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A B S T R A C T

Hedgerows are a semi-natural habitat that supports farmland biodiversity by providing food, shelter, and habitat
connectivity. Hedgerow planting goals have been set across many countries in Europe and agri-environment
schemes (AES) play a key role in reaching these targets. Passive acoustic monitoring using automated vocal-
isation identification (automated PAM), offers a valuable opportunity to assess biodiversity changes following
AES implementation using simple, community-level metrics, such as vocal activity of birds and bats. To evaluate
whether vocal activity could be used to indicate the effectiveness of AES following hedgerow planting in future
result-based or hybrid schemes, we surveyed twenty-four hedgerows in England classified into a chrono-sequence
of three age categories (New, Young, Old). We recorded 4466 h over the course of 30 days and measured bird and
bat vocal activity using BirdNET for birds and Kaleidoscope for bats. Vocal activity of all birds, farmland birds,
and bats were modelled with age and predictors of hedgerow, habitat, and weather conditions to assess changes
occurring from hedgerow planting to maturity. We show an increase of vocal activity in Young and Old
hedgerows compared to New ones and highlight elements of the surrounding landscape that should be consid-
ered when evaluating AES implementation on bird and bat communities. We found high BirdNET precision in
community-level vocal activity and low precision of species-level observations, and we argue that vocal activity
may be used in novel AES to link a result-based payment component to automated PAM results, incentivising
biodiversity effective hedgerow planting and management by farmers and landowners.

1. Introduction

Hedgerows –lines of managed shrubs and trees delineating agricul-
tural fields (Montgomery et al., 2020)– can provide multiple benefits to
farmed landscapes, such as supporting faunal and floral biodiversity
(Froidevaux et al., 2019; Litza et al., 2022; Staley et al., 2023),
sequestering carbon in woody biomass and in the soil, flood risk alle-
viation, nutrient cycling, and biological control of crop pests (Garratt
et al., 2017; Holden et al., 2019; Drexler et al., 2021; Biffi et al., 2022,
2023).

Hedgerows are key linear features for habitat connectivity in agri-
cultural landscapes, and, together with the wider landscape context in
which they are found (e.g. presence of trees, woodland cover, and water

bodies), they are important drivers of farmland biodiversity (Sullivan
et al., 2017; Heath et al., 2017; Lacoeuilhe et al., 2018). Hedgerow
structure, for example, is key in determining how different taxa use them
(Graham et al., 2018; Melin et al., 2018; Froidevaux et al., 2019). Birds
use hedges for foraging, breeding, and as refuge from predators; and,
without hedges, access to resources would be restricted for many species
that are otherwise unlikely to venture far from woodland cover (Hinsley
and Bellamy, 2000; Dunn et al., 2016; Bravo et al., 2023). Bats also rely
on hedgerows for food resource provision and they use these linear
features to navigate the landscape when commuting to their foraging
areas (Boughey et al., 2011; Froidevaux et al., 2017).

Agri-environment schemes (AES) are key incentives to increasing
hedgerow length across Europe and improving habitat connectivity and
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resource provision for many farmland and woodland species. In Europe,
agricultural expansion and intensification during the late 20th century
were associated with hedgerow destruction and a strong decline in
hedgerow length (Staley et al., 2012). This loss of semi-natural linear
habitats is associated with the severe population declines of many bird
and bat species across farmed landscapes (Fuller, 2000; Cornulier et al.,
2011; Froidevaux et al., 2017). In an effort to halt and revert this loss,
today hedgerows are part of Environmental Focus Areas in the EU
Common Agricultural Policy and are listed as a Priority Habitat in the
UK, and planting new hedgerows is widely encouraged within AES.
Moreover, many European countries have recently set ambitious
planting goals within their climate programmes (Levin et al., 2020;
Drexler et al., 2021; Biffi et al., 2023). Establishing and managing
hedgerows has time and cost implications, and farmers and landowners
often seek compensation from AES. For example, AES are the primary
contributor of new hedge length in the UK (Biffi et al., 2023). Thus,
meeting national hedgerow planting and biodiversity goals largely de-
pends on developing AES that can attract farmers. As policymakers are
moving away from exclusively action-based AES, in which farmers are
compensated for implementing the AES, these new designs will
encompass biodiversity-oriented AES in which payment levels are
determined by implementation evaluation (Cullen et al., 2018; Wuepper
and Huber, 2022). Such AES could be result-based schemes, where
payment is tied to a proven positive outcome of the action, or hybrid
schemes that comprise a mix of guaranteed payments for action and
bonus payments for positive results (Herzon et al., 2018).

Combining passive acoustic monitoring (PAM) and automated bird
and bat vocalisation identification (ID) can provide a cost-efficient
biodiversity survey method for birds and bats that allows for extensive
sampling efforts in time and space (Sugai et al., 2019). PAM has become
an increasingly popular method for non-invasive monitoring of bird
(Darras et al., 2019; Pérez-Granados and Traba, 2021) and bat com-
munities (MacSwiney et al., 2008; Froidevaux et al., 2014) thanks to the
recent development of low-cost autonomous recording units (ARUs).
However, the ID of vocalisations within the recordings, particularly for
bird species, has been frequently processed manually or semi-
automatically (e.g. Frommolt, 2017), relying on labour intensive
expert evaluation. Fully automated vocalisation ID is a more recent
technique, largely resulting from the increasingly widespread applica-
tion of novel machine learning algorithms to mass-process large
amounts of audio data, bypassing the need for expert evaluation of the
recordings (Gibb et al., 2019; Wood et al., 2022; Nieto-Mora et al.,
2023). While this is an already somewhat established practice for
monitoring bats (e.g. Staton and Poulton, 2012), its application in bird
field studies is new. However, algorithms for automated vocalisation ID
can have high false positive rates of species ID (Findlay and Barclay,
2020; Ware et al., 2023). With their increase in popularity, there is an
urgent demand for further research into the capabilities and drawbacks
of these novel monitoring methods when applied to real-life, farm-scale
context (Gibb et al., 2019; Pérez-Granados, 2023), such as their poten-
tial use for monitoring the biodiversity benefits of planting hedgerows
within AES to support future AES design and promote the uptake of
hedgerow planting and management options.

The aim of this study was to explore the potential of automated PAM
to assess changes in the simple metric of bird and bat vocal activity (i.e.
the number of vocalisations per hour) around hedgerows with time
elapsed since planting. Vocal activity appears to be a good indicator of
abundance (Digby et al., 2013; Borker et al., 2014; Pérez-Granados et al.,
2019) and could be used as a community-level metric to assess relative
biodiversity activity changes following AES implementation when in-
dividual species-level results are not required. It should be noted that
vocal activity in birds and bats does not define the same behaviour, as
usually it denotes territorial behaviour in birds and foraging behaviour
in bats (Nowicki and Searcy, 2004; Thomas et al., 2004). We assessed
bird and bats vocal activity around hedgerows of known ages using a
space-for-time substitution approach to represent time after hedgerow

planting. Vocal activity was monitored with automated PAM, using
existing software packages (BirdNET and Kaleidoscope Pro) that identify
matches (i.e., positive vocalisation IDs in the recordings) and attribute
them to species. We defined bird and bat vocal activity as the total
number of matches per hour and considered the vocal activity of all bird
and bat species, as well as a subset of farmland bird specialists.

