is proposed where flow averaging is inte-
grated with a modified branch-and-bound method that iteratively column-generates all routes
satisfying local and global bounds. Numerical experiments are conducted on small-scale and
large-scale networks, establishing that equilibrated solutions can be found and demonstrating the
influence of the BCM-LDT parameters on choice set size and flow allocation.

1. Introduction and motivation

Traffic assignment models are widely used to assess transport policies and to predict the impact of future changes in demand. The
two most dominant theories of route choice that have underpinned such models are Deterministic User Equilibrium (DUE) (Wardrop,
1952) and Stochastic User Equilibrium (SUE) (Daganzo & Sheffi, 1977), and these have been used in a great many settings, e.g. with
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time-dependent travel times/flow as in dynamic models (Han, 2003; Smith, 1993; Smith & Wisten, 1995; Friesz & Han, 2019), with
uncertainty in traveller perceptions (Daganzo & Sheffi, 1977; Prashker & Bekhor, 2004; Zhou et al., 2012; Kitthamkesorn & Chen,
2013; Meng et al., 2008; Duncan et al., 2022b), or by presuming bounded rationality in the decision-making (Mahmassani & Chang,
1987; Guo& Liu, 2011; Lou et al., 2010; Di et al., 2013; Di et al., 2016). DUEmodels assume that a route will be completely unused if it
has an even slightly larger cost than the minimum for an OD movement. This is practically unrealistic, both because travellers cannot
perceive costs with perfect accuracy and because modellers do not know with certainty the relative influence of the factors that
motivate route choice. SUE models relax this assumption by including random disturbances in the perceived travel costs, and through
this mechanism spread traffic over a wider range of routes, not just those with minimum cost. In SUE models, the routes actually used
are either identified by pre-generating a choice set and then assigning to all such routes (Friedrich et al., 2001; Prato & Bekhor, 2006;
Dijkstra, 1959; Sheffi & Powell, 1982; Ben-Akiva et al., 1984; Kitthamkesorn & Chen, 2013), heuristically by terminating an equi-
librium algorithm applied to the universal set of acyclic routes after a finite number of iterations (Damberg et al., 1996; Bell et al.,
1997; Bazaraa et al., 2013), or by embedding the identification of used routes within the random utility specification and hence the
equilibration process (Watling et al., 2015; Watling et al., 2018; Duncan et al., 2022a,2023).

Whichever of the SUE approaches above is adopted, a common feature is that the attractiveness of an alternative is judged by
qualities of the complete route, what we shall term global properties of the route. These global properties include total length, travel
time, travel time (un)reliability, and direct monetary costs such as might be imposed through road pricing. Our contention is that these
global properties alone are insufficient for identifying routes that are unattractive and unlikely to be used, and that this severely limits
the potential for all existing SUE models to capture realistic route choice behaviour. In the following subsections we provide the basis
for this assertion as motivation for the present work, before outlining the challenge addressed by the new method developed in the
paper, which for the first time combines local with global properties within an SUE framework (in the sense to be explained).

1.1. Empirical motivation

Urban road transport networks are dense and highly complex. Consequently, the set of all possible route alternatives for each
traveller in the network is in principle extremely large. Many of these alternatives are however only minor variants on each other,
being different only on small subsections where one alternative may detour the other. The same is true for long (national or inter-
national) journeys, where a great many very similar route variants exist. One such example is of a main motorway route, for which
many slightly different alternatives exist by, rather than staying on the motorway, taking an off-ramp and immediately returning to the
motorway on the corresponding on-ramp. Considering a segment of a complete trip where such an alternative exists (a “paired
alternative segment” in the language of Bar-Gera (2010)), then the detour may amount to considering a trip segment travel time of
(say) 1.5 minutes on the detour compared with 1 minute on the direct route, i.e. a relative local detour of 50 % relative to the fastest
option. However, on the global level of a complete route, adding half a minute to a journey of, say, two hours is extremely small. The
assumed variance in any SUE-based method is almost certain to include such alternatives, of which there will be a great many.
However, behaviourally, such alternatives, dependent on the size of the relative local detour, may not be considered by travellers and
hence be implausible.

To further demonstrate this point, consider Fig. 1A-B. Fig. 1A displays the results of a GoogleMaps search of routes from Copen-
hagen to Rome (Google, n.d.), with two reasonable main alternatives generated that are relatively similar in travel time1. Fig. 1B
displays the results of a 10,000-shortest paths search (based on free-flow travel times) for a European arterial road network model
developed in the TransTools project (Jensen et al., 2019). Although somewhat difficult to display, zooming in on Fig. 1B will indeed
reveal (highlighted in colours) the 9,999 minor deviations generated as alternatives to the fastest of the two routes generated by the
GoogleMaps search. The second main route in Fig. 1A is not captured in Fig. 1B, due to there being such a huge number of combi-
nations of local detours along the fastest main route, even without motorway on-off-ramps being represented in the network. This
clearly illustrates the weakness of using K-shortest paths for initial route generation, as in order to capture the other main alternatives,
an enormous number of alternatives would need to be generated, many of which would be unrealistic but would attract flow under an
SUE model, due to their apparently attractive nature in terms of total route travel time. This phenomenon is in fact more general, not
being specific to the K-shortest path approach; for example, using a stochastic shortest path method for pre-generation would replace
the need for a large K with the need for a large variance in the random utility model. It would also apply to the SUE methods referenced
above that are not based on pre-generation of a choice set, since they are all based on global properties of the complete route, not on the
local properties of a route relative to the best alternatives.

That travellers tends to avoid local detours can also be observed from real observed route choice data, as exemplified in Fig. 2. The
Fig. illustrates, for a set of 8009 observed route choices collected among car drivers in the Greater Copenhagen Area, the cumulative
share of observations as a function of the maximum relative local detour of the observed route2, as well as a corresponding cumulative
curve for the surplus complete route cost relative to the minimum (global detour). As noted previously by several authors (Zhu &
Levinson, 2015; Hadjidimitriou et al., 2015; Nielsen, 1996, 2004; Bekhor et al., 2006; Duncan et al., 2022a), at the level of complete
route there is strong evidence from actual behaviour that drivers use non-minimum cost routes, that the use of these routes decays with

1 The longer route deviates from the fastest route along a sub-path that is 6 % longer in travel time than that on the fastest sub-path.
2 For a given route, we define the maximum relative local detour as the largest detour relative to the shortest sub-route for any trip segment of the

route. Travel cost is based on a weighted sum of congested travel time and length, where the weightings have been calibrated according to tracked
route observation data (Duncan et al., 2022a). See Prato et al. (2014) for a description of the dataset used.
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Fig. 1. Routes from Copenhagen to Rome. A: 2 alternative routes generated from a GoogleMaps search. B: 10,000 alternative routes generated from
a K-shortest path search in the road network used in the TransTools transport model (Jensen et al., 2019).

Fig. 2. Distribution of largest local detour among a dataset of 8009 trips collected by GPS in the Greater Copenhagen Area. Largest local detour
measured as the largest relative surplus travel cost from the cheapest route for any subsegment of the trip. Distribution of relative surplus total route
travel cost also shown.
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travel cost, and that there is an apparent limit on the amount of relative surplus total route travel cost drivers are willing to consider.
Fig. 2 now adds the insight that a corresponding kind of phenomenon occurs for local, as opposed to global, detours. It can be seen that
some travellers – in this case 55 % of them – do use routes containing local detours, but also that there is an upper limit to how large a
detour is considered since, for example, 98 % of observed routes have a maximum relative local detour of less than 2.1. Thus, we have
evidence that drivers do use some routes including local detours, but route usage decays with an increase in themaximum relative local
detour of the route, with an apparent limit again on the amount of “local detouredness” seen as acceptable. This opens up the pos-
sibility that local detouredness could be a new additional phenomenon for understanding and modelling route choice, in additional to
global travel cost.

While we have argued that local detouredness could be an important new attribute, not previously considered in route choice
modelling, the argument would be weakened if it is simply a proxy for the global travel cost. It might be believed that ceteris paribus a
longer route will tend to have both a higher global cost and a higher local detouredness, and so we ask the question: would considering
local detouredness likely add anything new? Actually, the argument given around Fig. 1 relating to the K-shortest path example
already gives a clue that these global and local factors must be measuring different dimensions of behaviour, otherwise it would not be
so problematic to generate the two main alternatives that are clear from Fig. 1A. To add additional weight to this view, Fig. 3 is a
scatter plot of relative surplus total route travel cost (global detour) against local detouredness, for the observed data of actual driver
route choices as described earlier for Fig. 2. While some used routes are highly efficient in terms of both global cost and local
detouredness (bottom left corner of plot), there appears to be little discernible correlation between the two attributes otherwise. A low
relative surplus travel cost can have a large local detour, and vice versa. Local detouredness thus appears to be a new, distinct attribute
for understanding route choice.

1.2. Modelling motivation

As noted earlier, DUE and SUE have been the dominant approaches in modelling traffic network equilibrium for many decades.
DUE excludes the possibility of both global detours (only minimum cost routes are used) and local detours (which violate the DUE
principle for the trip segment). Thus, DUE assumes all chosen routes are at the point (1,1) in Fig. 3, whereas clearly observed routes in
that Fig. cover a much wider range. For SUE models, while the concept of local detours has not previously been considered, there is a
concept that might appear to show some passing similarity, namely route correlation. That is to say, the similarity between routes is
partly explained by route overlap both in the measured travel cost and the unexplained variation. In the following small example, we
therefore consider the impact of local detours, and contrast DUE, Multinomial Logit (MNL) SUE (Luce, 1959; Bierlaire, 1998) which
neglects route correlation, and Path Size Logit (PSL) SUE (Ben-Akiva& Ramming, 1998; Duncan et al., 2020, 2022b) which corrects for
route correlation. In addition, we show the corresponding results for the Bounded Choice Model (BCM) SUE (Watling et al., 2018),
which generalises MNL by including a global bound on the surplus total route travel cost considered, to consider how and whether this
may also be a mechanism for controlling local detouredness. Finally, previewing the developments set out later in the paper, we give
results for a new modelling approach, BCM-LDT SUE, which extends BCM SUE by incorporating separate bounds on local and global
detours. Our objective in contrasting these approaches is again to motivate our later work, but this time by illustrating how the
consideration of local detours adds a feature to modelling that is not readily captured by existing network modelling approaches.

In the small toy network example in Fig. 4, we consider a problem consisting of two main routes (Routes 2&3) with equal or almost
equal travel cost, with an additional route (Route 1) consisting of a large relative local detour to Route 2. To illustrate our point, it is
sufficient that the travel costs are constant, not dependent on flow (thus representing a low congestion scenario). The assumed
parameter values in the various models are given in the caption of Fig. 4. The two examples and corresponding tables illustrate the
sensitivity of choice probabilities when a marginal change of link costs from 201 to 200 on the lower route (Route 3) is made.

Under a Deterministic choice probability scheme (i.e. non-congested DUE), no traveller uses the route with the large local detour
(Route 1) in either scenario, but does so at the price of extreme sensitivity of the Route 2&3 route probabilities to the minor change in
travel cost on Route 3, with the choice probabilities changing from 0.5&0.5 to 0&1 on these two routes. This is behaviourally very
unlikely. In contrast, MNL gives robust results between Routes 2&3 across the two scenarios. However, MNL assigns almost equal
probabilities across all three routes (due to the almost-equal global costs), not capturing the behaviourally unrealistic large relative
local detour of Route 1. PSL SUE corrects for route overlap, thereby allocating similar total probabilities between (i) the combination of
the two highly overlapping routes Routes 1&2 (total share: 0.24+0.25=0.49 in both scenarios) and (ii) the distinct Route 3 (share: 0.50
and 0.51 in the two scenarios, respectively). However, it can be seen that this is quite a different issue to the existence of local detours:
in both scenarios, PSL allocates apparently unrealistic probabilities to the route with the large relative detour (Route 1). Clearly in a
large network this may scale up, so traffic may drop unrealistically on motorways between ramps, with unrealistically many travellers
taking local detours at the ramps.

