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» We generated Affimers
against platelet GPVI
and mapped their
binding sites, revealing
functional regions
regulating ligand
binding.

Glycoprotein VI (GPVI) plays a key role in collagen-induced platelet aggregation. Affimers are
engineered binding protein alternatives to antibodies. We screened and characterized GPVI-
binding Affimers as novel tools to probe GPVI function. Among the positive clones, M17, D22,
and D18 bound GPVI with the highest affinities (dissociation constant (Kp) in the nanomolar
range). These Affimers inhibited GPVI-collagen-related peptide (CRP)-XL/collagen interactions,
CRP-XL/collagen-induced platelet aggregation, and D22 also inhibited in vitro thrombus
formation on a collagen surface under flow. D18 bound GPVI dimer but not monomer. GPVI
binding was increased for D18 but not M17/D22 upon platelet activation by CRP-XL and
adenosine 5'-diphosphate. D22 but not M17/D18 displaced nanobody 2 (Nb2) binding to GPVI,
indicating similar epitopes for D22 with Nb2 but not for M17/D18. Mapping of binding sites
revealed that D22 binds a site that overlaps with Nb2 on the D1 domain, whereas M17 targets a

* A dimeric epitope was
identified on GPVI for
Affimer D18, which
specifically binds GPVI
dimer through a 1:1
interaction.

site on the D2 domain, overlapping in part with the glenzocimab binding site, a humanized GPVI
antibody fragment antigen-binding fragment. D18 targets a new region on the D2 domain. We
found that D18 is a stable noncovalent dimer and forms a stable complex with dimeric GPVI with
1:1 stoichiometry. Taken together, our data demonstrate that Affimers modulate GPVI-ligand
interactions and bind different sites on GPVI D1/D2 domains. D18 is dimer-specific and could be
used as a tool to detect GPVI dimerization or clustering in platelets. A dimeric epitope regulating
ligand binding was identified on the GPVI D2 domain, which could be used for the development
of novel bivalent antithrombotic agents selectively targeting GPVI dimer on platelets.

Introduction
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Glycoprotein VI (GPVI) is a platelet receptor that plays important roles in hemostasis and pathological
processes such as arterial and venous thrombosis." Upon vascular trauma or atherosclerotic plaque
rupture, GPVI interacts with the exposed subendothelial collagen, initiating a signaling cascade for platelet
activation and blood clot formation” (supplemental Figure 1). Recent studies have indicated that GPVI also
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supports thrombus growth via its interaction with fibrin.*° The GPVI
extracellular region is composed of immunoglobulin-like domains D1
and D2. The collagen binding site is localized in D1° (supplemental
Figure 2A). Some studies have indicated a role for D2 in receptor
dimerization.”® GPVI is expressed either as a mixture of monomers
and dimers or predominantly monomers on resting platelets, with the
binding of ligands, such as collagen and fibrin, inducing higher-order
clustering and platelet signaling.” "' Dimerization of GPVI on platelets
is stabilized through an intramolecular disulphide bond in the cyto-
plasmic region.'? The number of GPVI dimers has been reported to
increase upon platelet activation.”'® Crystallographic studies have
shown that GPVI can be either monomeric or dimeric.®®'%'
Despite data suggesting the existence of dimeric GPVI, GPVI
extracellular domains associate with each other weakly, and no clear
dimer formation has been observed in solution.”'®

GPVI could be a promising drug target for novel antithrombotic
molecules with a low bleeding risk.'®'” Understanding functional
sites on GPVI that regulate GPVI-ligand interactions provides
valuable information to help guide inhibitor design. Recently, 2
functional sites were identified on GPVI by structural studies using
nanobodies (Nbs) and a fragment antigen-binding (Fab) fragment.
The first is on the D1 domain, adjacent to the collagen-related
peptide (CRP) binding site. Binding of Nb2 to this site allosteri-
cally inhibited collagen/CRP binding and platelet aggregation®'*
(supplemental Figure 2A). In the Nb2 bound crystal structure,
GPVI adopts a D2 domain—swapped dimer conformation
(supplemental Figure 2B). The domain swap is mediated by the C-
C' hinge loop, possibly playing an important role in platelet signaling.
The second functional site occupies a discontinuous region in the
D2 domain and includes the C-C' hinge loop region. This site is
targeted by glenzocimab, a humanized GPVI antibody Fab fragment
that is under development at the clinical stage.'® It has been sug-
gested that inhibition by glenzocimab blocks collagen binding
through a combination of steric hindrance and allosteric changes.
Inhibition of this site also affects GPVI dimerization and clustering.'®