Our research questions were: (i) What is the precision of BirdNET, a
fast-growing and not yet fully established software for bird species
identification, in terms of both vocal activity and species-level ID? (ii)
Does bird and bat vocal activity change with hedgerow age, when
considering hedgerow characteristics and their spatial configuration,
habitat context, and weather conditions? As managed hedges become
more structurally and compositionally complex as they mature (Forman
and Baudry, 1984; Litza and Diekmann, 2019), we hypothesised that
older hedges would be associated with greater bird and bat activity than
newer ones. Finally, we discuss what are the possible applications of
automated PAM in aiding the design of AES to promote hedgerow
planting in agricultural landscapes.

2. Materials & methods

2.1. Study sites

The study area comprised of five dairy farms within Cumbria, in the
Northwest of England (Fig. 1). They were located in the Eden Valley, a
wide south-north oriented valley separating the Cumbrian Mountains of
the Lake District from the Northern Pennines. The Agricultural Land
Class of the area is grade 3 (‘good to moderate quality agricultural land’,
Natural England, 2010) and its primary land use is pasture for dairy and
beef farming, interspersed with fragmented and declining small areas of
semi-natural habitat (Natural England, 2013). The Koppen climate
classification of the region is temperate oceanic (Beck et al., 2018). The
farms' land cover was dominated by intensively managed grassland
classified as ‘Lolium perenne L. reseeded grassland’ (MG7, Rodwell,
1998), cut annually for silage, usually multiple times a year.

2.2. Hedgerow characteristics

Across the study area, 24 hedgerows of three different ages were
selected and categorised in a chrono-sequence of three age groups as
follows: (1) ‘New’ if they were planted after 2017 (3–5 year old), (2)
‘Young’ if they were planted between 2010 and 2016 (~10 year old),
and (3) ‘Old’ if they were planted before 2010 (this age category
included a wide range of ages from decades to potentially hundreds of
years old). Eight hedgerows were sampled from each age group, with
New and Old hedges distributed across five farms, and Young hedges
across four farms (Fig. 1). The age of hedgerows in this study is not a
predictor of activity per se, but rather a surrogate for the range of
structural changes that can affect biodiversity as the woody vegetation
grows and is managed regularly with time after hedgerow planting. This
space-for-time substitution is a common approach when studying
changes in biodiversity in managed woodland (Wegiel et al., 2019;
Harris and Betts, 2021). Hedgerow age was determined by consulting
the farmers, as well as with time series from aerial photography and
historic mapping (EDINA, 2010, 2018). Most hedgerows were fenced.
Old hedgerows were regularly managed every one to two years by
trimming using a tractor mounted flail mower and had been laid in the
past.

2.3. Audio recordings

Audio recordings from each hedgerow were collected between June
15th and July 14th 2022 (30 days in total, of which 16 were in June).
Each hedgerow was equipped with two automated recording units
(ARUs, AudioMoth v1.2.0, Firmware 1.8.0 Hill et al., 2018) set ~2 m
apart facing the same field, each enclosed in an AudioMoth IPX7
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Waterproof Case and configured using AudioMoth Configuration App
1.7.0. ARUs were placed >10 m away from hedgerow trees. One ARU
was programmed to turn on every day to capture dawn choruses of bird
song (04:00–08:00 UTC+ 1), recording in intervals of 55 s every minute.
The sampling rate was 48 kHz and recordings were filtered to fre-
quencies <12.6 kHz. The other ARU was programmed to start recording
approximately 30 min after sunset for three consecutive hours
(22:15–00:15 UTC1 + 1) to record bat activity. The sampling rate was
192 kHz, with recordings filtered to frequencies above 25 kHz, and an
amplitude threshold of 416 to reduce file size (Open Acoustic Devices,
2020). Recordings were saved in WAV format.

ARUs on different hedgerows were placed >50 m apart and the
average distance between ARUs on the same farm was 259 (95 % C.I.
180–380) m, ranging from 52 to 2000 m. Where possible, ARUs on
hedgerows boundaries around the same field were placed facing
different fields. The recording radius of AudioMoths varies depending
on the surrounding landscape (Darras et al., 2016; Yip et al., 2017) and
there is no definite minimum distance between ARU to avoid picking up
the same vocal activity. Thus, the location of deployment can affect the
accuracy of automated PAM (Knight and Bayne, 2019), as this also de-
pends on the species considered. For example, Somervuo et al. (2023)
found that goldfinch (Carduelis carduelis) IDs dropped as a function of
distance in forest, but not in agricultural fields. Thus, we conducted a
supplementary analysis to check if the similarity in species ID changed
with total number of IDs and with increasing distance between recorders
by considering all paired combinations of ARUs within each of the
farms, which showed no strong trend in the data (see Appendix A).

2.4. Bird vocalisation ID using BirdNET

All dawn chorus recordings were processed using BirdNET V2.3.
BirdNET is a free, deep convolutional neural network designed to handle
large amounts of field recordings that uses sound spectrographs to
identify bird vocalisations in small segments (3 s) of longer audio re-
cordings (Kahl, 2020; Kahl et al., 2021). It has been trained for over five
hundred European avian species and has generalization ability which
allows, to some degree, to account for background noise.

The sensitivity parameter was set to 1, with no prediction segments
overlap and no minimum confidence threshold set for the raw output.
Farm coordinates and week number of the recording were input as
spatial and temporal filters. As a post-processing step, the raw

confidence scores output by BirdNET of each ARU by day were
smoothed and pooled with a moving exponential average. This was done
to reduce the false negative matches that can result from cutting the
recordings in short intervals, as well as smoothing (reducing) any po-
tential isolated high-confidence species observation (Wood et al., 2021).
To do this, the BirdNET outputs of each species were joined to the
complete list of 3 s intervals within the entire recording period of that
day. The smoothing was performed using Dataframe.emw in Python
v.3.9.0, using a width of 3 chunks (9 s). The processed data was then
joined back to the original output. Appendix B shows the species con-
fidence scores before and after smoothing.

Bird species richness was measured as the number of species iden-
tified during each hour of recording, conservatively selecting only ob-
servations that were attributed a (smoothed) confidence score above 0.5
to minimise the inclusion of false matches following Wood et al. (2021)
and as supported by the results of our analysis on species precision
(Section 2.4.1). Hourly bird vocal activity of all bird species was ob-
tained as the total number of vocalisations per hour, after correcting the
difference in time between an hour (3600 s) and actual recording time
(55 s× 60= 3300 s), as we recorded 55 s every minute. Additionally, we
measured hourly farmland bird activity by only selecting matches with
≥0.5 confidence of a subset of the 19 species belonging to the UK
Farmland Bird Index (FBI), a list of species that rely on farmland land-
scapes and are indicators of the quality of the farmed environment.

2.4.1. BirdNET match precision and species precision
We estimated BirdNET precision during a pilot study conducted in

2020 by manually comparing BirdNET matches to that of an expert
ornithologist. We estimated the rate of false positive matches (i.e. match
precision) to assess the reliability of raw vocal activity measures.
Moreover, although our study does not present species-specific results,
we assessed the species ID false positive match rate (i.e. species preci-
sion), to explore the reliability of BirdNET species ID for monitoring
purposes. 408–3 s recordings were randomly selected from a total of
185,210 3 s recordings (03:00–07:00 UTC + 1) across the ARUs. First,
each recording was blindly sent to the expert for ID. Secondly, the
BirdNET ID was revealed and, if the IDs contrasted, the expert listened to
the recording again to verify it. Precision was expressed as percentage
and was calculated as the number of true positives divided by the sum of
true and false positives. Background noise in the recording was also
classified and recorded.