Fig. 4 also shows the results from the BCM, which in spite of including a bound on total route cost, is unable to remove significant
flow from the local detour route. For the unrealistic Route 1 to be unused in the BCM, one would have to set a very tight bound on
relative surplus cost, which would likely leave many attractive routes unused when applied to a larger case. Finally, the BCM-LDT
model, which will be explained in detail subsequently in this paper, is a method that includes bounds on both global detour and
local detours, and gives what we would suggest is a more plausible allocation of probability between routes in this case, with no use of
the local detour route and almost equal use of the two remaining routes with similar travel cost.

Overall, this example gives further support to the hypothesis that local detouredness is a new concept in route choice modelling that
cannot be captured by the existing mechanisms and model features available in DUE and SUE approaches. This presents a new
challenge, and is very different specifically from our own recent work on the BCM SUE model. This is due to the fact that BCM only
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applies a bound on the ‘global’ detour of the full trip. Thus, even with a tight bound on global detour, this in real-life networks will
induce many alternatives with high local detours to be used within the model. Fig. 5 illustrates this by considering one OD-movement
in the Anaheim network (see Fig. 13), showing the largest relative local detour on routes with a relative route-level cost 1.6 times that
of the minimum cost route3. This example illustrates that the features seen in the toy network above are phenomena we will expect to
see in larger networks, and also highlights the new challenge we are addressing relative to our own previously published work.

1.3. Specific paper contribution

In sub-section 1.1 we presented empirical evidence that: (i) local detours may be significant in number and effect in realistic-sized

Fig. 3. Plotting relative surplus total route travel cost versus relative surplus cost of largest local detour of route observations in Fig. 2.

Fig. 4. Small uncongested network example, and choice probabilities with Deterministic, MNL, PSL, and BCM models as well as the proposed BCM
with Local Detour Threshold (BCM-LDT) model. The number next to each link represents its cost, and demand originates in O and has destination in
D. Routes 1-3 are top, middle, and bottom routes, respectively. Logit cost scaling parameter θ1: 0.01; Path Size scaling parameter β: 1; Relative
surplus cost bound parameter τ: 1.5; Local detouredness scaling parameter θ2: 0.2; Local detour threshold parameter γ: 1. See Section 4.1 for BCM
and Section 4.3 for BCM-LDT model/parameter definitions.

3 The network and the particular OD-movement (Origin node: 4, Destination node: 7) shall be introduced later in Section 4.5. The analysis is done
with a cost function considering free-flow travel time (measured in minutes, weight 1.0) and distance (measured in kilometres) with a weight of 0.5.
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networks; (ii) local detours are not readily accounted for through existing route choice set pre-generation methods; (iii) local
detouredness is a new dimension for modelling route choice behaviour that explains some features of observed route choices; and (iv)
from observed route choices, the local detouredness of a route is not simply correlated with route cost, it is a distinct route attribute. In
sub-section 1.2, we presented modelling evidence demonstrating that the impact of local detours in networks cannot be represented
through existing route choice modelling methods, even indirectly; it is a distinctly new modelling challenge.

One approach to addressing these observations could be to argue that new route generation algorithms are needed, that exclude
routes with large local detours, thus allowing existing SUE methods to apply to the pre-generated choice set. Indeed, we have
experimented with such an approach ourselves, and found it could be effectively implemented. In doing so, we found it to offer a
potentially enormous computational advantage in reducing the candidate set of routes fromwhich to choose. However, we believe that
such an approach is undesirable for several reasons:

• A strict exclusion criterionmust be applied to remove routes. Although we have evidence that routes with large local detours may in
some cases be undesirable, this is not equivalent to suggesting that all such routes should be excluded. As shown in Fig. 3, some
actually chosen routes exist with large local detours. Our argument is not to strictly exclude local detours, but to consider the effect
of local detouredness on route choice through some functional/behavioural relationship.

• Intuitively, it makes sense that local detouredness should depend upon generalised travel cost, rather than simply just length, since
a detour relatively short in length may be relatively long in terms of generalised travel cost. However, the congested costs are only
known in equilibrium, and so the impact of local detouredness should be included within the definition of equilibrium. In doing so,
this means that the use of routes with local detours is then dependent upon policy measures (e.g. capacity changes, tolls), and in the
case of congested road networks, vehicle flow (through travel time). Doing so ensures that there is consistency between the route
generation and route choice probability criteria.

• Most pre-generation methods are not developed from statistical theory and therefore do not readily admit robust estimation
methods when data are available. A preferable approach, we contend, is one developed from probabilistic choice theory, which
naturally allows standard statistical estimation methods to be in future applied in order to calibrate the model parameters, e.g.
controlling the relative influence of local detouredness and global travel cost in terms of the effect on both route availability and
route choice probabilities.

By implication, our intention is to address all of the limitations detailed above. We shall develop a behavioural model combining
the effects of global route cost and local detouredness of a route. In order to do so, we develop a novel, probabilistic, conjunctive choice
model, composed of bounded choice models applied to each of several ‘aspects’ that influence choice (these terms are specifically
defined in Section 3). Importantly, this choice model incorporates both choice set generation and choice of an alternative in one
combined approach. When applied in our specific context, where the aspects are travel cost and local detouredness, the model is
parameterised such that it is able to reflect both the combined effect of these aspects on route choice probabilities, and the existence of
bounds as parameters that reflect the limits observed on these aspects in actual route choices. The full model embeds the behavioural
sub-model in an equilibrium framework, so that the set of used routes emerges at equilibrium, based on the equilibrated costs, rather
than being pre-generated. In particular by developing the model as a continuous mapping, we prove theoretical existence of equilibria.
The whole model is implemented in a solution algorithm that can be applied to general networks.

This is a significant and novel contribution since: a) to our knowledge, local detouredness has never before been considered in
choice set generation methods for route choice (which we have shown above to be an important factor to consider), and b) route
generation via considering bounds on local detouredness (and total route cost) is implicitly dealt with when solving the proposed route

Fig. 5. Distribution of largest local detour among all routes that have relative route-level costs within 1.6 times the minimum cost route (BCM
choice set with global bound 1.6), 1 OD-relation on the Anaheim network (Origin node: 4, Destination node:7).
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choice / SUE model. The latter has the positive behavioural implications of being able to generate realistic route choice sets that are
consistent with the route choice probability criteria, and, moreover, being able to consistently consider local detouredness as a distinct
route attribute in the route choice. There are also considerable practical benefits in that the route generation criteria can generate
tractable route choice sets in which all realistic alternatives are captured, and the route choice / SUE model produces continuous
probability/flow outputs, including at the boundary where a route transitions from being used to unused. In addition, it overcomes the
numerical issues with standard SUE models that require handling large choice sets where a large number of routes may be assigned
very small choice probabilities.

The structure of the paper is as follows. Section 2 introduces notation used throughout the paper. Section 3 integrates the BCM
within a conjunctive choice model to formulate a conjunctive bounded route choice model. Section 4 then specifies this model to
formulate the proposed BCM-LDT model and discusses/illustrates its theoretical properties. Section 5 establishes SUE conditions,
proves solution existence, develops a novel solution algorithm, and explores the model’s properties/features in numerical experiments
on a small-scale network as well as the Anaheim network. Section 6 summarises the work and contains thoughts on future research.

2. Notation

We first introduce the basic common notation adopted in the paper. Consider a network as a directed graph consisting of a set
of directed links A, set of nodes B (where each directed link connects two network nodes), and origin-destination (OD) pairs m
(m=1, 2, …, M). Define the travel demand for OD-pair m as dm ≥ 0, and define Rm as the index set of all4 simple routes (without
cycles) for each OD-pair m. Let Bmi⊆B be the set of nodes belonging to route i ∈ Rm. Nm is the number of routes in Rm and R is the
union of the sets Rm.

Denote theflowon route i∈RmbetweenOD-pairm asxmi and letx = (x11, x12,…, x1N1 , x21, x22,…, x21, x22, x2N2 ,…, xM1, xM2,…, xMNM )

be the N-dimensional flow-vector on the universal choice set across all M OD-pairs, so that the notation xmi refers to element
number i+

∑m− 1
k=1 Nm in the N-dimensional vector x. Denote the flow on link a as fa and let f = (f1,f2,…, fa,…, f|A|) be the |A|-

dimensional link flow-vector where fa refers to element number a in f.
The convex set of demand-feasible non-negative route flow solutions G is given by:

G =

{

x ∈ RN
+ :
∑Nm

i=1
xmi = dm,m=1, 2,…,M

}

, (1)

where RN
+ denotes the N-dimensional, non-negative Euclidean space.

Next, define μami equal to 1 if link a is part of route i for OD-pairm and zero otherwise. Then the convex set of demand-feasible link
flows is:

F =

{

f ∈ R|A|
+ : fa =

∑M

m=1

∑Nm

i=1
μami ⋅ xmi, ∀a ∈ A, x ∈ G

}

(2)

In vector/matrix notation, let x and f be column vectors, and define Δ as the |A|×N-dimensional link-route incidence matrix. Then
the relationship between link and route flows may be written as f = Δx. Define t(f) (t: R+

|A| → R+
| A|) as the vector of generalised link

travel cost functions. Supposing that the travel cost on route i for OD-pairm is additive in the link travel costs of the utilised links then:

cmi(t(Δx)) =
∑A

a=1
μami ⋅ ta(Δx)(i ∈ Rm; m = 1, 2,…,M; x ∈ G) (3)

Define c(t(Δx)) (c: R+
N → R+

N) as the vector of generalised route travel cost functions.
Table 1 displays a list of the key notation used in this paper.

3. Conjunctive bounded route choice model

In Section 1 we set out the motivation for the present study, in aiming to represent the impact of local detouredness as a distinct
route attribute (alongside route travel cost) in both the availability of a route (whether it is used at all) and the choice of a route (the
probability of its use). The aim to consistently combine route generation and route choice led us to consider our own previous work on
the bounded choice model (Watling et al., 2018). However, this previous work is limited by the fact that there is assumed to be a single
composite measure of utility that determines route availability and route choice. If detouredness and travel cost were combined into a
single attribute, this would not allow route exclusion to be driven by either high detouredness or high travel cost, as we believe it
should be. Therefore, an extension of this previous work is needed so that route choice depends on a conjunction of attributes, each of
which is separately bounded. This therefore leads us to develop a route choice model based on a combination of existing modelling

4 We shall suppose that there are no pre-defined restrictions on the set of available routes, other than that they are acyclic, but our methods apply
equally if Rm is pre-defined such that other routes are excluded, leading to some smaller Master Choice Set. We have avoided referring to this, so as
not to confuse the reader between such pre-defined exclusions from the choice set, and those routes that emerge as unused from the equilibration
process.
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approaches: probabilistic conjunctive choice models (Section 3.1) and bounded choice models (Section 3.2), which we integrate into a
unified route choice model in Section 3.3. We shall then later in Section 4 specify this unified route choice model in terms of the two
route aspects travel cost and detouredness, to formulate the proposed model. To simplify the notation below, we suppress reference to
the origin-destination movement, with the proviso that routes are clearly only compared with other routes on the same movement.

