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Advancing Sensing Resolution of Impedance
Hand Gesture Recognition Devices

Zhiyuan Lou, Student Member, IEEE , Xue Min, Guanhan Li, James Avery, Member, IEEE , and Rebecca

Stewart, Member, IEEE

Abstract— — Gestures are composed of motion infor-
mation (e.g. movements of fingers) and force information
(e.g. the force exerted on fingers when interacting with
other objects). Current hand gesture recognition solutions
such as cameras and strain sensors primarily focus on
correlating hand gestures with motion information and
force information is seldom addressed. Here we propose
a bio-impedance wearable that can recognize hand ges-
tures utilizing both motion information and force infor-
mation. Compared with previous impedance-based ges-
ture recognition devices that can only recognize a few
multi-degrees-of-freedom gestures, the proposed device
can recognize 6 single-degree-of-freedom gestures and 20
multiple-degrees-of-freedom gestures, including 8 gestures
in 2 force levels. The device uses textile electrodes, is
benchmarked over a selected frequency spectrum, and
uses a new drive pattern. Experimental results show that
179 kHz achieves the highest signal-to-noise ratio (SNR)
and reveals the most distinct features. By analyzing the
49,920 samples from 6 participants, the device is demon-
strated to have an average recognition accuracy of 98.96%.
As a comparison, the medical electrodes achieved an accu-
racy of 98.05%.

Index Terms— Electrical impedance tomography, ges-
ture recognition, machine learning, wearable sensor, textile
technology

I. INTRODUCTION

HAND gestures contain rich information and have been

widely adopted as an interface for human-computer

interaction [1]. Hand Gesture Recognition (HGR) devices have

been developed based on machine vision [2], strain gauges

[3], surface electromyography (sEMG) [4], and multimodal

fusion methods such as machine vision-strain sensor fusion

[5]. However, popularization of these devices are limited by
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a number of issues such as complex system architecture [5],

physically constraining user’s finger movement [6], require-

ments for high-quality materials [7], [8], and sensitivity to

user’s environment [9]. For example, complicated backgrounds

and dark/unbalanced lighting lead to a decay in recognition

accuracy in machine vision HGR devices [9]. The sEMG

signal has an inherently low signal-to-noise ratio (SNR) and

so is sensitive to environmental noise [10]. Large-area, high-

density wet electrode arrays mitigate the problem [4], [11],

but are cumbersome and add extra system complexity.

In recent years, attempts have been made to use electrical

impedance tomography (EIT) as an alternative solution to

HGR [12]–[17]. In EIT measurements, boundary voltage mea-

surements are used to infer the inner impedance distribution

and the inner structure of the object [18]. In the case of HGR,

EIT is used to detect the muscle and surrounding tissue shape

changes in the forearm [13]. However, EIT gesture recognition

is challenging as the EIT image reconstruction is a highly non-

linear, ill-conditioned, and uncertain problem [19]. Limited by

the EIT resolution, recognizing small motion is difficult and

the current EIT HGR approach can only recognize a small

number of multiple-degree-of-freedom (DoF) hand gestures

[12], [13], [15]–[17]. To recognize more hand gestures, the

dataset needs to be split into sub-groups each with their own

dedicated machine learning model, which adds complexity to

the system [14].

In addition to the factors discussed above, most of the

current HGR devices correlate gestures with movements of

the fingers [2]–[8], [12]–[17], and the force applied by the

fingers is seldom addressed. Some gestures involve the same

finger motion but with different forces, such as pinching with a

low force and high force, which are hard to differentiate with

the current HGR solutions. However, the force information

from the hand has great potential in multiple domains such

as enhancing performance in human-robot collaboration, and

providing new forms of interactions in virtual reality. For

example, Zheng et al. demonstrated a human-robot sawing

task using grasp force estimated from EIT [20]. With the per-

finger force information from hand gestures, more dexterous

human-robot collaborations can be achieved.