Fig. 1. Configuration of the 24 hedgerows of three age categories sampled across five farms in the Eden Valley, Northwest of England.
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2.5. Bat vocalisation ID using Kaleidoscope Pro

All nocturnal audio recordings were processed using the cluster
analysis and classifier software Kaleidoscope Pro v5.4.6 (Wildlife
Acoustics, Maynard, MA, USA) to identify positive matches. Audio files
from each ARU per site per night were batch processed and species IDs
were made using the Bats of Europe Auto ID Species Classifier, version
5.4.0. The sensitivity of this classifier was set to the most conservative
(accurate) level. Bat species richness was measured as the number of bat
species identified during each hour of recording, thus excluding matches
that were not identified to species (‘NoID’). As automated PAM is a much
more established practice in bat studies than bird studies (MacSwiney
et al., 2008; Darras et al., 2019), we did not examine the match precision
and species precision of Kaleidoscope. Instead, we measured the rate of
matches of the same species that occurred during a one-minute window
to assess the rate of potential passes of the same individual over the
ARUs.

2.6. Hedgerow characteristics, habitat characteristics, and weather
conditions

Hedge woody species diversity was quantified using the Simpson
diversity index of all species recorded along a 30 m segment, following
standard hedgerow survey recommendations (DEFRA, 2007). The spe-
cies composition of hedgerows was typical of England and of Western
Europe (Barr and Gillespie, 2000; Carey et al., 2007; Cumbria Biodi-
versity Data Centre, 2010), with a strong predominance of hawthorn
(Crataegus monogyna Jacq. 70 %) and blackthorn (Prunus spinosa L., 15
%), and presence of hazel (Corylus avellana L., 2 %), elder (Sambucus
nigra L., 1 %), holly (Ilex aquifolium L.,<1 %), and dog-rose (Rosa canina
L.,<1%). The length of hedgerows was measured from 25 cm resolution
aerial imagery (EDINA, 2018). Hedge height and width were obtained as
the average of ten measurements taken in the field per hedge. Hedgerow
connectivity was measured following DEFRA (2007) guidelines by
counting the number of other hedges connected to each end-point,
counting two connections if a hedge was connected to woodland, and
ignoring gateways or opening <20 m wide. For each hedgerow, a
measure of herbaceous species diversity was obtained from a 2 × 2 m
plot placed along the edge of the hedge. Ground flora species coverage
within the plot was recorded using a Domin scale and transformed to
percentage cover scale using the midpoint of each Domin category
(DEFRA, 2007). Herbaceous species diversity was quantified using the
Simpson diversity index of the percentage cover of all species recorded
within a plot.

The proportion of (broadleaf) woodland land-cover in a buffer of
250 m radius around the ARUs was calculated using the Great Britain 25
m land-cover map (CEH, 2020). The number of isolated trees in a 100 m
radius buffer was obtained by manually counting the number of isolated
trees in the landscape from aerial photos with 25 cm resolution (EDINA,
2018). The distance from each hedgerow to the nearest watercourse was
obtained from the Open Rivers database (EDINA, 2022). Table 1 sum-
marises the average hedgerow and habitat characteristics for each of the
three hedge age groups, indicating significant differences according to
ANOVAs or non-parametric Kruskal-Wallis rank tests and post-hoc
comparisons with Benjamini-Hochberg false discovery rate corrected

p-values. Old hedgerows did not significantly differ to Young hedgerows
for any of the characteristics considered in the study.

We collected hourly weather data of rainfall (mm), temperature (◦C),
and wind speed (mph) conditions using the closest available weather
station (Met Office, 2022), which was on average 19.2 km away from the
centroid location of the sites, ranging from 9.4 km to 26.1 km.

2.7. Vocal activity models

Data analysis was conducted in R v.4.2.3 (R Core Team, 2023). The
relationships between bird (whole community and FBI species) and bat
vocal activity with hedge age, hedge and other habitat characteristics,
and weather conditions (Table 2) were examined using generalized
additive models (GAM) with negative binomial error distribution with
restricted maximum likelihood (gam in mgcv, Wood and Wood, 2022).
GAMs are a generalization of Generalized Linear Models that can include
flexible, non-parametric smoothing splines to capture trends of the data
(Hastie and Tibshirani, 1990). Thus, the models included spatially
explicit terms for the ARUs location (a tensor product smoother of their
coordinates, obtained using the te function) to account for the spatial
relationships among them (Fang and Chan, 2015; Wood, 2017; Viana
et al., 2022). Hedgerow age category and month of recording were
included in the models as categorical variables, while continuous pre-
dictors of hedgerow condition (length, connectivity, ground floral di-
versity and woody species diversity), landscape (distance to the nearest
watercourse, number of trees in 100 m radius buffer, and woodland
cover in a 250 m radius buffer), and hourly weather predictors (air
temperature, wind speed, rainfall) were included as parametric linear
predictors. Collinearity of linear parametric predictors was checked with
Pearson's correlation coefficient for each pair of variables (∣r∣ < 0.55,
Appendix C). All continuous predictors were standardised for effect size
comparability.

3. Results

3.1. Overall bird and bat activity

A total of 4466 h were recorded over 30 days, 2609 h during bird
dawn chorus, and 1985 after sunset for bats. BirdNET found 874,598
bird matches from a total of 114 bird species. 87 % of these species,
which corresponded to 98 % of total bird sounds, were classified as
abundant, common, or fairly common according to regional census
definition (Cumbria Biodiversity Data Centre, 2015; Cumbria Bird Club,
2022, Appendix D). However, 92.4 % of the bird matches had a confi-
dence score < 0.5 after pooling and smoothing. The remaining 7.6 % of
matches were attributed to 83 different species, 12 of which were
classified as farmland specialists. The average total number of bird
matches per hedgerow was 36,442 (±10,312). Bird vocal activity did
not change significantly between 3 am and 7 am and averaged 335
(±282) matches per hour. After removing confidence scores <0.5 the
average bird species number per hour was 2.75 (±1.65).

Kaleidoscope Pro found 24,210 bat matches, 27 % of which were not
identified to species. The remaining 73 % were attributed to 12 species,
with the vast majority belonging to Pipistrellus pygmaeus (n = 8159),
P. pipistrellus (n= 6926) and Nyctalus noctula (n= 2078), which together

Table 1
Average values (±standard deviation) of the hedgerow and landscape characteristics included in the models. Different letters indicate statistically significant dif-
ferences (p < 0.05), no letters indicate no statistically significant differences among the hedge age categories.

Age
class

Height
(cm)

Sig. Width
(cm)

Sig. Length
(m)

Sig. Connectivity Herb.
diversity

Woody
diversity

Trees (n) Dist. to water
(m)

Woodland
(%)

New 135 (±48) b 84 (±42) b 132 (±59) b 3.13 (±0.83) 0.79 (±0.01) 0.27 (±0.21) 4.4 (±5.2) 448 (±312) 4.2 (±5.2)
Young 213 (±42) a 164

(±33)
a 195

(±149)
ab 3 (±1.07) 0.83 (±0.05) 0.14 (±0.16) 3.4 (±2.4) 310 (±197) 3.3 (±4.4)

Old 214 (±54) a 188
(±40)

a 268
(±109)

a 2.75 (±0.71) 0.78 (±0.04) 0.30 (±0.29) 2.9 (±1.9) 447 (±255) 4.2 (±5.8)
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represented 97 % of the matches. 4.96 % of total bat matches (n= 1202)
originated for the same species within a one-minute window and we
never observed more than two matches per minute for the same species.
The average total number of bat matches per hedgerow was 1053
(±486). Most bat vocal activity, regardless of species, occurred in the
first hour after sunset (average 19.0 ± 13.4) and decreased by 49.7 % (p

< 0.001) and then a further 18.1 % (p < 0.001) during the second and
third hours of recordings.

