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Abstract

We present a novel online optimization approach to tackle the ambulance routing 

problem on a road network, specifically designed to handle uncertainties in travel 

times, triage levels, required treatment times of victims, and potential changes in 

victim conditions in post-disaster scenarios. We assume that this information can be 

learned incrementally online while the ambulances get to the scene. We analyze this 

problem using the competitive ratio criterion and demonstrate that, when faced with 

a worst-case instance of this problem, neither deterministic nor randomized online 

solutions can attain a finite competitive ratio. Subsequently, we present a variety of 

innovative online heuristics to address this problem which can operate with very low 

computational running times. We assess the effectiveness of our online solutions by 

comparing them with each other and with offline solutions derived from complete 

information. Our analysis involves examining instances from existing literature as 

well as newly generated large-sized instances. One of our algorithms demonstrates 

superior performance when compared to the others, achieving experimental com-

petitive ratios that closely approach the optimal ratio of one.
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1 Introduction

Disasters have profound consequences on the well-being of people worldwide. 

As per data from the emergency events database (EM-DAT) (CRED 2013), there 

has been a notable rise in both the frequency and impact of natural and man-

made disasters on a global scale. According to the findings reported by CRED 

(2020), from 2000 to 2019, a total of 7,348 disaster events were documented. 

These incidents tragically resulted in the loss of 1.23 million lives and had a 

profound impact on the lives of 4.2 billion individuals, while also causing over 

2.97 trillion dollars in economic losses globally. It is widely recognized that the 

effectiveness of relief operations during the response phase plays a crucial role in 

mitigating the severity of these disasters. Unfortunately, a considerable portion of 

the victims may perish due to lack of timely medical aid in the aftermath of a dis-

aster (Farahani et al. 2020; Lu et al. 2019). Therefore, it is essential to prioritize 

victims to provide them with the needed treatments and to efficiently utilize the 

medical resources in post-disaster situations and mass casualty incidents. The pri-

oritization of the victims is done by triage, which refers to the dynamic process 

of categorizing the victims (into different triage levels) with respect to the degree 

of severity of their injury and how likely their conditions could get worse due to 

untimely treatment (Oksuz and Satoglu 2020).

In this study, among the disaster response operations, we concentrate on the 

transportation of the casualties by ambulances. Namely, we address the online 

routing and scheduling of ambulances. The main mission of the paramedics fol-

lowing a disaster is to provide initial medical care to individuals with minor inju-

ries on-site and to transport critically injured patients to hospitals using ambu-

lance services (Shiri et  al. 2023; Aringhieri et  al. 2022; Rabbani et  al. 2022; 

Talarico et al. 2015). However, efficient planning of these tasks is tremendously 

complicated in post-disaster scenarios. The ambulances must be dispatched under 

extremely challenging circumstances such as damaged communication and trans-

portation infrastructure, limited supplies and resources, as well as uncertainty 

about the condition of the victims who are in need of medical assistance (Akbari 

and Shiri 2022; Najafi et al. 2014). Therefore, having an online decision support 

tool that produces effective solutions which can operate under uncertain infor-

mation and can be executed in a short time for the optimization of routing and 

scheduling of ambulances plays a vital role in disaster response operations (Shiri 

et al. 2023, 2020; Bélanger et al. 2019).

Over the last few years, several articles have analyzed the Ambulance Rout-

ing Problem (ARP) by considering an offline setting for problem inputs, where 

all the information about the victims and the roads are available before making 

decisions, e.g., Rabbani et al. (2022); Tlili et al. (2018); Talarico et al. (2015). 

Some other articles studied the ARP under a stochastic setting, where the triage 

level of each victim is associated with a known probability distribution, e.g., 

Yoon and Albert (2020); Schilde et al. (2011). However, in the emergency dis-

aster response phase, due to the uncertainty caused by the disaster, it is not real-

istic to assume predetermined or probabilistic problem inputs as each disaster 
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situation is unprecedented, and historical data are not pertinent. Recently, Shiri 

et  al. (2023) studied an online version of the ARP where the triage levels and 

the treatment times of certain victims are not initially known to the ambulances. 

They analyzed the problem under the assumption that the unknown information 

associated with a victim is revealed as soon as one of the ambulances exam-

ines the victim. In this study, we build upon the research conducted in Shiri 

et al. (2023) by adding two realistic features to the online ARP in mass casualty 

incidents: (1) time-varying victim conditions and (2) real-time road conditions. 

Notably, the integration of these dynamic elements represents a novel and dis-

tinct methodological approach, significantly diminishing the efficacy of conven-

tional solution techniques and making mathematical models impractical due to 

extremely incomplete information. Hence, necessitating the exploration of alter-

native adaptive online heuristics to effectively cope with these challenges.

We emphasize that in the online ARP, decisions concerning prioritization of 

the treatment of the victims as well as the selection of the available hospitals 

to deliver the critically injured victims must be made online with respect to the 

information available up to that point of time. In fact, the online variation of the 

ARP involves several discrete decision-making time instants. At each of these 

decision-making points, a new piece of information is revealed and decisions 

should be updated accordingly. Here, we introduce the online ambulance routing 

and scheduling problem with time-varying victim conditions and real-time road 

information and refer to it as the Online Ambulance Routing Problem (OARP).

We first analyze the OARP through a worst-case competitive analysis lens and 

demonstrate that there exists no online algorithm with a finite competitive ratio 

for this problem. In this way, we show the theoretical value of having access to 

complete information prior to solving the problem. In order to handle real-life 

instances, we propose various online policies to tackle the OARP. We test the 

performance of our policies on instances adopted from Talarico et  al. (2015) 

and larger size instances which we have introduced in our study. To assess the 

effectiveness of our proposed solutions, we compare them against each other and 

the offline solutions derived from complete information. Notably, our algorithms 

exhibit remarkably fast execution times, often taking less than 1  s, even when 

dealing with the largest tested instances consisting of 100 nodes. Consequently, 

they are exceptionally well-suited for practical use in real-life emergency and 

post-disaster scenarios. These algorithms excel in managing problem uncertain-

ties and swiftly generating and updating solutions based on new information.

The structure of this article is outlined as follows. We commence with a 

review of relevant literature in Sect. 2. In Sect. 3, we offer comprehensive expla-

nations of both the offline and online problems. Section 4 is dedicated to a theo-

retical worst-case competitive analysis of the OARP. In Sect. 5, we introduce our 

online heuristic policies tailored for solving the OARP. Detailed results from 

our computational experiments are presented in Sect.  6. Finally, the article is 

concluded with a discussion of closing remarks and avenues for future research 

in Sect. 7.
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2  Literature review

In this section, we commence by examining prior research in offline optimization, 

specifically focusing on studies related to ambulance routing and scheduling that 

operate with complete information. Subsequently, we delve into a review of relevant 

literature in the fields of stochastic and online optimization.

2.1  Offline optimization literature

Within the realm of articles dedicated to studying offline vehicle routing problems, 

our focus centers on papers that tackle the routing and scheduling of ambulances. 

More specifically, our attention is drawn to articles that engage with the ambulance 

routing problem while integrating considerations such as hospital capacities and the 

categorization of victim groups. The ARP takes center stage in the study by Talarico 

et  al. (2015). Their research addressed the task of identifying optimal ambulance 

routes for serving a predetermined set of red and green code victims, operating 

under the premise of complete input information. The objective function in their 

problem is the minimization of a weighted linear combination of the latest comple-

tion times for both red and green victims. Talarico et al. (2015) introduces two exact 

mathematical formulations tailored to tackle the ARP. Furthermore, the authors pro-

posed an effective large neighborhood search procedure designed to tackle larger 

instances of the problem. Noteworthy is their introduction of a comprehensive set of 

1296 ARP instances, which serves as the foundation for testing the validity of their 

mathematical models and heuristic approach.

Tlili et al. (2017) formulated the ARP as an open vehicle routing problem, seek-

ing to minimize the cumulative travel distance. They introduced a cluster-first 

route-second procedure based on a combination of the particle swarm optimization 

approach and the petal algorithm. We note that the petal algorithm is a technique 

that generates numerous routes (petals) for the vehicle routing problem and employs 

a set partitioning approach to identify the optimal combination of these routes. The 

problem was further investigated by Tlili et al. (2018) in the same vein, presenting 

an efficient heuristic algorithm and evaluating its performance through small case 

studies.

Distinctly, Salman and Gül (2014) sidestepped triage considerations and proposed 

a mixed-integer programming formulation which concurrently optimizes capacity 

allocation and victim transportation decisions over multiple periods, accounting for 

varying casualty numbers at different disaster-affected locations. Their model mini-

mizes a weighted linear combination of the total cost of setting up new facilities as 

well as the total travel and waiting time of victims. Zidi et al. (2019) investigated 

the ARP by considering only one type of victims where the goal is to minimize 

the total travel distance. Their solution methodology involves a combination of the 

cluster-first route-second technique, tabu search, and simulated annealing. Talebi 

et  al. (2022) employed the multi-objective bees algorithm to address a version 

of the ARP, where two distinct groups of victims are considered, namely red and 

green. The objective in their work is to simultaneously minimize both the total travel 
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distance and the latest service completion time. In a recent research endeavor, Arin-

ghieri et  al. (2022) studied the ARP with a distinctive emphasis on ensuring fair-

ness and equity in the delivery of services to victims. To tackle this challenge, they 

conceived a novel problem variant, drawing inspiration from the team orienteering 

problem. Subsequently, they introduced an innovative hybrid solution approach, 

which functions based on a neighborhood search procedure.