Affimers are engineered conformational binding proteins that
possess many desirable properties of antibodies, including high
specificity and high affinity binding, while additionally featuring sub-
stantial stability, simplicity, versatility, and cost-effective produc-
tion."®'® There are 2 types of Affimers, one based on the human
stefin A protein and the second on a consensus plant cystatin
sequence.'?° Affimers present 2 variable regions of 9 residues for
molecular recognition (supplemental Figure 3). Structurally, Affimers
have an alpha helix positioned above an antiparallel beta sheet,
which is different than the immunoglobulin fold in antibodies. Affim-
ers are more stable than antibodies and easily modified to the needs
of studying target protein function including the capability of intra-
cellular expression.?’ Affimers are isolated from a library comprising
~10° sequences using phage display, which overcomes the costs/
ethics associated with animals used for antibody production.?*2®

Here, we screened for Affimers targeting GPVI and characterized
their effect on ligand interactions, platelet aggregation, and in vitro
thrombus formation. We also mapped their binding sites on GPVI
and compared binding to GPVI monomer vs dimer. Our data show
that Affimers modulate GPVI function and bind different sites on
GPVL. GPVI dimer can be specifically targeted by Affimer D18, thus
representing a promising novel tool to further understand GPVI
dimerization or clustering on platelets. A novel dimeric epitope is
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identified on GPVI, representing a promising functional site for
developing inhibitors selectively targeting GPVI dimer in platelets.

Methods

The main experimental methods used in this study include enzyme-
linked immunosorbent assay (ELISA), microscale thermophoresis
(MST), platelet aggregation assays, flow cytometry, in vitro thrombus
formation assays, and native/hydrogen deuterium exchange mass
spectrometry, which are briefly described below. For further details,
please see the supplement. Other methods, including Affimer/GPVI
expression and purification, surface plasmon resonance (SPR), pull-
down assays, competition ELISA, biontinlyation/fluorescent labeling
of Affimer/GPVI, molecular modeling, platelet isolation, and blood
collection, are described in the supplement.

ELISA was performed by incubating Affimers with immobilized
GPVI-Fc on Maxisorp Nunc-immuno 96-well plates. Bound Affim-
ers were detected using horseradish peroxidase conjugated rabbit
anti—6-histag antibody (Cambridge Bioscience, Cambridge, United
Kingdom). Data collection and analysis were performed as previ-
ously described."®

MST was carried out on a NT.115 (NanoTemper GmbH, Munich,
Germany) instrument. Alexa Fluor 488 C5 maleimide—labeled Affim-
ers were mixed with increasing concentrations of GPVI proteins. Data
collection and analysis were performed as previously described.'®

For platelet aggregation assays, washed platelets were incubated
with Affimers at different concentrations for 15 minutes at 37°C.
Aggregation was induced by CRP-XL or collagen and monitored
using a Helena AggRAM (Helena Biosciences Europe, Tyne and
Wear, United Kingdom).

For flow cytometry, washed platelets were incubated with Affimers
conjugated to Alexa Fluor 488, CD42b™ allophycocyanin, with or
without CRP-XL, or with or without adenosine 5 -diphosphate
(ADP) for 20 minutes, followed by addition of 1% para-
formaldehyde/phosphate-buffered saline volume-to-volume ratio
(%) to halt the reaction.

In vitro thrombus formation assays were performed using Vena8
biochips (Cellix, Dublin, Ireland). Citrated human whole blood was
incubated with 3,3"-dihexyloxacarbocyanine iodide for 10 minutes
and perfused through collagen-coated microfluidic chips at 1000
per second for 2 minutes with or without GPVI Affirmers. After flow,
nonadherent platelets were washed off with phosphate-buffered
saline for 3 minutes.

For native mass spectrometry, mixtures of GPVI proteins and
Affimers were buffer exchanged into 0.2 M ammonium acetate (pH
6.9) before analysis.

Hydrogen deuterium exchange mass spectrometry (HDX-MS) was
carried out using a liquid handling system (LEAP Technologies)
coupled with an Acquity M-Class ultra-performance liquid chro-
matography/HDX manager (Waters). Samples were prepared by
mixing GPVI proteins and Affimers in 10 mM potassium phosphate
(pH 7.6). The HDX reactions were initiated by deuterated buffer
and incubated at 4°C for 0.5 to 10 minutes. The reactions were
then quenched, followed by proteolysis and peptide analysis.

Informed written consent was obtained for blood donations,
according to the Declaration of Helsinki. Ethical approval was
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obtained from the University of Leeds School of Medicine
Research Ethics Committee (19-006).

Results

Screening of GPVI-targeting Affimers

Two-phage display screens against biotinylated recombinant GPVI
monomer and dimer (supplemental Figure 4) were performed.