Here we report an electrical impedance HGR system. Com-

pared with the high-density sEMG approach that uses 64 wet

electrodes [4], the system has less complexity and is less

cumbersome when worn, featuring only 8 dry textile elec-

trodes. Whereas recognizing small motions (e.g., single degree
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of freedom hand gestures) is challenging for conventional

EIT HGR devices, the proposed system can recognize the

position of each individual finger. Additionally, the system can

recognize hand gestures based on differing forces exerted by

each finger.

The aim of this study is to propose a hand-based impedance

gesture recognition system and validate if it is capable of

accurately recognizing both motion-related and force-related

gestures. The first part of the study is parameter optimization,

in which 3 subjects were recruited. To optimize the frequency

of the electrical impedance device, we recorded the impedance

signal at a frequency spectrum ranging from 1 kHz to 364

kHz and calculated the SNR and distinguishability of the

signal. Then we proposed an opposite current injection-voltage

measurement drive pattern and compared its performance with

the classical adjacent drive pattern. The second part of the

study implements gesture recognition and machine learning

using these selected parameters (i.e. frequency and drive

pattern), in which 6 subjects were recruited. We validated

gesture recognition performance with a 1-Dimensional Con-

volutional Neural Network (1D-CNN) model on a 26-hand

gesture dataset, using both the proposed system and medical

electrodes.

II. GESTURE RECOGNITION SYSTEM

A. Device Overview

Figure 1(a) illustrates the basic sensing unit, which is com-

posed of a textile electrode, adhesive layer, textile cover layer,

foam support layer, and a 3D-printed hard shell. Fig. 1(b)

visualizes the microstructure of the textiles. The electrodes are

made of conductive fabric (ShieldEx Technik, tex-P180+B).

Shieldex Technik-tex P180+B is a mirror-satin knitted fabric

using 94% polyamide and 6% Dorlastan, with 99.9% pure

silver plating. The structure of the fabric is suitable for ap-

plications that require homogeneous current distribution such

as electrodes. The silver plating ensures an electrical surface

resistivity smaller than 2Ω/sq. The fabric also demonstrates

good bio-compatibility [21] and washability [22]. The soft

textile layer, foam layer, and 3D-printed shell help to maintain

constant contact with the skin. They also help to minimize

the movement of the electrodes, and thus reduce the motion

artifacts. Fig. 1(c) shows the device on the hand. Eight textile

electrodes are used, with 4 electrodes evenly placed on the

back of the hand and 4 electrodes evenly placed on the

palm. An impedance spectrometer (Eliko Quadra Impedance

Spectroscopy) is used to inject current and measure voltage

[23]. The impedance data is calculated and processed in the

spectrometer and then transmitted to a PC via the universal

serial bus for machine learning and gesture recognition.

B. Hand Anatomy and Design Considerations

Muscles on the forearm and hand contribute to the actuation

of fingers. In the forearm, finger flexor muscles are densely

packed and adjacent to each other, as shown in Fig. 2(a). For

example, the four tendons assisting the motion of digits 2-5

merge at the same muscle, the flexor digitorum superficialis.

The low spatial resolution of EIT makes it hard to locate the

Fig. 1. System overview (a) One sensing unit of the device. (b)
Structure of the electrodes. The fabric electrodes is highly conductive,
breathable and soft. (c) Device on the hand

exact muscle fascicles in the flexor digitorum superficialis that

contribute to the motion of a specific digit. Thus, identifying

the flexion of one single finger is challenging for conventional

EIT setups [12], [13]. Meanwhile, the contraction of the

muscles and movement of the tendons will change the fore-

arm boundary shape [24]. Solving the imaging reconstruction

problem in EIT assumes the boundary of the body is known

a priori, and small errors in boundary shape can lead to

large systematic artifacts [25]. Based on these two factors,

HGR with small motion and/or large hand gesture datasets is

intrinsically challenging for the EIT approach on the forearm.