Other facets of the ARP have garnered attention in recent literature. Tikani and 

Setak (2019) investigated a variation of the ARP with three different triage levels 

for victims and different types of ambulances. They provided a mathematical for-

mulation to optimize routes with the goal of minimizing the latest service comple-

tion time for the victims. Additionally, they introduced two meta-heuristic proce-

dures based on genetic algorithm and tabu search to tackle larger problem instances. 

In a more contemporary perspective, Rabbani et  al. (2022) extended the scope of 

the offline problem by accounting for dynamic changes in victim conditions over 

time and incorporating three triage levels. They introduced two competing objective 

functions: one targeting the minimization of service completion times and another 

aimed at reducing the count of victims experiencing worsened conditions due to 

delays. Treating these objectives as inherently conflicting, the study emphasizes the 

pursuit of Pareto optimal solutions. Their methodology encompasses mixed-integer 

programming formulations, as well as innovative techniques such as the multi-

objective particle swarm optimization as well as the genetic algorithm.

In a recent study, Yazdani and Haghani (2023) considered the ARP in response 

to pandemic outbreaks. Their problem does not consider triage and time-varying 

victim conditions. They proposed various heuristic algorithms which are based on 

local search and genetic algorithm to address their problem. An indirectly associated 

research domain with the ARP is disaster relief routing, encompassing an extensive 

array of articles. For an in-depth exploration of this field of study, we direct the 

reader to review papers of Wadi Khalid et al. (2021), Aringhieri et al. (2017), and 

De la Torre et al. (2012).

The articles covered in this section deviate from our study as they function with 

complete input information. In our paper, we approach the ARP by integrating the 

uncertainty regarding the victim conditions and road travel information, thereby 

capturing the impact of lack of accurate information in the disaster response phase 

in our problem and analysis.

2.2  Stochastic and online optimization literature

A body of literature delves into dynamic vehicle routing problems, but these cases 

typically fall beyond the confines of ambulance routing or disaster management, 

e.g., see the surveys of Soeffker et al. (2022); Rios et al. (2021); Pillac et al. (2013); 

Ghiani et al. (2003). In a remotely related vein, certain studies explore post-disaster 

relief operations with a dynamic or real-time perspective, e.g., see the surveys of 

Tippong et al. (2022) and Farahani et al. (2020). This stream of research, however, 

diverges from our specific problem by not incorporating elements such as victim 

groups, ambulance and hospital capacities, as well as the routing of ambulances and 
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the transportation of victims to medical facilities. Given our focus on ambulance 

routing and scheduling in the presence of uncertainties, this literature review section 

primarily centers on the routing of ambulances while accounting for varying uncer-

tainty models.

In Schilde et  al. (2011), a dynamic stochastic ARP is explored, omitting triage 

considerations. The study focuses on transferring patients between their locations 

and hospitals, in both directions. In their problem, certain requests are predeter-

mined, while others exhibit dynamic characteristics or are linked to probability dis-

tributions. They formulated the problem as a dynamic stochastic dial-a-ride problem 

involving expected return transports and introduced four distinct adaptations of a 

meta-heuristic algorithm. In another recent relevant research, Ritzinger et al. (2022) 

provide a comprehensive comparative analysis of dynamic anticipatory algorithms 

for the dial-a-ride problem in stochastic environments.

In Oksuz and Satoglu (2020), they proposed a two-stage stochastic program-

ming framework for planning victim transportation, which considers triage levels 

and strategically placing temporary medical centers. They demonstrated the prac-

ticality of their model through a case study focused on the possibility of an earth-

quake occurring in Istanbul, Turkey. In a separate investigation, Yoon and Albert 

(2020) explored the dynamic ARP involving two ambulance types while facing 

uncertainty regarding victim triage levels. In their problem, whenever a new victim 

request reveals, the appropriate ambulance type for dispatch to the location of the 

victim must be determined. Their analysis incorporates prior probabilistic knowl-

edge related to uncertain information, and they presented a Markov decision process 

model for determining the dispatched vehicle types.

Lee et al. (2022) conducted an analysis on ambulance routing and relocation, tak-

ing probabilistic demand into account. Their primary goal is to minimize the total 

time required to transport patients to medical facilities. The authors analyzed the 

problem under the assumption that victim requests follow a Poisson distribution and 

provided a hybrid solution methodology involving a Lagrangian dual decomposi-

tion procedure and a branch-and-bound procedure. More recently, Khoshgehbari 

et  al. (2023) addressed the challenge of handling uncertainties by introducing an 

ambulance location-routing problem. This study formulates a two-stage integer sto-

chastic programming model that incorporates the treatment golden time as a criti-

cal determinant of service quality. Moreover, it accommodates a heterogeneous fleet 

of ambulances and various victim groups. The authors presented a novel heuristic 

approach to solve this problem effectively.

It is worth noting that the methodologies proposed in the previously mentioned 

articles differ from our approach in this study. Our research focuses on addressing 

the uncertainty for the ARP, specifically through competitive analysis and online 

optimization. In contrast to the above-mentioned prior approaches, we do not rely 

on any predefined probabilistic assumptions regarding the incomplete information. 

Recent literature has extensively explored vehicle routing problems that involve 

online uncertainty, where a post-disaster road network is considered. In these stud-

ies, locations to be serviced (Shiri et al. 2020) and/or the road conditions (Akbari 

and Shiri 2022; Akbari et  al. 2021; Shiri and Salman 2020) are not known at the 

beginning and are explored dynamically over time. However, none of these online 
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optimization problems address the online routing and scheduling of ambulances as 

they do not involve transportation of victims to hospitals as well as any uncertainty 

about the triage levels of victims.

The most related paper to our work is the recent study by Shiri et al. (2023), which 

explores a reduced version of the OARP under simplifying assumptions of known 

travel times and constant victim conditions. They proved various finite lower bounds 

on the competitive ratio of online solutions. Furthermore, they proposed three differ-

ent online algorithms, namely a formulation-based algorithm which relies on solv-

ing a mathematical model, a machine learning-based clustering approach, as well as 

a novel heuristic algorithm to solve their problem. They empirically confirmed the 

good performance of their algorithms on the instances from (Talarico et al. 2015). 

Building upon this foundation, our paper extends their findings by incorporating two 

crucial aspects of the ARP in mass casualty situations: the dynamic nature of victim 

conditions and real-time road conditions. This broader perspective acknowledges the 

potential changes in victim severity and medical requirements over time, crucial in 

immediate post-disaster scenarios. Moreover, we integrate real-time road conditions, 

equipping each ambulance with access to real-time travel times of only those routes 

whose starting node is the current location of the ambulance. This introduces a level 

of uncertainty, as precise travel times of any other routes are concealed from the 

ambulance in real time preventing the use of traditional routing models.

3  Problem descriptions

We start by formally describing the offline version of the problem (ARP). In the 

ARP, all the input parameters are known beforehand. Following that, we delve into 

the online version (OARP), providing a detailed description along with the online 

input parameters and how to obtain their exact values. For convenient reference, we 

present the notations used in both the ARP and the OARP in Table 1.

3.1  The offline problem

The offline version of the ARP is defined assuming that ambulances have complete 

information about the status of the victims and road conditions before they start their 

routes. With regard to the existing standard literature, three triage levels for the vic-

tims are considered in our study; red code: a critically injured victim who should be 

transferred to a hospital by one of the ambulances (Talarico et al. 2015), green code: 

a slightly injured victim who should be helped directly on-site by the medical team 

of an ambulance (Talarico et al. 2015), and black code: a passed away victim (Rab-

bani et al. 2022). Hence, the set of all victims is denoted by V = R ∪ G ∪ B , where 

R, G, and B are sets of red, green, and black code victims, respectively. Furthermore, 

the possibility of changes in the health conditions of the victims over time has been 

recently addressed in the offline problem (Rabbani et  al. 2022). To this end, each 

green victim g ∈ G is associated with two parameters T
g
gr and T

g

gb
≥ T

g
gr which are 

time thresholds after which the triage level of g turns to red and black, respectively. 
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Table 1  Table of notation for the ARP and the OARP

Notation Description ARP Inputs OARP Inputs

N = H ∪ R ∪ G ∪ B Set of all nodes ✓ ✓

V = R ∪ G ∪ B Set of all victims ✓ ✓

R Set of red code victims ✓

G Set of green code victims ✓

B Set of black code victims ✓

H Set of hospitals ✓ ✓

A such that ( |A| ≤ |V|) Set of ambulances ✓ ✓

E = {V × V} ∪ {V × H} ∪ {H × V} Set of directed links ✓ ✓

S
v

Treatment time of victim v ∈ V ⧵ B ✓

T
g
gr Time threshold by which triage level of a green victim g ∈ G turns to red ✓

T
g

gb
Time threshold by which triage level of a green victim g ∈ G turns to black ✓

T
r

rb
Time threshold by which triage level of a red victim r ∈ R turns to black ✓

C
h

Capacity of hospital h ∈ H ✓ ✓

d
a
⊂ H Initial location of ambulance a ∈ A ✓ ✓

A
h

Number of ambulances initially located in hospital h ∈ H ✓ ✓

tij Travel time of link (i, j) ∈ E ✓

S
h

service time to drop off a red code victim at hospital h ∈ H ✓ ✓

W
R

Weight of urgency of treatment of red code victims ✓ ✓

W
G

Weight of urgency of treatment of green code victims ✓ ✓
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We note that the notation T
g

gb
 denotes the cumulative time from time zero until a 

green victim g meets the condition for turning black. Similarly, each red victim 

r ∈ R is associated with a parameter Tr

rb
 which is a time threshold after which the tri-

age level of r turns to black. We remark that in the offline problem, the location of a 

black code victim is not visited by any of the ambulances since it is assumed that a 

black code victim must be serviced by non-medical teams due to limited medical 

resources in mass casualty incidents. In the online problem, however, because the 

conditions of the victims are not known beforehand, all of the victim locations 

should be visited by the ambulances.

