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Abstract: Objective: Motivated by Health Care 4.0, this study aims to reducing the dimensionality
of traditional EEG features based on manual extracted features, including statistical features in
the time and frequency domains. Methods: A total of 22 multi-scale features were extracted from
the UNM and Iowa datasets using a 4th order Butterworth filter and wavelet packet transform.
Based on single-channel validation, 29 channels with the highest R2 scores were selected from a
pool of 59 common channels. The proposed channel selection scheme was validated on the UNM
dataset and tested on the Iowa dataset to compare its generalizability against models trained without
channel selection. Results: The experimental results demonstrate that the proposed model achieves
an optimal classification accuracy of 100%. Additionally, the generalization capability of the channel
selection method is validated through out-of-sample testing based on the Iowa dataset Conclusions:
Using single-channel validation, we proposed a channel selection scheme based on traditional
statistical features, resulting in a selection of 29 channels. This scheme significantly reduced the
dimensionality of EEG feature vectors related to Parkinson’s disease by 50%. Remarkably, this
approach demonstrated considerable classification performance on both the UNM and Iowa datasets.
For the closed-eye state, the highest classification accuracy achieved was 100%, while for the open-eye
state, the highest accuracy reached 93.75%.

Keywords: machine learning; Parkinson’s disease; EEG; channel selection; wavelet packet transform

1. Introduction

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder that
affects millions of people worldwide [1]. It is characterized by various motor and non-motor
symptoms, thus making it a complex condition to diagnose and manage. The cardinal
motor symptoms of Parkinson’s disease include bradykinesia (slowness of movement),
rigidity (stiffness of muscles), tremors, and postural instability. However, PD is not solely
a motor disorder. Patients may also experience a wide range of non-motor symptoms,
such as depression, anxiety, sleep disturbances, cognitive impairment, and autonomic
dysfunction, as well as some non-motor symptoms, such as sleep disturbances, may
appear in the early stage of PD [1,2]. To date, the diagnosis of PD is mainly based on
clinical assessment and the presence of specific motor symptoms. There is no definitive
diagnostic test for PD, so healthcare professionals must carefully evaluate the patient’s
history, perform a thorough physical examination, and rule out other conditions that
may mimic PD symptoms. Motivated by Health Care 4.0, which is a new era of health
care propelled by the advent of Industry 4.0 [3], numerous researchers have explored
the potential of utilizing wearable sensors signal [4] for the computer-based diagnosis of
Parkinson’s disease, such as using an accelerometer [5,6] and EEG. EEG testing, a non-
invasive and cost-effective technique widely available in medical centers that captures the
electrical and magnetic field signals generated by neuronal activity on the scalp at specific
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frequencies [7], has demonstrated effectiveness in diagnosing and predicting various
neurological disorders, including epileptic seizures, the development of biomarkers for
Alzheimer’s disease, and the detection of abnormalities in schizophrenia [8–10].

Nevertheless, EEG signals present two main challenges for analysis: their stochastic
nature and low signal-to-noise ratio (SNR) [11]. The low SNR indicates a high noise level
within EEG signals, thus complicating pre-processing efforts, as current algorithms partially
filter out the signal while attempting to remove noise. This adversely impacts classification
model performance. Moreover, the inherent randomness of EEG signals demands the
use of sophisticated nonlinear and dynamic models for effective feature extraction and
classification, leading to considerable computational time and resource requirements. To
address the low SNR issue, several advanced pre-processing algorithms have been devel-
oped. For example, the research by [12] provided evidence of the effectiveness of their
Artifact Subspace Reconstruction (ASR) as an automate method for removing artifacts. This
study suggested that a cutoff parameter between 20 and 30 is preferable, as opposed to the
previously suggested and default values of 5 to 7, which resulted in excessive removal of
brain activities. And it also revealed that ASR enhances the quality of ICA decomposition,
as indicated by an increased number of dipolar independent components. Gu et al. [13]
have also proposed an automatic ocular artifact removal (AOAR) method for EEG signals,
which outperformed the other methods in terms of the root mean square error, SNR, and
correlation coefficient, particularly in cases with lower SNR levels. Islam et al. [14] made a
good review of those studies in this field.