Muscles on the hand are spatially set apart to actuate

individual fingers, as shown in Fig. 2(b). For example, the

second and the third dorsal interosseous muscle flexes the

middle finger, while the first dorsal interosseous muscle and

the first palmar interosseous flexes the index finger. These

inner muscle contractions lead to inner impedance distribu-

tion changes. Moreover, the contraction of the muscle alters

the hand boundary shape, which can be reflected as further

changes in the impedance signals. We validated the change

in the hand shape and its inner structure by reconstructing

the cross-sectional view of the hand Magnetic Resonance

Imaging (MRI) dataset [26], as demonstrated in Fig. 2(c).

As the hand boundary shape differs, we use raw electrical

impedance signals for gesture recognition, rather than trying

to reconstruct tomography images. We recognize the measured

impedance change as a complex combination of the noise from

hardware, contact impedance change, and tissue impedance

change caused by both inner tissue deformation and outer

shape deformation.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3417616

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: TITLE 3

Fig. 2. (a) Arm anatomy (b) Hand anatomy (c) Reconstructed hand MRI
image. The hand boundary shape and inner structure change across
different hand gestures.

C. Gestures

We created a hand gesture dataset that contains both com-

monly used single-degree-of-freedom (single-DOF) gestures

[4] and a subset from American Sign Language (ASL) [27].

In addition to the conventional thumb-to-finger pinch set [28],

[29], we also added 4 hard pinches, which require participants

to apply as much force as they can. As shown in Fig. 5, the

final hand gesture dataset consists of 26 hand gestures, with

6 single-DOF hand gestures and 20 multi-DOF hand gestures.

The 20 multi-DOF hand gestures contain 12 ASL gestures and

8 pinch gestures with two differing levels of force. The data

collection methodology was approved by the Imperial Col-

lege London Science, Engineering, and Technology Research

Ethics Committee (Application 6704836).

III. EXPERIMENTAL METHODS

A. Frequency Selection

Since the impedance response is strongly correlated with the

frequency of injecting current [30], [31], it is important to first

identify the optimal frequency for this application. Two factors

are considered in the frequency selection phase: the SNR and

the distinguishability of the EIT signal under different hand

gestures. To evaluate these parameters, we built a simplified

EIT model with two medical electrodes evenly placed on the

back of the hand and two electrodes evenly placed on the

palm in the opposite position, as shown in Fig. 3. This four-

electrode setup constitutes a single sensing unit of the full

eight-electrode EIT measurement scheme. Two electrodes on

the back of the hand inject the current and two electrodes on

the palm measure the voltage. Standard Ag/AgCl electrodes

(TIANRUN SUNSHINE Medical Supplies Co. Ltd.) were

used for this process. The impedance data is recorded with

Fig. 3. Frequency selection setup. Two electrodes are evenly placed on
the palm and back of hand respectively. A frequency sweep is performed
while the participant performs single-DOF gestures.

Fig. 4. (a) Conventional adjacent drive pattern. (b) Proposed opposite
drive pattern.

a current injection frequency spectrum ranging from 1 kHz to

364 kHz generated by the Eliko impedance spectrometer.

The first factor, SNR, is calculated when the hand is in

the neutral state. and is defined as the ratio of the mean

value of the impedance signal to the standard deviation of

the impedance signal. The second factor, the distinguishability

of the signal, is quantified by the average impedance change

observed when the middle finger bends, a basic hand gesture

component. The process is repeated on the right hands of three

subjects (hand width 7cm-10cm) with 200 measurements each.

B. Injection-Measurement Drive Pattern

The distinguishability of the EI signal is related to the SNR

and the probability of detecting impedance changes, which is

strongly related to the current injection-voltage measurement

pattern [32]. Fig. 4 shows the adjacent injection-measure

scheme, the most common drive pattern in four-electrode EIT

measurements [33]. In this measurement scheme, two adjacent

electrodes are used to inject current, and two other adjacent

electrodes are used to measure the voltage. This process is

repeated for all possible combinations. For 8 electrodes, the

full loop contains 40 measurements.