In the ARP, which involves several hospitals and ambulances, each ambulance 

can transport at most one red victim before promptly delivering them to a hospi-

tal. As for green victims, they can receive on-site care, allowing an ambulance to 

proceed directly to another victim’s location after providing assistance. This flex-

ibility enables ambulances to efficiently assist multiple victims during their routes 

before returning to a hospital. We also note that if for a green victim g, if they are 

not visited before T
g
gr , once they are visited, they should be transferred to a hos-

pital as their triage changes to red. To provide clarity, it is important to mention 

that a route is referred to as a tour within this context. A tour begins at a hospital, 

visits at least one victim, and concludes at a hospital, which can be different from 

the initial hospital. Accordingly, for an ARP solution, it is possible for an ambu-

lance to carry out more than one tour. Let H and C
h
 denote the set of hospitals and 

the capacity of hospital h ∈ H , respectively. We represent the ambulance set by A 

and the starting location of an ambulance a ∈ A by d
a
∈ H . Accordingly, we show 

the set of all nodes by N = G ∪ R ∪ H = V ∪ H and the set of directed links by 

E = {V × H} ∪ {H × V} ∪ {V × V} . We represent the travel time of an arc (i, j) ∈ E 

by tij . Furthermore, each hospital h ∈ H has a service time S
h
 to drop off a victim at 

hospital h and each victim in v ∈ V  has a treatment time S
v
 . We also let W

G
 and W

R
 

represent the urgency of treatment of green and red victims, respectively.

For a solution of the ARP, we let n
rb

 represent the number of red victims whose con-

dition changes to black, n
gr

 be the number of green victims whose condition changes 

to red, and ngb denote the number of victims whose condition changes from green to 

black. For a green coded victim to turn to black, they must first turn to a red code vic-

tim and then if first aid is not provided in the required time, they will perish and turn 

to black code victims. We also let e
G
 and e

R
 be decision variables representing the lat-

est service completion times of green and red victims, respectively. As mentioned, the 

ARP with the setting discussed above was defined first in Rabbani et al. (2022), where 

they defined two objective functions. Their first objective minimizes a weighted linear 

combination of the latest service completion times of green and red victims (i.e., e
G

 

and e
R
 ), and their second objective minimizes a weighted linear combination of the 

number of victims whose condition gets worse (i.e., n
rb

 and n
gr

 ). In their study, they 

regarded these objectives as two contradicting objective functions and hence the focus 

of their solution method is on finding Pareto optimal solutions for this problem. Depart-

ing from their study, we believe that the most significant objective in such scenarios is 

to minimize the number of passed away victims rather than minimizing service com-

pletion times (Farahani et al. 2020; Jat and Rafique 2020). In fact, we opine that these 
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objectives must be considered hierarchically. To achieve this, we consider three objec-

tive functions which are ordered hierarchically as follows.

• Objective (1): our first objective is to minimize the number of victims whose con-

dition changes to black, i.e., minimizing nrb + ngb.

• Objective (2): our second objective is to minimize the number of green victims 

whose condition changes to red, i.e., minimizing n
gr

.

• Objective (3): our third objective is to minimize the weighted linear combination of 

latest completion times of green and red victims, i.e., minimizing W
G
⋅ e

G
+ W

R
⋅ e

R
.

Table 2 gives the decision variables used in the mathematical formulation we devised 

to tackle the offline problem.

In the following, we present the offline model that solves our modified ARP:

(1)min

∑

v∈V

yv

(2)
min

∑

g∈G

zg

(3)min W
R
⋅ e

R
+ W

G
⋅ e

G

(4)

s.t.
∑

j∈V∪H

xhj ≤
|
|Ah

|
| ∀h ∈ H

(5)

∑

j∈V∪H

xji =

∑

j∈V∪H

xij ∀i ∈ V

Table 2  Decision variables used in the mathematical model of ARP

Notation Type Description

xij {0, 1} Equals 1 when an ambulance traverses link (i, j) in the 

direction from i to j

y
v

{0, 1} Equals 1 when victim v turns to black

z
g

{0, 1} Equals 1 when green victim g turns to red

u
vh

{0, 1} Equals 1 when victim v ∈ V  is brought to hospital h ∈ H

b
v

≥ 0 Visiting time of victim v

e
R

≥ 0 Service completion time for the last red victim

e
G

≥ 0 Service completion time for the last green victim
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(6)

∑

j∈V∪H

xji = 1 − yi ∀i ∈ V

(7)

∑

h∈H

urh = 1 − yr ∀r ∈ R

(8)

∑

h∈H

ugh = zg − yg ∀g ∈ G

(9)

∑

i∈V

u
ih
≤ C

h
∀h ∈ H

(10)bv + Sv + tvj ≤ bj + M ⋅

(

1 − xvj

)

∀v ∈ G ∪ H;∀j ∈ V

(11)bv + Sv + tvh + Sh + thj ≤ bj + M ⋅

(

2 − xvj − uvh

)

∀v ∈ V;j ∈ V;h ∈ H

(12)br − M ⋅ yr ≤ Tr
rb

∀r ∈ R

(13)bg − M ⋅ yg ≤ T
g

gb
∀g ∈ G

(14)bg − M ⋅ zg ≤ Tg
gr

∀g ∈ G

(15)eG ≥ bg + Sg − M ⋅ ugh ∀g ∈ G;h ∈ H

(16)e
R
≥ b

r
+ S

r
+ u

rh
⋅

(

t
rh
+ S

h

)

∀r ∈ R;h ∈ H

(17)eR ≥ bg + Sg + ugh ⋅

(

tgh + Sh

)

− M ⋅ (1 − zg) ∀g ∈ G;h ∈ H

(18)xij ∈ {0, 1} ∀(i, j) ∈ E

(19)yv ∈ {0, 1} ∀v ∈ V

(20)zg ∈ {0, 1} ∀g ∈ G

(21)b
v
≥ 0 ∀v ∈ V ∪ H

(22)u
vh
∈ {0, 1} ∀v ∈ V;h ∈ H
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Here, (1), (2) and (3) define the hierarchical objective functions in which the first 

objective is to minimize the number of victims that turn to black, the second objec-

tive is to minimize the number of victims that turn from green to red and the third 

objective is to minimize the weighted time at which the last green and red victims 

are visited. We note that the constraints in the formulation are adopted from Talarico 

et  al. (2015) and Rabbani et  al. (2022). Constraints in (4) control the number of 

ambulances originating from each hospital. Constraint sets (5) and (6) guarantee the 

balance of flow and the connectivity of ambulance routes. They also ensure that all 

victims, except those coded as black, are visited by an ambulance. Constraints (7) 

and (8) ensure that victims in red code are allocated to a hospital. By (7), red victims 

that are not turned to black are allocated to a hospital and by (8), green victims that 

turn to red but not black are assigned to a hospital. Constraints (9) impose capac-

ity limits on the hospitals. Constraints (10) and (11) compute the time progression 

for green and red victims. Constraints (12), (13) and (14) are to set the relations 

between variables and the threshold values. Constraints (15), (16) and (17) deter-

mine the final time at which a green and a red victim are served. In constraint (15), 

we consider only those green victims whose triage does not turn to red. In (16), 

we consider the red victims and in constraint (17) those green victims whose triage 

level turned to red. The remaining constraints are designed to define the domains 

of the variables. We remark that Talarico et al. (2015) and Letchford et al. (2006) 

observed that two-indexed formulations are more efficient than three-indexed ver-

sions for similar vehicle routing problems. This is why we opted to use the two-

indexed formulation in our study.

3.2  The online problem

In the OARP, the triage level (i.e., sets R, G, B), the required treatment time of each 

victim (i.e., S
v
 for v ∈ V  ), and the time threshold(s) based on which the triage level 

of each victim deteriorates (i.e., T
g
gr, Tr

gb
, Tr

rb
 for g ∈ G and r ∈ R ) are not known in 

advance. For victim v ∈ V  , the incomplete information about the triage level, treat-

ment time, and thresholds is revealed only when victim v is examined by the medi-

cal staff of one of the ambulances. In this case, the revealed information is shared 

among all the ambulances and the victim may be serviced straight away by the same 

ambulance or later by another ambulance. By accounting for time-varying victim 

conditions, we recognize that the severity and medical needs of victims can change 

over time, especially in the immediate aftermath of a mass casualty event.

