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Recursive Self-Composite Approach Towards

Structural Understanding of Boolean Networks
Jongrae Kim, Senior Member, IEEE, Woojeong Lee, and Kwang-Hyun Cho, Senior Member, IEEE,

Abstract—Boolean networks have been widely used in systems
biology to study the dynamical characteristics of biological
networks such as steady-states or cycles, yet there has been
little attention to the dynamic properties of network structures.
Here, we systematically reveal the core network structures using
a recursive self-composite of the logic update rules. We find that
all Boolean update rules exhibit repeated cyclic logic structures,
where each converged logic leads to the same states, defined as
kernel states. Consequently, the period of state cycles is upper
bounded by the number of logics in the converged logic cycle.
In order to uncover the underlying dynamical characteristics by
exploiting the repeating structures, we propose leaping and filling
algorithms. The algorithms provide a way to avoid large string
explosions during the self-composition procedures. Finally, we
present three examples—a simple network with a long feedback
structure, a T-cell receptor network and a cancer network—to
demonstrate the usefulness of the proposed algorithm.

Index Terms—Boolean networks, logic structures, kernel states,
biological networks, systems biology

I. INTRODUCTION

BOOLEAN network formalism is a useful mathematical

modelling approach to describe complex interactions

and dynamics of biological systems [1]. In this formalism,

individual biological entities, such as genes, proteins, or other

molecular components, are represented by nodes, while their

interactions are depicted as edges. These nodes are assigned

with time-varying binary states – either on (active) or off

(inactive) – thus facilitating a simplified modelling process

and allowing for a broader range of interactions while still

capturing essential dynamical properties. Logical relationships

among these nodes are specified through Boolean functions.

Following these rules, node states are updated synchronously

or asynchronously, eventually converging to a stable state

known as an attractor. It has been previously demonstrated that

stable attractor states in gene regulatory networks correspond

to distinct cellular phenotypes or cell fates [2]–[6]. In this

regard, extensive studies have been done to investigate the
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long-term behaviour of biological networks represented by

Boolean network models, aiming to predict real intra-cellular

dynamics across various biological processes, including the

cell cycle [7], differentiation [8], [9], and tumorigenesis [10],

[11]. Such studies have not only enhanced our understanding

of biological phenomena but also enabled the prediction of

drug responses for precision medicine of complex diseases

[12] and the identification of potential therapeutic targets for

drug discovery [13], [14].

Let us consider the Boolean networks given by

x1(k + 1) = f1[x1(k), x2(k), . . . , xn−1(k), xn(k)]

x2(k + 1) = f2[x1(k), x2(k), . . . , xn−1(k), xn(k)]

...

xn(k + 1) = fn[x1(k), x2(k), . . . , xn−1(k), xn(k)] (1)

where xi(k) is the i-th Boolean state equal to either true

(equivalently T or 1) or false (equivalently F or 0) at k for

i = 1, 2, . . . , n− 1, n, k is the non-negative integer in [0,∞),
xi(0) is the initial state, fi(·) is a synchronous update rule

consisting of the Boolean operations conjunction (and, ∧),

disjunction (or, ∨), and negation (not, ¬) and xi(k + 1) is

the updated Boolean state for i = 1, 2, . . . , n− 1, n.

The Boolean network shown in (1) can be written in a

compact form as follows:

x(k + 1) = f [x(k)] (2)

where

x(k) =
[
x1(k) x2(k) . . . xn(k)

]T
, (3a)

f [x(k)] =
[
f1[x(k)] f2[x(k)] . . . fn[x(k)]

]T
(3b)

and (·)T is the transpose.

The state space is 2n-dimensional and the main interest in

Boolean network analysis is finding steady-states and periodic

cycles. In the synchronous update of Boolean networks, every

initial state converges to a steady state or a periodic cycle. As

n increases, the dimension of the state space, 2n, increases

exponentially. Therefore, executing the exhaustive search to

find attractors is infeasible even for moderate-size networks,

e.g., n around 30. One of the well-known approaches in

Boolean networks called the semi-tensor approach is also an

exhaustive method [15]. The aggregation algorithm proposed

in [16] relies on the specific modular structure of the networks.

Hence, Boolean network analysis results are often obtained

from probabilistic approaches based on simulations over a

finite number of random samples. Finding attractors or control
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Fig. 1. The interaction graph and state transition map of the Boolean network,
(4), are shown. There are three steady-states, {s = (000), (011), (111)} and
one cycle with the period 2, {s = (010) ↔ (001)}, where s = (x1x2x3).

strategies for Boolean networks is also known to be NP-hard

[17].

On the other hand, there are rich theoretical results in the

continuous system described by ordinary differential equa-

tions: dx/dt = f(x), where d(·)/dt is the derivative with

respect to time, t, and f(x) is a nonlinear function satisfying

the existence and uniqueness conditions of the solution. The

equilibrium points and their stability are inherent properties

of the right-hand side of the differential equation, i.e., f(x).
The solution of f(x) = 0 is the equilibrium point and the

eigenvalues of df(x)/dx at the equilibrium point provide the

stability condition. The main motivation of our approach to

be shown is from the question about whether the right-hand

side of (2), i.e., f [x(k)], can also provide any clue for the

characteristics of Boolean networks. A similar motivation in

[18] and [19] focusing on the network structures leads to

the design of control of Boolean networks that is potentially

applicable to a class of large-scale Boolean networks with

strong structural controllability and stabilizability properties.