3.1. Conjunctive choice model

The probabilistic Conjunctive Choice Model (CCM) has been formulated for application in a variety of choice contexts (Jedidi &
Kohli, 2005; Gilbride& Allenby, 2004; Swait, 2001; Shin& Ferguson, 2017; Kohli& Jedidi, 2005). Here we formulate it in the context
of route choice. Suppose that there is a set of aspects Y that influence travellers’ choice of route (in a similar way to which aspects are
defined by Tversky (1972)). Aspect y ∈ Y could for example be a single route attribute (e.g. travel time) or a combination of route
attributes (e.g. linear combination of travel time and length). The CCM route choice principle is that travellers choose a route based on
the probability of it having the best aspect value for each aspect, i.e. it being the best in all aspects. Under this principle, the probability
of choosing route i ∈ R is:

Pi =
Prob(route i is best in all aspects in Y)

∑
j∈RProb(route j is best in all aspects in Y)

. (4)

The probability Pi is a conditional probability, conditioning on the fact that routes are compared only when they are best in all
aspects. The probability that route i is best in all aspects in Y is:

Prob(route i is best in all aspects in Y) = Prob
(

∩
y∈Y

(route i is best in aspect y)
)

=
∏

y∈Y
Prob(route i is best in aspect y), (5)

assuming that the component probabilities are statistically independent. Thus, inserting (5) into (4), the probability of choosing route i
∈ R is:

Pi =
∏

y∈YProb(route i is best in aspect y)
∑

j∈R
∏

y∈YProb(route i is best in aspect y)
. (6)

In general choice modelling, the CCM has typically been used as a means of ‘screening’ alternatives (Jedidi & Kohli, 2005; Gilbride
& Allenby, 2004; Shin & Ferguson, 2017; Kohli & Jedidi, 2005). ‘Cut-offs’ are applied to each aspect y to assign Prob(alter-
native i is best in aspect y)= 0 if the value for aspect y for alternative i is greater/less than some cut-off value (Swait, 2001).
Consequently, if for alternative i Prob(alternative i is best in aspect y) = 0 for any aspect y, then Pi = 0 and the alternative is
‘screened’. In this application of the CCM, the model could be considered to fall under the category of ‘consider-then-choose’ choice

Table 1
Notation.

Notation Description

A Set of network links
B Set of network nodes
M Number of OD movements
dm Travel demand for OD movement m
Rm Set of routes for OD m
Nm Total number of routes for OD m
N Total number of routes
xmi Flow on route i of OD m
fa Flow on link a
Δ Link-route incidence matrix
F Set of demand-feasible link flows
G Set of demand-feasible route flows
ta Travel cost of link a
cmi Travel cost on route r of OD m
Q1
mi Cost-BCM choice probability of route i of OD m

Q2
mi Detour-BCM choice probability of route i of OD m

Pmi BCM-LDT choice probability of route i of OD m
Smi Set of segments of route r of OD m
Kab Set of sub-route segment alternatives between node a and node b
kabmi Sub-route segment alternative taken by route i of OD m between node a and node b
ωk Travel cost of sub-route segment alternative k ∈ Kab
ϕmi Local detour measure of route i of OD m
θ1 Travel cost scaling parameter
θ2 Local detouredness scaling parameter
τ Relative surplus total route travel cost bound parameter
γ Local detour threshold parameter
λn Step size at iteration n of BCM-LDT solution algorithm
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models. As described by Shin& Ferguson (2017), a non-compensatory screening rule is employed to narrow the set of alternatives to a
‘consideration set’, and then a compensatory choice rule is employed to decide between the remaining alternatives in the choice set.
This aligns with our ambitions in the current study of developing a route choice model that screens alternatives by imposing individual
cut-offs to route aspects (total route cost and detouredness), and then choosing from remaining routes based on their overall attrac-
tiveness in the route aspects.

3.2. Bounded choice model

The Bounded Choice Model (BCM) (Watling et al., 2018) route choice principle is that travellers choose a route based on the
probability of it having the best utility relative to a reference utility. By setting this reference utility equal to the maximum deter-
ministic utility of all alternatives, the attractiveness of a route depends on the utilities of all routes, meaning that the BCM falls within
the class of relative random utility theory (Zhang et al., 2004; Zhang, 2013, 2015; Leong & Hensher, 2015).

The BCM is derived as follows. Define Vr* as the reference utility of the reference alternative r*, which in this case is the maximum
utility alternative, i.e. Vr* = max(Vl : l ∈ R). Thus, if Ui and Vi are the random and deterministic utilities for route i ∈ R, respectively,
the difference in random utility for route i ∈ R relative to the reference utility for route i ∈ R is:

Ur* − Ui = Vr* + ϵr* − Vi − ϵi = Vr* − Vi + εi = max(Vl : l ∈ R) − Vi + εi,

where εi is the individually and identically distributed random variable error term for route i ∈ R, and εi is the difference random
variable for route i ∈ R with the reference alternative. The MNL model can be derived by assuming the εi error terms are Gumbel
distributed and thus the εi difference random error terms assume the logistic distribution. The BCM, however, proposes that the
difference random variable error terms εi assume a truncated logistic distribution, obtained by left-truncating a logistic distribution
with mean 0 and scale θ− 1 at a lower bound of − ψ for some ψ ≥ 0. As such, a bound is applied to the difference in utility to the
reference utility, so that if a route has a utility below the bound, it receives zero choice probability. This means that routes with utilities
below the bound have zero probability of being the best alternative (relative to the reference utility).

Given the above, it follows from the derivation of the BCM in Duncan et al. (2022a, Supplementary Material, Appendix A) that the
probability of choosing route i ∈ R is:

Qi = Prob(route i is best in utility relative to reference utility) =
(exp(θ(Vi − max(Vl : l ∈ R) + ψ)) − 1)+∑
j∈R
(
exp
(
θ
(
Vj − max(Vl : l ∈ R) + ψ

))
− 1
)

+

, (7)

where ( ⋅ )+ = max (0, ⋅), θ > 0 is a scaling parameter, and ψ > 0 is the bound parameter.

3.3. Conjunctive bounded choice model

We now combine the CCM in (4)-(6) and the BCM in (7) to formulate a Conjunctive Bounded Choice Model (CBCM). The CBCM
route choice principle is that travellers choose a route based on the probability of it having, for each aspect, the best aspect utility
relative to a reference aspect utility (i.e. relatively best in all aspects in Y). Under this principle, the probability of choosing route i ∈ R
is:

Pi =
Prob(route i is relatively best in all aspects in Y)

∑
j∈RProb(route j is relatively best in all aspects in Y)

. (8)

Similar to the CCM, the probability Pi is a conditional probability, conditioning on the fact that routes are compared only when they
are relatively best in all aspects in Y. The probability route i is best in all aspects in Y is:

Prob(route i is relatively best in all aspects in Y) = Prob
(

∩
y∈Y

(route i is relatively best in aspect y)
)

=
∏

y∈Y
Prob(route i is relatively best in aspect y), (9)

assuming that the component probabilities are statistically independent. Thus, inserting (9) into (8), the probability of choosing route i
∈ R is:

Pi =
∏

y∈YProb(route i is relatively best in aspect y)
∑

j∈R
∏

y∈YProb(route j is relatively best in aspect y)
. (10)

Now, to determine Prob(route i is relatively best in aspect y) we follow the same process as was used for the derivation
of the BCM, as outlined in Section 3.2, but applied to aspect utilities rather than total utilities. It follows from this that the aspect-y-BCM
probability of choosing route i is:

Qy
i = Prob(route i is relatively best in aspect y) =

(
exp
(
θy
(
Vy
i − max

(
Vy
l : l ∈ R

)
+ ψy

))
− 1
)

+∑
k∈R
(
exp
(
θy
(
Vy
k − max

(
Vy
l : l ∈ R

)
+ ψy

))
− 1
)

+

, (11)

T.K. Rasmussen et al. Transportation Research Part B 190 (2024) 103052 

9 



where Vy
i is the deterministic utility of route i for aspect y, θy> 0 is a scaling parameter for aspect y, and ψy> 0 is the bound parameter

for aspect y.
Inserting (11) into (10) above, the probability of choosing route i ∈ R is then:

Pi =

∏
y∈Y

(exp(θy(Vy
i − max(Vy

l :l∈R)+ψy))− 1)+∑
k∈R(exp(θy(Vy

k − max(Vy
l :l∈R)+ψy))− 1)+

∑
j∈R
∏

y∈Y

(
exp

(
θy

(
Vy
j − max(Vy

l :l∈R)+ψy

))
− 1

)

+∑
k∈R(exp(θy(Vy

k − max(Vy
l :l∈R)+ψy))− 1)+

=

∏
y∈Y
(
exp
(
θy
(
Vy
i − max

(
Vy
l : l ∈ R

)
+ ψy

))
− 1
)

+
∑

j∈R
∏

y∈Y

(
exp
(

θy
(
Vy
j − max

(
Vy
l : l ∈ R

)
+ ψy

))
− 1
)

+

. (12)

The CBCM thus imposes a bound on each aspect. For each aspect y, a bound is applied to the difference between the aspect utility
and the aspect reference utility. Thus, if for any aspect y, a route has an aspect utility below the bound, it receives zero choice
probability, and therefore has zero probability of being simultaneously the best alternative in all aspects.

A key attractive feature of the CBCM is that the choice probability function is continuous. As Gilbride & Allenby (2004) note, a
major deficiency often experienced by choice models that screen alternatives through imposing cut-offs to aspects, is discontinuity of
the choice probabilities. In such existing approaches, alternatives entering and exiting the consideration set as aspect values are varied
can typically lead to ‘abrupt changes’ in the choice probabilities. In contrast, the CBCM choice probabilities are a continuous function
of the aspect utilities (due to the continuity of the original BCM), including when the aspect utility of a route crosses from below to
above the bound (and vice versa).

3.4. Limiting behaviour

Here we demonstrate that as each aspect bound tends to infinity (i.e. as ψy → ∞, ∀y ∈ Y) the CBCM collapses into a simple MNL
model with a linear utility function of each aspect utility. This is explained as follows. First, under the knowledge that as ψy → ∞, ∀y ∈
Y, no route i ∈ R will have any aspect utility that violates Vy

i ≤ max
(
Vy
l : l ∈ R

)
− ψy, Pi in (12) can be simplified to:

Pi =
∏

y∈Y
(
exp
(
θy
(
Vy
i − max

(
Vy
l : l ∈ R

)
+ ψy

))
− 1
)

∑
j∈R
∏

y∈Y

(
exp
(

θy
(
Vy
j − max

(
Vy
l : l ∈ R

)
+ ψy

))
− 1
).

This expression can be re-arranged as follows:

Pi =
∏

y∈Y
(
exp
(
θyVy

i
)
exp
(
θy
(
ψy − max

(
Vy
l : l ∈ R

)))
− 1
)

∑
j∈R
∏

y∈Y

(
exp
(

θyVy
j

)
exp
(
θy
(
ψy − max

(
Vy
l : l ∈ R

)))
− 1
).

Taking out factors of exp
(
θy
(
ψy − max

(
Vy
l : l ∈ R

)))
for each y ∈ Y from both numerator and denominator, which cancel out, the

following expression is obtained:

Pi =

∏
y∈Y

(

exp
(
θyVy

i
)
− 1

exp(θy(ψy − max(Vy
l :l∈R)))

)

∑
j∈R
∏

y∈Y

(

exp
(

θyVy
j

)
− 1

exp(θy(ψy − max(Vy
l :l∈R)))

).

As ψy → ∞, ∀y ∈ Y, we get:

Pi =
∏

y∈Yexp
(
θyVy

i
)

∑
j∈R
∏

y∈Yexp
(

θyVy
j

),

which is equivalent to:

Pi =
exp
(∑

y∈YθyVy
i

)

∑
j∈Rexp

(∑
y∈YθyVy

j

).

Thus, in the specific case of all aspect bounds tending to infinity the CBCM is a fully compensatory route choice model, in the sense
that it collapses into a simple MNL model with a linear utility function of each aspect utility. However, in the general case of finite
aspect bounds (as considered in the present paper), such a relationship no longer holds since the model can assign zero probabilities
based on individual aspects.