Furthermore, the travel time of the links are not known a priori in the OARP and 

can only be sensed in real time due to the dynamic nature of post-disaster scenarios. 

With respect to the standard literature of online routing problems with arc uncer-

tainty (Akbari and Shiri 2021; Zhang et al. 2019; Büttner and Krumke 2016), we 

assume that the travel time of an arc (i, j) ∈ E can be learned online by an ambu-

lance only when the ambulance is at node i. Through the incorporation of real-time 

road conditions, each ambulance is equipped with access solely to the real-time 

travel times of the routes connecting its present location to other nodes within the 
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road network. This means that the real-time travel times for 2

(
|V

0
|

2

)
− |V

0
| routes 

between locations in V
0
 remain hidden from each ambulance. In other words, to 

obtain precise real-time traffic information for a route connecting two locations, an 

ambulance must be positioned and prepared for dispatch at the starting location of 

the route. Consequently, a significant portion of the travel times in the road network 

is concealed from each ambulance in real time. This incomplete information hinders 

the use of state-of-the-art mathematical models, which are effective for solving vehi-

cle routing problems, in the design of online algorithms for addressing the OARP. 

Figure 1 provides a schematic representation of real-time road information in our 

problem context. To maintain the realism of real-time road information in our 

model, we ensure that online algorithms are oblivious to travel times for already tra-

versed arcs, as these times may be updated with real-time data. As a result, ambu-

lances cannot gradually collect travel time information of the complete network.

We suppose that the time required for assessing the triage level of the victims 

is negligible compared to the time spent on travel and treatment. All other param-

eters of the OARP are known and identical to those of the ARP. The differences 

in the problem inputs of the ARP and the OARP are highlighted in the third and 

Fig. 1  In this complete graph with 20 nodes, the ambulance, positioned at the only hospital, has access to 

real-time travel times for 

20

2×

⎛
⎜
⎜
⎜
⎝

20

2

⎞
⎟
⎟
⎟
⎠

−20

≈ 5%
 of the routes. Arc directions have been omitted for the sake of 

clarity in the illustration
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fourth columns of Table  1, respectively. As the OARP generalizes the ARP by 

incorporating online uncertainty, the objective function of the OARP is the same 

as the objective function of the corresponding ARP that we defined in Sect. 3.1.

Remark 3.1 In the OARP, although certain parameters are not predetermined, the set 

of victims (i.e., set V) and their locations are known to the ambulances. These data 

can be gathered through technologies such as drones and satellites or via reports fur-

nished by rescue teams and individuals. Similarly, information about blocked roads 

can be obtained using the same technologies (Daud et al. 2022; Akbari et al. 2021; 

Dukkanci et al. 2023), allowing the exclusion of blocked roads from the road net-

work. Consequently, the underlying road network reduces to a complete graph con-

taining the nodes in set N = H ∪ G ∪ R ∪ B.

4  Theoretical competitive analysis

In academic literature, the formal investigation of online optimization problems is 

commonly known as competitive analysis (Ma et al. 2021; Akbari et al. 2021; Ma 

and Simchi-Levi 2020; Zhang et al. 2019; Jaillet and Wagner 2008). This approach 

involves comparing the performance of an online solution, which is derived with 

incomplete information, to that of the offline solution, which represents the optimal 

outcome with complete information. This comparison is made from a worst-case 

point of view, and it is quantified using a metric called the competitive ratio.

Online algorithms are typically categorized as either deterministic or rand-

omized. In the case of a deterministic online algorithm, its output remains consist-

ent when applied to the same online problem instance multiple times. Conversely, a 

randomized online algorithm may produce varying solutions for the same problem 

instance on different runs, leading to the consideration of expected objective func-

tion values in the case of randomized algorithms.

The concept of competitive ratio, initially proposed for single-objective optimiza-

tion problems in Sleator and Tarjan (1985), has become a widely accepted perfor-

mance criterion for the theoretical analysis of online solutions in the Operations 

Research community, as evident in works such as (Ma and Simchi-Levi 2020; Ma 

et  al. 2021; Zhang et  al. 2019; Akbari and Shiri 2021; Jaillet and Wagner 2008). 

This notion was later extended to a multi-objective setting in Tiedemann et  al. 

(2015). For an online multi-objective minimization problem with z different objec-

tive functions, let Δ denote the global set of all problem instances and 

Θ = (�1, �2, ..., �
z
) be a vector representing z objective functions. Formally, an online 

algorithm (ALG) is called Θ-competitive if the supremum of the ratio of the 

(expected) ith objective function value of the online solution to the ith objective func-

tion value of the offline optimal solution (OPT) for any instance � ∈ Δ is less than or 

equal to �
i
 for i ∈ {1, 2, ..., z} , i.e., 1 ≤ sup

�∈Δ
�(ALG(�))

OPT(�)
≤ �

i
 for i = 1, 2, ..., z.
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In the next lemma, we demonstrate that any online algorithm is arbitrarily power-

less against the offline optimal solutions for our problem.

Lemma 4.1 No online algorithm (ALG) achieves a finite competitive ratio for 

the OARP in the worst-case, i.e., ALG is Θ − competitive where Θ = (�1, �2, �3) 

denotes the vector of competitive ratio such that none of the �
i
 values is bounded for 

i = 1, 2, 3.

Proof Design of a worst-case instance. We consider an instance of the problem 

with a single ambulance a
1
 located at the only hospital h

1
 and an initial scenario 

where all the victims ( v
i
∈ V  ) are green. For i ∈ {1, 2, ..., |V|} , we fix the travel time 

from h
1
 to v

i
 at t(h1,vi)

= � and the travel time from v
i
 to h

1
 at t(vi,h1)

= 1 . Also, we set 

the travel time between v
i
 and vj to 1 + � in both directions for i, j = 1, 2, ..., |V| , i.e., 

tvivj
 is not known by the ambulance unless it arrives at node v

i
 or vj . We suppose that 

the treatment times of all victims and the service times to drop the red victims to 

hospital h
1
 are � , i.e., S

v
1
= S

v
2
= ... = S

v|V|
= S

h
1
= � . Note that the thresholds are 

such that if the treatment is not started before a time threshold for a victim, the tri-

age level of that victim will be deteriorated the moment after the threshold is trig-

gered. Given that the thresholds are online parameters, they are unknown to the 

ambulances from the beginning. Without loss of generality, we re-label the victims 

with respect to their thresholds by v
′

1
, v

′

2
, ..., v

′

|V|
 , i.e., these labels are unknown to the 

ambulances initially. Figure 2a illustrates the representation of the problem inputs 

for the online algorithms, with only three victims in the road network. For v
′

1
 , we 

assume that the thresholds are T
v
�

1

gr = T
v
�

1

gb
= � . For v

′

2
 , we assume that the thresholds 

are T
v
�

2

gr = 1 + 3� and T
v
�

2

gb
= M where M is a large enough positive value. For v

′

i
 and 

Fig. 2  A scenario corresponding to the proof of Lemma 4.1 on an instance with three victims. Part (a) 

illustrates that the triage of victims is unknown to online algorithms. Part (b) demonstrates the route of 

the offline optimal solution where the triage of all three victims remains green before they receive treat-

ment. Part (c) depicts the route of an online algorithm in which the triage of one victim remains green 

before receiving treatment, the triage of one victim first turns to red and then to black, and the triage of 

one victim turns to red before receiving treatment
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i = 3, 4, ..., |V| , we assume that the thresholds are T
v
�

i

gr = T
v
�

i

gb
= i − 1 + (2i − 1) × � . 

Finally, we let W
G
= � and W

R
= 1.1

Analysis of the offline optimum. In the offline optimum, the order of treatment 

of the victims is v
′

1
→ v

′

2
→ ... → v

′

|V|
 . Therefore, all the victims remain green code 

after the termination in the offline optimum, i.e., ngr = nrb = 0 in the offline opti-

mum. Also, the weighted linear combination of the latest completion times of the 

green and red victims is W
G
× (|V| − 1 + (2|V| − 1) × �) = � × (|V| − 1 + (2|V| − 1) × �) 

in the offline optimum. Hence, the values of objective functions 1, 2, and 3 would be 

0, 0, and � × (|V| − 1 + (2|V| − 1) × �) , respectively. Figure  2b depicts the offline 

optimal route where there are only three victims in the road network.

Analysis of an arbitrary online solution. We remark that an online algorithm 

has no prior information about the thresholds of the victims. We let v
′

1
 and v

′

2
 be uni-

formly distributed among the victims, i.e., it is equally likely that any of the |V| vic-

tims be v
′

1
 or v

′

2
 . Observe that if v

′

1
 is not visited by time � , it will first turn from green 

to red and then it will turn from red to black since T
v
�

1

gr = T
v
�

1

gb
= � . Also, if v

′

2
 is not 

visited by time 1 + 3� , it will turn from green to red since T
v
�

2

gr = 1 + 3� and T
v
�

2

gb
= M . 

In this case, n
gr

 and ngb would be at least 2 and 1, respectively. Also, the latest ser-

vice completion time of v
′

2
 would be a positive value which is greater than 1 + 3� , 

i.e., the weighted latest service completion time of green and red victims would be 

at least W
R
× (1 + 3�) . Figure  2c illustrates such a scenario where there are only 

three victims in the road network. Given the travel times between locations, the 

probability that v
′

1
 and v

′

2
 are not visited by times � and 1 + 3� is at least 

|V|−2

|V|
×

|V|−3

|V|−1
 . 