In the following sections, first, the motivation of the

proposed method is illustrated with a simple toy example.

Secondly, we present the main results of the recursive self-

composition approach to investigate the structure of Boolean

networks. Thirdly, we apply the proposed method to various

examples including a simple network with a long feedback

path and two biological networks – a T-cell signalling pathway

and a cancer signalling network – highlighting the advantages

of the proposed method. Finally, the conclusions are made.

II. RECURSIVE SELF-COMPOSITE BOOLEAN NETWORK

A. Motivations

Let us consider the following Boolean network model:

x1(k + 1) = x1(k) ∧ x2(k) (4a)

x2(k + 1) = x3(k) (4b)

x3(k + 1) = x2(k) (4c)

The model has feedback loops connecting all three states and

such feedback loops are important structural characteristics of

many biological systems. Since the right-hand side of x1(k+1)
in (4a) is of the conjunction of x1(k) and x2(k), the 75% of

x1(k+1) is 0 (False), i.e., the 25% of x1(k+1) is 1 (True). All

four possible outputs from the conjunction of x1(k) and x2(k)
produce 0 except when both are 1. Using the same approach,

examining the right-hand sides of x2(k+1) and x3(k+1) in

(4), the probability that the output of x2(k + 1) or x3(k + 1)
is 0 or 1 is 50%.

The question is how accurate these probabilities are with

respect to the final state. The final state is a steady state or a

state belonging to a cycle. Figure 1 shows the interaction graph

and transition map, where the state, s, is equal to (x1x2x3).
Three steady states and one cycle are shown in red. If we

consider all eight states in Figure 1 and count the number of

states with the final state x1 = 1, there is only one case. In all

other cases except (x1x2x3) = (111), x1 becomes 0. Hence,

the probability for x1 equal to 0 in the final state is 87.5%, 7

out of 8. It is not equal to the 75% that was estimated earlier.

The cause for this difference is the usage of one-step

propagation equation. So, a longer propagation would pro-

vide a better estimation. Any exact calculation by exhaustive

numerical simulation considering all possible states is not

feasible for large-size networks. Instead, let us consider the

two-step propagation symbolically as follows:

x1(k + 2) = x1(k + 1) ∧ x2(k + 1)

= [x1(k) ∧ x2(k)] ∧ x3(k)

= x1(k) ∧ x2(k) ∧ x3(k) (5a)

x2(k + 2) = x3(k + 1) = x2(k) (5b)

x3(k + 2) = x2(k + 1) = x3(k) (5c)

This two-step prediction is obtained by substituting the one-

step prediction twice. Similarly, the three-step propagation is

obtained as follows:

x1(k + 3) = x1(k + 1) ∧ x2(k + 1) ∧ x3(k + 1)

= [x1(k) ∧ x2(k)] ∧ x3(k) ∧ x2(k)

= x1(k) ∧ x2(k) ∧ x3(k) (6a)

x2(k + 3) = x2(k + 1) = x3(k) (6b)

x3(k + 3) = x3(k + 1) = x2(k) (6c)

The four-step propagation is given by

x1(k + 4) = x1(k + 1) ∧ x2(k + 1) ∧ x3(k + 1)

= x1(k) ∧ x2(k) ∧ x3(k) (7a)

x2(k + 4) = x3(k + 1) = x2(k) (7b)

x3(k + 4) = x2(k + 1) = x3(k) (7c)

and the procedures find that the four-step propagation is

the same as the two-step propagation. We refer to these

substitution steps as the recursive self-composition procedure.

As shown in Figure 2, the update logic itself switches

between the two update rules. While the x2 and x3 propagation

rules cross-update between the two, the x1 update rule con-

verges to the conjunction of the three states. By inspecting the

right-hand side of the converged update rule, the probability

of x1 converging to the final state equal to 0 is 7 out of 8,

which coincides with the true probability.
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Fig. 2. The Boolean logic in (4) switches between two update rules.