3.2. BirdNET match precision and species precision

BirdNET performed well in identifying bird vocalisations from other
audible signals, as match precision in the 408 individual 3 s recording
sample was 5.8 %, with 90 % of false discoveries occurring with a
confidence score < 0.5. However, 77 % of true positive matches also
occurred with a confidence score < 0.5. 62 % of false discoveries
occurred during wind gusts, 20 % with no discernible background noise,
and 16 % with livestock sounds (cows and sheep). BirdNET species
precision instead was much lower, with 46.6 % of matches not being
correctly identified to species. Species precision was strongly improved
by setting a confidence threshold, as 97 % of misidentifications occurred
with a confidence score< 0.5, and 80 % with a confidence score < 0.25.
62 % and 34 % of correct species IDs occurred with confidence score <
0.5 and < 0.25, respectively.

3.3. Drivers of birds and bats activity around hedgerows of different ages

The GAMs of all birds, FBI birds, and bats indicated a significant
increase in vocal activity in Young and Old hedgerows compared to New
ones. The three models showed significantly higher activity in Young
hedgerows and Old hedgerows compared to New ones, with Young
hedges showing the highest effect estimate (Fig. 2).

Overall bird community (R2 = 0.51) and farmland bird species

Table 2
Variables included in the bird and bat vocal activity models and the reason for
their inclusion.

Variable Unit Reason for inclusion in the
model

Hedgerows Age class New/Young/
Old

Birds and bats: Time since
hedgerow planting.

Length Meters Birds: Resource provision,
nesting habitat (Parish et al.,
1995; Chamberlain and
Wilson, 2000; Grüebler
et al., 2008).
Bats: Resource provision,
navigation using
ecolocation (Jensen et al.,
2005; Schweiger et al.,
2005; Grüebler et al., 2008).

Connectivity Number of
nodes

Birds and bats: Dispersal
and movement in the
landscape, as hedgerows
serve as landscape corridors
and habitat (Davies and
Pullin, 2007; Froidevaux
et al., 2017).

Herb. spp.
diversity

Simpson index Birds and bats: Resource
provision (Hinsley and
Bellamy, 2000; Schweiger
et al., 2005; Froidevaux
et al., 2019).

Woody spp.
diversity

Simpson index

Landscape Distance to
water

Meters Birds: Riparian areas supply
food resources and habitat (
McCracken et al., 2012).
Bats: Distance to foraging
areas (Davidson-Watts et al.,
2006; Nicholls and Racey,
2006).

Trees, including
hedgerow trees

Number in a
100 m buffer

Birds: Trees can affect
positively the abundance
and diversity of birds in
hedgerows, but negative
impacts have been also
shown (Green et al., 1994;
Hinsley and Bellamy, 2000;
Walker et al., 2018).
Bats: Presence of trees in
hedgerows generally shows
a positive influence on bat
activity (Russ and
Montgomery, 2002;
Boughey et al., 2011;
Lacoeuilhe et al., 2018).

Woodland Percentage
cover in a 250
m buffer

Birds and bats: The cover of
semi-natural habitat in an
agricultural matrix affects
many farmland species (
Heim et al., 2015; Duflot
et al., 2018).

Season/
weather

Month June; July Birds and bats: Timing of
breeding season.

Temperature Celsius Birds and bats: Insect prey
availability (Grüebler et al.,
2008).

Wind speed mph Birds and bats: Flying
conditions and insect prey
availability (Grüebler et al.,
2008).

Rainfall mm/h

H
ed
ge
ro
w

La
nd
sc
ap
e

S
ea
so
n/
w
ea
th
er

Rainfall (mm/h)

Wind speed (mph)

Temperature (C)

July vs June

Woodland (%)

Trees (n)

Dist. to water (m)

Woody spp diversity

Herb. spp diversity

Connectivity (n)

Hedge length (m)

Old vs New

Young vs New
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Fig. 2. Effect sizes of hedgerow characteristics, landscape variables, and
weather conditions on the vocal activity of the whole bird community, of FBI
bird species, and of bats with bootstrapped 95 % confidence intervals. Effect
sizes are significant only when confidence intervals do not overlap with the
dotted line indicating zero.
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(R2 = 0.34) vocal activity was higher in hedgerows with greater con-
nectivity, greater woody plant species diversity, and greater herbaceous
plant species diversity in their understory. Longer hedgerows were
associated with lower bird vocal activity, while greater bird vocal ac-
tivity was associated with a higher number of trees in the surrounding
area, but lower woodland cover. While distance to the nearest water-
course did not appear to affect overall bird vocal activity, the farmland
birds model suggested that their vocal activity was higher around
hedgerows farther away from watercourses. With the end of breeding
season for most species, July was characterized by a decrease in vocal-
isations for birds. Weather was also shown to affect vocalisations, with
greater vocal activity in drier and less windy conditions.

The model for bat vocal activity (R2 = 0.23) showed that the di-
versity of hedgerow woody species was positively associated with the
number of matches, while hedgerow connectivity was negatively asso-
ciated with it. Of the landscape variables, bat vocal activity decreased
with increasing distance to water. As for bird activity, a higher number
of matches were recorded around hedgerows with a greater number of
trees in the surrounding areas, and a lower proportion of woodland
cover. Bat vocal activity decreased in July compared to June. All
weather variables showed a significant positive association on bat
vocalisations, as Kaleidoscope Pro recorded more matches in association
with higher temperature, precipitation, and wind speed, although the
latter had a small effect size (full model results shown in Appendices
E–G).

4. Discussion

4.1. BirdNET vocal activity and species-level precision

The use of BirdNET in the literature has been rapidly growing in
popularity, but the number of field studies utilising this software to
identify vocalisations in recordings is still very limited (Darras et al.,
2019; Pérez-Granados, 2023). This is one of the first studies to use
BirdNET in a real-world scenario while assessing its performance and
our results show that BirdNET successfully discerns bird vocalisations
within a farmland soundscape, while the overall precision in species ID
was low. From our subsample of manually checked IDs, we found that
the software had a high capacity to recognise the presence of a bird
vocalisation in the recordings, with a match precision of 94.8 %. Thus,
our results indicate that BirdNET can be used to measure the vocal ac-
tivity of the entire bird community in the field without having to set a
minimum confidence threshold.

BirdNET species precision (53.4 %) was much lower than match
precision. However, our results show that smoothing the confidence
scores and limiting matches to those with ≥0.5 confidence removed a
large amount of false positive species IDs. Although undoubtedly needed
to increase precision, our results show that this process likely removed
many true species IDs, as over half of these occurred with confidence
<0.50. Further research supported by expert validation of the results is
needed to investigate the nature of these true positives with low confi-
dence scores, which may be due, for example, to softer vocalisations
(Arif et al., 2020). The process of filtering matches by confidence scores
decreased by 27 % the suggestions of identified species (114 to 83), in
line with the results of (Cole et al., 2022) who found a 62 % decrease
when limiting observations to those with ≥ 0.9 confidence (104 to 39)
and reduced the sample size by 92 %. The consequence of this strong
decrease in sample size is evident in the FBI bird species model, which
showed much wider errors than the model of total bird vocal activity.
However, one of the main advantages of PAM is the capacity to collect
very large amount of field data with relatively small effort (i.e. regularly
changing batteries and replacing storage), and in a cost-effective way
depending on the survey conditions (Markova-Nenova et al., 2023).
Thus, substantially increasing the sample size within species-specific
studies should not represent a major obstacle to future studies.