4. Bounded choice model with local detour threshold (BCM-LDT)

To formulate the Bounded Choice Model with Local Detour Threshold (BCM-LDT) model we specify the CBCM with the following
two aspects: total generalised route travel cost and local detouredness. In Sections 4.1 & 4.2 we establish the aspect-y-BCMs
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corresponding to each of the aspects of cost and detouredness, respectively, where in Section 4.2 we propose a measure of local
detouredness. In Section 4.3 we consequently formulate the BCM-LDT and discuss its properties. In Sections 4.4 & 4.5 we explore the
properties of the model on a small-scale network and the Anaheim network, respectively.

4.1. Cost-BCM

The first aspect 1 ∈ Y we consider within the CBCM is total generalised route travel cost. As such, this corresponds to the speci-
fication of the BCM studied thus far in Watling et al. (2018) and Duncan et al. (2022a). This ‘cost-BCM’ supposes that the deterministic
aspect utilities are equal to the negative of the total route travel cost, i.e. V1

mi = − cmi, ∀i ∈ Rm. The reference aspect utility is therefore
the negative of the cost of the cheapest route: V1

mr* = − min(cml : l ∈ Rm). Under this configuration of the aspect-y-BCM in (11) above,
the choice probability relation for route i ∈ Rm is:

Q1
mi =

(exp( − θ1(cmi − min(cml : l ∈ Rm) − ψ1)) − 1)+∑
j∈Rm

(
exp
(
− θ1

(
cmj − min(cml : l ∈ Rm) − ψ1

))
− 1
)

+

, (13)

where θ1 > 0 is the travel cost scaling parameter for the cost-BCM, representing sensitivity to travel cost (relative to the bound). Since
the cost-BCM imposes a bound on total route travel cost, this cost bound is also referred to as the global [cost] bound. In this case, the
bound is an absolute bound on surplus total route travel cost, i.e. a route receives zero probability if it has a cost as great as or greater
than ψ1 plus the minimum cost route (ψ1 cost units away from the minimum).

The cost-BCM can also, however, be stipulated with a relative bound on surplus total route cost, by setting ψ1= (τ − 1) ⋅ min (cml: l
∈ Rm), so that:

Q1
mi =

(exp( − θ1(cmi − τ ⋅ min(cml : l ∈ Rm))) − 1)+∑
j∈Rm

(
exp
(
− θ1

(
cmj − τ ⋅ min(cml : l ∈ Rm)

))
− 1
)

+

, (14)

where τ > 1 is the relative surplus total route travel cost bound parameter. In this case, a route receives zero probability if it has a cost
as great as or greater than τ times the minimum route cost. Note that, for reasons that will be made clearer later, when comparing the
proposed BCM-LDT model to the standard cost-BCM, we utilise the model in (14) with global bound stipulated as a relative bound.

4.2. Detour-BCM

The second aspect 2 ∈ Y we consider within the CBCM is local detouredness. In general, the aspect of local detouredness is a
consideration of the extent to which a route detours from shortest subroutes at each of its subsections. We propose here a measure of
local detouredness. Define the set of segments Smi for route i ∈ Rm as the set of ordered node pairings:

Smi = {(a, b) : a ∈ Bmi, b ∈ Bmi and node a precedes node b when traversing route i ∈ Rm}.

Note that Smi includes not just ordered node pairings of adjacent nodes, but all ordered node pairs in the route. The universal set of
segments for all OD-pairs is then:

S = ∪
M

m=1
∪

i∈Rm
Smi.

Define the set Kab of segment alternatives for segment (a, b) ∈ S as the index set of all simple sub-routes from node a to node b.
Furthermore, define the used segment alternative for segment (a, b) ∈ Smi of route i ∈ Rm as the element kabmi ∈ Kab denoting the index of
the segment alternative actually used by route i ∈ Rm from node a to node b.

For a given setting of the generalised link costs t, the measure of local detouredness ϕmi for route i ∈ Rm is defined as:

ϕmi(t) = max
{ωkabmi (t) − min

(
ωj(t) : j ∈ Kab

)

min
(
ωj(t) : j ∈ Kab

) : (a, b) ∈ Smi
}

, (15)

where ωk(t) is the travel cost of segment alternative k ∈ Kab for segment (a, b) ∈ Smi of route i ∈ Rm. ϕmi identifies the maximum relative
detour of a route by comparing—for each of that route’s segments—the cost of the used segment alternative with the cost of the
minimum cost alternative for that segment. Note that this measure of local detouredness is a relativemeasure, i.e. a detour measure of
ϕmi = y corresponds to the worst detouring segment of the route being (100 × y) % or y + 1 times greater than the cost of the
minimum cost alternative for that segment.

To demonstrate this measure, consider the simple network illustrated in Fig. 6 with one OD-movement A to E. Route 1 is A → B → C
→ D → E, Route 2 is A → B → D → E, and Route 3 is A → D → E. We demonstrate how the measure of local detouredness for Route 1 can
be calculated as follows. We start by identifying all the segments of the route:

S1 = {(A,B), (A,C), (A,D), (A,E), (B,C), (B,D), (B, E), (C,D), (C,E), (D, E)}.

For segment (B, D), there are two segment alternatives: segment alternative 1 is B → D and segment alternative 2 is B → C → D. The
index set of segment alternatives for segment (B, D) is KBD= {1, 2}, where k= 1 in KBD refers to segment alternative B → D and k= 2 in
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KBD refers to segment alternative B → C → D. The used segment alternative of Route 1 at segment (B, D) is kBD1 = 2. The travel costs of
segment alternatives 1&2 are ω1 = 10 and ω2 = 10 + 5 = 15. Therefore, the local detouredness of Route 1 at segment (B, D) is:

ωkBD1 − min
(
ωj : j ∈ KBD

)

min
(
ωj : j ∈ KBD

) =
ω2 − min(ω1,ω2)

min(ω1,ω2)
=
15 − min(10,15)

min(10, 15)
=
15 − 10

10
= 0.5.

For segment (A, D), the segment alternatives 1-3 are A → D, A → B → D, and A → B → C → D, respectively, with costs 25, 20, & 25.
Given Route 1 uses segment alternative 3, the local detouredness of Route 1 at (A, D) is 25− min(25,20,25)

min(25,20,25) = 5
20 = 0.25. For completeness, the

local detouredness of Route 1 at segments (A, E) and (B, E) are 30− 25
25 = 0.2 and 20− 15

15 = 0.33, respectively, and the rest are equal to 0 due
to there being only one segment alternative. The maximum local detouredness of Route 1 from each of its segments in S1 is thus:

max(0,0,0.25,0.2, 0, 0.5,0.33,0, 0,0) = 0.5,

and therefore the measure of local detouredness for Route 1 is ϕ1 = 0.5.
For Route 3, the largest detouring segment is (A, D) which has local detouredness of 25− 20

20 = 0.25, and thus the measure of local
detouredness for Route 3 is ϕ3 = 0.25. For Route 2, all the used segment alternatives for each of its segments are the minimum costing,
and therefore the measure of local detouredness is ϕ2 = 0. Thus, while Routes 1&3 have the same total travel cost (=30) and therefore
have the same global detour, they have different measures of local detouredness, i.e. detour locally in different ways, where Route 1 is
the most locally detouring.

Note that although here to calculate the measure of local detouredness we have for pedagogical purposes enumerated all route
segments and all segment alternatives for each segment, it is not necessary to do this in practice. All one needs to know is, for the most
detouring segment, the cost of the cheapest segment alternative and the cost of the chosen segment alternative of the route. There are
numerous ways this can be done efficiently, and in Section 5.2, we propose a method that indeed avoids the need to enumerate all
segment alternatives.

Note that there are alternative measures of local detouredness that one might consider, such as using the average of the relative
detours or the sum of the relative detours. The BCM-LDT model to be derived in the following sections can accommodate such al-
ternatives measures, however in this paper we focus on the largest local detour measure, as defined above.

Given the above proposed measure of local detouredness, we formulate the ‘detour-BCM’, which supposes that the deterministic
aspect utilities relate negatively according to local detouredness, i.e. V2

mi = − ϕmi, ∀i ∈ Rm. The reference aspect utility is therefore the
minimum detouredness from all routes, which is always equal zero from the minimum cost route: V2

mr* = − min(ϕml : l ∈ Rm) = 0.
Under this configuration of the general aspect-y-BCM in (11), the choice probability relation for route i ∈ Rm is:

Q2
mi =

(exp( − θ2(ϕmi − ψ2)) − 1)+∑
j∈Rm

(
exp
(
− θ2

(
ϕmj − ψ2

))
− 1
)

+

, (16)

where θ2 > 0 is the detouredness scaling parameter for the detour-BCM, representing sensitivity to local detouredness (relative to the
bound). We set the local detour bound to ψ2 = γ, where γ > 0 is the local detour bound parameter.

4.3. Proposed BCM-LDT model

As discussed above, the BCM-LDT model is formulated by specifying the CBCM in (12) with two aspects: total route travel cost and
local detouredness. The aspect-1-BCM, the cost-BCM, is as in (14) and the aspect-2-BCM, the detour-BCM, is as in (16). Thus,
combining these within the CBCM, the BCM-LDT choice probability relation for route i ∈ Rm of OD-pair m, for a given setting of the
(flow-dependent) link costs t, is:

Pmi(t) =
(exp( − θ1(cmi(t) − τ ⋅ min{cml(t) : l ∈ Rm})) − 1)+(exp( − θ2(ϕmi(t) − γ)) − 1)+∑

j∈Rm

(
exp
(
− θ1

(
cmj(t) − τ ⋅ min{cml(t) : l ∈ Rm}

))
− 1
)

+

(
exp
(
− θ2

(
ϕmj(t) − γ

))
− 1
)

+

(17)

The BCM-LDT has four standard parameters: θ1 > 0 is the travel cost scaling parameter (scaling sensitivity to total route cost), θ2 >
0 is the local detouredness scaling parameter (scaling sensitivity to local detouredness), τ > 1 is the relative surplus total route cost
bound parameter, and γ > 0 is the local detour bound parameter.

Note that as θ1 multiplies cost and θ2 multiplies a dimensionless variable (detouredness), then in order to scale the argument of the
exponential functions to common units of utility, these parameters will have different units. As a result, θ1 and θ2 will have different
interpretations, and so may take different values. In Section 5.3.2.4 we explore the impact of the relative values of these two
parameters.

Fig. 6. Example network for demonstrating calculation of local detouredness, with numbers reflecting link travel costs.
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The BCM-LDT is continuous in cost and local detouredness under standard assumptions, as shall be proven in Section 5.1. Note that
since the BCM-LDT model has two BCM components and thereby two independent bounds on travel cost and local detouredness, in
order to distinguish clearly between the two bounds, we refer to the cost-BCM bound on total route cost as the global cost bound, and
the detour-BCM bound on local detouredness as a local detour threshold. The cost-BCM component assigns a route zero probability if it
has a total route cost as great as or greater than τ times the minimum total route cost for that OD-pair. And, the detour-BCM component
assigns a route zero probability if, at its most detouring segment, the used segment alternative has a travel cost as great as or greater
than γ + 1 times the minimum costing segment alternative for that segment. A global bound parameter of τ is thus analogous with a
local detour threshold parameter of γ + 1.

We would therefore expect τ < (γ + 1). This is because the detour-BCM component also applies to route-level global detours, and
hence the global cost bound will not influence route exclusion if the local detour threshold is below the cost bound (minus 1),
though it will influence the choice probabilities. Furthermore, we would not expect to calibrate τ > (γ + 1) from data, since by
definition the detouredness is always greater than or equal to the global detour (global detour is also considered in the max-operator of
the detouredness measure).

Regarding calibration of the local detour threshold, the derivation of the model from probability theory combined with the con-
tinuity property of the model (see Lemma 1 in Section 5.1) allows the threshold to be estimated by rigorous statistical methods, from
fitting the model to real-life tracked route observations. For example, this may be achieved in a similar way to how the global cost
bound is fitted for the cost-BCM in Duncan et al. (2022a). We discuss this issue in the conclusions section as future research.