In the exhaustive approach, the transition matrix, L, de-

scribes the updates of eight states in Figure 1 as follows:

sk+1 =















1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1















︸ ︷︷ ︸

L















(000)
(001)
(010)
(011)
(100)
(101)
(110)
(111)















︸ ︷︷ ︸
sk

(8)

In the semi-tensor approach [15], sk or sk+1 is the state vector

with the element corresponding to the current state equal to 1

and the rest set to 0, i.e.,

sk =
[
s0 s1 . . . s2n−1

]T
(9)

where si = 1 for i equal to the decimal number whose binary

number corresponds to the current state (x1x2 . . . xn) and si =
0 for the others, where i ∈ {0, 1, 2, . . . , 2n−1}. For instance, if

the initial state for (x1, x2, x3) is equal to (010), then, s2 = 1
and the rest of si equal to 0.

s0 =
[
0 0 1 0 0 0 0 0

]T
(10)

(010), i.e., s2 = 1, is converted to (001), i.e., s1 = 1, as shown

in Figure 1, and Ls0 provides the corresponding transition

state, s1, i.e.,

s1 =
[
0 1 0 0 0 0 0 0

]T
(11)

Further iterations reveal that L2k = L2 and L2k+1 = L3

for k = 1, 2, . . .. Hence, the algorithms constructed in [15]

can find all steady states and cycles by inspecting L2 and

L3. However, one of the main drawbacks of this approach is

the requirement for always checking all 2n states to construct

L. Hence, the algorithm is limited to solving only small or

moderate-size Boolean networks only.

On the other hand, the approach we propose does not require

explicitly checking 2n states or constructing the matrix L. As

shown in Figure 2, the recursive self-composition provides

the converged cyclic logic without checking the 23 states. The

following methods and results in the paper do not have links

to the semi-tensor approach. We use semi-tensor notations to

improve the clarity of proofs or explanations.

B. Main Results

Assumption 1 (Synchronous Update): All states in the

Boolean network given by (2) are updated synchronously. The

states in the right-hand-side of (2) is the one at the same step.

Definition 1 (Recursive Self-Composite): The p-times recur-

sive self-composite of the Boolean network is given by

x(p) = f [x(p− 1)] = f [f(x(p− 2))] = . . .

= f [f(f . . . (f(x(0)))]

= f ◦ f ◦ f ◦ . . . ◦ f
︸ ︷︷ ︸

p−times

[x(0)] = fp[x(0)] (12)

where p is a positive integer.

Theorem 1 (Convergence of Recursive Self-Composition):

All recursive self-composition of the synchronous Boolean

network given by (2) converges to a steady-state logic or a

cyclic logic, i.e,

fp
∗+r(x) = fp

∗+r+ℓ∗(x) (13)

where p∗ between 0 and 2n is the minimum number of

recursions when the logic starts repeating itself, r is a non-

negative integer and ℓ∗ between 0 and 2n is the period of the

logic cycle, which is equal to the least common multiple of

all state cycle lengths.

Proof: Deterministic synchronous update Boolean networks

have a finite number of states, i.e., 2n, any initial state repeats

the same state at longest in 2n steps. In the case of converging

to a steady state, there exists the smallest integer ps ∈ [0, 2n]
such that x(ps) = x(ps + r) for all integer r ≥ 0. In the case

of converging to a state cycle with the period ℓ, there exists

the smallest integer pc ∈ [0, 2n] such that x(pc) = x(pc + ℓ).
Let p∗ be the largest value among ps and pc for all steady

states and cycles and ℓ∗ be the period of a state cycle. Rewrite

the equation for the cycle as x(p∗) = x(p∗ + ℓ∗). It leads to

fp
∗

[x(0)] = fp
∗+ℓ∗ [x(0)] (14)

From the number of compositions larger than p∗, the state

belongs to one of the states in the longest state cycle, the

following equation is satisfied for r = 1, 2, . . .,

x(p∗ + r) = x(p∗ + ℓ∗ + r) (15)

and this provides

fp
∗+r[x(0)] = fp

∗+ℓ∗+r[x(0)] (16)

for all x(0) in the period state cycle. Repeating the same

procedure for each state cycle provides the common ℓ∗ to be

the least common multiple of all ℓ∗.

Finally, assume that the logic cycle is strictly longer than

ℓ∗, say ℓ∗ + 1, and the initial state is given by fp
∗

[x(0)].
At the (ℓ∗ + 1)-th step, the logic returns to the first logic,

fp
∗

[x(0)], and provides the same state as the initial state. This

contradicts the definition of a state cycle by making the two

states identical. Therefore, the longest logic cycle must be

equal to ℓ∗. �
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When ℓ∗ is equal to 0, it corresponds to the case that there

is only one steady-state logic. If ℓ∗ is equal to 3, three update

rules switch between them. For instance, the Boolean network

given in (4) has p∗ equal to 2, when the logic repetition begins

to start, and ℓ∗ equal to 2, which is the period of logic cycles.

Remark 1: In the worst case, if p∗ is equal to 2n, the

computational cost to find a repeating logic is at least as

expensive as the exhaustive search. This is inevitable in exact

algorithms for solving NP-hard problems.

Theorem 2 (Longest Cycle Upper Bound): All cycle lengths

of every Boolean logic cannot be longer than the length of the

converged logic cycle, ℓ∗.

Proof: Let us assume there exists a cycle of the period, m,

strictly longer than ℓ∗. Let sp∗ be the state for the first time

arrived in the cycle at p∗-step from the state sp∗−1, which is

not in the cycle, and the cycle propagates as follows:

sp∗−1
L
−→ sp∗

L
−→ sp∗+1

L
−→ sp∗+2

↓ L

sp∗+ℓ∗
L
←− sp∗+ℓ∗−1

L
←− . . .