Increasing the sample size will also maximise the chances of detecting
more species in the absence of visual surveys (Kułaga and Budka, 2019;
Wood et al., 2021).

It is possible that BirdNET performance in species ID accuracy may
improve if used outside of dawn chorus hours, when many species
overlap their song leading to a cacophonous chorus (Farina et al., 2015;
Gil and Llusia, 2020). Arif et al. (2020) tested 205 recordings and found
that the loudest species were identified with greatest confidence, sug-
gesting that the simultaneous vocalisation of several, potentially loud
individuals might be detrimental to the ID process. Kahl et al. (2021)
proposed increasing the sensitivity parameter and the overlap between
prediction segments to improve the species ID. Due to the scarcity of
quantitative studies on BirdNET ID of field recordings, in this study, we
opted to use the software standard parameters.

4.2. Vocal activity around hedgerows from planting to maturity

Our results indicate that vocal activity of birds and bats was higher in
Young and Old hedgerows than in New ones. These findings applied to
the entire bird and bat community, as well as FBI species, which often
rely on hedgerow presence for nesting, particularly in arable landscapes
(Broughton et al., 2021). Thus the results of our space-for-time substi-
tution approach suggest that, within an intensive dairy farming land-
scape, biodiversity benefits of planting hedgerows, in terms of vocal
activity of birds and bats, can be achieved within a decade. While the
effect of other metrics (e.g. hedge height and width) on biodiversity
have been assessed previously, little is known about the trends in
farmland biodiversity with hedgerow age, particularly from the early
stages of planting (Kremen and M'Gonigle, 2015; Sybertz et al., 2020;
Tresise et al., 2021b; Litza et al., 2022) and our results contribute to-
wards filling this research gap.

The models indicated that the vocal activity of birds and bats did not
keep increasing with hedgerow age, as the highest vocal activity was
associated with Young hedgerows, likely due to a mix of resource
availability distribution, hedge management cycles, and study design.
Other studies have found that the association between hedgerow age
and biodiversity is not linear. For example, similarly to our study, a two-
year field case study in North America found that both 15–20 year old
hedgerows and 40 year old ones had higher bird abundance than
recently planted ones, and that abundance was comparable between the
two older age categories (Sibbald and Terpsma, 2016; Schlechtleitner
and Bondar, 2017). This similarity could be explained by invertebrate
prey availability, as hedgerow age has been shown to have a weak effect
on the abundance of invertebrates after around a decade post-planting.
For example, Deeming et al. (2010) found lower invertebrate abundance
in ≤ 5 year old than 50+ year old hedgerows, and Bennett (2016) found
the same invertebrate abundance on the ground and in the canopy in 15
year old hedges compared to 50+ year old ones. The results from these
two studies suggest that, while invertebrate abundance in New hedges
was likely lower, it was comparable between Young and Old hedgerows,
rendering both age categories suitable to provide invertebrate food to
breeding birds and bats.

Management regime may explain why vocal activity was higher in
Young hedges than Old ones, as these age categories differed in the stage
of their management cycle. Young hedges were not significantly
different to Old ones in terms of their size or any other hedgerow or
habitat characteristic included in the study (Tables 1). However, they
had not yet entered the regular management cycle typical of UK hedges,
which consists in trimming every 1–3 years and laying every 15–30
years. This management regime results in differences in the woody
biomass of Young and Old hedgerows (5.62 vs 12.8 Mg dry biomass
km− 1, Biffi et al., 2023). Other studies have shown that differences in
hedgerow woody structure and cutting regime can influence bird and
bats by affecting resources availability and habitat quality (Hinsley and
Bellamy, 2000; Froidevaux et al., 2019). As hedges in this study are
managed intensively, as typical for most UK hedgerows (Carey et al.,

S. Biffi et al.



Biological Conservation 296 (2024) 110722

7

2007), untrimmed, Young hedges may have provided better habitat than
Old ones in our study area. It should also be noted that the distribution of
Young hedgerows among farms was more clustered than the other age
categories, potentially biasing their estimated effect compared to Old
hedgerows. Finally, it should also be noted that our results represent
associations between vocal activity and hedgerow age over a month, and
that applying automated PAM over longer periods of time and different
seasons might highlight changes in the relationships that we found.

Although shifts in individual species activity are beyond the scope of
this study, it should be noted that old hedgerows may have the potential
to attract more specialist species than young ones. For example, remnant
hedgerows support greater populations of forest specialist plants
(Clements and Alexander, 2009; Kremen and M'Gonigle, 2015; Litza
et al., 2022) and previous avian studies have linked the loss of old
hedgerows to the mating structure simplification of hedgerow specialist
species (Bishton, 2001; Browne and Aebischer, 2004). Thus, preserving
existing old hedgerows is crucial to support biodiversity in farmed
landscapes.

4.3. Other drivers of vocal activity around hedgerows

Accounting for both local and landscape scale effects when evalu-
ating the effects of individual hedgerows on biodiversity measures is
crucial (Railsback and Johnson, 2014; Sullivan et al., 2017; Heath et al.,
2017; Lacoeuilhe et al., 2018), and we found hedgerow and habitat
characteristics to have multiple and sometimes diverging effects on
vocal activity of birds and bats. Our results are largely in agreement with
findings of previous studies on bird and bat abundance in relation to
hedgerow and adjacent landscape characteristics (Newton, 2017;
Hinsley and Bellamy, 2019). However, it should be noted that the
goodness of fit for the bat model was low, suggesting that the model did
not capture some factors that were controlling most of their activity.

4.3.1. Hedgerow and habitat drivers
We found that hedgerow length was negatively associated with bird

activity. Although total hedgerow length (density), is known to affect
bird communities at regional scales (Fuller, 2000; Whittingham et al.,
2009), our results suggest that, for individual hedgerows, bird vocal
activity increases with greater hedgerow connectivity rather than with
length per se. We found a stronger effect size of connectivity on FBI
species compared to the entire bird community, which agrees with
findings of other studies reporting the importance of hedgerow con-
nectivity for the movement of bird species that are less dependent on
woodland cover (i.e., not forest specialists) within the agricultural
landscape (Mortelliti et al., 2010; Gil-Tena et al., 2014). By contrast,
hedgerow connectivity was negatively associated with bat vocal activ-
ity, a result in accordance with Frey-Ehrenbold et al. (2013) who found
no effect of connectivity on mid-range echolocator species, and an
increased activity of P. pipistrellus with decreasing connectivity and
increasing linearity of hedgerows. As linear features are important for
bats with structure-bound ecologies to navigate the landscape when
commuting between roosts and foraging areas (Downs and Racey, 2006;
Froidevaux et al., 2017), it is possible that vocal activity was lower
around hedgerows with higher connectivity due to a dilution effect
(Fahrig, 2003), where less activity is found over abundant hedgerow
networks, which offer more complex navigation routes, and higher ac-
tivity around more isolated hedgerows, which are influential features of
reference in the landscape.