We present now the limiting behaviour properties of the BCM-LDT model, noting which models the BCM-LDT model approaches in
its limits. These limiting models are (i) the cost-BCM in (14), (ii) a standard MNL in terms of cost, and (iii) an MNL relating linearly to
both cost and detouredness, which we show in turn below.

The BCM-LDT model in (17) approaches the cost-BCM in (14) as θ2 → 0 and γ → ∞ under the condition that γ tends to ∞ faster than
θ2 tends to 0, such that lim

θ2→0
γ→∞

θ2γ = ∞. This is explained as follows. It is clear from (17) that the BCM-LDT model is equivalent to the

standard cost-BCM in (14) when (exp ( − θ2(ϕmi − γ)) − 1)+ is equal for all routes i ∈ R and thus cancels out. If γ → ∞, then no route
can have a detouredness measure above the threshold and thus in this case (exp ( − θ2(ϕmi − γ)) − 1)+ = exp ( − θ2(ϕmi − γ)) − 1, ∀i
∈ Rm. Now, this expression can be rearranged as follows:

exp( − θ2(ϕmi − γ)) − 1 = exp(− θ2ϕmi)exp(θ2γ) − 1 = exp(− θ2ϕmi)exp(θ2γ) −
exp(θ2γ)
exp(θ2γ)

.

A factor of exp (θ2γ) can be extracted, which will be cancelled out by all routes in the probability relation, leaving exp( − θ2ϕmi) −
1

exp(θ2γ), ∀i ∈ Rm. This tends to 1 for all routes as θ2 → 0 and γ → ∞ under the condition that ψ2 tends to ∞ faster than θ2 tends to 0 such
that lim

θ2→0
γ→∞

θ2γ = ∞.

Note also that since the cost-BCM approaches an MNL model as τ → ∞ (see Watling et al. (2018)), the BCM-LDT model can also
approximate a standard MNL in terms of total route cost. Moreover, following the limiting behaviour of the CBCM demonstrated in
Section 3.4, in the limits as both τ → ∞ and γ → ∞, the BCM-LDTmodel in (17) approaches an MNLmodel with utility function relating
to a linear combination of cost and detouredness, i.e. Vmi = − θ1cmi − θ2ϕmi for each route i ∈ Rm. The above properties show that the
BCM-LDT is very flexible, as it can collapse to several different models.

The BCM-LDT is multi-objective and thus falls under the category of multi-criteria traffic assignment. Although there are some
apparent similarities between the BCM-LDT model and existing bi/multi-criteria models, such as the probability relation used for the
Non-Compensatory Stochastic User Equilibrium (NCSUE) model in Ehrgott et al. (2015), the key distinction is that we propose a
conjunctive as opposed to disjunctive choice modelling approach (in the sense described in Cazor et al., 2024). Specifically, the BCM-LDT
is based on the probability that an alternative is best in all aspects (relative to the corresponding reference aspect values), while the
NCSUE probability relation is based on the probability an alternative is best in at least one aspect. This is an important distinction, as
our contention is that routes should be attractive on the basis of both aspects total cost and local detouredness, and so are excluded if
unattractive in either.

4.4. Small-scale illustrative example

In this section we illustrate the model proposed above on a small-scale example network. Consider the 4-link network shown in

Fig. 7. Small-scale network: 4 link network with 3 routes from origin O to destination D. Notation (A,B) denotes link A with cost B.
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Fig. 7. Let x range between 0 and 20, and define Route 1 as consisting of links 1 and 2 with a total cost of 25, Route 2 as the cheapest
consisting of links 1 and 3 with a total cost of 20 and Route 3 as consisting of link 4 with a cost of 35. The detouredness measures for
Routes 1, 2,and 3 are (25-x-(20-x))/(20-x), 0 and 0.75, respectively. Note that the detouredness measure for Route 3 corresponds to the
detour on the (global) route level also. Let θ1 = θ2 = 0.1.

Fig. 8 displays the BCM-LDT choice probabilities of each route as the local detour threshold parameter γ is varied, setting x = 10.
For x=10, the detouredness measures for Routes 1 and 3 are 0.5 and 0.75 respectively. Consequently, for a local detour threshold less
than or equal to 0.5 (γ ≤ 0.5), only Route 2 is used (and thus assigned probability 1). As the threshold increases above 0.5, Route 1 is
‘activated’ and assigned a non-zero probability that is increasing for increasing threshold values. When the threshold increases above
0.75, Route 3 is also ‘activated’ and assigned a non-zero probability. The probabilities of Routes 1 and 3 are increasing for increasing
threshold values, and in this case as it approaches infinity, the probability share on Routes 1, 2 and 3 approaches the corresponding
BCM probabilities (0.331, 0.607 and 0.062, respectively). Also note that, as shown in Section 4.3, as the local detour threshold and
global cost bound both tend to infinity (γ → ∞ and τ → ∞), the BCM-LDT approaches MNL choice probabilities based on a linear
combination of total route travel cost and detouredness (i.e. utility), where (P1,P2,P3)= (0.331, 0.547,0.122), as expected.

We now turn to analysing the effects of varying both the (relative) local detour threshold and the (relative) global cost bound. Fig. 9
illustrates the flow shares when τ is varied from 1 to 3 and γ from 0 to 3, with all other parameters fixed at their values previously
defined above. Route 2 is assigned largest probability, and then Route 1 and Route 3 are introduced (in that order) as the cost bound /
detour threshold are loosened (as also found in the case when only the local detour threshold is varied). Route 2 is the minimum cost
route and consequently does not have any detours, i.e. this route is always assigned a non-zero choice probability. For low values of the
cost bound and detour threshold (γ < 0.5 and/or τ ≤ 1.25), Route 2 is the only used route.

Now, consider a fixed global cost bound and local detour threshold (γ = 1.0 and τ = 2.0), and let x vary from 0 to 20. Fig. 10
displays the BCM-LDT route choice probabilities. Note that the local and global detour remains constant for Route 3, independent of x.
The probability of Route 1 reduces to zero as x increases. This is because the local detour of the route increases as x increases, forcing
the probabilities towards zero. At x=15 the detouredness measure of Route 1 is at the threshold γ = 1.0, and so the model assigns zero
choice probability to the route for x≥15.

Importantly, note the continuity of the probabilities for all experiments, both when varying x and when varying the cost bound and
detour threshold values. This is a key feature of the BCM-LDT model that is not trivial to achieve when assigning some routes zero
probability.

As demonstrated in Section 1.2, the BCM-LDT model is a very different model to correlation-based models, such as Path Size Logit
(PSL) (Ben-Akiva& Ramming, 1998; Duncan et al., 2020), nested GEV-structure models (Vovsha, 1997; Bekhor& Prashker, 1999) and
Probit (Daganzo & Sheffi, 1977). These models consider route overlapping from a correlation perspective, whereas our proposed
model considers route overlapping from a local detour perspective. While both sets of models take into account route overlapping,
their purposes are very different.

To reinforce this point, we compare route choice probabilities from the BCM-LDT model in Fig. 10 with those from the PSL model
(see Fig. 11), with Logit scaling parameter equal to 0.1 and path size scaling parameter equal to 1 (see Duncan et al. (2020) for model
formulation). Note that the route costs are not equal in this example. At x=0, Routes 1&2 are non-overlapping, i.e. completely distinct
routes. As x increases, Routes 1&2 become more overlapping, and at x=20 Route 2 is completely indistinct (all of its route overlaps
with Route 1). PSL penalises routes for overlapping (to capture correlation) and therefore as shown in Fig. 11, Route 2’s probability
decreases as x increases. Route 1 is never completely indistinct as at x=20 it deviates 5 cost units from that of Route 2. Route 1 thus is
not penalised as much as Route 2 for overlapping and its choice probability remains relatively constant. Route 3 increases probability
as x increases as it gains probability from Route 2. These results are clearly very different to those in Fig. 10.

Note contrastingly that if one were to consider the small-scale network in Fig. 7, with link costs of x, 1-x, 1-x, & 1 for links 1-4,

Fig. 8. Small-scale network: BCM-LDT choice probabilities for varying values of γ, assuming τ = 2, θ1 = θ2 = 0.1, and x=10.
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respectively, i.e. the traditional loop-hole network used by Cascetta et al. (1996) to demonstrate route correlation, the BCM-LDT choice
probabilities would remain constant at 1/3 as x is varied between 0 and 1. This is because regardless of x the route costs are all equal
and there are no local detours (the segment alternatives all have equal costs). The BCM-LDT thereby does not capture route correlation.
In Section 6.2 we discuss though the possibilities for extending the BCM-LDT to account for both detouredness and correlation.

Lastly, we explore to what degree each part of Q1
mi and Q2

mi contribute to overall BCM-LDT probability Pmi in (17). Q1
mi is the cost-

BCM (with a relative bound) in (14) andQ2
mi is the detour-BCM in (16) with ψ2= γ. Fig. 12 displays the probabilities ofQ1

mi,Q2
mi, and Pmi

for each of the three routes in Fig. 7 as x varies between 0 and 20. The first thing to notice is that the Q1
mi cost-BCM choice probabilities

are constant since in this example the costs remain constant as x varies. The Pmi BCM-LDT probabilities are thus effectively scaled
versions of the Q2

mi detour-BCM probabilities, with a constant scaling. As also shown in Fig. 12, the Pmi BCM-LDT probability of Route 1
tends to zero as x approaches 15 from below, at which point its local detour first violates the detour threshold. As can be seen with the
Q2
mi detour-BCM probability of Route 1, this feature also occurs, except the probability of the route before x=15 is not weighted by its

cost-BCM probability.

Fig. 9. Small-scale network: BCM-LDT choice probabilities for varying values of γ and τ, each subFig. illustrating the surface for one route, assuming
θ1 = θ2 = 0.1, and x=10.
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4.5. Anaheim network example

In this section we explore and illustrate the effect of γ on both the composition and size of the choice set in a larger-scale network,
namely the Anaheim network which is well-known in the transport research community 5. The network is illustrated in Fig. 13, where
blue nodes are network nodes and green nodes are Origin-Destination nodes where links connecting to these can only be used by trips
with an origin or destination in these zones. There are 1406 OD-movements with a total demand of 104694.4 trips. In this section, to
demonstrate the properties of the BCM-LDT route choice model where the link costs are fixed (flow-independent) and thereby the
choice behaviour for each OD is independent, we focus on one OD-relation in the network, namely Origin node 4 and Destination node
7 (marked red in Fig. 13). This corresponds to entering the area on the motorway in the south-east and leaving the area on the same
motorway in the north-west. We assume the link generalised cost is a weighted sum of the travel time (in minutes)6 and length (in
kilometers), with weights 1.0 and 0.5, respectively. Note that although in this section we assume fixed link costs and independent OD
movements, we shall later apply the BCM-LDT model to SUE where the link costs are flow-dependent and not fixed, and thereby the
ODs interact with each other (section 5.3.2).

The set of alternatives that attract flow is heavily dependent on both the local detour threshold and global cost bound. Fig. 14
illustrates the choice set size as function of γ for different values of τ. Note that when γ < τ − 1, the choice set of ‘active’ routes assigned
non-zero probability is determined solely by the local detour threshold.

Fig. 10. Small-scale network: BCM-LDT choice probabilities for varying values of x, assuming γ = 1, τ = 2, θ1 = θ2 = 0.1.

Fig. 11. Small-scale network: Path Size Logit choice probabilities for varying values of x, assuming Logit scaling parameter equal to 0.1 and path
size scaling parameter to 1 (See Duncan et al. (2020) for model definition).