Considering that the classification models remain complex due to the high dimension-
ality of the feature vector, three approaches are commonly employed to reduce dimension-
ality: feature selection, frequency band analysis, and channel selection. Feature selection
primarily relies on methods such as single-factor analysis of variance or chi-square analysis,
thereby often employing p-value calculations [15,16]. Alternatively, deep learning tech-
niques can be employed to fuse the feature matrix [17]. Frequency band analysis focuses
on examining different frequency rhythms to identify more informative patterns. Similar
to the aforementioned methods, channel selection aims to identify the most informative
EEG channels to reduce the dimensionality of the feature vector at the channel level.

To reduce the dimensionality of traditional EEG features based on manual extraction
(such as statistical features in the time and frequency domains), we propose a channel selec-
tion approach using single-channel classification, thus building upon previous research [18].
We selected a common set of 29 channels for our analysis based on the montage utilized in
two publicly available datasets used in the referenced study. The specific contributions are
outlined as follows:

• A Parkinson’s disease EEG classification model depending on the public UNM and
Iowa datasets has been proposed, which uses multi-scale features: a time domain,
frequency domain features extracted by band-pass filter and wavelet packet transform,
and an entropy feature (Section 3);

• We introduced a channel selection method consisting of 29 channels, which achieved a
remarkable recognition accuracy of 100% on the UNM training dataset. Furthermore,
the model successfully passed the out-of-sample testing on the Iowa dataset, thus
demonstrating its generalizability. (Sections 4 and 5);

This paper follows the below structure: In Section 2, several state-of-the-art studies
relevant to the domain of this paper will be discussed. In Section 3, we will discuss
the detailed implementation processes and methods for the dataset, data pre-processing,
and feature engineering. In Section 4, we will delve into the channel selection based on
single-channel classification. In Sections 5 and 6, we will present the classification results,
including the validation of the proposed channel selection method on the training dataset
and the out-of-sample testing, as well as a comparison of the classification performance
before and after channel selection.
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2. Related Works

Gulay et al. [19] introduced a hybrid feature extraction method called EEMD VAR
for EEG signals, thus integrating the EEMD and VAR techniques. Empirical comparisons
were made between the EEMD VAR method, Hjorth parameters, and the AR model.
The proposed algorithm achieved a maximum classification accuracy of 100%, thereby
significantly outperforming the maximum accuracy of 72% attained by the AR method
and Hjorth parameters. This highlights the potential of the EEMD VAR method to provide
robust classification performance. Furthermore, the results show superior overall diagnostic
accuracy, sensitivity, specificity, and AUC values for subjects with Parkinson’s disease (PD).
Among the classification algorithms evaluated, the ANN stands out as the most prominent
based on all performance evaluation metrics considered in this study. One limitation of
this study lies in the lack of discussion or exploration of channel selection for EEG signals.
The researchers did not explain the reason for the channel selection and running of the
out-of-sampling test, which raises concerns about the reliability of their channel selection
approach. The use of the ANN significantly increases the computational costs associated
with feature extraction and model training as well.

The study of Coelho et al. [20] examined the effectiveness of Hjorth features extracted
from electroencephalographic (EEG) signals as potential biomarkers for Parkinson’s disease
(PD). Biomarkers are measurable indicators of some biological state or condition. For
Parkinson’s disease, typical examples include α-synuclein, uric acid levels, mutations in
relevant genes such as LRRK2 or GBA, and brain MRI, which have been widely applied in
Parkinson’s disease risk assessment and symptom diagnosis [21]. Currently, the research
on AI-based Parkinson’s disease diagnosis using EEG is still exploring the use of machine
learning features as potential biomarkers. The focus has primarily narrowed to EEG
frequency bands associated with Parkinson’s disease symptoms, such as alpha, theta, and
beta bands [22–24]. Notably, the prominent role of the beta band in diagnosing resting
tremors suggests that features related to the beta band could serve as new PD biomarkers.
Their analysis utilized EEG data from PD patients exposed to auditory stimuli, which were
obtained from the publicly available database known as The Patient Repository for EEG
Data + Computational Tools (PRED + CT). The investigation revealed notable differences
in the proposed biomarkers across various brain lobes, including parietal, frontal, central,
and occipital regions, as well as between healthy individuals and those with PD. Support
Vector Machine (SVM), Random Forest, and K-Nearest Neighbors (KNN) algorithms
were employed for the classification task, along with a five-fold cross-validation process.
The proposed method achieved a high accuracy of 89.56% in distinguishing PD patients
from healthy individuals using an SVM classifier. However, the study lacks research on
channel selection, because although it identified some channels that exhibited outstanding
performance on different features, it did not further conduct training and validation for
channel selection.