Purified Fc domain was screened in parallel to eliminate binders to
this domain. After 3 rounds of panning, 2x24 colonies were tested
for binding GPVI monomer and dimer by phage ELISA (Figure 1A-
B). Sequencing revealed 17 unique binders from the GPVI
monomer screen and 14 from the dimer screen. None of the
binders interacted with the Fc domain (Figure 1A-B). In contrast to
other Affimers that bound both monomer and dimer, Affimer D18
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Figure 1. Identification of GPVI Affimers and their effect on GPVI-ligand interactions and platelet aggregation. Screening of GPVI-binding Affimers raised against

GPVI monomer (A) and GPVI dimer (B) by phage ELISA. Fc domain (gray) was tested as a control. No protein was added in Blank (yellow). A total of 31 unique Affimers that bind

to immobilized GPVI monomer (blue) and GPVI dimer (green) with the highest affinity were identified from 48 clones. These clones are numbered as M1 to M24 and D1 to D24 for

Affimers screened against GPVI monomer and dimer, respectively. The effect of Affimers M17, D22, and the dimer-specific Affimer (D18) on GPVI dimer interaction with

immobilized CRP-XL (C) and collagen (D) were characterized by competitive ELISA and expressed as % inhibition as compared to buffer control. Affimer scaffold was also used

as a control. The effect of Affimers M17, D22 and D18 on CRP-XL (E) and collagen (F)—induced platelet aggregation was studied by aggregation assays. Data were normalized

using the scaffold control (100% aggregation) as reference. Data are presented as mean + standard deviation (SD); n > 3.

€ blood advances 13 AUGUST 2024 - VOLUME 8, NUMBER 15

AFFIMERS SELECTIVELY TARGET GPVI DIMER 3919

d-s|o1e/S80UBAPEPO0|q/B10 SUoneolIgNdyse//:dny Wwoly papeojumoq

-6892 10-'¢0C-APE EPOO|Q/6EBLETT/LLBEISGL/B/P

20z ¥snbny ¢ uo 3sanb Aq jpd-ulew



subcloned and expressed in Escherichia coli and purified
(supplemental Figure 5). Pull-down experiments were used to
confirm Affimer interaction with GPVI. We selected 3 Affimers for
further study based on pull-down experiments (data not shown)
and binding affinity. The affinities of Affimers for GPVI were
investigated by titrating Affimers over immobilized GPVI-Fc dimer
using ELISA. Affimers, M17, D22, and D18 showed the highest
affinities to GPVI dimer with Kpg of 3.6 £ 0.2 nM, 13.0 £ 1.2 nM,
and 0.14 * 0.02 nM, respectively (supplemental Figure 6).

Effects of Affimers on GPVI-ligand interactions

Effects of Affimers on interactions of GPVI with collagen and CRP-
XL were tested using competitive ELISAs. The Affimers inhibited
GPVI interactions with CRP-XL and collagen to varying degrees
(Figure 1C-D; supplemental Table 1). Among the 3 Affimers, D22
showed the strongest inhibition of GPVI interaction with both
ligands, at 98% (CRP-XL) and 84% (collagen). Slightly weaker
inhibition of GPVI interactions with CRP-XL and collagen was
observed for M17 and D18 (57% and 55% for CRP-XL; 74% and
73% for collagen, respectively). These data show that Affimers
modulate GPVI-ligand interactions.

Affimers modulate platelet aggregation

The effects of Affimers on platelet aggregation were characterized
using light transmission aggregometry. CRP-XL and collagen were
used to induce aggregation with or without preincubation with
Affimers. Three agonist concentrations were tested to determine
the optimal trigger (10 pg/mL for CRP-XL and 5 pg/mL for
collagen) for aggregation (supplemental Figure 7). It has been
reported that Fab fragments can trigger GPVI activation and
platelet aggregation on their own.?* To test the potential direct
effect on platelet aggregation, Affimers were added to washed
platelets, and the percentage of platelet aggregation without
additional trigger was recorded. Negligible aggregation (<20%)
was observed for M17, D22, and D18 (supplemental Figure 8). We
next investigated the effect of Affimers on CRP-XL and collagen-
mediated aggregation and found that Affimers M17 and D22
inhibited aggregation induced by both agonists (Figure 1E-F;
Table 1; supplemental Table 1). Inhibition with D18 was only
observed in CRP-XL but not collagen-induced aggregation at the
tested Affimer concentrations. Stronger inhibition of platelet
aggregation was observed for all Affimers when CRP-XL was used
as agonist compared with collagen. The weaker inhibition when
using collagen as agonist is likely due to the presence of receptor
a2p1, which has been reported to play a regulatory role in platelet
activation by facilitating platelet-collagen but not CRP-XL adhe-
sion.”?® Similar observations have been observed for Nb2, in which

Table 1. Summary of the key properties of GPVI Affimers

a much higher nanobody concentration was required to inhibit
collagen but not CRP-XL-induced platelet aggregation.® To
confirm that Affimers are specific for GPVI, we found no effect of
the Affimers on thrombin-induced platelet aggregation
(supplemental Figure 9).