5 Downloaded from https://github.com/bstabler/TransportationNetworks.
6 In this experiment we use congested link travel times stemming from a converged User Equilibrium solution provided on the github.
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The Fig. illustrates the effects of having both a global cost bound and local detour threshold. For γ ≤ 0.6 the choice sets are identical
across τ, as mentioned above. As γ is increased beyond 0.6, the (global) cost bound has an effect. If no global cost bound is applied
(approximated here with τ = 15) the choice sets become enormously large (e.g. 2,588,503 alternatives when γ = 2.3), whereas the
global cost bound of τ = 1.6 determines an upper size of the choice set of 66,714 routes. For moderate sizes of γ, the set of used routes is
largely determined by the local detour threshold. For instance, when γ = 0.8, approximately 600 routes are generated for all tested
values of τ. Choice set sizes of that order of magnitude are much more computationally tractable than if only a global bound of e.g. τ =

1.6 or no bounds at all are applied. Note also that the choice sets are identical in this range of γ when τ = 4.0 and τ = 15, since the
choice sets are determined solely by the local detour threshold when τ ≥ γ + 1 (i.e. choice sets are in this case guaranteed to be identical
when γ ≤ 3.0).

Fig. 15 shows the links used by the BCM-LDT for different values of γ when assuming τ = 1.6. For reference, the link usage for the
BCMwith τ = 1.6 is also included. The widths of the links indicate the link probabilities. As can be seen, the choice set size and number
of links used both increase with γ. When γ = 0.1, there is only one route that is used: the minimum cost route. At γ = 0.4 there are 6
routes and one can see that there is some variation in the choice set, with routes that differ considerably from the minimum cost route.
The choice set size increases rapidly as γ is increased. Note the large choice set size for the BCM (γ = ∞) case, again highlighting the
computational benefit of imposing a threshold on local detours as is done in BCM-LDT for γ < ∞ .

5. Stochastic user equilibrium with the BCM-LDT

In this section, we establish Stochastic User Equilibrium (SUE) conditions for the BCM-LDT, to consistently account for congestion
in the network. We then prove solution existence, develop a solution algorithm, and illustrate the methodology with some numerical
experiments.

5.1. Equilibrium conditions and solution existence

SUE conditions for the BCM-LDT are as follows:

BCM-LDT SUE: A route flow vector x* ∈ G is a BCM-LDT SUE solution iff it is a solution to the fixed-point problem

x = DP(t(Δx)),

where Pmr is given by (17) for route r ∈ Rm and D is a N× N diagonal matrix of the travel demands for each OD-pair (i.e. with dm on
each of the diagonal elements for the route rows/columns belonging to each OD-pair).

We now proceed to prove that BCM-LDT SUE solutions are guaranteed to exist. First, let Hmi(x) = dmPmi(t(Δx)) be a component of
the BCM-LDT SUE mapping, where Pmi is the BCM-LDT choice probability function for route i ∈ Rm given by (17), dependent upon the
link cost functions t(.), which are in turn dependent upon the route flows x. LetH(x) be the vector of functions with componentsHmi(x).

In Lemma 1 we now establish the continuity property of H(.).

Lemma 1. If the link cost function t(Δx) is a continuous function for all x ∈ G, then H(x) is also a continuous function for all x ∈ G.

Fig. 12. Small-scale network: Q1 cost-BCM, Q2 detour-BCM, and overall P BCM-LDT choice probabilities for varying values of x, assuming γ = 1, τ
= 2, θ1 = θ2 = 0.1.
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Proof. In general, if W1(t) and W2(t) are continuous functions in t, then min (W1(t),W2(t)), max (W1(t),W2(t)), and (W1(t))+ =

max (W1(t),0) are all also continuous. It follows from this that Pmi(t) in (17) is continuous in t. It is clear that Hmi(x) is continuous for
all x ∈ G if Pmi(t(Δx)) as defined in (17) is a continuous function for all x ∈ G. Thus, since t(Δx) is a continuous function for all x ∈ G,
and Pmi(t(Δx)) in (17) is continuous in t, then Hmi(x) is continuous for all x ∈ G. ▪

Given H(x) and Lemma 1, we can now prove that BCM-LDT SUE solutions are guaranteed to exist.

Proposition 1. If the link cost function t(Δx) is a continuous function for all x ∈ G, then at least one BCM-LDT SUE fixed-point route
flow solution x* ∈ G is guaranteed to exist.

Proof. It is clear that a route flow vector x* is a BCM-LDT-SUE solution iff Hmi(x*) = x*mi, ∀i ∈ Rm, m= 1, …,M. From the assumption
that t(Δx) is a continuous function for all x ∈G, and thus from Lemma 1H(x) is also a continuous function for all x ∈G, then since G is a
nonempty, convex, and compact set, and H maps G into itself, then by Brouwer’s Fixed-Point Theorem at least one solution x* exists
such that H(x*) = x*, and hence BCM-LDT SUE solutions are guaranteed to exist. ▪

Note that standard proofs for proving uniqueness of fixed-point solutions do not apply to the BCM-LDT SUE model. That is not to
say, however, that solutions are not unique, merely a suitable proof has not yet been identified. Indeed, after investigating in a series of

Fig. 13. Visual representation of the Anaheim network. Blue nodes constitute network nodes, green nodes constitute origin/destination nodes and
red nodes are the origin/destination of the OD-relation we focus on for demonstration.
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experiments, no cases of multiple solutions have been found (under the usual assumptions of monotonically increasing and separable
travel time functions).

5.2. Solution algorithm

A novel solution algorithm is proposed that exploits the special structure of the problem, namely that all and only routes below the
cost bound and local detour threshold are assigned non-zero flows at equilibrium. A particularly important part of the method is the use
of a branch-and-bound algorithm to efficiently generate all routes satisfying the local detour threshold and global cost bound.
Essentially, there are four elements of the algorithm which are iteratively performed:

• Column generation (branch-and-bound): Identify all routes with a local detouredness measure less than γ and a relative surplus total
route cost less than τ.

• Flow allocation: Use choice probabilities to infer auxiliary route flows, and use flow averaging to combine with those determined in
the previous iteration.

• Removal of bound/threshold violations: For any routes violating the local detour threshold or global cost bound, redistribute their
flow to routes under the threshold/bound.

• Network loading: Calculate revised link costs based on the current flow allocation.

The algorithm, summarised as pseudo-code in Algorithm 1, was implemented in Java (no license is required). We have made this
code available on GitHub https://github.com/tkra-dtudk/BCMLDT. Here we provide some more details of the steps involved.

In the Column Generation (Steps 0 and 4), the branch-and-bound algorithm is implemented as a modified Depth-First Search
Algorithm, in which the list of visited nodes are stored in order to generate the resulting routes (Cormen et al., 2009, Chapter 22). The
algorithm is applied for each Origin-Destination movement. It creates branches (i.e. sequence of nodes) from the origin, which branch
off at nodes to eventually form routes when the destination is reached. The branches are bounded along the way, however, to ensure
that the routes formed are those that satisfy the local detour threshold and global cost bound criteria. The bounding consists of
performing the following checks when considering the extension of a branch to a currently unvisited node:

i) Is the current distance (in cost) along the branch to the unvisited node plus the shortest distance (in cost) from the unvisited node to
the destination above the cost bound? If so, stop searching along this branch, and continue to next unvisited branch.

ii) Is the local detouredness between the unvisited node and any previous node in the branch above the local detour threshold? If so,
stop searching along this branch, and continue to next unvisited branch.

If both the cost bound and local detour threshold are not violated during these checks, the node is added to the branch. The final
result is that upon pruning the violating branches, and thus the possible routes stemming from those branches, the branch-and-bound
algorithm generates all the routes that do not violate either the global cost bound or local detour threshold. Moreover, the local
detouredness measure of each generated route is calculated along the way. It is determined as the maximum of the largest local
detouredness calculated in ii) and the local detouredness measure determined for the previous node in the branch. When the

Fig. 14. Anaheim network: Choice set size as function of γ for various values of τ. Note the log-scale on the vertical axis, and also that curves for τ =

{4.0, 15.0} are on top of each other in this range. Origin node: 4, Destination node: 7.
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destination is reached, this determines the local detouredness measure of the route.
Note that both i) and ii) use shortest path distances (costs) between nodes, namely between origin and destination and between

unvisited node and destination for i), and between unvisited node and previously visited nodes in the branch for ii). Rather than

Fig. 15. Anaheim network: BCM-LDT link probabilities for different values of γ (including infinite γ, collapsing the BCM-LDT to the cost-BCM),
assuming τ = 1.6. The width of a link indicates its link probability. Origin node: 4, Destination node: 7.
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performing these shortest path searches along the way, we instead, to be more efficient, initialise the branch-and-bound algorithm by
first identifying shortest cost distances between all node-pairs, so that these are at hand (i.e. memoisation). Also note that ii) does not
necessarily involve checking the local detour between the node under investigation and all previous nodes visited in the branch, since
the checks can stop when a violation of the detour threshold is found.

Turning to the other steps of the algorithm, the flow averaging in Step 1 adopted the Method of Successive Weighted Averages
(MSWA) proposed by Liu et al. (2009), with the step-size λn at iteration n given by:

λn =
nz

∑n
k=1kz

,

where z≥ 0 is theMSWA parameter. Increasing the value of zmovesmore flow towards the auxiliary solution, and theMSWA collapses
to the well-known Method of Successive Averages (MSA) when z = 0. In Liu et al. (2009) it is shown that the MSWA guarantees the
convergence of the SUE problem regardless of z (as long as it is greater than or equal to zero and not necessarily an integer).

In Step 2, the flows on routes violating the local detour threshold / global cost bound are redistributed among routes not violating
the threshold/bound. There are multiple ways in which this could be done, e.g. redistribute flow from only one route (e.g. the most
violating route) at each iteration, or to redistribute the sum of flows on all violating routes to the non-violating ones. We adopted the
latter approach, redistributing to non-violating routes according to their current auxiliary probabilities. This way, non-violating routes
with costs / detour measures close to the bound/threshold should receive only small shares of the redistributed flow. This reduces the
likelihood of them consequently violating the new bound/threshold, if the costs / detour measures were recomputed and the routes
were re-checked. It is important to note, however, that it is not necessary to re-check for new violating routes and to redistribute again
in the current iteration until all routes satisfy the bound/threshold criteria, as the new violating routes will be addressed in the
following iteration, and the problem will be resolved at convergence. Thus, either all or the Z most violating routes could be redis-
tributed at each iteration, and in the end the costs and detour measures from the flows will satisfy the bound/threshold criteria. In our
experiments, we did not find any issues related to this, as we found no violating routes used at convergence.

In Step 3, the network link costs are then updated; Step 4 has been discussed above. In Step 5, if no additional routes are generated
in Step 4 and the Route Mean Squared Error (RMSE) between the final route flow vector and auxiliary route flow vector at iteration n is
below a certain value, the algorithm is considered to have converged to a BCM-LDT SUE solution. The RMSE is computed as:

RMSE(n) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑M

m=1

∑

i∈Rm

(
x(n)mi − x(n)mi

)2

√
√
√
√ ,

where x(n)mi and x
(n)
mi are the final route flow and auxiliary route flow for route i ∈ Rm at iteration n. The route flows are thus said to have

converged sufficiently to a route flow vector solution x* = x(n) if RMSE(n) < 10− ζ, where ζ is a predetermined flow convergence
parameter.

In the BCM-LDT SUE solution algorithm in Algorithm 1, it is stipulated, for generality, that a column generation phase is adopted at
every iteration. However, it is not necessary to do this at every iteration, and, dependent on the case, it may be beneficial compu-
tationally to do this e.g. at every k iterations. Moreover, it may also be beneficial to generate larger choice sets initially in Step 0, for
example by adding a value of ς to the local detour threshold γ and global cost bound τ. This is in order to begin with a larger working
route set that will likely cover all the main routes required; it is a recognition of the inaccuracy of the initial travel costs, which are set
to free-flow values. Our numerical experience was that initiating with larger choice sets indeed expedited the overall convergence of
the method.

Algorithm 1
Pseudo-code, solving BCM-LDT SUE.