Smrdel [25] employed both common spatial patterns (CSPs) and a Laplacian mask
to facilitate robust selection and feature extraction in their study. They utilized the CSP
whitening matrix to identify the channels that exhibited the greatest potential for distin-
guishing between EEG signals from healthy individuals and those with PD. By leveraging
the selected features obtained through CSPs, they achieved a classification accuracy of 85%
when categorizing EEG records into groups of healthy controls and PD patients. Further-
more, using features extracted via the Laplacian operator, they achieved a classification
accuracy of 90%; however, their research lacks validation of the channel selection approach.
Although they identified some channels with the highest information content, they failed to
demonstrate whether this channel selection approach can prevent overfitting when applied
to datasets beyond their own.

Dar et al. [26] introduced a novel architecture, 1D-CRNN-ELM, which merges an
Extreme Learning Machine (ELM) with a one-dimensional Convolutional Recurrent Neural
Network (1D-CRNN) for emotion detection in patients with Parkinson’s disease (PD). This
hybrid approach leverages the strengths of both neural networks to enhance the feature
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extraction and classification of EEG data. This framework is designed to handle various
emotions and experimental conditions, thus enabling cross-dataset learning. After pre-
processing the EEG data, the CRNN serves as a feature extractor, while the ELM functions
as the classifier. The CRNN can be fine-tuned with additional datasets to learn new emotion
sets. The study utilizes cross-dataset learning by training on PD patient data and fine-
tuning with publicly available datasets and vice versa. Using an 80:20 train–test data split,
the model achieved high accuracy values. Using the SEED-IV dataset to fine-tune the
architecture resulted in an accuracy of 92.5%. Leave-one-out cross-validation yielded high
mean accuracy values for all datasets in the experiment. The study also demonstrated that
high-performance emotion detection is feasible using only 1-second EEG segments from
14 channels. However, the CRNN’s computational costs remain high, and despite extensive
validation within their dataset, cross-dataset validation is still lacking. Additionally, the
reliability of the ELM is questionable.

Numerous studies have been conducted on the publicly available New Mexico and
Iowa datasets, some of which serve as the foundation for this research. A new LEAPD index
was created by Anjum et al. [27], which effectively and quickly distinguishes individuals
with Parkinson’s disease (PD) from control subjects. The LEAPD method encodes the
power spectral density (PSD) using a limited number of parameters and holds promise
for generating PD diagnostics or enhancing control algorithms for real-time applications.
Moreover, it has the potential to improve the accuracy of predicting motor progression
and refining classifications of PD-related sub-types. The utilization of the LEAPD index
can contribute to the development of cost-effective diagnostic tools and real-time control
signals for Parkinson’s disease and other neurodegenerative conditions. Levodopa is a
medication commonly used for the treatment of Parkinson’s disease [4,28]. However, it
remains unclear whether the channel selection method based on the LEAPD feature would
be effective when applied to traditional multi-scale features. Furthermore, the study did not
explore the channel selection scheme based on these traditional features within the dataset.
In our study, we employed single-channel evaluation for channel selection. Another study
focusing on the detection of abnormal EEG signals has provided insights into the extraction
of sub-band wavelet coefficients and the calculation of statistical characteristics using the
Discrete Wavelet Transform (DWT) [29]. This study extracted six statistical features from
the wavelet coefficients of each sub-band. Additionally, this study has addressed the issue
of feature redundancy in multi-scale feature extraction through the utilization of ensemble
learning techniques.