Hence, the expected objective function values of an arbitrary online algorithm 

against the discussed uniform probability distribution would be at least 
|V|−2

|V|
×

|V|−3

|V|−1
× 1 for objective function 1, 

|V|−2

|V|
×

|V|−3

|V|−1
× 2 for objective function 2, 

and W
R
×

|V|−2

|V|
×

|V|−3

|V|−1
× 1 + 3� =

|V|−2

|V|
×

|V|−3

|V|−1
× 1 + 3� for objective function 3. 

Given the offline optimal objective function values, the lemma is derived by Yao’s 

principle (Shiri et  al. 2023; Andrew Chi-Chih 1977) when |V| is sufficiently large 

and � is small enough.   ◻

Remark 4.2 While finite lower bounds on the competitive ratio of online algorithms 

have been recently proven for the reduced version of the OARP, which omits the 

time-varying victim conditions (Shiri et al. 2023), our analysis highlights the chal-

lenges of devising an efficient online algorithm for the OARP when considering 

time-varying victim conditions. Specifically, we show that online algorithms cannot 

achieve finite competitive ratios in such scenarios.

1 We have deliberately chosen this specific setting for the worst-case instance since it imposes the infi-

nite competitive ratio to the online algorithm in all the three objective functions 1, 2, and 3.
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Lemma 4.1 is a strong theoretical statement on the worst-case performance 

of online algorithms, confirming that none of them achieves a finite competi-

tive ratio for the OARP. However, it fails to discriminate between the average 

performance of different online algorithms on real-world instances. To address 

this concern and to effectively measure the computational performance of online 

algorithms on instances with real-world characteristics, the notion of experimen-

tal competitive ratio has been recently applied in the literature (Zhang et al. 2019; 

Akbari et al. 2021; Yao et al. 2022). For an online algorithm and a given set of 

problem instances, the experimental competitive ratio is the ratio of the average 

cost of the online algorithm over the average cost of the offline optimal solution 

on that given set of problem instances.

5  Online algorithms

In an online algorithm designed for tackling the OARP, there are three decisions that 

must be made for each ambulance dynamically (in an online manner) with respect 

to the revealed information about the condition of the victims. These decisions are: 

(1) the next victim node to be visited by the ambulance, (2) the next hospital a newly 

found red victim must be delivered to by the ambulance, and (3) if a newly found 

green victim by an ambulance must be serviced immediately or must be bypassed 

without providing service to prioritize servicing other potential victims with urgent 

conditions.

To understand and compare the effectiveness of different heuristic rules on the 

performance of online algorithms for the OARP, we first propose a general proce-

dure, called the Decision-Based (DB) procedure, which we apply for constructing 

various online algorithms. The DB procedure is mainly based on a combination 

of heuristic rules which address the three aforementioned types of decisions, i.e., 

the procedure applies a heuristic rule for each of these decisions and constructs a 

solution.

For each of the aforementioned three decisions, we analyze the effect of two 

heuristic rules on the performance of the algorithm, i.e., we design and develop 

2 × 2 × 2 = 8 different versions of the DB algorithm (i.e., DB1, DB2, ..., DB8 ) that 

follow the combinations of the heuristic rules. In the following, we first present the 

general structure of the DB procedure and then discuss the details of our heuristic 

rules. For that, we need to define some notations first.

• We call the heuristic rule, based on which the next victim to be visited by an 

ambulance is determined, the NV heuristic rule.

• We call the heuristic rule, based on which the next hospital for delivering a 

newly found red victim is determined, the NH heuristic rule.

• We call the heuristic rule, based on which an ambulance decides whether to ser-

vice a newly found green victim immediately or bypass the victim for a later 

treatment, the GS heuristic rule.
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5.1  The DB procedure

The inputs of the DB procedure are listed in the last column of Table 1. The DB 

procedure employs the unassigned victims list, denoted by set V
′

 , and initializes it by 

equating it to the complete list of all victims. Furthermore, this procedure establishes 

and initializes an empty list to monitor the green victims who have been observed 

but not yet served, denoted by set OUG. Initially, each ambulance is allocated to 

a victim based on an NV rule, and the list V
′

 is subsequently updated. Afterward, 

the ambulances are sent toward their designated victims. Upon reaching their des-

ignated victims and ascertaining the victims’ conditions, the ambulances commu-

nicate information regarding the triage level and necessary treatment time to other 

ambulances. Then, three cases may occur: 

1. The victim’s triage level is categorized as green. In this case, the ambulance 

decides whether to service or bypass the victim based on a GS rule. If the victim 

must be serviced, the ambulance provides the service. Otherwise, the green victim 

is added to the set OUG. Then, the next location to be visited by the ambulance 

is determined based on an NV rule and the list V
′

 is updated.

2. The victim’s triage level is categorized as red. Consequently, the ambulance 

administers the necessary treatment to the victim. Subsequently, the ambulance 

follows an NH rule to determine its destination hospital. This information is then 

relayed to the other ambulances, and the capacity of the chosen hospital is dec-

remented by one.

3. The victim’s triage level is categorized as black. In this case, the ambulance must 

bypass the victim without providing service and shares this information with 

non-medical teams, i.e., the black victim will be serviced by non-medical teams 

due to limited medical staff and resources. The next location to be visited by the 

ambulance is determined based on an NV rule and the list V
′

 is updated.

After transporting a victim to a hospital, an ambulance is assigned to a new victim 

location using an NV rule and the list V
′

 is updated. The pseudo-code of the main 

steps of the DB procedure is presented in Appendix A.

5.2  Details of the proposed heuristic rules

In this paper, we investigate six heuristic rules. Namely, two heuristics rules NV
1
 

and NV
2
 for assigning a victim node to an available ambulance, two heuristic rules 

NH
1
 and NH

2
 for assigning a hospital to an ambulance carrying a red victim, and 

two heuristic rules GS
1
 and GS

2
 to decide whether to service or bypass a green vic-

tim. Before we explain the rules, we remark some important aspects of the online 

problem definition in the following. As discussed in Sect. 3.2, the arc travel times 

are unknown initially and can only be revealed at the starting node of an arc with 

respect to the real-time information. In addition, we do not have any prior informa-

tion about the triage levels, treatment times, and thresholds. Given these, we propose 

the heuristic rules embedded in different versions of our DB procedure as follows.
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5.2.1  The NV rules

NV
1
 . The ambulance follows a greedy policy and chooses the closest victim from 

the set of unassigned victims ( V
′

).

NV
2
 . This rule is sensitive about the observed information in the sense that before 

making a decision, the ambulance checks if there is any victim in the set of observed 

and unserviced green victims (OUG) who must be serviced immediately due to 

approaching their thresholds for triage level changes. To quantify this for a green victim 

g ∈ OUG , we use the following parameters in this rule: (1) T
g
gr , (2) current time CLK, 

(3) average revealed travel time between the current node of the ambulance and other 

locations t
AVG

 , and (4) average revealed service time of locations (i.e., victims and hos-

pitals). Using t
AVG

 and S
AVG

 we construct an approximate measure called 

AVG = 3 × t
AVG

+ 2 × S
AVG

 for the required time for servicing another (red) victim and 

arriving back at g, i.e., AVG is just an approximate measure of time for quantifying the 

emergency of visiting g. In the NV
2
 rule, if T

g
gr − CLK ≤ AVG , the treatment of g is 

regarded as urgent. If such a victim g ∈ OUG with T
g
gr − CLK ≤ AVG exists, the 

ambulance chooses a victim whose T
g
gr − CLK has the least value. Otherwise, by con-

sidering the revealed travel times, the ambulance chooses the closest victim node in the 

set of victims who belongs to V
′

⧵ OUG . This feature ensures that an ambulance will 

not be assigned to already observed green victims such that servicing them is not 

urgent. In case V
�

⧵OUG = � , the ambulance chooses the closest victim in OUG. We 

note that due to ethical considerations, we utilize T
g
gr rather than T

g

gb
 as a criteria for 

decision making in order to avoid deterioration in the condition of an already observed 

green victim.

An example for NV rules. To distinguish between NV
1
 and NV

2
 , consider a sce-

nario where the set of remaining victims is {v2, v3} , V
�

= {v
2
} and OUG = {v

3
} such 

that the observed information about v
3
 are S

v
3
= 10 , T

v
3

gr = 200 , and T
v

3

gb
= 400 . In this 

Fig. 3  An illustration of the NV rules where v
3
∈ OUG and the ambulance is located at v

1
 who has 

recently received treatment. Part (a) represents the route chosen by NV
1
 . Part (b) demonstrates the route 

chosen by NV
2
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scenario, we focus on one of the ambulances that has completed servicing a green vic-

tim at v
1
 with observed average real-time travel time between v

1
 and other nodes being 

t
AVG

= 50 , and observed average service time of nodes being S
AVG

= 20 at time 

CLK = 100 . Suppose that the travel time between v
1
 and v

2
 is t

v
1
v

2

 = 60 and the travel 

time between v
1
 and v

3
 is t

v
1
v

3
 = 70. In this case, NV

1
 chooses v

2
 as the next victim to be 

visited since it is closer in terms of travel time. However, NV
2
 chooses v

3
 , because 

v
3
∈ OUG and T

v
3

gr − CLK = 200 − 100 = 100 is less than 

AVG = 3 × t
AVG

+ 2 × S
AVG

= 190 . This example has been depicted in Fig. 3.