L
←− sp∗+3

L ↓

sp∗+ℓ∗+1
L
−→ . . .

L
−→ sp∗+m−1

L
−→ sp∗

where sp∗ in the last line is equal to the one in the first line and

the cycle repeats. By the definition of cycle, si 6= sj for i 6= j.

Also, notice that as sp∗+m = sp∗ and fp
∗+m(x0) = fp

∗

(x0)
m must be an integer multiple of ℓ∗.

As m is strictly greater than ℓ∗, consider (p∗+ ℓ∗+1)-step

using the composition logic as follows:

sp∗+ℓ∗+1 = Lsp∗+ℓ∗ → x(p∗ + ℓ∗ + 1) = fp
∗+ℓ∗+1[x(0)]

where x(p∗ + ℓ∗ + 1) corresponds to sp∗+ℓ∗+1. By Theorem

1, the following equality satisfies

fp
∗+ℓ∗+1[x(0)] = fp

∗+1[x(0)] (17)

Hence,

sp∗+ℓ∗+1 = sp∗+1 (18)

This contradicts si 6= sj for i 6= j in the cycle. Therefore, no

cycle can have a longer period than ℓ∗.

As the interval p∗ + k ≤ i or j ≤ p∗ +m − k with i 6= j
and a positive integer k shifts the starting point of the cycle

k-step forward, the proof for the shifted interval is the same

as the one for k = 0 shown above. �

The two logics, ℓ∗ = 2, switch between them in the example

shown in Figure 2, where p∗ is equal to 2. If there is a cycle

with a period of 4, the states in the cycle (s0, s1, s2 and s3)

must be different from each other. Let each state in the cycle,

sr, correspond to fp
∗+r[x(0)] for r equal to 0, 1, 2, or 3. The

left-hand side of (17) becomes f2+2+1[x(0)] = f2+3[x(0)],
whose corresponding state is s3. The right-hand side of (17),

becomes f2+1[x(0)] corresponding to s1. Hence, s3 is equal

to s1, and this cannot be allowed in the cycle. Similarly, we

can show that s0 is equal to s1. This implies that the period

of a probable cycle is 2.

Definition 2 (Kernel States Set): The kernel states set, K,

of the synchronous Boolean network, (2), includes all steady-

states and the states belonging to cycles.

For instance, all the states indicated in red in Fig-

ure 1 are the kernel states of the network and K =
{(000), (001), (010), (011), (111)} or equivalently K =
{s0, s1, s2, s3, s7}.

Theorem 3 (Kernel States Set of Converged Logic): The one-

step propagated state, x(1), by the converged logic in (13),

i.e., x(1) = fp
∗+r[x(0)], converges the same kernel states set

of the original Boolean network for any fixed non-negative

integer r.

Proof: If a steady-state is absent in the kernel set of a

converged logic, then it contradicts the property of steady-

states. Hence, the proof for steady-states cases becomes trivial.

Let us consider a cycle of the period, ℓ∗, as follows:

≺s0 →︸︷︷︸
Ls0

s1 →︸︷︷︸
Ls1

s2 →︸︷︷︸
Ls2

. . . →
︸︷︷︸

Lsℓ∗−1

sℓ∗ (19)

Let the initial state, x(0), correspond to s0. And, it propagates

p∗ steps as follows:

x(1) = f [x(0)]→ x(2) = f [x(1)] = f2[x(0)]→ . . .

. . .→ x(p∗) = f [x(p∗ − 1)] = fp
∗

[x(0)] (20)

As x(0) starts in the cycle, all propagated states are in the

cycle. Hence, x(p∗) is equal to one of the states in the cycle.

Specifically, x(p∗) is equal to the state corresponding to sr∗ ,

where r∗ = p∗ − ℓ∗q, which is in [0, ℓ∗], q is the maximum

integer such that ℓ∗q is less than or equal to p∗.

Without loss of the generality, let us assume that r∗ is equal

to 2, i.e., x(p∗) corresponds to s2. It implies that: s2 is an

element of the kernel state set of fp
∗

, s3 is an element of the

kernel state set of fp
∗+1 and so forth.

Let us choose the initial state, x(0) corresponding to s1
and repeat the same procedure. Then, r∗ becomes 3 and this

results in: s3 is an element of the kernel state set of fp
∗

, s4
is an element of the kernel state set of fp

∗+1 and so forth.

For the shorter cycles less than the period ℓ∗, the same steps

provide the proof that all the cycle states must be in the kernel

state of each of the converged logic. Therefore, the converged

logic includes all states in the cycles. �

Theorem 4 (Longest Length Cycle): If there exists only one

state cycle, its period is equal to the period of the logic cycle,

ℓ∗.