3. Machine Learning-Based Classification Model for Parkinson’s Disease Patients’
EEG Signal

The classification model was developed based on the UNM dataset and tested on the
UNM dataset and Iowa dataset. The implementation structure of this model is illustrated
in Figure 1. The UNM dataset was divided into a training set and a validation set, while
the Iowa dataset was utilized as an external validation data source. After undergoing
pre-processing, all data were subjected to two feature extraction approaches, thus resulting
in the generation of 13 and 9 distinct features, respectively. These 22 features constituted the
feature vector used to train six commonly used machine learning models. The model’s clas-
sification performance and the reliability of the channel selection approach were evaluated
based on the obtained results.
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Figure 1. The implementation structure of the proposed EEG classification model.

3.1. Datasets

We utilized electroencephalogram (EEG) recordings obtained from two separate stud-
ies conducted at the University of New Mexico (UNM) in Albuquerque, New Mexico, and
the University of Iowa (UI) in Iowa City, Iowa [22,27,30]. The UNM dataset consisted of
EEG recordings from 27 patients diagnosed with Parkinson’s disease (PD) and 27 control
participants (a control record was excluded from the current study due to its insufficient
duration), while the UI dataset included EEG recordings from 14 PD patients and 14 control
participants. For the PD patients from the UNM dataset, EEG recordings were obtained
during the OFF medication sessions, specifically in the defined OFF levodopa period, which
occurred 12 h after the last dose of dopaminergic medication.

As discussed by Anjum et al. [27], the control participants were carefully matched
with the PD patients in terms of age and sex, and there were no significant differences in
education or pre-morbid intelligence measurements between the two groups. Parkinson’s
disease patients underwent neuropsychological and questionnaire assessments in their
ON state, with a neurologist administering the United Parkinson’s Disease Rating Scale
(UPDRS) motor scores. Resting state EEG recordings were acquired from UNM subjects in
both eyes-open and eyes-closed conditions, while EEG data from the 28 Iowa subjects were
recorded solely in the eyes-open condition. The details are shown in Table 1.

Table 1. PD and Control Participant Demographics.

Dataset UNM Iowa

Condition PD Control PD Control

Sex 17M 10F 17M 10F 6M 8F 6M 8F
Age 69.5 ± 8.7 69.5 ± 9.3 70.5 ± 8.7 70.5 ± 8.7

MMSE 28.7 ± 1 28.8 ± 1 - -
MOCA - - 25.9 ± 2.7 27.2 ± 1.7
UPDRS 22.2 ± 10.3 - 13.4 ± 6.6 -

Year since Dx 5.7 ± 4.2 - 5.6 ± 3.2 -
EEG recording (min) 3.59 ± 1 3.63 ± 1.8 3.11 ± 1.2 3.17 ± 0.9

BDI 7.6 ± 5.3 4.8 ± 4.8 - -
Year of Ed 17.3 ± 3.3 16.6 ± 3.1 16.6 ± 3.7 16.6 ± 2.8

Year of Ed (Parents) 12.5 ± 3.8 12.5 ± 3.1 - -
LED (mg) 707.4 ± 448.6 - 796 ± 409 -

NAART 45.2 ± 10.3 47.1 ± 7.5 - -

3.2. Pre-Processing

The EEG signals underwent a filtering process ranging from 0.1 Hz to 100 Hz, with a
sampling rate of 500 Hz, using two different 64-channel montages. In the UNM dataset,
the online reference was set to channel CPz, while in the Iowa dataset, it was set to channel
Pz. Consequently, after removing channels that exhibited differences across those two
montages, 59 channels were utilized for subsequent feature extraction and classification.
To address artifacts caused by eye blinks, independent component analysis (ICA) was
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employed, thus resulting in the extraction of 56 independent components [31,32]. Addi-
tionally, a 60 Hz notch filter was applied to eliminate interference from the power line.

For the UNM dataset, each EEG recording comprised two distinct sessions: one
with eyes closed and another with eyes open. Following the feature extraction process,
the features corresponding to these two events were identified and segregated into two
separate datasets.