Step 0 Initialisation: For all OD movementsm= 1, …,M, enumerate initial choice sets using branch-and-bound approach based on free-flow link travel costs, and
given the global bound and local detour threshold parameters τ and γ. Calculate initial route flows x(0) using free flow travel costs, i.e. x(0)mi = dmPmi(t(Δ0)),
∀i ∈ Rm, m = 1, …, M.
Perform network loading to compute the link travel costs t(0)a

(
Δx(0)

)
on all network links a = 1,2, …,A. Set n = 1.

Step 1 Flow allocation: Compute the auxiliary route flow x(n)mi = dmPmi
(
t(n− 1)

)
and perform flow averaging x(n)mi = (1 − λn) ⋅ x(n− 1)mi + λn ⋅ x(n)mi for all routes i ∈ Rm for

all OD-pairs M.
Step 2 Bound or Threshold violation: For each ODmovementm= 1, …,M, check for all routes i ∈ Rm, if x

(n)
mi = 0 and x(n)mi > 0 (i.e. whether any used route is assigned

zero auxiliary flow, implying violation of cost bound and/or local detour threshold). Redistribute the sum of all violating route flows x(n)mi for ODmovement

m among the non-violating route flows, according to BCM-LDT choice probabilities Pm(t(n − 1)): x(n)mj = x(n)mj + Pmj
(
t(n− 1)

)
⋅

∑

i∈Rm : x
(n)
mi =0

x(n)mi , ∀j ∈ Rm : x(n)mj > 0.

Step 3 Network Loading: Perform network loading to obtain x(n). Compute link travel costs t(n)(Δx(n)).
Step 4 Column generation phase: For all OD movementsm= 1, …,M, perform a branch-and-bound search based on the current link costs and bound parameters to

generate all the routes satisfying the current local detouredness threshold and global cost bound (see description above). Compare to existing enumerated
choice sets, if new unique routes are generated, add them to the corresponding choice sets with flow x(n)mi = 0.

Step 5 Convergence: Compute RMSE(n). If RMSE(n) < 10− ζ and no additional routes were added in Step 4 stop. Else set n=n+1 and return to Step 1.
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5.3. Numerical experiments

In this section we demonstrate the properties of the BCM-LDT in an equilibrium setting.

5.3.1. 3-route simple network
We now demonstrate the BCM-LDT in an equilibrium setting on a simple three route network. We will compare BCM-LDT SUE with

two alternative ways one might have approached the consideration of thresholds on local detours. This will highlight the importance of
the need to consider congestion effects when deciding the composition of the choice set, as well as the importance of incorporating the
local detour threshold as part of the choice probability expression rather than a hard constraint. We will compare the following three
approaches: (i) an initial removal of local detour routes strictly based on free-flow costs, and then an application of the standard cost-
BCM SUE (Watling et al., 2018) on the resulting choice set (Model 1), (ii) applying the standard cost-BCM SUE, but with an additional
hard constraint requiring used routes to not violate a detouredness threshold (Model 2), (iii) the formulated BCM-LDT SUE conjunctive
choice model (Model 3).

Assume the same 3 route network structure as used for the illustrative example in Section 4.4, i.e. as in Fig. 16 below. Define Route
1 as consisting of links 1 and 3, Route 2 as consisting of links 1 and 2, and Route 3 as consisting of link 4.

Now, assume the link costs are now flow-dependent, i.e.

ta = t0a +
(
fa
Ca

)2

With free-flow travel times t0 = (50, 10, 5, 50), capacities C = (1000, 1000, 100, 1000), and a total demand of
d=5000 units travelling through the network. In the analysis we assume a travel cost scaling parameter θ1 = 0.01 and τ = 1.3 for the
cost-BCM in Models 1&2 and the cost-BCM part of the BCM-LDT in Model 3. For the BCM-LDT, we assume θ2 = 1.0 and γ = 0.5, and in
Models 1&2 we assume a local detour route cut-off of 0.5.

Table 2 displays results from applying each of Models 1-3 to the small-scale network.
Model 1 corresponds to the situation where travellers exclude alternatives with long local detours based on fixed free-flow costs. In

free-flow conditions, the detouredness of Routes 1, 2, and 3 are 0.1, 1.0, and 0.0, respectively. As such, Model 1 will not utilise Route 2,
and identifies a cost-BCM solution in which Routes 1 and 3 are used. Thereby we get existence of solutions, since all we are doing is
refining the initial – fixed – permitted choice set and then applying the cost-BCM SUE. However, looking at the results in Table 2, it can
be seen that at equilibrium, the initially rejected route is less costly than the cheapest used route and has the lowest local detour
measure among all routes. A solution without this used route is arguably behaviourally unrealistic.

Model 2 may result in non-existence of solutions, as demonstrated by the results shown in Table 2. As can be seen, Route 1 violates
the local detour cut-off. Furthermore, although another flow distribution (among the three routes or a subset of routes) may fulfil the
local detour cut-off, it would not be a cost-BCM SUE solution since this is unique. Thus, no solutions exist. Note that while no solutions
exist for Model 2 in the case above, this is not the case in general. For example, if the local detour route cut-off had been set at 0.7, then
a solution would exist (the one presented in the table). Model 2 thus alludes to the need for considering the local detour cut-off as part
of the (continuous) choice probability model.

Model 3 provides guaranteed solution existence (as proven in Section 5.1). In this example, flow is distributed between all three
routes at equilibrium, without the local detour threshold nor global cost bound being violated. For reference, the MNL SUE is also
shown in the table. This distributes flow to all three routes, as expected, but with a relatively large share of flow to Route 2 that, given
the current parameter settings, has a very large local as well as global detour.

5.3.2. Anaheim network
In the following we apply Algorithm 1 to solve BCM-LDT SUE on the Anaheim network. The initial SUE conditions are set as the

BCM-LDT route flows using free flow travel costs, i.e. x(0)mi = dmPmi(t(Δ0)), ∀i ∈ Rm, m= 1, …,M, and the RMSE route flow convergence
parameter is set as ζ = 5. After some preliminary experiments, we chose to set the MSWA parameter as z = 2 as this seemed to provide
suitably fast convergence rates. Unless stated otherwise, the BCM-LDT parameters are set as θ1 = θ2 = 0.2, τ = 1.6, and γ = 0.8. As per
the discussion at the end of Section 5.2, in Step 0 of Algorithm 1 we added ς = 0.4 to the local detour threshold and global cost bound
parameters. This was sufficiently large to ensure that it was – for the current case study – not necessary to perform additional branch-
and-bound searches in Step 4 of the solution algorithm with iterating towards convergence (corresponds to setting k infinitely large).
Upon termination, it was checked whether any additional relevant routes had not been initially generated.

Fig. 16. Small-scale network. 4 link network with 3 routes from origin O to destination D. Numbers () identify link number.
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5.3.2.1. Convergence. Fig. 17 illustrates the convergence pattern (RMSE) as a function of iteration number for three different settings
of the local detour threshold parameter γ. Notice the log-scale on the vertical axis. As can be seen, the algorithm converges smoothly to
a highly converged BCM-LDT SUE solution. The number of iterations needed increases with decreasing γ. This is because the threshold
is tighter, causing smaller choice sets and thereby larger fluctuations in flow and thus travel time between iterations. The computation
time is highly dependent on γ, with each iteration of the algorithm taking on average 1.5, 8, and 180 minutes when γ is 0.6, 0.8, and
1.0, respectively in the current implementation. This is caused by the non-linear increase in the choice set size with γ, as shall be
explored in the section below.

5.3.2.2. Choice set analysis. Fig. 18 illustrates the cumulative distribution of the size of the equilibrated choice sets of used routes for
various values of γ, while Fig. 19 illustrates the average choice set size for various values of γ.

As can be seen from Fig. 18, the choice set sizes of used routes are highly dependent on γ. While the median choice set size is
generally low across all tested γ (median = 3, 5, 29, 84, 185 for γ = 0.2, 0.3, 0.6, 0.8, 1.0 respectively), there can be a large variation
across the different OD-relations. For large γ for some OD-pairs the choice sets become very large, containing more than 50,000 al-
ternatives (though still much smaller than the universal choice set of simple paths). With γ = 0.2 there are relatively few OD-pairs with
more than 500 used routes (<1 % of OD-relations), whereas this share is much larger for γ =1.0 (40 % of OD-relations). The skewed
distribution of the number of routes across the OD-relations naturally implies that the mean choice set size is larger than the median,
especially so for high values of γ. From Fig. 19 it can be seen that the number of used routes decreases rapidly with decreasing γ, and so

Table 2
Small-scale network: Converged flow solution for various different models and allowed choice sets. Cost bound: τ = 1.3, detour threshold/cut-off: γ =

0.5.

Model Allowed xi ci Global detour Detouredness ϕi

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

1 [1,0,1] 568.1 - 4431.9 87.6 60.3 69.6 1.45 1 1.15 2.73 0.0 0.15
2 [1,1,1] 388.7 1620.4 2990.9 74.1 66.7 58.9 1.26 1.13 1.0 0.59 0.13 0.0
3 [1,1,1] 340.2 1528.7 3131.1 70.1 65.8 59.8 1.17 1.1 1.0 0.34 0.1 0.0
MNL [1,1,1] 904.2 1880.5 2215.3 144.5 71.3 54.9 2.63 1.3 1.0 5.41 0.3 0.0

Fig. 17. Anaheim network: Convergence pattern of BCM-LDT SUE for various values of γ, assuming θ1 = θ2 = 0.2, τ = 1.6.

Fig. 18. Anaheim network: Distribution of choice set size at various values of γ. Left: x-range to 100,000; Right: x-range to 20,000. Assuming θ1 = θ2
= 0.2, τ = 1.6.
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from a computational point of view it is attractive to have a low γ. However, γ needs to be calibrated from real data, and we have shown
that (at least for the network considered) the approach is computationally tractable even for large values of γ.

The remainder of the analysis will focus on γ=0.8. As illustrated in Fig. 20, the choice set size is greatly dependent on trip cost,
where more costly trips can have significantly larger choice sets. Looking again at the OD-movement from Origin 4 to Destination 7,
there are 351 unique alternatives active (used) in the equilibrated solution. Fig. 23A illustrates the resulting choice probabilities on the
routes, as a function of their local detouredness measure and relative global detour. As can be seen, no active routes violate the
threshold on local detour as well as the cost bound, and choice probability is, as expected, reduced for increasing local detour as well as
cost. The route with highest probability is the main motorway alternative with zero detouredness and a relative cost of 1.0. Note that,
the impact of the cost-BCM (Q1

mi) contribution to overall BCM-LDT probability can be seen as the change in probability when the
relative global detour changes but the local detouredness is kept constant (corresponds to moving horizontally in the Fig.). This is also
the case for the detour-BCM (Q2

mi) contribution, vertically.

5.3.2.3. Flow distribution. Fig. 21 illustrates the equilibrated flow on the network links across all OD-relations. Overall, the flow
distribution seems plausible with most flows on the highest-class main motorway I-5, less flow on State Routes such as SR-22, and least
flow on minor roads.

Fig. 22 illustrates the link flow difference between the DUE solution (obtained by solving BCM-LDT SUE with γ≅ 0 and τ≅ 1) and
the BCM-LDT SUE solution with γ = 0.2 and γ = 0.8. As expected, the flows are allocated to more routes under BCM-LDT SUE than DUE
– only the minimum costing routes are used in DUE, while all routes within the cost bound and local detour threshold are used in BCM-
LDT SUE. Consequently, the less costly motorways receive greater flows under DUE (as shown by the blue lines), and the more costly
more minor roads receive greater flows under BCM-LDT SUE (as shown by the red lines). Small γ approximates DUE, where only the
optimal routes are used, and greater values of the threshold γ increases the spread of the flows, assigning more routes with more flow.