The adjacent drive pattern utilizes neighboring electrode

pairs in both current injection and voltage measurement,

whose relative position changes are small across different hand
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Fig. 5. Hand gesture dataset. The dataset contains 6 single-DoF gestures and 20 multi-DoF gestures, among which are 8 force-related gestures.

gestures. Also, simulation results show the distinguishability

of impedance signals increases with interface pattern angle

and low angle interface patterns such as adjacent patterns are

a poor choice [32]. Thus, the adjacent injection-measurement

pattern may be suboptimal in capturing the hand gesture

features. To address this issue, we proposed an opposite drive

pattern, as shown in Fig. 4. The proposed approach injects

currents on the back of the hand, measures the voltage on the

palm, and exhausts all possible electrode combinations. The

proposed injection measurement pattern contains C2

4
× C2

4
=

36 current injection - voltage measurements.

To validate, we collected a dataset of 31,200 samples,

which constituted 26 gestures with 200 measurements on each

gesture from three subjects (hand width 7cm-10cm). Using this

dataset, we calculated the separability criterion J , a typical

method to evaluate class separability [34]:

J =
tr(SB)

tr(SW )
(1)

where SW is the within-class scatter matrix and SB is the

between-class scatter matrix. These can be calculated by:

SW =
c∑

i=1

[

ni∑

j=1

(xi,j −mi)(xi,j −mi)
T ] (2)

SB =

c∑

i=1

ni(mi −m)(mi −m)T (3)

in which c is the number of classes, ni is the number of

samples in the i-th class, xi,j is the j-th sample in the i-

th class, m is the mean vector of all the samples and mi is

the mean vector of the samples in the i-th class. If a dataset

has a large between-class scatter and a small within-class

scatter (i.e., higher J), the dataset has better separability. To

further visualize the result, we also performed the t-Distributed

Stochastic Neighbor Embedding (t-SNE) on the data from each

subject.

Fig. 6. Impedance data collection setup.

C. Gesture Dataset Collection and Machine Learning

Six participants were recruited in the data collection process

(hand width 7cm-10cm). Due to the differences in hand size,

electrode placements were adjusted so that the electrodes were

evenly spaced across each participant’s hand.

Our study had two data collection phases. In phase 1, data

with conventional Ag/AgCl medical electrodes was collected

as a “gold standard”. Each participant was asked to hold

each gesture for 6 seconds, during which time 40 samples

were recorded. One round of data collection consisted of all

26 gestures. In total, we collected four rounds of data for

each participant with medical electrodes. In phase 2, the data

collection process was repeated using the proposed wearable

and was scheduled on a different day to avoid fatigue. In

summary, the phase 1 and phase 2 data collection yield 49,920

samples (6 participants × 40 samples × 26 gestures × 4 rounds

× 2 materials).

Since the input data to the machine learning model is not

a time series, we used a 1-dimensional convolutional neural

network (1D-CNN) as the machine learning model, instead of

models such as long short-term memory (LSTM). The 1D-

CNN model was built in Python (Version 3.10.12), with the

TensorFlow library (Version 2.15.0) [35]. Fig. 7 visualizes

the model, which consists of 4 convolutional layers, 2 max-

pooling layers, and 3 dense layers. We also performed data

augmentation on the dataset. The proposed drive pattern con-
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Fig. 7. Proposed 1-D CNN Structure. The original dataset contains 36 channels of data. Data augmentation is performed by computing the
difference between these 36 channels, which are then combined with the original data and fed to the 1D CNN model.

tains 36 injection-measurement pairs. Then we computed the

difference of these measurement pairs, which yield C2

36
= 630

additional features. In total, there are 666 features.

The 666 electrical impedance signal are fed into two con-

secutive 1D convolutional layers (filters = 16, kernel size =

3), followed by a max pooling layer (pool size = 2). The

convolutional layers detect and extract higher-level features

from the input and generate a feature map. The following max

pooling layer reduces the spatial dimensions of the feature map

and creates a down-sampled version by taking the maximum

value in each pooling region. The weights of these layers

are initialized with Glorot uniform initializer, which provides

faster convergence than random initializer in deep neural

networks [36]. A further block of 2 convolutional layers (filters

= 64, kernel size = 3) was then used, followed by the max

pooling layer (pool size = 2).