The two events, namely eyes closed and eyes open, had a duration of 60 s each,
thus resulting in 30,000 samples for each event within a single recording. To facilitate
further analysis, both events were divided into 15 segments, with each segment containing
2000 samples. Within each segment, we extracted six sub-bands to enable additional feature
engineering. These sub-bands included delta (1–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz),
alpha2 (10–13 Hz), alpha (8–13 Hz), and beta (13–30 Hz). The boundary frequencies were
treated as separate sub-bands. To separate these sub-bands, we employed two methods: a
4th order Butterworth IIR filter and Wavelet Package Transform. From each sub-band, we
extracted multi-scale features, thus capturing diverse aspects of the EEG signal.

3.3. Feature Extraction

In order to extract multi-scale features from the aforementioned six sub-bands, both IIR
filtering and Wavelet Packet Transform were applied to extract the corresponding frequency
ranges from the original signal, as shown in Figure 2. We employed a 4th Butterworth IIR
filter as a band-pass filter and a notch filter to generate sub-bands and extract 13 features.
The purpose of the notch filter was to eliminate noise from the power frequency signals
at 60 Hz and 180 Hz. Next, we extracted the six sub-bands mentioned earlier from each
pre-processed segment by utilizing the IIR filter as six corresponding bandpass filters. From
each sub-band, we extracted a total of 13 features, thus consisting of 9 time domain features,
three frequency-domain features, and one entropy feature, as shown in Table 2, where
MAD represents for the mean value of the signal’s absolute deviation, which is expressed
as below:

MAD =

1
m

m

∑
i

|xi − u| i = 1, 2, · · · , m (1)

where xi represents the ith data point in the sequence, while u represents the arithmetic
mean value of the sequence. RMAV represents for the ratio of the absolute mean value be-
tween two sub-bands. To derive the remaining nine features, we employed Wavelet Packet
Transform using the db5 wavelet. For each segment, we utilized the pre-processed signal
without any resampling. In order to generate the 6 sub-bands, we set the decomposition
level to six, thus taking into consideration the Sampling Theorem. Specifically, we selected
six coefficients: AAAAAA6, AAAAAD6, AAAADA6, AAAADD6, AAAAD5, and AAAD4,
as illustrated in Figure. From these coefficients, we calculated nine features, as outlined in
Table 3.

As was mentioned before, there are two kinds of eye state in UNM dataset: eyes
open and eyes closed. Considering the significant differences in data collected based on
these two eye conditions and the non-parallel nature of the data collection process, we
applied our feature engineering separately to these two types of data, thus resulting in
corresponding feature sets, as shown in Table 4. For each participant with one eye state
and one feature extraction method, the dimensionality of the feature vector came out to
59 × 15 × 6 × 9 or 13. Here, 59 represents the common number of channels, 15 denotes the
number of segments, 6 indicates the number of sub-bands extracted, and 9 or 13 signifies
the number of extracted features depending on different feature extraction methods.
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Figure 2. Feature engineering structure for one segment signal, where features obtained from different
methods are stored separately.

Table 2. Features extracted from sub-bands generated by band-pass filter.

Scales Feature Types

Time domain Mean, Absolute Mean, Power Mean, Standard Deviation, Kurtosis, Skew-
ness, MAD, Interquartile Range for every Sub-Band and RMAV for Adja-
cent Sub-Bands.

Frequency domain Freqeuncy Center, Mean Value of Frequency and Root Mean Square of
the Frequency for Every Sub-Bands.

Entropy Sample Entropy for every Sub-Band.

Table 3. Features extracted from sub-bands generated using Wavelet Packet Transform.

Scales Feature Types

Coefficient Mean, Absolute Mean, Power Mean, Standard Deviation, Kurtosis, Skew-
ness, MAD, Interquartile Range of the Coefficients for every Sub-Band
and RMAV for Adjacent Sub-Bands.

Table 4. Dimensionality of the feature vectors in different feature datasets for one participant.