Proof: By Theorem 3, the range set of every converged logic

is identical with each other as the kernel set, K. Hence, once

the logic converges to the logic cycle, whose period is ℓ∗, the

mapping from K to K repeats ℓ∗ times. Each of the mappings

must be different from each other. Otherwise, the existence of

the logic cycle equal to ℓ∗ is violated. In addition, due to the

periodicity of the logic cycles, the ℓ∗-th mapping brings the

states back to the states mapped by the first logic cycle. �
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Definition 3 (Kernel Logic): The Kernel logic, fp
∗+k∗

is the

converged logic having the same steady states and cycles as

the original Boolean logic, where k∗ is an integer between 0

and ℓ∗ − 1.

For instance, the converged logic in the right-hand side of

Figure 2 has the same three steady states and one cycle as the

original network given by (4).

Theorem 5 (Existence of Kernel Logic): For every Boolean

network, there exists at least one kernel logic among the

converged logic cycles.

Proof: Given that there are ℓ∗ number of converged logic,

fp
∗+k, where k is an integer from 0 to ℓ∗ − 1, take t-time

self-composites for a fixed k logic as follows:

fp
∗+k ◦ . . . ◦ fp

∗+k ◦ fp
∗+k

︸ ︷︷ ︸

t−times

[x(0)] = f t(p
∗+k)[x(0)] (21)

p∗ + k can be expressed as

p∗ + k = mℓ∗ + r (22)

where m is the largest integer satisfying p∗+k ≥ mℓ∗, where

r can be any integer between 0 and ℓ∗ − 1 as k is between

0 and ℓ∗ − 1. Among the logic corresponding to each r, we

choose the logic for r = 1 and multiply t as follows:

t(p∗ + k) = tmℓ∗ + t (23)

Hence, we can cover all integers from 0 to ℓ∗−1 by varing t.
Therefore, it covers all ℓ∗ cyclic logic and there exists always

at least one kernel logic. �

Remark 2 (Leaping & Filling): One of the ways to speed up

the self-composition iteration and possibly increase the chance

to avoid large string-length explosions is leaping by perform-

ing larger-step composition instead of a one-step composition.

First,

x(k + 2) = f2[x(k)] = g[x(k)]

is obtained. Secondly,

x(k + 4) = g[x(k + 2)] = g2[x(k)] = h[x(k)]

then,

x(k + 8) = h[x(k + 4)] = h2[x(k)]

and we continue until the logic converges. Once the logic con-

verges, we apply f(·) repeatedly and obtain the logic between

the leaps. For instance, h[x(k)] converges and h2[x(k)] is

equal to h[x(k)]. Then, the logic for x(k + 5), x(k + 6) and

x(k + 7) are obtained by the filling sequence as follows:

x(k + 5) = f [x(k + 4)] = f{h[x(k)]}

x(k + 6) = f [x(k + 5)] = f2{h[x(k)]}

x(k + 7) = f [x(k + 6)] = f3{h[x(k)]}

Algorithms 1 and 2 provide the summaries of the procedures,

and Algorithm 3 shows the one-step composition process

switches to the leaping and filling process when a large string-

length explosion occurs. The way of choosing some values in

Algorithm 1 Leaping(nleap : the number of leaping)

1: Set p = 1, q = 1, nloop = 0
2: while nloop < nleap do

3: Set p← 2p
4: Substituting x(k + q) = fq[x(k)] into:

5: x(k + p) = fp[x(k + q)]
6: Set q ← p and nloop ← nloop + 1
7: end while

8: return x(k + p) = fp[x(k)], where p = 2nleap

Algorithm 2 Filling(nleap)

1: Set p = nleap/2 + 1
2: while p < nleap do

3: Obtain x(k + p) = fp[x(k)]
4: p← p+ 1
5: end while

6: return x(k + p) = fp[x(k)]
7: for all p ∈ {1, 2, . . . , nleap/2− 1}+ nleap/2

Algorithm 3 Switching(tmax: maximum computing time)

1: Set nw, i← 0 and p← 1
2: while True do

3: Set nf and j ← 2
4: ——(p-step recursion)——

5: for j < nf do

6: n← j × p
7: x(n) = fn[x(0)]
8: j ← j + 1
9: if (Computing time for p-step recursion) > tmax or

logic converges then

10: break the for-loop

11: end if

12: end for

13: ——(Leaping)————

14: if logic converges then

15: break the while-loop

16: end if

17: Set nleap and Leaping(nleap)
18: if (Computing time for leaping) > tmax then

19: p← 2nleap

20: end if

21: i← i+ 1
22: if i > nw then

23: Declare the logic failed to converge

24: break the while-loop

25: end if

26: end while

27: ——(Filling)————

28: if logic converges then

29: Filling(nleap)
30: if (Computing time for filling) > tmax then

31: Declared the logic failed to converge

32: end if

33: end if
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Logic #1

Logic #4

Logic #5

Logic #6

Logic #2

Logic #3

where n is positive integer

Fig. 3. The Boolean logic in (24) cycles between six update rules.

the switching algorithm is ad-hoc or heuristic, for example,

the number of p-step iteration, nf , and the number of leaping,

nleap. There are places to automatize the optimal selection of

these values.