The model is trained using 70% of the data (i.e. training

dataset). Another 15% of the data (i.e. validation dataset) is

utilized for hyperparameter tuning during the training phase.

The remaining 15% of the data (i.e. test dataset) is held out

from the model throughout training for unbiased evaluation of

the model’s performance. To account for individual variations

in hand anatomy, the model was trained, validated and tested

on each participant’s data separately.

IV. EXPERIMENTAL RESULTS

A. Frequency Selection

Fig. 8(a) shows the SNR over the frequency spectrum. The

SNR increases with frequency and starts to converge after 127

kHz. Fig. 8(b) shows the mean impedance change generally

stabilizes after 179 kHz. Considering both factors, 179 kHz is

selected as the excitation frequency.

Fig. 8. (a)SNR and (b)Distinguishability (i.e. characterized by mean
impedance change) of the hand gesture impedance signal.

B. Influence of the Injection-Measurement Drive Pattern

Fig. 9 shows the separability J calculated from three

subjects. The opposite drive pattern has a 56.3% higher mean

separability criterion compared to that of the adjacent drive

pattern. This demonstrates the opposite drive pattern increases

the ratio of between class distance and within class distance.

Thus, the opposite drive pattern is more feasible for hand

gesture recognition.

Fig. 9. Separability criterion across different subjects

t-SNE is used to visualize the high dimensional input

impedance data. As shown in Fig. 10, the proposed drive

pattern shows better clustering results than the adjacent drive

pattern. However, there are still several hand gesture groups

that cannot be distinguished by the t-SNE method such as

gesture “P4L” and gesture “W”. These two groups have a

large number of samples that overlap with each other. Thus,

we used a 1D-CNN model for further gesture classification.

Fig. 11 shows the time series hand gesture data with the

proposed drive pattern. Each gesture is repeated 5 times. The

time series signal suggests good repeatability and low drift

over time with the proposed drive pattern.

C. Gesture Classification

We compared the 1D-CNN gesture recognition results with

other machine learning algorithms, such as support vector ma-

chines (SVMs), bagged trees, random under sampling (RUS)

trees, and random forests. To control variables, we used the

same input data (i.e. impedance signal) and followed the same

data processing procedure. The output for these models is

predicted hand gestures. Table I shows the average model per-

formance across six participants. The machine learning models

generally demonstrated high accuracy, precision, recall, and f-

score values. Among them, the proposed wearable with 1D

CNN achieved the highest recognition accuracy of 98.96%.
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Fig. 10. t-SNE results for (a) adjacent and (b) opposite drive pattern

Fig. 11. Time series hand gesture data. (a) Gesture 1-H. (b) Gesture
I-P4H.

To validate if the model overfits the dataset, we plotted the

training and validation loss curve for each participant’s data.

Both curves show a downward trend that stabilizes, suggesting

a good fit. The closeness of the two curves at the end of

training suggests the model generalizes well on unseen data.

Wilcoxon signed rank test was conducted to test if there is

a statistical difference between medical and textile electrodes.

All the machine learning algorithms yielded a p-value greater

than 0.05. Thus, despite the textile electrodes having a higher

average recognition accuracy, the difference is not statistically

significant.

TABLE I

MODEL PERFORMANCE OF 5 ALGORITHMS

Accuracy Precision Recall f-Score p value

SVM (Medical) 97.81% 97.94% 97.81% 0.9777
SVM (Textile) 98.16% 98.37% 98.16% 0.9814 0.753

Bagged Trees (Medical) 97.33% 97.46% 97.33% 0.9733
Bagged Trees (Textile) 97.57% 97.89% 97.57% 0.9750 0.753

RUS Boosted
Trees (Medical) 96.87% 97.22% 96.88% 0.9692
RUS Boosted
Trees (Textile) 98.61% 98.76% 98.61% 0.9864 0.686

Random Forest
(Medical) 97.70% 97.91% 97.70% 0.9771
Random Forest
(Textile) 98.16% 98.33% 98.16% 0.9813 0.833