Eye States Feature Extraction Methods Dimensionality

Eyes Closed
IIR 69,030

Wavelet 47,790

Eyes Open
IIR 69,030

Wavelet 47,790

4. Channel Selection

Channel selection is one of the main contributions of this study. Our channel selection
was based on the UNM dataset, where the training set was used to train a simple SVM
model, and the validation set was used to evaluate the classification performance of each
channel. Figures 3 and 4 demonstrate the classification performance of each channel
after feature extraction using Wavelet Packet Decomposition. It is worth noting that
some channels shown in the images do not exist in the Iowa dataset and were ignored in
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subsequent testing. The evaluation metric for assessing the classification performance of
individual channels is the R2 score, and we set the threshold for channel selection at 0.7,
thus meaning that channels with an R2 score below 0.7 were not accepted. Following this
criterion, a total of 29 channels that met the requirement were selected based on the two
feature extraction methods. For the feature set derived from the 4th Butterworth IIR filter,
11 channels were selected: ‘Oz’, ‘F4’, ‘P8’, ‘CP2’, ‘Cz’, ‘Fp2’, ‘P2’, ‘FC5’, ‘T7’, ‘O1’, and ‘FC6’.
For the feature set derived from Wavelet Packet Decomposition, 22 channels were selected:
‘TP7’, ‘TP9’, ‘TP10’, ‘FC3’, ‘FC4’, ‘FC5’, ‘PO7’, ‘PO8’, ‘CP3’, ‘CP5’, ‘P1’, ‘P3’, ‘P4’, ‘P5’, ‘P6’,
‘P8’, ‘AF3’, ‘C4’, ‘F5’, ‘Oz’, ‘O1’, and ‘O2’. That is, 29 channels were selected in total. Figure 5
shows an example of the relationship between 20 selected channels’ feature values and
model outputs. In order to visualize this relationship into a 2D figure, we simply took the
average value of all feature values for each channel, as the shown feature value. SHAP
(SHapley Additive exPlanations), which is a method rooted in game theory that elucidates
the results of machine learning models, was applied by using a SHAP Python tool to
describe the impact on model output for every feature value in this figure [33]. Therefore,
positive correlation in this diagram can be observed as high feature values accompanied
by positive SHAP values, and all these 20 channels showed a positive correlation with the
model output.

Figure 3. Single-channel evaluation R2 score result for eyes-closed (a) and eyes-open (b) feature
dataset extracted by Wavelet Packet Transform.

Figure 4. Single-channel evaluation brain maps for eyes-closed (a) and eyes-open (b) feature dataset
extracted by Wavelet Packet Transform. The color bar refers to the R2 score, and high R2 score means
high single-channel classification performance.
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Figure 5. Relationship between channel feature value and the model output.

5. Results

In the multi-channel classification task, six machine learning models were employed:
Logistic Regression (LR), KNN, SVM, AdaBoost, XGBoost, and Random Forest. Logistic
Regression had a maximum iterate number of 5000, while KNN used seven neighbors.
The linear kernel was applied to SVM, just like in the single-channel evaluation task. The
learning rates for AdaBoost and XGBoost 1.5.1 were both set to 0.01. AdaBoost terminated
boosting at a maximum of 50 estimators, while XGBoost had a gamma value of 0.05. The
Random Forest model had a default setting of 100 trees. Considering the objectives of this
study, as well as the complexity and limited interpretability inherent in deep learning, we
have not devised a comprehensive deep learning EEG classification framework. Instead, a
simple neural network with two fully connected (FC) layers with layer sizes of 512 and 1
was employed as a classifier. The dropout rate was set to 0.2 after the first FC layer, and we
chose binary cross entropy as the loss function; the optimizer was Adam, as usual. All the
parameters were selected by applying a grid search. For training and testing, data with
features from all channels and the best channels were used separately. The results were
presented and compared in our previous study [18]. In this session, we will briefly give
the overall evaluation results on the UNM dataset, which are shown in Table 5 and mainly
focus on the channel selection results and the out-of-sample testing.
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Table 5. Overall accuracy results with all 22 features on two eyes states with different numbers
of channels.