III. EXAMPLES & DISCUSSION

Example 1 (Longer feedback network): The following

Boolean network is an extended network of (4) having a longer

feedback chain between x2 and x7:

x1(k + 1) = x1(k) ∧ x2(k) (24a)

x2(k + 1) = x3(k) (24b)

x3(k + 1) = x4(k) (24c)

x4(k + 1) = x5(k) (24d)

x5(k + 1) = x6(k) (24e)

x6(k + 1) = x7(k) (24f)

x7(k + 1) = x2(k) (24g)

By the recursive compositions, the logic converges at p∗ = 5
to the cyclic logic whose period, ℓ∗, is equal to 6 as shown in

Figure 3. It has three steady-states, a cycle with period 2, two

cycles with period 3 and nine cycles with period 6. The number

of elements in the kernel states set is 65 (= 3+1×2+2×3+
9× 6). Among the six logics in the cycle, Logic #2 and #6 in

Figure 3 are the kernel logic. By inspecting the right-hand side

of the converged logic, the common characteristics found are

as follows: x1 equal to 1 is a rare event, and the other states

equal to 0 or 1 have the same chance. This coincides with

the fact that there is only one kernel state with x1 equal to 1

among the 65 kernel states. Hence, we would be able to design

numerical and lab experiments to find rare events, which would

be challenging to find even in numerical experiments based on

Monte Carlo type random simulations.

Example 2 (T-cell receptor network): A T-cell receptor

Boolean network model in [20] having 37 states with 3 control

inputs is given by

AP1(k + 1) = Fos(k) ∧ Jun(k), Ca(k + 1) = IP3(k)

Calcin(k + 1) = Ca(k), cCbl(k + 1) = ZAP70(k)

CRE(k + 1) = CREB(k), CREB(k + 1) = Rsk(k)

DAG(k + 1) = PLCg∗(k), ERK(k + 1) = MEK(k)

Fos(k + 1) = ERK(k)

Fyn(k + 1) = [Lck(k) ∧ CD45(k)]

∨ [TCR+(k) ∧ CD45(k)]

Gads(k + 1) = LAT(k), Grb2Sos(k + 1) = LAT(k)

IKKbeta(k + 1) = PKCth(k), IP3(k + 1) = PLCg(act)(k)

Itk(k + 1) = SLP76(k) ∧ ZAP70(k)

IkB(k + 1) = ¬IKKbeta(k), JNK(k + 1) = SEK(k)

Jun(k + 1) = JNK(k), LAT(k + 1) = ZAP70(k)

Lck(k + 1) = ¬PAGCsk(k) ∧ CD45(k) ∧ CD4(k)

MEK(k + 1) = Raf(k), NFAT(k + 1) = Calcin(k)

NFkB(k + 1) = ¬IkB(k), PKCth(k + 1) = DAG(k)

PLCg∗(k + 1) = [Itk(k) ∧ PLCg+(k) ∧ SLP76(k)

∧ ZAP70(k)] ∨ [PLCg+(k) ∧ Rlk(k)

∧ SLP76(k) ∧ ZAP70(k)]

PAGCsk(k + 1) = Fyn(k) ∨ ¬TCR+(k)

PLGg+(k + 1) = LAT(k), Raf(k + 1) = Ras(k)

Ras(k + 1) = Grb2Sos(k) ∨ RasGRP1(k)

RasGRP1(k + 1) = DAG(k) ∧ PKCth(k)

Rlk(k + 1) = Lck(k), Rsk(k + 1) = ERK(k)
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SEK(k + 1) = PKCth(k), SLP76(k + 1) = Gads(k)

TCR+(k + 1) = ¬cCbl(k) ∧ TCRlig(k)

TCR†(k + 1) = Fyn(k) ∨ [Lck(k) ∧ TCR+(k)]

ZAP70(k + 1) = ¬cCbl(k) ∧ Lck(k) ∧ TCR†(k)

where (·)+ represents the binding status, (·)∗ denotes being

activated, (·)† indicates phosphates, CD45, CD4 and TCRlig

are the three control inputs and there are four biomolecular

species to be considered as the outputs of the networks, which

are AP1, CRE, NFAT and NFkB. In [18]1, this T-cell Boolean

network was used for structural controllability analysis to

design a feedback controller.

Case 1 (CD45=1, CD4=1, TCRlig=1): AP1 and NFAT

converges to 0, NFkB converges to 1 and CRE switches

between the following six update rules:

CRE(k + 6n+7) = cCbl(k) ∧ PAGCsk(k) ∧ ¬ZAP70(k)

∧ [Fyn(k) ∨ ¬TCR+(k)] (25a)

CRE(k + 6n+8) = ZAP70(k) ∧ [Fyn(k) ∨ ¬TCR+]

∧ [cCbl(k) ∨ Lck(k) ∨ TCR+(k)]

∧ [cCbl(k) ∨ ¬Lck(k) ∨ ¬TCR†(k)] (25b)

CRE(k + 6n+9) = Lck(k) ∧ TCR†(k) ∧ ¬cCbl(k)

∧ [PAGCsk(k) ∨ ZAP70(k) ∨ ¬Fyn(k)]