1D CNN (Medical) 98.05% 98.23% 98.05% 0.9804

1D CNN (Textile) 98.96% 99.10% 98.96% 0.9897 0.248

V. DISCUSSION

A. Location Considerations

We extracted the common light pinch gestures from the

dataset collected on the hand and compared it with datasets

collected on arm, wrist, and wrist-back of hand locations

[12], [37]. As shown in Fig.12, the accuracy on the hand is

22.68% higher than the arm, 14.88% higher than the wrist,

and 2.51% higher than wrist-back of hand. We infer the hand

provides richer hand gesture impedance information than the

arm/wrist due to its anatomical structure. All prime movers

are located in the hand for some gestures such as the little

finger pinch. For this gesture, the thumb is primarily actuated

by the opponens pollicis, flexor pollicis brevis and abductor

pollicis brevis, while the little finger is primarily actuated by

the opponens digiti minimi and flexor digiti minimi brevis

[38]. Muscles on the arm do not extensively participate in this

gesture, which may be a reason that arm/wrist based solution

has lower recognition accuracy.

Fig. 12. Pinch gesture (i.e., P1L-P4L) recognition accuracy in arm [12],
wrist [12], wrist-back of hand [37] and hand (our device).

B. Impedance Measurement Parameters

We investigated frequency and drive pattern, two of the most

important parameters for impedance based gesture recognition.

For frequency, previous works often adopt lower frequen-

cies such as 20kHz [17], 40kHz [12], and 50kHz [13] as

the impedance measurement hardware was designed around

AD5933 impedance analyzer [39], which limits the excitation

frequency below 100kHz. However, in traditional impedance

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3417616

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: TITLE 7

Fig. 13. Tukey’s HSD for data collected on subject 1 with the proposed
wearable with (a) Injection-measurement channel 20 and (b) Injection-
measurement channel 2.

tomography applications, larger EIT bandwidth appears to

be important [40]. For example, Kerner reported the optimal

breast EIT images at 950kHz [41]. Thus, we measured the

SNR and mean impedance difference change at frequencies

ranging from 1kHz to 349kHz, the largest bandwidth sup-

ported by the Eliko impedance spectrometer. Experimental

results show the SNR stabilized after 127kHz and the mean

impedance difference stabilized after 179kHz. Since higher

frequencies are potentially more sensitive to parasitic capaci-

tances in the wiring, we chose 179kHz as the carrier frequency

in subsequent gesture recognition applications.

Alongside frequency, drive pattern is another important

factor that influences the both the data and reconstructed image

quality in conventional EIT. Previous studies show the adjacent

drive pattern results in high image resolution [42] but its dis-

tinguishability is sub-optimal [43]. The proposed cross drive

pattern outperforms the adjacent pattern in distinguishability,

a more important indicator in gesture recognition applications.

C. Gesture Dataset Analysis

The data analysis was conducted from two viewpoints: (1)

from within users using Analysis of Variance (ANOVA) test

and Tukey’s Honest Significance Difference (HSD) test to

understand if there are any statistically significant differences

between the impedance changes of different gestures; (2)

considering across users, feature importance (FI) analysis is

performed to understand if there are large individual differ-

ences in the electrical impedance signals.

For the ANOVA test, the resulting p-value is smaller than

0.05 (6.86e-27), indicating a high statistically significant dif-

ference between different hand gestures. Tukey’s HSD test was

performed to check the pairwise statistical gesture impedance

differences. Results show the pairwise statistical difference

depends on drive pattern and different injection measurement

channels reveal different aspects of the hand gesture features.

To illustrate an example, Tukey’s HSD results on light pinch

gestures from channel 20 and channel 2 are plotted in Fig.

13. In this type of Tukey’s HSD plot, if confidence intervals

of two group means do not overlap, there is a statistically

significant difference between them [44]. It can be seen that

gesture P1L and P2L are very similar when measured at

injection-measurement channel 20 (large overlap) but very

different to channel 2 (no overlap). Thus, channel 2 might

contribute more to classify P1L and P2L in subject 1’s dataset.