Affimers inhibit CRP-XL-GPVI binding with different
efficacies

In our competition ELISA, D22 could almost fully inhibit CRP-XL
binding to GPVI dimer, whereas M17 and D18 only partially
inhibited the interaction (Figure 1C). The distinct inhibition effects
for these Affimers suggest different inhibition mechanisms on CRP-
XL binding. To further investigate this, we tested Affimers at mul-
tiple concentrations by competitive ELISA and determined their
maximum inhibition efficacies. Consistent with our previous
observations using a single Affimer concentration, we observed
that although D22 had a maximum inhibition efficacy of 99%, M17
and D18 only partially inhibited the binding, with maximum effi-
cacies of 69% and 619%, respectively (supplemental Figure 10).

Affimer D18 binds GPVI dimer but not monomer

Affimer D18 selectively bound GPVI dimer but not monomer in
phage ELISA (clone 18, Figure 1B). To further investigate the
selectivity of this Affimer, we developed an ELISA to analyze
binding of D18 to immobilized GPVI monomer, dimer, and Fc
domain. M17 and D22, which interacted with both GPVI monomer
and dimer in the phage ELISA, were also tested. Consistent with
the phage ELISA, M17 and D22 bound both monomer and dimer
(supplemental Figure 11A-B), whereas D18 bound GPVI dimer but
not monomer (supplemental Figure 11C). No binding was
observed for the Affimer scaffold with either monomer or dimer of
GPVI, and no GPVl-specific Affimer bound to the Fc domain
(supplemental Figure 11A-C). The Kp of M17 binding to GPVI
monomer and dimer was 11 £ 1 nM and 3.6 + 0.2 nM, respectively
(Figure 2A; Table 1; supplemental Table 2). D22 binds GPVI dimer
at Kp of 13 £ 1 nM, whereas binding is not saturable with GPVI
monomer, and a Kp >100 nM (Affimer concentration that gener-
ates half of the maximum binding signal) was estimated from the
data (Figure 2B; Table 1; supplemental Table 2). The Kp of D18
binding to GPVI dimer was 0.14 £ 0.02 nM, and no binding of D18
to GPVI monomer was observed at any Affimer concentration
(Figure 2C; Table 1; supplemental Table 2). Affimer scaffold did
not bind GPVI monomer or dimer (Figure 2A-C).

We next investigated the kinetics of the interactions of D18 with
GPVI by SPR. GPVI monomer, dimer, and Fc domain were flowed
over immobilized biotinylated D18 on a streptavidin chip, in com-
parison with M17 and D22. The Kp of M17 to GPVI monomer and

Platelet aggregation (agonist: Thrombus formation under flow

Affimer Binding sites on GPVI Kp GPVI monomer, nM Kp GPVI dimer, nM collagen/CRP) (collagen surface)
M17 141Y-149T 55+ 18 44+ 43 W =
D22 44S-53L 53 * 11 53+ 25 I 1
D18 113Q-123F 141Y-149T N.D. 0.23 + 0.01 -/l =

Down arrow () represents inhibition effect. Hyphen (-) represents no clear inhibition effect. Kp values were determined using SPR.

N.D., not determinable.
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Figure 2. Interaction of Affimer M17, D22, and D18 with GPVI monomer and dimer analyzed by ELISA, MST, and flow cytometry. ELISA: (A) M17 bound GPVI
monomer (blue circles) at Kp of 11 = 1 nM, and GPVI dimer (red squares) at Kp of 3.6 + 0.2 nM. (B) D22 bound GPVI monomer at Kp of 53 * 11 nM, and GPVI dimer at

Kp of 6.3 £ 2.5 nM. (C) No binding was observed for D18 and GPVI monomer. D18 bound GPVI dimer at Kp of 0.14 £ 0.02 nM. Kp, values were obtained through fitting data with
Hill equation. MST: (D) M17 bound GPVI monomer at Kp of 105 + 31 nM and GPVI dimer at Kp of 4 + 2 nM. (E) D22 bound GPVI monomer at Kp of 171 + 36 nM and GPVI
dimer at Kp >1 pM. (F) D18 bound GPVI dimer at Kp, of 0.5 £ 0.2 nM. No binding was observed for D18 to GPVI monomer. Kp, values were obtained through fitting data with Hill
equation. For ELISA and MST, data and Kp were presented as mean £ SD; n > 3. Flow cytometry: binding of Alexa Fluor 488 labeled Affimers scaffold, M17, D22, and D18 to
washed platelets was analyzed by comparing the mean fluorescence intensity before and after stimulation (A MFI) with CRP-XL (G) and ADP (H). D18, but not M17 and D22,

bound to activated platelets. Friedman test is used to determine statistical significance (P < .05). Data were presented as mean = SD; n > 4.

dimer was 55 * 18 nM and 44 * 4.3 nM, respectively
(supplemental Figure 12A-B; Table 1; supplemental Tables 2-3).
The Kp of D22 to GPVI monomer and dimer was 53 = 11 nM and
5.3 + 2.5 nM, respectively (supplemental Figure 12C-D; Table 1;
supplemental Tables 2-3). The Kp of D18 to GPVI dimer was
0.283 * 0.01 nM, whereas no binding was detected for D18 to

€ blood advances 13 AUGUST 2024 - VOLUME 8, NUMBER 15

GPVI  monomer (supplemental Figure 12E-F; Table 1;
supplemental Tables 2-3). No binding was observed for the Fc
domain (supplemental Figure 13).