5.2.2  The NH rules

NH
1
 . The ambulance employs a greedy policy, selecting a hospital with available 

capacity that minimizes the sum of its travel time from the victim’s location and the 

service time required to drop off the red victim at that hospital.

NH
2
 . The ambulance selects a hospital using a hospital utility score (HUS) as fol-

lows. To calculate the utility of each hospital ( h ∈ H ) with remaining capacity of 

more than one, considering an ambulance at the location of a red victim r, we take 

into account (1) the travel time from the victim’s location to hospital h (i.e., t
rh

 is 

known because the ambulance is at r), and (2) the service time required to deliver 

the red victim to that hospital ( S
h
 ), (3) the fraction of the remaining capacity of that 

hospital ( C
′

h
> 0 ) over the maximum remaining capacity of hospitals which yet have 

available capacities ( C
max

 ), which can be denoted as 0 ≤ Π
h
=

C
�

h

Cmax

≤ 1 . Using these 

parameters, we compute the value of HUS as HUS
h
=

1

1+Πh

× (t
rh
+ S

h
) . In this 

equation, given the range for Π
h
 , we have 

1

2
≤

1

1+Π
h

≤ 1 . Here, the term 
1

1+Π
h

 is a tun-

ing coefficient that incorporates the reverse effect of the residual capacities of the 

hospitals in the calculations of HUS. In here, based on our computational experi-

ments, we have deliberately set the lower bound value for 
1

1+Π
h

 equal to 
1

2
 to tune and 

control the effect of the residual capacities in calculations of HUS. After calculating 

the HUS values, the ambulance opts for the hospital with the lowest HUS score. It is 

important to note that when developing the HUS metric, we take into consideration 

both time-related aspects (travel and service times) and the capacity status of availa-

ble hospitals. This approach allows us to provide swift service to red victims while 

reserving hospitals with lower remaining capacities for potential red victims who 

may need assistance later and could be closer to these hospitals.

An example for NH rules. Consider a scenario where the ambulance has serviced 

a red victim at v
r
 and must decide to transport the victim to one of the two remaining 

hospitals h
1
 and h

2
 such that the travel time between v

r
 and h

1
 is t

vrh
1
= 100 , the travel 

time between r and h
2
 is t

vrh2
= 150 , and the hospital service time for both hospitals is 

S
h1
= S

h2
= 50 . Suppose that the residual capacity of h

1
 is C

�

h
1

= 1 and the residual 

capacity of h
2
 is C

�

h
2

= 4 . In this case, NH
1
 chooses h

1
 since the service completion 
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time for v
r
 can be done earlier at this hospital. However, NH

2
 chooses h

2
 since 

HUS
h2
=

1

1+1
(150 + 50) = 100 is less than HUS

h1
=

1

1+
1

4

(100 + 50) = 120.

5.2.3  The GS rules

GS
1
 . The ambulance follows a greedy policy with the aim of providing service for 

every newly visited victim as soon as possible. In this scenario, the ambulance pro-

vides immediate service to any green victim upon reaching them.

GS
2
 . The ambulance decides whether to service or bypass the victim according to 

a green utility score (GUS) as follows. It is important to note that when an ambu-

lance bypasses a green victim, that victim will be included in the group of observed 

and unserviced victims (OUG). Later on, either the same ambulance or a different 

one may provide treatment to these victims (as indicated by NV
1
 and NV

2
 ). For an 

ambulance positioned at the location of a newly discovered green victim g ∈ G , the 

GUS is calculated in real time, taking into account: (1) the time threshold by which 

the triage level of the green victim turns to red ( T
g
gr ), (2) the time threshold by which 

the triage level of the green victim turns to black ( T
g

gb
 ), (3) the average revealed 

travel time between g and other nodes t
AVG

 , (4) the average service time of already 

observed nodes ( S
AVG

 ), (5) the revealed treatment time of the green victim Sg , (6) the 

weight of the green victims W
G

 , (7) the weight of the red victims W
R
 , (8) the propor-

tion of known red victims to all victims with known triage denoted by 0 ≤ Π
R
≤ 1 , 

where Π
R
=

|R1|

|R1 ∪ G1|
 at time 0, and (9) the current time CLK. Given the values 

above, the ambulance first computes

and

In these equations, � and � are measures which correspond to the first and second 

objective functions of the OARP. These measures compare the remaining time until 

triggering thresholds for the green victim (i.e., T
g

gb
− CLK ) with the average time for 

servicing a potential red victim and returning back to the node of the bypassed green 

victim (i.e., AVG = 3 × t
AVG

+ 2 × S
AVG

 ). Here, we clarify that this rule does not 

mean that in our algorithms a bypassed green victim must be necessarily serviced by 

the same ambulance.

In addition to � and � , the ambulance computes

(23)� =

T
g

gb
− CLK

3 × tAVG + 2 × SAVG

=

T
g

gb
− CLK

AVG

(24)� =

T
g
gr − CLK

3 × tAVG + 2 × SAVG

=

T
g
gr − CLK

AVG
.
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such that � is a measure for the third objective function, where 
tAVG

Sg

 enforces higher 

GUS values for green victims with relatively small treatment times, i.e., if the 

required time for treatment of the green victim (g) is relatively higher than the aver-

age observed travel time between g and other nodes ( t
AVG

 ), then the GUS would be 

smaller for g. Also, the term 0 ≤
W

G

W
R

≤ 1 in the equation above is a tuning coeffi-

cient that takes into account the weights of red and green victims for GUS calcula-

tion such that the GUS value for the green victims would decrease where 
W

G

W
R

 

decreases, i.e., the probability of providing immediate service to green victims dur-

ing their initial encounters diminishes as the weight of red victims substantially out-

weighs that of green victims. Additionally, there is another tuning coefficient 

denoted as 
1

2
≤

1

1 + Π
R

≤ 1 , which dynamically considers the current proportion of 

known red victims as a decision factor for the algorithm. If Π
R
 is high, indicating a 

significant number of known red victims, the GUS decreases. Consequently, the 

likelihood of bypassing a green victim increases. In simpler terms, when ambu-

lances observe a considerable number of red victims during their operations, the 

algorithm is more likely to bypass green victims. Conversely, if few or no red vic-

tims have been observed, the algorithm does not permit bypassing green victims. 

We remark that, based on our computational experiments, we have deliberately set 

the lower bound value for this coefficient equal to 
1

2
 to tune and control the effect of 

this coefficient.

Once all � , � , and � have been computed, the GS
2
 rule sorts the objective func-

tions of the OARP hierarchically in terms of their importance as follows. If � ≤ �
1
 , 

the value of the GUS is set to 1. Otherwise, � determines the value for GUS as fol-

lows. If � ≤ �
2
 , the value of GUS is set to 1. Otherwise, the value of the GUS is set 

to � . Once GUS is calculated, the ambulance bypasses the victim if GUS < 1 , and 

services the victim otherwise. We note that in our computational experiments, we 

have set the values of �
1
 and �

2
 equal to 5 and 3, respectively. By considering these 

values, we ensure that a green victim is serviced if their thresholds are relatively 

close to the current time.

An example for GS rules. To differentiate between GS
1
 and GS

2
 , consider a 

newly visited green victim g where the time threshold by which the triage of g turns 

to red is T
g
gr = 250 , the time threshold by which triage of g turns to black is 

T
g

gb
= 500 , the average observed travel time between g and other locations is 

t
AVG

= 10 , the average service time of already observed nodes is S
AVG

= 10 , the 

revealed treatment time of the green victim is Sg = 10 , the weight of green victims 

is W
G
= 1 , the weight of red victims is W

R
= 5 , the proportion of known red victims 

to all victims with known triage is Π
R
= 1 , and the current time is CLK = 50 . In this 

(25)� =
1

1 + ΠR

×
WG

WR

×
tAVG

Sg

,
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case, GS
1
 services g immediately. However, GS

2
 calculates 

� =
T

g

gb
−CLK

3×tAVG+2×SAVG

=
500−50

3×10+2×10
=

450

50
= 9 , � =

T
g
gr−CLK

3×tAVG+2×SAVG

=
250−50

3×10+2×10
=

200

50
= 4 , 

and � =
1

1 + ΠR

×
WG

WR

×
tAVG

Sg

=
1

1 + 1
×

1

5
×

10

10
= 0.1 . In this case, since 𝛼 > 5 

and 𝛽 > 3 , the value of GUS is determined by GUS = � = 0.1 . Since GUS < 1 , the 

GS
2
 rule bypasses the victim.

By incorporating different combinations of these rules into the DB procedure 

described in Sect. 5.1, we construct eight different online algorithms, i.e., DB
1
 , DB

2

,..., DB
8
 . These algorithms are formally presented in Table 3.

6  Experimental competitive analysis

In this section, we evaluate the performance of all eight versions of the DB algo-

rithm. The experiments were implemented in Python 3.9 and conducted on a com-

puter equipped with an Intel Core i5 processor, 32 GB of RAM, and a 64-bit Win-

dows 10 operating system. First, we provide details about the data sets employed 

in our computational experiments, followed by the presentation of the experimental 

results.