The diversity of both herbaceous and woody species in hedgerows
were positively linked to the vocal activity of both birds and bats, while
distance to the nearest water course had opposite effects on them.
Greater diversity in floral resources in and around hedgerows has been
linked to the abundance and diversity of insect communities in farmed
landscapes (Maudsley, 2000; Morandin and Kremen, 2013; Holden
et al., 2019), which, in turn, supports higher predator abundance
(Froidevaux et al., 2019). For example, wildflower diversity has been

positively associated with bat foraging activity over agricultural fields
(Peter et al., 2021). Given the importance of riparian habitats in the
foraging behaviour of several UK bat species (Nicholls and Racey, 2006;
Downs and Racey, 2006), it was not surprising that bat activity declined
as distance from water courses increased. We found higher bird vocal
activity away from water courses. Although distance to water can be
important to some bird species found in farmland, as shown by Jun-
gandreas et al. (2022) for endangered species in Germany, most species
commonly found in UK's grassland habitats are not strongly dependent
on proximity to water habitats during breeding season (Radović et al.,
2013; Rosin et al., 2016; Jungandreas et al., 2022).

We found the number of trees to be positively associated with both
bird and bat vocal activity. The effect of trees on bird abundance has
been found to vary from species to species, with territory occupancy of
generalist species such as greenfinch (Chloris chloris) being positively
affected by trees, while, for example, yellowhammer (Emberiza citrinella)
territory number can be negatively affected by the presence of hedgerow
trees (Tresise et al., 2021a). Bats generally benefit from hedgerow trees
and isolated trees, as they provide shelter from predators and from the
elements, for example, by reducing wind speed (Verboom and Spoelstra,
1999; Nicholls and Racey, 2006; Boughey et al., 2011; Lima and O'Keefe,
2013). Trees can also represent hotspots of insect prey, as they provide
diverse microhabitats (Merckx et al., 2009; Lacoeuilhe et al., 2016). We
found instead that woodland cover had a negative effect on bird and bat
vocal activity. This was surprising, particularly for bats, as woodland
cover or nearness to woodland have been found to have a positive effect
on several UK species (Davidson-Watts et al., 2006; Nicholls and Racey,
2006; Boughey et al., 2011; Frey-Ehrenbold et al., 2013). However,
woodland vegetation type has a strong impact on bat activity, with
Pipistrellus spp. favouring low tree densities with an open understory and
thus higher activity has generally been recorded around grazed grass-
land than woodland (Fuentes-Montemayor et al., 2013). Thus, the
combination of woodland type and the predominantly grassland land-
scape surrounding the hedges may explain the negative association be-
tween activity and woodland cover we found in this study.

4.3.2. Seasonal and weather conditions
The month of recording and weather conditions also presented

multiple associations with vocal activity. Activity during July was al-
ways lower than in June, which represents the peak of nesting and
breeding season for many bird and bat species in the UK. Weather
conditions are known to affect the availability of insect prey in agri-
cultural landscapes, with the negative effect of wind and rain being most
evident at lower temperatures (Grüebler et al., 2008). While bird vocal
activity was negatively affected by rainfall and wind speed, we found a
positive association of bat vocal activity with precipitation and wind
speed. Heavy rainfall has been shown to negatively affect bat vocal ac-
tivity (Perks and Goodenough, 2020) but rainfall during the study was
not heavy (0.1 ± 0.7 mm/h on average), with only 6 h (0.3 %) above 5
mm/h across the entire recording period. Thus, one explanation for this
positive association may be that during rainfall events below a certain
intensity, foraging is not compromised by the increased energetic cost of
thermoregulation. It should be noted, however, that the rainfall data
was collected from the nearest weather stations, thus, on-site conditions
may not have been fully captured in the analysis. We found that most bat
vocal activity occurred shortly after sunset and at warmer temperatures,
as bat foraging activity (particularly Pipistrellus spp.) is known to peak
shortly after sunset (Catto et al., 1995; Newson et al., 2015; Perks and
Goodenough, 2020).

4.4. Incorporating automated PAM in agri-environment schemes design

With the rapid advances of digitisation in agricultural practices and
policy (Ehlers et al., 2022), PAM using automated vocalisation ID is an
opportunity to integrate large-scale, community-level monitoring into
biodiversity conservation goals (Müller et al., 2022). Our results show
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that the simple metric of overall bird and bat vocal activity can be used
to monitor bird and bat activity changes following hedgerow planting in
AES. This relatively simple and cheap monitoring technique can be
beneficial in the context of result-based schemes or hybrid schemes,
where farmers may be expected to monitor and report the outcomes of
AES on their own farms (Natural England, 2019) with a set of indicators
that are often developed at the species-level (Elmiger et al., 2023). While
species-level monitoring using PAM (i.e. requiring expert evaluation of
the recordings) is not always cost-effective compared to human obser-
vations (Markova-Nenova et al., 2023), our results show that expert
evaluation is not needed when considering the vocal activity of the
wider bird or bat community. As ARUs can be purchased at low costs (e.
g. Hill et al., 2019) and automated software for species ID are becoming
widely available, community-level vocal activity could drastically
reduce monitoring costs. Thus, vocal activity is a suitable candidate
indicator for the design of future AES that are aimed at improving the
provision of semi-natural habitat in agricultural land to benefit multiple
species and taxa, such as hedgerow planting. Future hybrid hedgerow
planting AES options, for example, could encompass a one-off action-
based payment to compensate farmers for the costs incurred by planting
hedges (e.g. currently UK farmers are paid £22.97 per meter of hedge-
row planted, RPA, 2022), as well as a result-based annual payment tied
to the delivery of increased vocal activity of all birds, farmland birds,
and bats, as measured with automated PAM.

Incorporating automated PAM in the design of new hybrid schemes
may provide an incentive for farmers to continuously manage the
hedgerow in a biodiversity-friendly way, as well as planning the spatial
placement of hedgerows with conservation explicit goals to benefit the
wider bird and bat community. The effectiveness of AES placement and
management in delivering ecosystem services is not usually considered
by farmers across Europe when adopting AES (Bartkowski et al., 2023)
and the management of hedgerows is essential to their continued
ecological functioning within the farmed landscape (Staley et al., 2015).
As hedgerow management is key to support birds and bats (Froidevaux
et al., 2019; Staley et al., 2023), tying a fraction of AES payments to
demonstrated increases in vocal activity may encourage farmers to
adopt management practices that ensure the hedgerow remains in good
quality, such as hedgerow rejuvenation and incremental trimming.
Similarly, the incentive to demonstrate AES effectiveness may support
farmer decision-making in the spatial planning of hedgerow placement.
Our results show that hedges that are more connected, more diverse, and
are accompanied by trees support greater bird and bat vocal activity.
Thus, future hedgerow planting AES should promote the planning,
development, and monitoring of hedgerow networks at the farm and
landscape-scale that can subscribe to these characteristics (Staley et al.,
2023), leaving to farmers the possibility to use their experience and local
knowledge to achieve the targeted outcomes (Burton and Schwarz,
2013).