Then, we used MST to study whether selective binding of Affimer
D18 to GPVI dimer is also observed in solution. M17 bound GPVI
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Figure 3. Effect of GPVI Affimers on thrombus formation in vitro. Human whole blood was incubated in the presence or absence of GPVI Affimers (Scaffold, M17, D22,

and D18; 10 pg/mL) for 156 minutes and perfused through collagen (50 pg/mL) coated microfluidic chips at 1000 per second for 2 minutes. After 2 minutes of flow, nonadherent

platelets were washed off with phosphate-buffered saline for 3 minutes. Images of stably adherent platelets and thrombi were taken by fluorescence microscopy and quantified

using ImagelJ. Data presented as representative images (scale = 20 pm) (A) and percentage surface coverage (B) at 2 minutes (repeated measures 1-way analysis of variance with

Sidak multiple comparisons test vs scaffold; *P < .05). (C-F) Percentage surface coverage over time up to 2 minutes. Data presented as mean + SD; n = 5.

monomer and dimer in MST with Kp of 105 + 31 nM and 4 + 2 nM,
respectively (Figure 2D; supplemental Table 2). D22 bound GPVI
dimer in MST with Kp of 172 + 31 nM. Binding did not reach
saturation with GPVI monomer. The Kp was estimated at >1 uM
(GPVI monomer concentration that generates half of the maximum
binding signal) based on the data (Figure 2E; supplemental
Table 2). D18 bound GPVI dimer at Kp of 0.5 £ 0.2 nM,
whereas no D18 binding to GPVI monomer was observed
(Figure 2F; supplemental Table 2). Taken together, the ELISA,
SPR, and MST data show that D18 binds GPVI dimer selectively
over monomer, and this occurs both in surface- and solution-based
reactions.

Flow cytometry binding assays were then performed to study the
(selective) binding of D18 to GPVI dimer on platelets. Washed
platelets were activated by CRP-XL and ADP in the presence of
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Alexa Fluor 488 labeled D18. Labeled M17, D22, and scaffold
were also tested in parallel with D18. A significant increase of
fluorescence was observed upon CRP-XL and ADP activation of
the platelets for D18 binding compared with the scaffold, M17, and
D22 (Figure 2G-H, supplemental Figure 14). These data indicate
that D18 can bind GPVI dimers generated through GPVI clustering
upon platelet activation with CRP-XL and ADP.

Affimers inhibit thrombus formation under flow

We next investigated the effects of Affimers on in vitro thrombus
formation under flow conditions by flowing whole blood over a
collagen-coated surface for 2 minutes, followed by a 3-minute
buffer wash. The rationale for this setup is to allow for platelet
adhesion for 2 minutes as per manufacturer instructions for the
Cellix VenaFlux system and to ensure platelets are stably adhered
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Affimer scaffold was used as control. Data were presented as mean = SD; n = 3.

after 2 minutes using a 3-minute buffer wash.’®?’ Fluorescent
images after 2 minutes of blood flow showed less thrombus for-
mation only in the presence of Affimer D22 compared with buffer or
scaffold controls (Figure 3A). Thrombus surface coverage was
quantified and compared at all time points before 2 minutes
(Figure 3B-F; Table 1). At 2 minutes, a significant reduction in
mean surface coverage was only observed with D22 (1.8%) but
not in the presence of M17 (3.8%) or D18 (4.1%) compared with
buffer or scaffold controls (7.8% and 6.5%, respectively;
Figure 3B). These data show that Affimers D22 inhibit thrombus
formation under flow.

Competition of Affimers with Nb2 for GPVI

Slater et al recently reported that GPVI Nb2 binds GPVI in the D1
domain, supported by a new GPVI-Nb2 crystal structure.® To
investigate where Affimers bind GPVI in relation to Nb2, we per-
formed competition ELISA by adding Nb2 with Affimers present on
immobilized GPVI dimer. At a molar ratio of 20:1 (Affimer:Nb2), we
observed strong inhibition by Affimer D22 (90%) on Nb2-GPVI
interaction (Figure 4A). These effects were concentration depen-
dent (Figure 4B). No inhibition was found for M17 and D18
(Figure 4A-B). These data indicate that although binding sites of
D22 may have some overlap with the Nb2 site, M17 and D18 bind
to distinct sites compared with the Nb2 site on GPVI.