∧ [PAGCsk(k) ∨ ZAP70(k) ∨ ¬TCR+(k)] (25c)

CRE(k + 6n+10) = ¬PAGCsk(k) ∧ ¬ZAP70(k)

∧ [Fyn(k) ∨ Lck(k)] ∧ [Fyn(k) ∨ TCR+(k)]

∧ [Fyn(k) ∨ TCR†(k)] ∧ [Fyn(k) ∨ ¬cCbl(k)] (25d)

CRE(k + 6n+11) = TCR+(k) ∧ ¬Fyn(k)

∧ [cCbl(k) ∨ ¬Lck(k) ∨ ¬TCR†(k)] (25e)

CRE(k + 6n+12) = ¬cCbl(k) ∧ ¬Lck(k) ∧ ¬TCR+(k)

∧ [PAGCsk(k) ∨ ZAP70(k) ∨ ¬Fyn(k)] (25f)

where n is positive integer. Based on this finding, an additional

feedback control input would be designed to derive CRE

towards desired states. A total of 21 states update logic out

of the 37 states converge to a period of 6 switching logic.

The remaining 16 states converge to steady states of either

0 or 1. The state space shrinks from 237(137 billion) to

221(2 million), which is only 0.0015% of the original size

of the state space.

Case 2 (at least one of CD45, CD4 or TCRlig equal to 0):

AP1, CRE and NFAT converge to 0 and NFkB converges to 1.

There is no possibility of introducing further control structures

to change the outputs.

These analyses lead the problem space from originally

computationally infeasible to feasible ranges. In addition, they

clearly show what states can or cannot be controlled and what

the update-rule structures of states to be controlled are.

From a biological perspective, when foreign antigens are

presented to T cell receptors (TCR) and co-receptors (CD4),

along with the involvement of receptor-type protein tyrosine

phosphatase (CD45) [20], this triggers an immune response

signaling cascade that includes the Ras-Raf-Mek-Erk pathway.

1The T-cell model in [18] adopted from [20] includes a few typos.

This, in turn, leads to the transcriptional activation of numer-

ous immune-related genes, such as IL-2, IL-6, IL-10, TNF-α,

and others [21]. The promoters of these genes commonly con-

tain a DNA target sequence known as the cAMP-responsive

element (CRE), to which transcription factors belonging to

the CREB family (CREB) can specifically bind and initiate

transcription.

To counterbalance the risk of an overactive immune re-

sponse that could potentially result in autoimmunity, a negative

feedback mechanism is in place. This mechanism is primarily

mediated by the E3 ubiquitin ligase (cCbl) [22] and Csk-

associated adaptor PAG (PAGCsk) [23]. These two proteins

ensure immune response homeostasis, the former by facili-

tating the degradation of key signaling proteins including the

activated protein tyrosine kinase (ZAP70) [22], and the latter

by inactivating Src family kinases (Lck, Fyn) [23]. Within the

T-cell receptor network, with all control inputs set to 1, two

negative feedback loops (cCbl-ZAP70 and PAGCsk-Lck-Fyn)

continuously operates, resulting in oscillations between 0 and

1, with the period 2 and 3, respectively. These two negative

feedback loops are interconnected with two nodes (TCR+ and

TCR†), resulting in the complex dynamics of the coupled

feedback loops expected to have a period of 6.

This regulatory process corresponds to the results of Case

1 (CD45=1, CD4=1, TCRlig=1), where the recursive self-

composite logic of CRE switches between the six update rules,

(25). In (25), Ras-Raf-Mek-Erk pathway between CRE and

upstream feedback loops is omitted, while only the coupled

feedback regulations are represented as a switching for the

presence or absence of the negation operator in front of

cCbl(k), ZAP70(k), PAGCsk(k), Lck(k) and Fyn(k). In the

results of Case 2, on the other hand, when any one of the input

controls equals to 0, multiple feedback loops will no longer

be able to operate, leading to ZAP70, Lck, and Fyn keeping

inactivated so that CRE converges to 0. This signifies that the

immune response signalling cascade is deactivated, rendering

the homeostatic effect of negative feedback unnecessary.

The cyclic logics of CRE, (25), obtained by the proposed

recursive algorithm extract an intuitive representation of the

long-term oscillatory dynamics of the output of the T-cell

Boolean network model.

Example 3 (Cancer signaling network): In the study by

Fumiã et al. [10], a Boolean network model was developed to

represent human tumorigenesis. This model encompasses 90

states of proteins within cancer signaling pathways, alongside

6 control inputs – Mutagen, GFs (growth factors), Nutrients,

TNFα, Hypoxia and Gli. The Boolean functions in the network

were initially formulated using algebraic operators (+, −) and

sgn(·) – a thresholding function in which sgn(x) = 0 for

x ≤ 0 and 1 for x > 0. As this algebraic representation is

less straightforward for recursive self-composition, we opted

to transform the Boolean functions into an equivalent form

utilizing the Boolean operations, while preserving their orig-

inal truth tables, the Boolean model is available to download

as indicated in Supplementary Material.