Table 3  Different versions of 

the DB algorithm
Algorithm Heuristic Rules

DB
1

NV1, NH1, GS1

DB
2

NV1, NH2, GS1

DB
3

NV1, NH1, GS2

DB
4

NV2, NH1, GS1

DB
5

NV2, NH1, GS2

DB
6

NV2, NH2, GS1

DB
7

NV1, NH2, GS2

DB
8

NV2, NH2, GS2

Table 4  Characteristics of the data sets

Number of |V| ̄|R| ̄|G| ̄|A| ̄|H| Average overall

instances hospital capacity

First data set 20 10 5.8 4.2 2.9 2.5 10.0

20 25 13.9 11.1 8.9 2.3 25.9

20 50 23.4 26.6 13.1 2.5 41.4

Second data set 55 100 50.6 49.4 29.1 5.4 90.0



808 D. Shiri et al.

1 3

6.1  Data set descriptions

In order to computationally analyze our algorithms, we tested them on two data sets 

that are both based on the instances introduced in Talarico et  al. (2015). In this 

study, instances with 10, 25 and 50 victims with varying hospital capacity and num-

ber of ambulances were generated. Given that in their instances, only red victims 

had to be transferred to hospitals, and in some of the instances, the cumulative hos-

pital capacities are only large enough to accommodate red victims. In our problem, 

however, if a green victim g is served at a time between T
g
gr and T

g

gb
 , they have to be 

transferred to a hospital. Thus, for the first data set, we selected instances that have 

higher capacities. In particular, we selected 20 instances from each of the cases with 

10, 25 and 50 victims. In order to analyze the performance of our algorithms on 

larger instances, we have also tested them on instances with 100 victims that are 

generated based on Talarico et  al. (2015) instances with 50 victims. For that, we 

selected ten instances from the set of instances with 50 victims and generated 55 

cases with 100 victims. Each of these cases is generated from accumulation of two 

instances with 50 victims. Table 4 gives the characteristics of the data sets used in 

our computational experiments. In this table, |V| gives the total number of victims, 
̄|R| and ̄|G| give the average number of red and green victims in those instances and 
̄|A| and ̄|H| gives the average number of ambulances and the average number of hos-

pitals, respectively.

In the context of online optimization, uncertainty is introduced to the online algo-

rithm by concealing a portion of the input related to uncertain parameters, as high-

lighted in previous works (Zhang et  al. 2019; Akbari and Shiri 2021; Jaillet and 

Wagner 2008; Ausiello et al. 2001). To incorporate this uncertainty into our model, 

we have chosen to withhold information regarding triage levels, treatment times, 

travel times, and thresholds from the online algorithms. This unknown information 

is partially observable to the online algorithms in real time. For our instances, which 

are derived from Talarico et al. (2015), travel times are generated as Euclidean dis-

tances between nodes. It is worth noting that this method for generating travel times 

aligns with the standard benchmark instances in the literature, rather than being a 

decision made independently. In relation to the thresholds, we draw upon existing 

literature, which suggests that prompt treatment within a few hours in mass casualty 

incidents can significantly reduce casualties (Farahani et  al. 2020) Additionally, 

Fig. 4  Results of the first and second objectives on the first data set
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studies on earthquakes in China highlighted in Brown et al. (2017) have indicated 

that unless aid is provided within 2 to 6 h, fewer than half of the victims are likely to 

survive. Furthermore, Liang et al. (2001) has pointed out that timely medical atten-

tion within the first 6  h following the Armenia earthquake could have prevented 

many deaths. In accordance with the findings in this literature, we selected threshold 

values of less than 6 h. For the sake of general applicability, we opted for different 

threshold values for transitioning from red to black for initially red victims and for 

the time taken to transition from red to black for victims initially classified as green. 

Specifically, in Sect. 6.2, we set the thresholds to specific values: T
g
gr = 180 minutes, 

T
g

gb
= 360 minutes, and Tr

rb
= 240 minutes. In Sect. 6.3, to conduct sensitivity analy-

ses on the performance of our algorithms, we relaxed these thresholds by assigning 

sufficiently large values.

6.2  Experimental analysis of the algorithms

We first provide the results of testing the eight variations of the DB algorithm on the 

instances from the first data set and then present the results of this algorithm on the 

larger instances from the second data set.

Figures 4 and 5 give the results of the DB algorithm on the first data set. Figure 4 

presents the results of the obtained experimental competitive ratio values over the 

first and second objectives, and Fig. 5 presents the results of the third objective func-

tion with varying W
R
 values. Given that changing the value of W

R
 does not impact 

the first and second objective functions, we separated the results corresponding to 

the objectives to these two figures.

Figure 4 presents the average experimental competitive ratio (ECR) values over 

the 20 selected instances with 10, 25 and 50 victims. The first objective minimizes 

Fig. 5  Results of the third objective function on the first data set
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the number of victims that turn to black code and the second objective minimizes 

the number of victims that turn from green to red code. For a green victim that 

first turns to red code and then turns to black code, their triage level change will 

be counted once in the second objective and once in the first objective. As can be 

observed in these results, in general, all the variations of the DB algorithm are able 

to find solutions for which the average ECR remains under 2. For instance, the worst 

average ECR of the first objective over all the instances belongs to variations 2 and 6 

of the DB algorithm and they are both at 1.72. The same variations of the DB algo-

rithm also have the worst average ECR over the second objective, which is at 1.42. 

On the other hand, variation 5 is able to find the best average ECR over the first 

objective, which is at 1.27 and variation 7 is able to find the best average ECR over 

the second objective with a value of 1.13. It is important to note that since the objec-

tives are hierarchical, the first objective has higher priority and variation 5 of the DB 

algorithm outperforms the rest of the variations in this sense. Looking at the average 

ECR of the first and second objectives, again, variation 5 outperforms the rest with 

an average of 1.29.

Similar to the experimental studies conducted in Talarico et al. (2015), we kept 

the value of W
G
= 1 in all the cases and only changed W

R
 to investigate its impact on 

the algorithms and the solutions. Since the first and second objectives do not depend 

on the value of W
R
 , changing it does not impact the solutions obtained for the first 

and second objectives. However, this can impact the third objective function which 

minimizes the weighted time at which the last green and red victims are serviced. 

Fig. 6  Results of the first and 

second objectives on the second 

data set

Fig. 7  Results of the third objective function on the second data set
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Figure 5 gives the results of the DB algorithm over the third objective function when 

W
R
 is set to 1, 2, 5 and 10. When W

R
= 1 , for the cases with 10 and 50 victims, varia-

tion 5 of the DB algorithm has the best performance with average ECRs of 1.61 and 

1.49, respectively. For the case with 25 victims, variation 3 has the best performance 

with an average ECR of 1.29 which is followed by variation 5 with average ECR of 

1.32.

For rest of the cases when W
R
 increases from 2 to 5 and then to 10, the perfor-

mance of the algorithms are negatively impacted and solutions tend to produce 

higher ECR values. An important observation in these cases is that variation 5 of 

the DB algorithm consistently outperforms the rest of the algorithms over all the 

instances with 10, 25 and 50 victims and W
R
= 2 , 5 and 10. This confirms that over 

these instances, the combination of strategies NV
2
 , NH

1
 and GS

2
 that form the fifth 

version of the DB algorithm outperforms the rest of the variations. This confirms the 

importance of considering learning-based methods to select the next victim’s loca-

tion and bypassing some green victims while justifying the use of a simple greedy 

based strategy for selection of hospitals to deliver the victims.

The results of testing the eight variations of the DB algorithm on the second data 

set is presented in Figs. 6 and 7. Similar to the case with the first data set, we pre-

sent the results for the first and second objectives and the third objective separately. 

Figure  6 gives the average ECR values of the first and second objectives for the 

eight variations of the DB algorithm. As can be observed, even with these larger 

instances, some of the variations of the DB algorithm are able to find reasonably 

good solutions within a very short time. For example, over these 55 instances with 

100 victims, DB
5
 has an average ECR of 1.41 over the first objective function and 

DB
3
 and DB

7
 have an average ECR of 1.13 over the second objective function. For 

DB
5
 , while the first objective is lower on average, the second objective is a bit higher 

compared to some of the other variations. This is because this variation aims to 

prevent death by minimizing the first objective while sacrificing from the second 

objective that corresponds to triage level change from green to red. Given the utmost 

importance of preventing death, we can conclude that DB
5
 still outperforms the rest 

of the variations of the DB algorithm.

Figure 7 presents the average objective function values obtained from testing the 

variations of the DB algorithm on the instances from the second data set. We used 

the mathematical model presented in Sect. 3.1 to solve the offline problem for the 

instances from the first and second data sets. We set a time limit of 3 h (10800 s) 

to solve these problem instances. However, our model was only able to find the 

solutions of the first and second objectives, and in most of the cases, the problem 

remained unsolved for the third objective function and only loose upper bounds were 

found. We note that since the focus of our study is not providing an efficient solution 

method to solve the offline problem, we relied on the solutions obtained from our 

mathematical model to verify and test the performance of our online algorithms.