Affimer binding sites on GPVI

To pinpoint the location where Affimers bind on GPVI, we per-
formed HDX-MS?® on Affimers M17, D22, and the dimer-specific
Affimer, D18. Several GPVI regions showed strong protection
from deuterium exchange upon Affimer binding, including 141Tyr-
149Thr on the D2 domain for M17 (Figure 5A; Table 1) and 44Ser-
53Leu on the D1 domain for D22 (Figure 5B; Table 1). For D18,
the protected region included 113Gin-123Phe and, to a lesser
extent, 141Tyr-149Thr on the D2 domain (Figure 5C; Table 1). The
regions with the strongest protection indicate key interacting sites
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on GPVI for the Affimers. Binding of M17 led to deprotection of
86Val-112Leu on GPVI, indicating allosteric conformational
changes upon M17 binding, resulting in destabilization of the
hydrogen bonding network and increased flexibility of these
regions. Our data suggest that 141Tyr-149Thr is a common site for
binding of both M17 and D18. To further investigate the degree of
overlap in this region, we performed a competition ELISA of D18
and M17 binding to GPVI. We observed a modest displacement of
M17-GPVI interaction by D18 (24%), compared with scaffold
(—2%) and D22 (-8%) controls, suggesting their binding sites in
this region are partially overlapping (supplemental Figure 15).
Together, the HDX-MS data identified key GPVI binding sites for
M17, D22, and D18 and an allosteric site upon M17 binding.

The Affimer binding sites were compared with CRP, Nb2, and
glenzocimab sites on GPVI (Figure 5D). We observed that Affimer
D22 site overlaps in part with the CRP and Nb2 sites on GPVI D1
domain. Tyr47, involved in both Nb2 and CRP binding, also forms
part of the D22 binding site on GPVI D1 domain (supplemental
Figure 2A). The binding site of Affimer M17, 141Tyr-149Thr,
includes part of the glenzocimab site on GPVI D2 domain (144Ala-
149Leu). No overlap was found for the major binding site of D18
on GPVI, 113GIn-123Phe, for all 3 ligands. Thus, although the
binding sites for D22 and M17 show some degree of overlap with
the sites for Nb2 and glenzocimab on GPVI, respectively, D18
largely interacts with a new region on GPVI that does not overlap
with any of these known sites.

Affimer D18 is a stable dimer

To further understand how dimer-specific Affimer D18 interacts
with GPVI dimer, the stoichiometry of this interaction was deter-
mined by native mass spectrometry. We observed that D18 was a
stable dimer on its own. M17, which was tested as a control, was
predominantly monomeric (Figure 6A; supplemental Figure 16).
This observation is consistent with the larger predicted molecular
weight from a calibrated size exclusion column compared with its
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Figure 5. The location of Affimer binding sites on GPVI for M17, D22, and D18. The residues involved in Affimer binding on GPVI determined by HDX-MS for M17 (A), D22
(B), and D18 (C) are displayed and colored on the crystal structure of GPVI (gray, PDB code: 2Gl7). The residues that had strong and weak protection effect upon Affimer

binding are colored blue and light blue, respectively. The residues that had strong and weak deprotection effect upon Affimer binding are colored red and light red, respectively.

Red, blue, and gray bars shown in each graph below the GPVI structure represent different GPVI peptide fragments generated by proteolysis in the presence and absence of

Affimers. The peptide fragment represented by red and blue bars have positive and negative differences in deuterium uptake, respectively. The peptide fragments represented by

gray bars have no significant changes in deuterium uptake. (D) Representation and comparison of the binding site residues of M17, D22, and D18 with collagen/CRP (cyan),

glenzocimab (green) and Nb2 (gray). The amino acids colored in blue and red had the strong protection and deprotection effect, respectively, upon the binding of Affimers.

theoretical monomeric weight and when compared with M17
(supplemental Figure 17). We next investigated whether D18
forms stable complexes with GPVI monomer and dimer. To mini-
mize the interference of glycosylation in molecular weight deter-
mination, a variant of GPVI (N72Q) that does not undergo
glycosylation were used in the experiment.® We found that no
complex formation was observed in a 1:1 molar ratio solution of
D18 with GPVI (Figure 6B-C). Stable complex formation was,
however, detected when D18 was added to GPVI-Fc dimer using
the same experimental conditions. When GPVI dimer was added to
D18 at 1:1 molar ratio, complex formation was observed. The
molecular weight of the complex corresponds to 1 GPVI dimer
interacting with 1 D18 dimer (1:1 complex). (Figure 6D-E). These
data confirm that D18 is a stable dimer and specifically binds GPVI
dimer but not monomer.
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Modeling of GPVI-Affimer interactions