State

Models

LR KNN SVM AdaBoost
XGBoost

RF ANN
Tree Linear

Eyes 29 best channels 93.75% 93.75% 100% 75% 87.5% 93.75% 87.5% 93.75%
closed All 59 channels 93.75% 87.5% 93.75% 81.25% 87.5% 81.25% 87.5% 62.5%

Eyes 29 best channels 87.5% 62.5% 81.25% 75% 75% 81.25% 81.25% 93.75%
open All 59 channels 81.25% 62.5% 81.25% 81.25% 75% 75% 75% 62.5%

We conducted testing on the evaluation set of the UNM dataset and calculated the
R2 score, which is shown in Figure 6. The possibility of selecting fewer channels to
significantly reduce the dimensionality of the features was also evaluated by comparing the
classification performance of two feature extraction methods, along with their respective
channel selection schemes and the intersection of these schemes. The experimental results,
presented in Figure 7, provide insights into the assessment of selecting fewer channels to
achieve a greater reduction in feature dimensionality.

Figure 6. R2 score comparison on eyes-closed evaluation set.

Due to the availability of only open-eye state data in the Iowa dataset, we designed
two training schemes for out-of-sample testing: one using only open-eye state data from the
UNM dataset as the training set and the other using both eye states from the UNM dataset.
Both schemes utilized the Iowa dataset as the test set, and the results are presented in
Table 6. When using the UNM (open-eye) dataset as the training set and the Iowa (open-eye)
dataset as the test set, the LR model performed the best, thus correctly classifying 24 out of
28 samples, followed by the SVM and other models, with 23 out of 28 samples correctly
classified. All models showed better performance compared to the results obtained from
testing within the UNM dataset, with an average increase in accuracy of approximately
0.03 and a negligible average decrease in the R2 score of less than 0.01.
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Figure 7. Comparison between different channel selection schemes on eyes-closed dataset.

Table 6. Out-of-sample Test Results.

Score Type Eye State LR KNN SVM AdaBoost XGBoost-Tree XGBoost-Linear RF ANN Mean

Accuracy
eyes open 0.857 0.714 0.821 0.821 0.821 0.821 0.786 0.821 0.808

eyes open & closed 0.857 0.786 0.857 0.821 0.821 0.786 0.786 0.929 0.829

Sensitivity
eyes open 0.786 0.714 0.714 0.929 1.0 0.714 0.643 0.786 0.786

eyes open & closed 0.714 0.623 0.714 0.929 0.929 0.642 0.571 0.929 0.754

Specificity
eyes open 0.929 0.714 0.929 0.714 0.643 0.929 0.929 0.857 0.830

eyes open & closed 1.0 0.929 1.0 0.714 0.714 0.929 1.0 0.929 0.901

AUC_ROC
eyes open 0.841 0.783 0.832 0.796 0.827 0.821 0.849 0.821 0.821

eyes open & closed 0.827 0.855 0.852 0.816 0.841 0.786 0.867 0.929 0.845

R2 Score
eyes open 0.714 0.678 0.786 0.714 0.75 0.75 0.679 0.286 0.676

eyes open & closed 0.786 0.786 0.75 0.786 0.714 0.679 0.714 0.714 0.742

Furthermore, the results obtained by combining open-eye and closed-eye samples
from the UNM dataset for training showed improvements compared to using only open-eye
data. The average increase in accuracy was approximately 0.01, while the average decrease
in sensitivity was around 0.05. On the other hand, the average increase in specificity was
approximately 0.07, and the average increase in the area under the curve (AUC) was around
0.01. Additionally, the average increase in the R2 score was approximately 0.02.