The network outputs include two bio-molecules, Glut1 and

Lactic acid, as well as two virtual nodes that represent cellular
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phenotypes – Apoptosis and DNA repair. In addition, the other

cellular phenotype, Proliferation, was defined by examining

the long-term dynamics of the network, particularly the ac-

tivation sequence of cyclin nodes. In [24], attractor-transition

analysis of this network was carried out to investigate the crit-

ical transition of tumorigenesis along with the accumulation

of driver mutations.

The update logic for Cyclins D has the longest string.

Its update rule has 23k characters. And, the first three self-

compositions make the length increase exponentially, i.e.,

149k, 34M and 293M. Applying the self-composition pro-

cedure to the original network produces long string chains

of the updated rules. The lengths of the strings are too

long to be handled by most digital computers. As analyzing

Boolean networks is known to be an NP-hard problem [17],

finding some networks producing large strings beyond the

current computer calculation speed and memory capacity is

not surprising.

To restrict the network to the condition with normoxic

(normal oxygen level), sufficient growth factors and nutrient-

rich five input states are set as follows: Mutagen = 0, GFs =

1, Nutrients = 1, TNFα = 0, Hypoxia = 0 and Gli = 0. In [10],

it is shown that the cell enters into the proliferation cycle with

a period of 7.

p53, Cyclins A and Cyclins D are identified by trial and

error as the additional control inputs to change the phenotype.

Pinning the three states to 1 and applying the self-compositions

make the logic length become too large again before it

converges. By applying the leaping every 4 iterations, i.e.,

starting from x(k+1), we obtain x(k+2), x(k+3), x(k+4)
and x(k+5). Then, leaping from x(k+5), we obtain x(k+10),
x(k+15) and x(k+20), and it converges at x(k+15). And,

applying the filling procedure from x(k + 16) to x(k + 19)
we confirm the logic converges to a single logic.

The maximum string length of the updated rules for each

iteration is as follows: 17k, 29k, 60k, 65k, 64k, 10 and 10,

where the corresponding longest string states are TSC1/2,

Cytoc/APAF1, Cytoc/APAF1, GSH, eEF2k, E2F and E2F,

respectively. It converges to a steady state instead of the cycle

and the phenotype changes from proliferation to apoptosis.

More interestingly, all states converge to 0 or 1 regardless of

the initial conditions except E2F(k+15), a transcription factor

for cell-cycle regulation genes, which converges to

E2F(k + 15) = E2F(k) ∧ [¬Rb(k)]

where Rb is retinoblastoma protein.

The example demonstrates the power of the proposed

method in finding a hidden simple logic behind the complex

networks. Such finding can help to identify further important

drug target candidates to be developed for efficient cancer

therapeutic strategies.

Discussion: We have demonstrated the usage of the pro-

posed method based on the recursive self-composition of

Boolean networks with the three examples above. There might

be some hidden fundamental links between the structural

properties of Boolean networks and p∗ or the kernel logic. The

proposed method would fail to converge sometimes to a simple

logic because the limitations present in the computers or the

converged logic to be found is not simple. What structural

characteristics of the Boolean networks give rise to either a

simple or complex converged logic is a hard but important

question to answer.

How these mathematical structures of the Boolean networks

map to Biological networks is another fundamental question.

Biological interactions are inherently spatiotemporal stochastic

[25]. Each molecular species seems to interact with many

others. Meanwhile, measurement technologies make steady

progress and high-throughput data available [26]. Boolean net-

work is an ideal model for large-scale biological networks with

high-throughput data [27]. The method proposed increases the

capability of analysing larger-size Boolean networks. Although

we introduced our method based on deterministic Boolean

network models with synchronous updates, the proposed ap-

proach can be extended to other forms of Boolean network

models with asynchronous or rule-based update schemes

The Boolean network model has a limitation in describ-

ing the continuous biological variables by simplified discrete

values of either on or off. Despite such a limitation, it has

been well-proven that Boolean network models are still useful

as they can capture essential dynamics of various biological

systems by representing biologically important phenotypes

in terms of attractor states [12], [28], [29] through many

experimental demonstrations [13], [14], [30].

IV. CONCLUSIONS & FUTURE WORKS

We present the recursive self-composite approach to reveal

the hidden characteristics of Boolean networks. Most impor-

tantly, we found the cyclic nature of synchronous Boolean

update rules. This is the first time that the converging nature

of the Boolean logic dynamics is unveiled explicitly. We also

found several interesting properties of the converged logic: the

existence of kernel logic and its relationship with the length of

periodic cycles in the state space. There might be many other

hidden fundamental structures of the Boolean network.

Finding the category of Boolean networks that can be char-

acterized by the properties found by the recursive procedure,

and the essential relationship between the repeating logic and

biological phenomena to control the behaviour of Boolean net-

works and extending the approaches to asynchronous Boolean

networks are of immediate interest for future study.

SUPPLEMENTARY MATERIAL

The Boolean network model of the cancer signalling net-

work in Python is available to download at the follow-

ing link: https://github.com/myjr52/Fumia cancer network

boolean model
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