The result indicates when classifying specific gestures (e.g.,

P1L and P2L), further optimizations can be done by reducing

certain injection measurement channels (e.g. channels similar

to channel 20) while increasing others (e.g. channels similar

to channel 2).

Feature importance (FI) is calculated using each partici-

pant’s original 36-channel data using a random forest model

[45]. FI provides indications of features that have the most

influence on the model’s predictions. As shown in Fig. 14,

FI differs across the 6 subjects. For example, among the top

10 most important features, there are no common injection-

measurement pairs between subjects 1 and 2, and only 4

common pairs (i.e., channel 31, 32, 35, and 36) between

subjects 2 and 3. The results indicate there may exist large

individual differences in the hand electrical impedance signal.

Fig. 14. Feature importance calculated from 6 subjects data.

D. Gesture Recognition

Fig. 15 shows the confusion matrix of the gesture classi-

fication with medical electrodes and our wearable device re-

spectively. We randomly selected 15% of the data to comprise

the independent test dataset. The number of samples in each

class is balanced. Thus, for 6 participants, the total number of

samples in each class is 144 (i.e. 40 samples × 4 rounds × 6

participants × 15%). The gesture recognition accuracy of the

medical electrodes dataset is 98.05±2.39% and 98.96±1.37%

for the textile electrodes dataset. Misclassifications occur in

very similar hand gestures. For medical electrodes, gesture

groups with the highest recognition error rates are ASL gesture

“F” and light pinch gesture 1 (i.e. pinch with thumb and

index finger with low force). These two gesture groups are

very similar except that the pinch gesture tends to bend the

index finger, middle finger and ring finger in a more natural

state. For the textile wearable, gesture groups with the highest

recognition error rates are ASL gestures “W” and “V”. They

are also similar with the only difference being the ring finger

bends down for “V” while straightens up for “W”.
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Fig. 15. Confusion matrix for medical electrodes and proposed wearable on test dataset. Number of samples is balanced on each class (i.e. 144)
in the test dataset. The average gesture recognition accuracy across 6 participants is 98.05% and 98.96% respectively.

On the material side, the proposed device has a higher

accuracy than “gold standard” medical electrodes on average,

but it is not statistically significant. This means that the

proposed device was able to match the classification accuracy

of the gold standard medical electrodes, with the benefits

of greater convenience to the user. This result aligns with

previous studies showing textile electrodes have higher contact

impedance, which contribute to larger impedance changes

when the user performs different hand gestures [15]. However,

a larger study with more users will be needed to confirm this

is the case for our device.

E. Model Generalization

The performance of the machine learning models on unseen

data is considered both in terms of within-user and cross-user

generalization. In the within-user case, we used 15% of data

that is not involved in the 1D-CNN model training process

to evaluate model fit. The recognition accuracy is high (i.e.

98.96%).

In the cross-user case, the leave-one-participant-out valida-

tion scheme was used. We trained the 1D-CNN model using

five participants’ data and used data from the sixth participant

to evaluate model fit. We extracted the pinch gesture dataset

and compared the cross-user gesture recognition accuracy

with previous work [12]. Five participants’ data was used to

train the 1D-CNN model and the sixth participant’s data was

used to test the model. On average, the cross-user accuracy

is 30.58±6.98%. In contrast, Zhang et al reported 48.8%

cross-user accuracy on the arm and 40.2% on the wrist [12].

The reason for this low cross-user accuracy may be the

large individual differences as indicated by feature importance

distribution. Specific reasons may include: (1) participants

have different hand sizes and a wearable was customized for

each subject; (2) some participants may perform the gestures in

a non-standard way; (3) the dataset only contains 6 subjects,

whereas Zhang et al used a dataset containing 10 subjects.

In summary, the results indicate that the 1-CNN model is

not universal at the scale of the dataset we collected. Thus

expanding the dataset is one possible solution to improve the

model generalization.

F. Comparison with Other Works

A comparison with other works has been listed in Table II.

Whereas most current gesture recognition solutions recognize

hand gestures based on position information, our device is

able to recognize gestures with same shape but different

force. This provides an alternative to the recently proposed

photoplethysmography (PPG) and sEMG-based simultaneous

hand gesture and force classification [46], [47].