6. Discussion

Our findings, as shown in Figure 6, indicate that the dataset with channel selection
achieved a higher average R2 score compared to the dataset with all channels for the
seven classifiers examined. Specifically, the KNN, XGBoost-linear, and Random Forest
models showed improvements, while the AdaBoost and XGBoost-Tree models exhibited
noticeable decreases in performance. However, when considering the overall picture, the
classification models without the application of channel selection demonstrated a relatively
poorer fit on the test set but showed better fit on the training set. This suggests that the
utilization of all channels during training led to the occurrence of overfitting, thus resulting
in inferior performance on the test set. These findings also demonstrate the successful
implementation of our channel selection approach, which effectively balances the need for
excellent classification performance (accuracy, sensitivity, precision, etc.) while mitigating
the overfitting associated with involving all channels in the classification process.
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Considering further selection of the chosen channels, we took the intersection (4 chan-
nels) and union (29 channels) of the channel selection results based on traditional multi-scale
features (11 channels) and statistical features of the wavelet coefficients (22 channels). We
then performed cross-validation on the training set to obtain the average R2 score and
compared it with the R2 score on the test set. According to Figures 7 and 8, it was observed
that using the 11 channels effectively reduced the R2 score on the training set while main-
taining a better accuracy and R2 score on the test set, whereas the 22 channels did not
exhibit the same behavior. Subsequently, testing the intersection (four channels) revealed a
significant decrease in the R2 score on the training set, but the accuracy, sensitivity, and
R2 score on the test set exhibited excellent performance, thus averaging above 0.9. This
demonstrates that among the chosen 29 channels, the four channels ‘Oz’, ‘P8’, ‘FC5’, and
‘O1’ primarily contributed to the observed effects (although the 11-channel scheme exhib-
ited better classification accuracy on the test set). The accuracy and R2 score reflect the
classification performance and fitting degree on the respective test sets, and higher values
indicate better model performance. According to Figure 8, it is evident that the 29-channel
selection scheme remains the most reliable, with the majority of results concentrated above
an R2 score of 0.7 and an accuracy of 0.8. Moreover, the R2 score exhibited minimal fluctua-
tions in the high accuracy (0.9) region, thus consistently hovering around 0.8 and 0.9 and
indicating good generalization ability of this scheme. Further testing can be conducted on
out-of-sample data. In contrast, the four-channel selection scheme clearly exhibited severe
overfitting, and therefore, this scheme was not considered for subsequent out-of-sample
validation. It is worth noting that the 11-channel scheme showed similar performance,
with an R2 score above 0.6 and an accuracy above 0.7. Although it is not as outstanding
as the 29-channel scheme, it can be considered as an alternative depending on the specific
application. However, it showed a larger fluctuation range in the high accuracy (0.9) region,
thus indicating poorer generalization ability.

Figure 8. Comparison of 10 rounds of three-fold cross-validation results between different channel
selection schemes on eyes-closed dataset.

From our out-of-sample testing results, it is evident that the proposed channel se-
lection scheme has passed the external testing phase and exhibited comparable or even
better performance than the original internal testing conducted on the dataset. Moreover,
we observed that incorporating both open-eye and closed-eye samples in the training set
was beneficial for classifying EEG signals under the open-eye state. We speculate that this
improvement can be attributed to the fact that EEG signals recorded during the closed-eye



Sensors 2024, 24, 4634 13 of 15

state are purer, with less noise compared to signals obtained during the open-eye state.
Participants also experience less interference during the closed-eye state, thus making
the signals closer to the theoretically pathological original signals and more valuable as
references. In other words, training the machine learning model with a combination of
closed-eye and open-eye datasets helps the model consider the features of both scenar-
ios comprehensively and adjust the confidence intervals to approach the real range of
Parkinson’s disease onset. This, in turn, improves the classification of signals under the
eyes-open condition.

7. Conclusions

EEG has proven to assist in the clinical diagnosis of Parkinson’s disease. However,
the computational costs associated with feature engineering and machine learning training
on EEG signals are substantial, which hinders the monitoring and assisted diagnosis of
Parkinson’s disease in uncontrolled environments such as homes. Numerous studies have
been conducted in this direction. In this paper, we conducted a study utilizing the publicly
available UNM dataset and proposed a Parkinson’s disease EEG classification model
based on machine learning and traditional feature extraction techniques. We effectively
reduced the feature dimensionality by employing a single-channel selection approach, thus
theoretically reducing it by more than half. The proposed channel selection scheme not
only achieved a maximum classification accuracy of 100% within the UNM dataset but also
demonstrated its generalization capability through out-of-sample testing using the Iowa
dataset. This verifies the effectiveness and generalizability of our channel selection method.
In the future, we aim to develop an automated EEG channel selection model utilizing deep
learning techniques based on our current methods. This model is designed to provide
tailored channel selection schemes for individual Parkinson’s patients. Additionally, we
anticipate extending this approach to other EEG-related tasks, such as epilepsy diagnosis
and emotion recognition, thereby enhancing its applicability and utility in various clinical
and research settings. We believe that this channel selection approach can provide valuable
insights for future research in related fields.
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