Using Fig. 7, we can compare the performance of the variants of the DB algo-

rithm. With W
R
= 1 , on average, DB

5
 found the best solutions and DB

2
 and DB

6
 had 

the worst performance. DB
5
 had the best average performance over the instances 
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with W
R
= 2 , 5 and 10 as well. Similar to the cases with the first data set, we again 

observe that DB
5
 , for which NV

2
 , NH

1
 and GS

2
 strategies are used, outperform the 

rest of the combinations. Meanwhile, DB
2
 which uses NV

1
 , NH

2
 and GS

1
 consist-

ently shows the worst performance. DB
2
 and DB

5
 are based on opposite strategies in 

the three main decisions pointed out in Sect. 5 and that is probably the reason why 

one of them is the best and one of them is the worst variation of the DB algorithm.

6.3  Sensitivity analysis on the threshold values

We analyze the performance of our algorithm on the same set of instances but when 

considering large threshold values such that the condition of none of the victims gets 

worse. In other words, we investigate the case when all T
g
gr, T

g

gb
 and Tr

rb
 values are 

large. When this is considered, the optimal objective function values of the first and 

second objectives are equal to 0 i.e., 
∑

v∈V yv = 0 and 
∑

g∈G zg = 0 . In this version, 

only the third objective will be activated and the problem reduces to the version 

introduced in Talarico et al. (2015). In the following, we first present the results on 

the first data set and then analyze the performance of our algorithms on larger 

instances given as the second data set.

Fig. 8  Sensitivity analysis of threshold values on the first data set



813

1 3

Online algorithms for ambulance routing in disaster response…

As stated above, for this special case of the problem, we only represent the results 

from the third objective function as the optimal solutions of the first and second 

objectives are 0 in all the cases. Similarly, the solutions obtained from variations of 

the DB algorithm for the first and second data sets are also equal to 0 as none of the 

victims will have a change in the triage level. Figure 8 represents the results of the 

variations of the DB algorithm on the instances of the first data set for 10, 25 and 50 

nodes and varying W
R
 values in the range 1, 2, 5 and 10. As can be observed in this 

figure, the average performance of the DB algorithm is acceptable and its best aver-

age performance over all variations in the worst case remains under 1.63 ( DB
5
 when 

W
R
= 1 and |V| = 50).

For the case when W
R
= 1 , DB

1
 and DB

4
 consistently obtain the best average ECR 

values over the instances with 10, 25 and 50 victims. DB
1
 corresponds to NV

1
 , NH

1
 

and GS
1
 and DB

4
 corresponds to NV

2
 , NH

1
 and GS

1
 . This shows that when there are 

no threshold values after which the victim’s condition gets worse, when the weight 

of the green and red victims are the same (i.e., W
R
= W

G
 ), greedy decisions can per-

form very well. When W
R
 increases to 2, when the average ECR over the three cases 

with 10, 25 and 50 victims is considered, DB
5
 outperforms the rest of the DB varia-

tions. However, the average performance of DB
5
 is not the best for the instances with 

25 victims and in those instances, DB
1
 and DB

4
 show the best average performance.

For rest of the cases when W
R
= 5 and W

R
= 10 , DB

5
 consistently outperforms the 

rest of the variations. Over these cases, while DB
5
 is based on NV

2
 , NH

1
 and GS

2
 deci-

sions, DB
8
 in which all the decisions are made using comparative learning-based meth-

ods ( NV
2
 , NH

2
 , GS

2
 ), is consistently the second best variation of the DB algorithm. 

While it might be expected that the performance of DB
5
 deteriorates when more vic-

tims are considered, we see that this is in fact not correct and the number of victims 

does not seem to have a negative impact on the performance of DB
5
 . On the other hand, 

the performances of DB
3
 and DB

7
 are negatively impacted by increasing the number 

of victims or increasing the value of W
R
 . Given that DB

3
 is based on the NV

1
 , NH

1
 and 

GS
2
 rules and DB

7
 is based on NV

1
 , NH

2
 and GS

2
 rules, we see the importance of con-

sidering NV
2
 in designing online algorithms as both DB

5
 and DB

8
 are based on NV

2
.

Finally, the results of testing the DB algorithm on second data set instances when 

sufficiently large T
g
gr, T

g

gb
 and Tr

rb
 values are considered is presented in Fig. 9. Overall, it 

can be observed that even with these larger instances with 100 victims, we can obtain 

reliable and good quality solutions using the DB algorithm. In this figure, it is observed 

Fig. 9  Sensitivity analysis of threshold values on the second data set
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that when no difference is put between red and green victims ( W
R
= 1 ), the perfor-

mance of DB
3
 is the best among the variants of the DB algorithm with an ECR of 1.53. 

For the rest of the cases, however, DB
5
 consistently outperforms the rest of the varia-

tions and DB
8
 is the second best version of the DB algorithm. When we compare 

Figs. 8 and 9, we can see that when the number of victims increases, the performance 

of the DB
5
 algorithm remains at a very good level. Especially when W

R
 increases and 

more importance is given to the red victims, the performances of DB
5
 and DB

8
 are con-

siderably better than rest of the variations. This testifies the importance of a decision-

making mechanism that incorporates known information. Similar to the cases in Fig. 8, 

here we again observe that DB
3
 and DB

7
 are negatively impacted when W

R
 increases.

6.4  Analysis of the running times of the algorithms

All the variants of the DB algorithm were able to find their solutions in less than 1 s in 

all of the tested instances including the largest instances. As a result, we did not report 

the run time of our online algorithms. This highlights that our algorithms are appropri-

ate for the emergency post-disaster scenarios where decisions should be made quickly. 

We note that a very high computational running time (e.g., more than 3 h) is required to 

produce optimal solutions for the offline optimization problem (ARP) in the instances 

with 50 or 100 victims. Therefore, utilizing the offline optimization approach is not 

suitable in emergency post-disaster scenarios due to the uncertainty in problem inputs 

and time limitations.

7  Conclusions and future research directions

In this study, we explored an online optimization problem, referred to as the OARP, 

with the aim of determining efficient routes and schedules for ambulances in post-

disaster scenarios, where the goal is to provide timely assistance to a large number 

of casualties in limited time. In particular, we considered victims with time-varying 

conditions and different triage levels, i.e., green, red, black. The unknown param-

eters in our problem that are revealed over time are: travel times between locations, 

triage levels and treatment times of the victims, and time thresholds by which the 

condition of each victim worsens. We analyzed this problem by considering three 

hierarchical objective functions such that the first objective is to minimize the num-

ber of victims who pass away, the second objective is to minimize the number of 

victims whose condition (i.e., triage level) goes from green to red, and the third 

objective is to minimize the total weighted service completion time of the red and 

green victims.

We first studied this problem from a theoretical worst-case competitive ratio per-

spective and proved that a finite lower bound on the competitive ratio of online solu-

tions does not exist for this problem. This confirms how challenging the problem is 

under incomplete information and a worst-case scenario. Furthermore, to address 
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real-life instances of the problem, we proposed eight different online heuristics all 

of which are capable to provide solutions in very low running times (i.e., less than 

1  s). Our algorithms are compared against each other and the offline solutions on 

instances from the literature as well as newly generated large instances. One of our 

algorithms (i.e., DB 5) appears to outperform the other competitors in the major-

ity of the tested scenarios. This algorithm intelligently incorporates piece-by-piece 

observed information into its decision-making process by employing the following 

rules:

• NV
2 rule which prioritizes victims whose conditions are known to be deteriorat-

ing imminently.

• NH
1 rule which focuses on delivering victims to the closest hospitals quickly and 

servicing remaining victims promptly to reduce the number of victims whose 

conditions worsen. Note that this rule does not have considerations of the real-

time residual capacities of the hospitals.

• GS
2 rule which takes into account the thresholds of observed green victims. It 

allows the algorithm to make informed decisions about whether to bypass green 

victims if their condition is expected to remain stable for an extended period. By 

doing so, the algorithm ensures that it can allocate resources to service poten-

tially red victims in urgent situations while minimizing unnecessary stops for 

green victims whose conditions are unlikely to deteriorate in the short term.

It is remarkable that DB5, which follows a greedy rule for hospital selection, out-

performs the DB8 algorithm, which takes into account hospital residual capacities. 

A possible explanation for this phenomenon is the presence of thresholds. Specifi-

cally, delivering victims to nearby hospitals allows ambulances to serve more vic-

tims before their conditions deteriorate to the point of triggering thresholds. This 

approach is particularly beneficial in serving more green victims before their con-

ditions change to red, as well as more red victims before they turn black. On aver-

age, the DB5 algorithm finds quality solutions against the offline solutions as well. 

Hence, it can be considered to be applied in the aftermath of disasters in real-world 

mass casualty incidents.

A future research direction is collecting real-life data to further investigate the 

performance of the algorithms on real-life scenarios. From a theoretical competitive 

analysis point of view, specifying real-world limitations for the worst-case instance 

to achieve finite competitive ratios would be a possible way for deepening the theo-

retical analysis.

Appendix A. Pseudo‑code of the DB algorithm

The pseudo-code of the main steps of the DB procedure is presented in Algorithm 1.
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Algorithm 1  DB Procedure  

Data deposition information In our study, we selected a subset of the data sets presented in Talarico 

et al. (2015) to undertake the computational experiments. A detailed description of the used data sets is 

presented in Sect. 6.1 and the relevant files can be openly accessed through this link: https:// figsh are. com/ 

ndown loader/ files/ 38509 442. 

https://figshare.com/ndownloader/files/38509442
https://figshare.com/ndownloader/files/38509442
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