To further analyze how Affimers interact with GPVI at the molecular
level, we modeled Affimers M17, D22, and D18 and their interac-
tions with GPVI using high ambiguity driven protein-protein dock-
ing.?® Residues in the variable loops of Affimers, and those in GPVI
identified by HDX-MS, were used as active residues in the docking.
For all models generated, the best scoring structure from the top
cluster, with the lowest energy was selected. The molecular model
for Affimers used in the docking were generated by AlphaFold®°
(Figure 6F). When the M17-GPVI model (Figure 6G) was super-
posed with glenzocimab-GPVI complex, we observed that the 2
variable loops of M17 were between the CDR loops of the heavy
and light chains of glenzocimab (supplemental Figure 18A). To
investigate the possible mechanisms for M17 inhibition on CRP-
GPVI binding, we modeled CRP-XL to the M17-GPVI model by
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Figure 6. Characterization of GPVI-Affimer complexes by native mass spectrometry and molecular modeling. (A-E) The native mass spectra of D18 (dimeric,

measured molecular weight is at 21 760 Da, approximately two-fold larger than that calculated based on the monomeric protein sequence, at 11 013 Da) (A), GPVI monomer

N72Q (monomeric, measured molecular weight is at 21 380 Da, similar to that based on the monomeric protein sequence, at 21 249 Da) (B), GPVI monomer N72Q with D18 (no

complex formation detected, measured molecular weight is at 21 380 and 21 810 Da for GPVI and D18, respectively) (C), GPVI-Fc N72Q (monomeric, measured molecular

weight is at 98 040 to 98 530 Da due to heterogeneous glycosylation in Fc, similar to that based on the sequence of the monomeric protein, at 95 154 Da) (D), and GPVI-Fc

N72Q with D18 (1:1 complex formation detected, measured molecular weight is at 120 641 Da, similar to that based on the protein sequence of the 1:1 complex, at 117 181 Da)

(E). Orange diamonds and blue spheres represent GPVI and Affimer D18, respectively. (F) Molecular model of D18 dimer generated using AlphaFold. Molecular docking model of

M17 (G), D22 (H), and D18 (l) interacting with GPVI generated using high ambiguity driven protein-protein docking. GPVI is colored in orange and brown. The regions interacting

with Affimers predicted by HDX-MS are colored in cyan. Affimers are colored in magenta and green. The variable loops that are crucial for interacting with GPVI are colored in red.

structure superposition with the CRP bound GPVI structure. We
observed that, unlike that reported for glenzocimab, bound CRP
did not cause steric hindrance of M17 binding (supplemental
Figure 18B-C). Superposition of the D22-GPVI model
(Figure 6H) with the Nb2-GPVI complex showed that D22
occupies the same location as Nb2. The 2 variable loops of D22
were in close proximity with the CDRs of Nb2 (supplemental
Figure 18D). Before the generation of a D18-GPVI model, using
HDX-MS, we confirmed that residues in the variable loop region of
Affimer D18 are involved in GPVI dimer binding (supplemental
Figure 19). In the D18-GPVI model (Figure 6l; supplemental
Figure 20), dimeric D18 interacts with the D2 domains from 2
symmetrically arranged GPVI molecules. The major and minor D18
binding regions on GPVI, 113GIn-123Phe and 144Ala-149Leu,
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respectively, form a large binding surface and are close to the
variable loops in D18. Together, these docking data provide
structural insights into the molecular arrangements of the GPVI/
Affimer complexes (Figure 6F-l; supplemental Figure 20;
supplemental Figure 21).

Discussion

This study shows that GPVI-CRP-XL/collagen interaction and
GPVI-mediated platelet aggregation can be modulated by Affim-
ers. Effects of Affimers on the binding of GPVI to fibrin were not
probed, which is a limitation of our study. Affimer D22 reduced
thrombus formation in whole blood under in vitro flow conditions.
The binding sites for Affimers M17, D22, and D18 on GPVI were
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characterized and shown to represent several functional hot spots
that could play important roles in regulating GPVI-ligand binding.
Furthermore, we show that D18 is a stable dimer that binds
selectively to GPVI dimer with subnanomolar affinity. D18 also
selectively interacts with GPVI dimer generated by CRP-XL/ADP
activation on platelets. These findings imply that D18 can specif-
ically recognize GPVI dimer and thus serve as a promising tool to
selectively detect GPVI dimerization or clustering in platelets.

The configuration of GPVI on resting platelets has been a topic of
debate for many years, reported either as predominantly monomer®
or as a mixture of monomer and dimer.'®®" Other studies suggest
a key role for GPVI clustering in platelet function.?” It has been
reported that the expression level of GPVI dimers was increased in
patients with stroke and obesity.**** A higher GPVI dimer level in
patients was associated with higher platelet aggregation and P-
selectin exposure in response to GPVI-specific agonists or
measured by a dimer-specific antibody compared with healthy
controls,”*%%* suggesting that the GPVI dimer could be a potential
biomarker and/or an antithrombotic target. Antibodies and Fabs
that specifically recognize GPVI dimer have been previously
reported.®®®” Nevertheless, the location of these dimer-specific
sites on GPVI have not been identified. Using the dimer-specific
Affimer D18, the dimeric epitope on GPVI was revealed for the
first time, which could be informative for the design of novel
antithrombotic agents specifically targeting GPVI dimer.