In addition, the proposed device also has a smaller form

factor than HGR gloves and allows users to freely move their

fingers [27]. The design allows the user to put on and take off

the device easily. In contrast, many HGR devices that utilize

wet electrodes or strain sensor tattoos [7] require cumbersome

preparation steps and can only be used once.

Compared with the previous EI/EIT based HGR device that

can recognize limited hand gestures (< 10 with one machine

learning model) [12]–[17], our EI HGR device has extended

gesture recognition capability and can recognize 26 gestures

with one machine learning model. Also, this device is able to

recognize small motions and 6 single degree of freedom hand

gestures.
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TABLE II

COMPARISON WITH OTHER WORKS

Mechanism Device Location Classification

Method

Sensor Num Gestures Force

Related

1Dof

Ges-

tures

Accuracy Ref

Piezo-
resistive

Glove Hand Amplitude 9 26 No Yes NA [27]

PPG Wrist band Wrist SVM 1 12 Yes No 77.5% [46]

sEMG Patch Arm Hyperdimensional
Computing

64 13 or or 21 No Yes 97.12% or
92.87%

[4]

EIT Armband Arm DNN 8 5+5+5+5 No No Train
together:<60%
Subgroup-
ing:98%

[14]

EIT Armband Arm SVM 8 3 No No 95% [15]

EIT NA Arm CNN 8 10 No No 95.94% [16]

EI NA Wrist +
Hand

SVM 5 6 or 6 No No 98.7% or
97.8%

[37]

EI Hand band Hand CNN 8 26 Yes Yes Train
together:
98.96%

This work

G. Limitations and Future Work

In the future, we see several potential applications for

this device, such as grasp force assessment and human-robot

collaboration enhancement, both of which would benefit from

a wider gesture classification and additional force estimation.

However, some limitations need to be addressed before taking

the device to real-world applications. First, current cross-user

accuracy is quite low. One potential solution may be few-shot

transfer learning. By tuning the learning rate of each layer of

the current CNN model [48] and using a few samples from a

new user, the model may be able to adapt quickly and achieve

relatively high accuracy in the new user. Second, the current

model has 1,360,276 parameters and runs on a PC (CPU i5

12400, GPU RTX 3060). To minimize the system, it is possible

to transfer the model to embedded platforms by reducing the

number of layers and performing model compression with

methods like model quantization [49]. Third, we currently

only classify two force levels. It might be interesting to test

with more force levels and more precise force level evaluated

with maximal voluntary contraction [46]. Fourth, a deeper

investigation into the relationship between the drive pattern

and pairwise statistically significant differences in the gesture

dataset may further help to optimize the drive pattern. As indi-

cated by Tukey’s HSD results, the injection-measurement pairs

contribute unevenly to the hand gesture classification. Based

on target gestures to be recognized, specific optimizations on

the drive pattern can be made.

In addition, we selected textiles to fabricate the system since

it is a material for everyday use and is observed to be more

comfortable to wear than wet medical electrodes. However,

no formal assessments have been performed regarding the

wearability and comfort of the device. In the future, usability

surveys such as System Usability Scale (SUS) can be con-

ducted as to better characterise the current device and guide

further iterations [50].

VI. CONCLUSION

We developed a textile impedance-based hand gesture

recognition device by optimizing the frequency and drive

pattern. The hand band design allows the user to freely move

the fingers and interact with other objects. We evaluated the

SNR and distinguishability of the EI signal across a wide

frequency spectrum and selected 179 kHz as the preferred

frequency for hand-based EI HGR applications. In addition,

we proposed a new drive pattern (opposite drive pattern) that

outperformed the conventional adjacent drive pattern used in

hand-based EI HGR applications.

Our device was able to recognize hand gestures with small

motion and hand gestures with different forces. With the

proposed new drive pattern, the wearable device can achieve an

accuracy of 98.96% in 26 hand gestures, whereas the medical

electrodes achieved an accuracy of 98.05%.
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