For automated PAM to be used as a monitoring tool in AES, further
research should be conducted to establish trust in the application of this
technology, so that it can be accepted and legitimized by ornithology
and chiroptology experts, farmers, and the public. Firstly, clear guidance
should be given on how to collect sound recordings within AES. Good-
practice guidelines for PAM have been recently proposed in the UK
(Metcalf et al., 2023); however, these highlight how many aspects of
PAM have not been quantified or fully assessed yet. Importantly,
research should inform the development of standard methods for the
deployment of recorders, for calibrating the ARUs, and for ensuring a
homogenous and replicable automated processing of the audio data
(Pérez-Granados and Traba, 2021; Yip et al., 2021). For example, a
hybrid approach that utilises PAM and occasional point count surveys
has been proposed to deliver ground-truthing when relating vocal ac-
tivity to abundance (and thus calibrate the recordings, Doser et al.,
2021). In the case of bird monitoring, the continued refinement of
BirdNET since its recent development (Kahl et al., 2021; Wood et al.,
2022) suggests that in the coming years the software will be improved

further. Future studies could use expert-labelled training data produced
from different context-specific habitats, potentially improving species-
level predictability by turning BirdNET from a (virtual) worldwide
generalist birder to a well-versed (virtual) local field ornithologist that
could be used to monitor AES practices that are targeting individual
species. However, our results show that BirdNET already has a very high
match precision, rendering it suitable for the assessment of community-
level vocal activity for AES that deliver habitat improvements for many
taxonomic groups, as with hedgerow planting.

Secondly, as both hedgerow and landscape characteristics strongly
influence vocal activity of birds and bats, the analysis of automated PAM
outputs should take into consideration hedgerow condition, as well as
landscape composition and configuration (Batáry et al., 2020) in the
statistical analysis of audio data. Robust and unbiased statistical analysis
of automated PAM outputs is crucial in the case of result-based and
hybrid AES, as their entire or partial compensation is tied to the proven
positive outcome of the AES, also in light of concurring drivers at the
landscape level (Concepcion et al., 2012). For example, individuals can
move among and along hedges and the spatial range of vocal activity of
birds and bats differ, as most breeding bird species in agricultural
landscapes are most vocal within a small home range (McHugh et al.,
2017; Loretto et al., 2019), while bats are vocal over much greater
distances covered when foraging (Robinson and Stebbings, 1997; Froi-
devaux et al., 2017). Accounting for spatial autocorrelation and
recording soundscapes over extended periods of time is essential when
conducting automated surveys (Furnas and Bowie, 2020). We addressed
the issue of spatial configuration of hedgerows using GAMs, and our
results show that, although it is difficult to exclude some degree of
correlation among pairs of ARUs, it is possible to measure differences in
vocal activity between different hedge age categories.

5. Conclusions

Our results show that the application of PAM with automated
vocalisation ID can be used to monitor simple metrics of bird and bat
community-level changes following hedgerow planting. We found
BirdNET to be a suitable tool to obtain measures of bird vocal activity
without setting a minimum confidence threshold; instead, we highlight
that species-level metrics obtained with BirdNET should be considered
carefully, unless a confidence threshold of 0.5 is applied. However,
setting this limit will also remove many true observations from the
dataset. The results of this study suggest a positive effect of hedgerows
on bird and bat vocal activity a decade after hedgerow planting, indi-
cating a relatively short timeframe in which measurable differences in
wildlife activity could be expected following large-scale hedgerow
planting efforts within AES. We propose automated PAM as a simple and
cost-effective monitoring tool that can be incorporated in the design and
implementation of future result-based or hybrid AES, in which farmers
may be asked to monitor and report indicators on their own land.
Integrating automated PAM methodology in AES design and establish-
ing trust in the outputs of this monitoring tool could be beneficial to
encourage farmers to plant hedgerows with structural and spatial
characteristics that can maximise biodiversity benefits. While we have
used automated PAM to monitor the response of biodiversity to hedge-
row planting, this novel technology could be applied to other in-
terventions within AES, such as buffer strips, flower margins, or creation
of ponds. Automated PAM is a rapidly developing tool that has the po-
tential to play a central part in facilitating the cost-effective monitoring
of the biodiversity response to AES and other restoration and conser-
vation projects. However, further research is needed to establish trust
with this practice and achieve its full potential.
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Appendix A. Species identification similarity between pairs of ARUs

Methods

To check if pairs of ARUs closer to each other were likely to be recording vocalisations from the same individuals, we separately assessed the
similarity of bird and bat species matches between all pairs of ARUs on each farm within a one-minute window. This time window was chosen as to
account for potential drift in the internal clock of individual ARUs, as well as potential short-distance movements of bats and birds. To do this, for each
ARU in a pair of ARUs, using Python v.3.9.0 we computed a matrix with species as columns and number of matches per minute as rows. We counted
the number of overlapping matches (i.e. matches by the same species within the same one-minute window) by species using ARU1matrix.combine
(ARU2matrix, numpy.minimim), taking the smaller of the two values within the one-minute window. The total number of matches was determined
using ARU1matrix.combine(ARU2matrix, numpy.add). We computed the proportion of overlapping matches by species by dividing the number of
overlapping matches by the total number of matches. The distance (m) between each pair of ARUs was calculated using pointDistance in raster
(Hijmans, 2023). ‘NoID’ bat matches were excluded. Finally, we calculated the Spearman correlation between the proportion of overlapping matches
per minute and the distance between ARU pairs.

Results

The similarity of species matches across all ARU pairs was low, with 73% of one-minute windows of bird matches and 93% of bat matches showing
no overlap in species ID (Fig. 1). The correlation between the proportion of same species matches per minute and the distance between ARU pairs on
the same farm also suggested low overlap (|r|birds = − 0.06, |r|bats = − 0.05). On average, the proportion of same species matches did not increase
with total matches number for birds, while for bats same species ID occurredmore likely at low number of matches per minute. For both bats and birds,
there was a trend of decreasing similarity with increasing distance between ARU pairs (Fig. 1). However, the proportion of overlapping species
matches remained low and across all ARU pairs that were ≤ 200 m apart, only 30 % of one-minute window with non-zero total bird matches showed
any amount of overlap in species ID. This proportion was lower for bat matches (10 %). The ARU pair with the highest proportion of overlap in species
matches was not the closest pair (52 m), but a pair 103 m apart for birds (17.5 %) and 73 m apart for bats (18.7 %).

Discussion

The overlap in species ID within a one-minute window was generally low, suggesting that we were not usually recording the same individual
simultaneously. In birds, we found that similarity did not increase with the total number of matches, suggesting high diversity in species vocal activity
also between ARU pairs that were closer. However, this result should be considered carefully in the light of the low accuracy in species ID by BirdNET.
In bats, similarity in species ID increased when the number of matches was low, independently to distance between ARUs. This suggests that different
ARUs were recording the same species at the same time, but not necessarily the same individuals. This is not surprising, as bats tend to forage in
groups.
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Fig. 1. Distribution of raw BirdNET confidence scores and confidence scores after smoothing and pooling with a moving exponential average window. The red
vertical line marks the 50 % confidence threshold used for species IDs. Species codes are shown, for species common and scientific names see Appendix D. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Appendix C. Correlation plots

Fig. 1. Correlation matrix of the environmental variables used for modelling vocal activity of (A) birds and (B) bats.
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Appendix D. Bird species identified by BirdNET

Table 1
List of the 114 bird species identified by BirdNET in the recordings and their proportion in the dataset. The presence of each species in the region is classified according
to regional census (Cumbria Biodiversity Data Centre, 2015; Cumbria Bird Club, 2022). FBI = Farmland Bird Indicator species. Presence in region is coded as: A =

abundant, C = common, F = fairly common, U = uncommon, R = rare.