As the local detour threshold – and cost bound – increase towards infinity, the BCM-LDT SUE solution approaches an MNL SUE
solution where all available routes are used, and thus where the flows will be even more spread among motorways and minor roads.
Since solving MNL SUE would require enumerating the universal choice set, which would not be computationally feasible on this
network, we cannot provide a similar comparison to Fig. 22 between MNL SUE and BCM-LDT SUE. One could provide a comparison
with MNL SUE with pre- or column-generated approximated universal choice sets, but we have already established the inconsistencies
of that approach (see Section 1 of the present paper and Watling et al. (2018)).

Fig. 19. Anaheim network: Average choice set size and total number of used routes at various values of γ. Assuming θ1 = θ2 = 0.2, τ = 1.6.

Fig. 20. Anaheim network: BCM-LDT SUE equilibrated choice set sizes as function of OD minimum generalised cost, assuming θ1 = θ2 = 0.2, τ =

1.6, γ = 0.8.
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Note that it is also not computationally attractive to solve the standard cost-BCM SUE on this network, as the route choice sets for
even moderate sizes of the global bound are very large, see for example Fig. 15 with local detour threshold γ = ∞, where 66,714 routes
are generated for that one OD with global bound τ = 1.6. This weakness of the standard cost-BCM SUE was a key computational
motivation for incorporating local detours into the choice model, aside from the behavioural reasons. Therefore, it is a key attractive
feature of BCM-LDT SUE that it resolves this weakness, by being computationally feasible to solve with reasonable choice set sizes (that
are consistent with the probability model).

5.3.2.4. Impact of the scaling parameters. As can be seen from (17), the θ1 parameter scales sensitivity to travel cost relative to the
global bound, i.e. θ1 scales cmi(t) − τ ⋅ min (cml(t): l ∈ Rm). On the other hand, θ2 scales sensitivity to local detouredness relative to the
local bound, i.e. θ2 scales ϕmi(t) − γ. Therefore θ1 could be scaling any range of values, dependent on the magnitude of generalised costs
in consideration (e.g. generalised minutes or hours), while θ2 scales values between 0 and γ (typically around 0-3).

In this case study of Anaheim, θ1 scales values between 0-35, and therefore θ1 is scaling an overall greater magnitude of values. This
suggests that in this case θ1 should perhaps be smaller than θ2, though this depends of course on the calibration to observed behaviour.
In the prior numerical experiments, θ1 was set to equal θ2. We shall explore here the impact of decreasing θ1 and keeping θ2 the same, i.
e. when setting θ1 = 0.01 and θ2 = 0.2 compared to θ1 = θ2 = 0.2.

Fig. 23B displays the corresponding Fig. to Fig. 23A, with θ1 = 0.01. As shown, although the values of relative global detour and

Fig. 21. Anaheim network: BCM-LDT equilibrated flow solution with line width indicating flow share, assuming θ1 = θ2 = 0.2, τ=1.6, γ=0.8.
Connectors have been removed from the illustration.
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Fig. 22. Anaheim network. Left: Link flow difference between BCM-LDT SUE and DUE. Left: BCM-LDT SUE with γ=0.2. Right: BCM-LDT SUE with
γ=0.8. Width indicates size of flow difference, with red/blue colour indicating more/less flow for BCM-LDT SUE than DUE. θ1 = θ2 = 0.2, τ = 1.

Fig. 23. Anaheim network: Route choice probability as function of global detour and local detouredness, at BCM-LDT SUE. Origin node: 4,
Destination node: 7, assuming θ2 = 0.2, τ = 1.6, γ = 0.8. A: θ1 = 0.2. B: θ1 = 0.01.
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local detouredness do not vary significantly, the choice probabilities of the routes do vary, as evident from the differing colours of the
dots. Most notably, the shortest route with relative global detour of 1 and local detouredness of 0, changes from a dark red probability
of 0.17 to a light green probability of 0.09. This is expected as the decrease in θ1 implies lower sensitivity to differences in global travel
cost, and the BCM-LDT choice probabilities consequently being more similar among used routes.

With this shift in route choice probabilities, we also expect the link flows to be different. Fig. 24 displays the differences in link flow
between the BCM-LDT SUE solution with θ1 = 0.2 and θ1 = 0.01. As can be seen, the shift in route choice probabilities does indeed

Fig. 24. Anaheim network: Differences in link flows between BCM-LDT SUE solution with θ1 = 0.2 and θ1 = 0.01.

Fig. 25. Anaheim network: Difference in link flows between BCM-LDT SUE solution with θ1 = 0.2 and θ1 = 0.01, represented spatially, with red/
blue indicating more/less flow for the θ1 = 0.2 solution than the θ1 = 0.01 solution. Link width indicates the size of the flow difference.

Fig. 26. Anaheim network: Cumulative distribution of choice set size upon equilibration of BCM-LDT SUE with θ1 = 0.2 and θ1 = 0.01.
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impact the link flows, with more flow going to links with low flow levels (xa< 2500) under θ1 = 0.01, and less flow going to links with
medium flow levels (2500≤ xa≤ 7000) under θ1= 0.01. Fig. 25 displays the differences in link flow spatially on the Anaheim network,
where red/blue link colour indicates higher/lower link flow under BCM-LDT SUE with θ1 = 0.2 than with θ1 = 0.01, and the thickness
represents the size of the difference. As shown, with θ1 = 0.01, there is greater flow on the minor roads. This is because these roads are
often used by routes with higher costs, and θ1 = 0.01 assigns more probability and thereby more flow to these routes.

Lastly, to explore the impact on choice set composition, Fig. 26 displays the cumulative distribution of choice set size for θ1 = 0.01
and θ1 = 0.2. It can be seen that in spite of the earlier evidence of the impact of θ1 on choice probabilities and link flow solutions, the
differences in the composition of the choice sets are marginal between the two cases tested.

6. Conclusions

6.1. Discussion

In the introduction and motivation section of this paper, it has been illustrated theoretically and empirically that there is a need to
consider the impact of local detours (i.e. detours on segments of a route), both when generating realistic and tractable route choice sets,
as well as when determining route choice probabilities. However, prior to this study, no existing modelling approaches have accounted
for local detours either in route generation methods or in the route choice model.

The current paper has addressed this by developing a new route choice model: the Bounded Choice Model with Local Detour
Threshold (BCM-LDT) model, which has been carefully designed in order to achieve some desirable features:

• Local detouredness is an influencing factor upon route choice probability, where the route choice model considers local detour-
edness alongside total route travel cost.

• Local detouredness considers the extent to which travellers detour in terms of generalised travel cost, and thus local detouredness
varies with travel cost parameters, link flows (in the case of congested flow-dependent link travel times), and policy attributes (e.g.
toll price).

• The route choice model implicitly defines which routes are used and unused. Thus, upon solution of the model, the used route
choice sets will be generated, and be consistent with the route choice probability criteria.

• The used route choice sets are determined by considering bounds travellers have both on total surplus route travel cost and local
detouredness, so a route must satisfy both bounds to receive non-zero probability.

• The route choice probability function is closed-form and continuous, which also includes as routes go from used to unused, and vice
versa, as e.g. flow/parameters are varied. Achieving this is not trivial, and makes the approach robust and well-behaved.

The paper then established Stochastic User Equilibrium conditions for the BCM-LDT, where equilibrium solutions were proven to
exist. A corresponding solution algorithm was then developed that equilibrates the choice set of used alternatives simultaneously (and
consistently) with the flow equilibration. The algorithm utilises the built-in feature of the model for distinguishing between used/
unused alternatives, to generate consistent choice sets without the need to enumerate the universal set. This provides a major
advantage over other existing approaches which either require enumerating the universal set (not feasible), or operating with
generated choice sets, which – among other drawbacks – results in inconsistencies.

A novel branch-and-bound-based algorithm was proposed for determining all routes below the current cost bound and local detour
threshold. Using this algorithm, illustrative examples were conducted on a small three-route network and the Anaheim network. On
the three-route network we illustrated the well-behaved properties of the BCM-LDT SUE model compared to possible alternative naïve
approaches. On the Anaheim network the proposed solution algorithm was found to have well-behaved convergence properties.
Furthermore, it was shown that the choice set sizes are greatly dependent on (i.e. increase exponentially with) the local detour
threshold, so that a tight threshold can significantly decrease the number of used routes. This highlights one of the strengths of the
model compared to a standard cost-BCM / non-bounded SUE models.

It should also be noted that the BCM-LDT SUE model has significant flexibility. For different configurations of the parameters, the
model can approximate both Deterministic User Equilibrium and Multinomial Logit SUE (in terms of travel cost and/or detouredness),
i.e. traffic equilibrium models at the two different ends of the choice set size scale (i.e. only minimum cost routes / all possible routes).

6.2. Future research

Future research could explore estimating the BCM-LDT model, both in simulation experiments to assess whether assumed true
model parameters can be reproduced, and fitting the model to real-life tracked route observations. This will provide further empirical
evidence to support the model, and calibrate the local detour threshold parameter according to observed behaviour. Moreover, it will
validate that local detouredness is an influencing factor upon route choice probability. Future research could also explore whether the
local detouredness measure or local detour threshold should be dependent on total trip length/cost, for example to assess whether
travellers on a longer trip are more or less willing to take a longer (relative) detour.

In these calibration efforts, we believe that new data sources deserve special attention, especially those that provide real-life
tracked route observations such as GPS data (e.g., Prato et al. 2014, 2018; Łukawska et al., 2023), mobile phone data (e.g., Huang
et al., 2018; Calabrese et al., 2013), automatic number plate recognition data (e.g., Siripirote et al., 2014; Mirzahossein et al., 2021)
and Bluetooth data (e.g., Crawford et al., 2018; Delafontaine et al., 2012). We believe these sources to be particularly relevant to our
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proposed model as they provide a sufficient level of detail to uncover the bounds that travellers actually consider, which would be hard
to reveal with traditional link-level data, e.g. from loop detectors. Such route-level data is thus more valuable, we believe, even in small
volumes (e.g. from a sample of users who agree to use of such tracking data), rather than high volumes of low-level data such as that
from link flows. Combined with these emerging data sources, we have the potential for using many different estimation methods, such
as special-purpose maximum likelihood estimators (e.g., Duncan et al., 2022a; Mohammadpour & Frejinger, 2022), methods utilising
machine learning approaches (e.g., Kim et al., 2022; Liu et al., 2023), or Bayesian estimation methods (e.g., Huang et al., 2023; Wei &
Asakura, 2013). These latter citations use route-level information to reveal network mobility patterns/parameters, and so provide a
promising starting point for the estimation of our proposed model.

There is also significant scope for developing other solution algorithms that can solve the BCM-LDT SUE model more efficiently,
such as developing more efficient methods for enumerating all routes that satisfy the bound and threshold, as well as calculating the
detour ratio of the generated routes. For example, detours on sub-routes could be used to identify violating segments and calculate
detour measures across many routes sharing the same sub-routes.

As discussed in the paper, while the BCM-LDT does take into account the overlap between routes, it does it from a local detour
perspective. As was shown, this is very different to considering the overlap between routes from a correlation perspective. Future
research could therefore explore how to extend the BCM-LDT to also account for route correlation. For example, by taking inspiration
from how Duncan et al. (2022a) extend the standard cost-BCM to capture used route correlation, developing the Bounded Path Size
route choice model.

While the ‘aspects’ we consider within the CBCM in the present study are total route cost and local detouredness, a wide range of
aspects could alternatively/also be considered. For example, for bicycle route choice, there may be a bound upon slope or energy
expenditure a cyclist is willing to consider, or for public transport a bound upon number of transfers, waiting time, etc,. In a traffic
equilibrium context, there is potential to apply the CBCM to route choice situations involving multiple aspects including travel time
reliability, charging anxiety for electric vehicles, and road pricing.

A main motivation for developing traffic assignment models is to apply them for policy analysis. This is where the true benefits of
the BCM-LDT become evident, where the route choice sets being able to change according to policy changes (e.g., tolling), in a
consistent and well-behaved way, is highly attractive. This distinguishing feature sets it apart from other models, and the implication of
this on the outcome of policy analysis would be interesting to study in future research.
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