Our data show that Affimer D18 is a stable dimer itself. Similar
Affimer dimers have been reported previously, including those tar-
geting lysine linked di-ubiquitins. These Affimers bind di-ubiquitins at
high affinity accompanied by slow off rate, whereas a much-reduced
binding was observed for monoubiquitins.®® Structural and
biochemical data suggested that linked di-ubiquitins are conforma-
tionally flexible and can adopt distinct conformations in solution, and
Affimer dimers can select and recognize a suitable dimer confor-
mation from the population of conformations that they can adopt.®®
This is reminiscent of our observations for the D18 dimer that spe-
cifically binds GPVI dimer, either linked artificially by Fc domain or on
the platelet surface, at high affinity (Kp = 0.2 £ 0.01 nM) with slow
off rate (1.3 £ 0.04 x 10™s™), whereas negligible binding is
observed for the monomer. Based on the above observations, it is
possible that the conformational selection mechanism as suggested
for Affimers dimers and linked di-ubiquitins may also apply for D18
dimer and GPVI dimer interaction.

Our D18-GPVI dimer model reveals a distinct dimeric arrangement
of 2 GPVIs not observed in previous crystallographic studies. The
dimer interface is formed by the pC'-E, A-B/F-G loops, and pC
regions of the D2 domain (supplemental Figure 21C). Each D18
dimer subunit interacts with the identified residues in each GPVI
dimer subunit through the variable loop. This is different to that of
the back-to-back and domain-swapped dimer structures (2Gl7,
50U7, and 7NMU), in which GPVI either interacts with each other
through the C-terminal p strand of the D2 domain (8G) (back-to
back)®” or through the pG of D2 domain and PE-F strands of the
D1 domain (domain swap).®

Although the binding site for M17 on GPVI overlaps in part with the
glenzocimab site, our structure comparisons show that binding of
M17 to GPVlis unlikely to cause potential steric hindrance on CRP
binding.'® The much smaller size of Affimers compared with Fab
fragments (12 vs 50 kDa, respectively) may account for the
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absence of potential steric hindrance in the inhibition. Moreover,
M17 does not interact with the C-C' loop, which is the major
binding site for glenzocimab. These observations suggest that M17
may use a different mechanism to inhibit CRP-GPVI binding
compared with glenzocimab. Furthermore, our HDX-MS data
suggest that M17-GPVI binding generates a conformational
change in the D1-D2 hinge region. Our competition ELISA data
show that M17 inhibits CRP binding with a much lower efficacy
than that observed for D22, which fully inhibits the binding. These
data imply that M17 is likely an allosteric inhibitor that partially
inhibits CRP binding on D1 domain through conformational
changes generated when binding to the distal D2 domain. Similar
allosteric changes at the D1-D2 hinge region have not been
observed for glenzocimab in the crystal structure. Further studies
are needed to understand how allosteric changes of GPVI
generate a partial inhibitory effect of M17 on ligand binding.

Our HDX-MS data show that D22 bound GPVI at a similar site as
Nb2. Interestingly, we did not observe deprotection effect on the
C-C’ loop, suggesting that D22 binding to GPVI should not induce
a conformation change in the C-C' loop. This also suggests that
the domain-swapped GPVI dimer observed in the crystal structure
of the Nb2-GPVI complex® may not exist for the D22-GPVI complex
in solution. It is possible that the formation of domain-swapped
GPVI dimer with bound Nb2 is induced by conditions during the
crystallization process or by differences between nanobody and
Affimer binding to GPVI. Further work is needed to investigate
whether this domain-swapped dimer is physiologically relevant.

In conclusion, we show that Affimers modulate GPVI interaction
with collagen/CRP-XL and inhibit CRP-XL and collagen-mediated
platelet aggregation by GPVI. We observed that Affimers M17,
D22, and D18 bind to different sites on GPVI. Using HDX-MS, the
Affimers’ binding sites on GPVI revealed several regions that play
important roles in regulating ligand binding. D22 inhibited in vitro
thrombus formation. Moreover, we found that Affimer D18 selec-
tively binds GPVI dimer but not monomer in platelets, thus repre-
senting a promising tool to further understand the role of the GPVI
dimerization and clustering in platelet function. Finally, we show
that D18 is a stable dimer that forms a 1:1 complex with GPVI
dimer. A dimeric epitope on the D2 domain was found that could
be used as a promising site for designing antithrombotic agents
that specifically bind GPVI dimer.
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