Species code Common name Scientific name FBI Proportion IDs (%) Presence in region

wlwwar Willow Warbler Phylloscopus trochilus 18.6 A
winwre4 Eurasian Wren Troglodytes troglodytes 11.2 A
rook1 Rook Corvus frugilegus Yes 7.2 A
eurjac Eurasian Jackdaw Corvus monedula Yes 5.2 A
eurbul Eurasian Bullfinch Pyrrhula pyrrhula 3.9 C
eurjay1 Eurasian Jay Garrulus glandarius 3.3 C
eurgol European Goldfinch Carduelis carduelis Yes 2.7 A
carcro1 Carrion Crow Corvus corone 2.4 A
yellow2 Yellowhammer Emberiza citrinella Yes 2.4 A
eugplo European Golden-Plover Pluvialis apricaria 2.2 A
skylar Eurasian Skylark Auleda arvensis Yes 1.9 A
eurcur Eurasian Curlew Numenius arquata 1.9 A
gretit1 Great Tit Parus major 1.9 A
trepip Tree Pipit Anthus trivialis 1.9 C
eurbla Eurasian Blackbird Turdus merula 1.8 A
eurtre1 Eurasian Treecreeper Certhia familiaris 1.7 C
meapip1 Meadow Pipit Meadow Pipit 1.3 A
comred2 Common Redstart Phoenicurus phoenicurus 1.3 A
eurlin1 Eurasian Linnet Linaria cannabina Yes 1.2 A
perfal Peregrine Falcon Falco peregrinus 1.2 F
bkhgul Black-headed Gull Chroicocephalus ridibunduns 1.2 A
stodov1 Stock Dove Columba oenas Yes 1.2 C
comcha Common Chaffinch Fringilla coelebs 1.1 A
goldcr1 Goldcrest Regulus regulus 1.0 A
eurrob1 European Robin Erithacus rubecula 1.0 A
comchi1 Common Chiffchaff Phylloscopus collybita 1.0 A
blutit Eurasian Blue Tit Cyanistes caeruleus 0.9 A
dunnoc1 Dunnock Prunella modularis 0.9 A
whinch1 Whinchat Saxicola rubetra 0.9 F
brnowl Barn Owl Tyto alba 0.8 F
eursta European Starling Sturnus vulgaris Yes 0.8 A
norwhe Northern Wheatear Oenanthe oenanthe 0.8 A
combuz1 Common Buzzard Buteo buteo 0.8 C
euroys1 Eurasian Oystercatcher Haematopus ostralegus 0.8 A
blackc1 Eurasian Blackcap Sylvia atricapilla 0.7 A
grswoo Great Spotted Woodpecker Dendrocopos major 0.6 C
eurmag1 Eurasian Magpie Pica pica 0.5 A
reebun Reed Bunting Emberiza schoeniclus Yes 0.5 C
misthr1 Mistle Thrush Turdus viscivorus 0.5 A
coatit2 Coal Tit Coal tit 0.4 A
sonthr1 Song Thrush Turdus philomelos 0.4 A
eurgre1 European Greenfinch Chloris chloris Yes 0.4 A
mewgul Mew Gull Larus canus 0.4 A
cohmar1 Common House-Martin Delichon urbicum 0.4 A
gnwtea Green-winged Teal Anas carolinensis 0.4 A
comred1 Common Redshank Tringa totanus 0.4 A
eutspa Eurasian Tree Sparrow Passer montanus Yes 0.3 C
hoocro1 Hooded Crow Corvus cornix 0.3 U
relpar1 Red-legged Partridge Aectoris rufa 0.3 A
whimbr Whimbrel Numenius Phaeopus 0.3 U
grnwoo1 Eurasian Green Woodpecker Picus viridis 0.3 F
houspa House Sparrow Passer domesticus 0.3 A
redcro Red Crossbill Loxia curvirostra 0.2 U
grywag Gray Wagtail Motacilla cinerea 0.2 C
dunlin Dunlin Calidris alpina 0.2 U
spofly1 Spotted Flycatcher Muscicapa striata 0.2 A
woowar Wood Warbler Phylloscopus sibilatrix 0.2 F
whiwag White Wagtail Motacilla alba 0.2 A
eurkes Eurasian Kestrel Falco tinnunculus Yes 0.2 C
stonec4 European Stonechat Saxicola rubicola 0.2 F
garwar1 Garden Warbler Sylvia borin 0.2 A
lottit1 Long-tailed Tit Aegithalos caudatus 0.2 A
eursis Eurasian Siskin Spinus spinus 0.2 C
eurcoo Eurasian Coot Fulica atra 0.2 C
barswa Barn Swallow Hirundo rustica 0.1 A
mallar3 Mallard Anas platyrhynchos 0.1 A
grewhi1 Greater Whitethroat Sylvia communis 0.1 A
comsan Common Sandpiper Actitis hypoleucos 0.1 C
comgre Common Greenshank Tringa nebularia 0.1 F

(continued on next page)

S. Biffi et al.



Biological Conservation 296 (2024) 110722

15

Table 1 (continued )

Species code Common name Scientific name FBI Proportion IDs (%) Presence in region

lesred1 Lesser Redpoll Acanthis cabaret 0.1 C
rinphe Ring-necked Pheasant Phasianus colchicus 0.1 A
eurnig1 Eurasian Nightjar Caprimulgus europaeus 0.1 U
martit2 Marsh Tit Poecile palustris 0.1 F
eurnut2 Eurasian Nuthatch Sitta europaea 0.1 C
cogwar1 Common Grasshopper-Warbler Locustella naevia 0.1 F
grcgre1 Great Crested Grebe Podiceps cristatus 0.1 F
leswoo1 Lesser Spotted Woodpecker Dryobates minor 0.1 R
comrav Common Raven Corvus corax 0.1 F
osprey Osprey Pandion haliaetus 0.1 U
eurspa1 Eurasian Sparrowhawk Accipiter nisus 0.1 C
hergul Herring Gull Larus argentatus 0.1 A
redkit1 Red Kite Milvus milvus 0.1 U
commoo3 Eurasian Moorhen Gallinula chloropus 0.1 A
cowpig1 Common Wood-Pigeon Columba palumbus <0.1 A
lbbgul Lesser Black-backed Gull Larus fuscus <0.1 A
graher1 Gray Heron Ardea cinerea <0.1 F
grypar Gray Partridge Perdix perdix <0.1 F
norlap Northern Lapwing Vanellus vanellus Yes <0.1 A
commer Common Merganser Mergus merganser <0.1 C
eupfly1 European Pied Flycatcher Ficedula hypoleuca <0.1 C
comsni Common Snipe Gallinago gallinago <0.1 A
litgul Little Gull Hydrocoloeus minutus <0.1 U
sedwar1 Sedge Warbler Acrocephalus schoenobaenus <0.1 C
corplo Common Ringed Plover Charadrius hiaticula <0.1 F
eucdov Eurasian Collared-Dove Streptopelia decaocto <0.1 A
tufduc Tufted Duck Aythya fuligula <0.1 C
bktgod Black-tailed Godwit Limosa limosa <0.1 F
whtdip1 White-throated Dipper Cinclus cinclus <0.1 C
loeowl Long-eared Owl Asio otus <0.1 U
eurwig Eurasian Wigeon Mareca penelope <0.1 U
grecor Great Cormorant Phalacrocorax carbo <0.1 C
gragoo Graylag Goose Anser anser <0.1 C
bargoo Barnacle Goose Branta leucopsis <0.1 A
gadwal Gadwall Mareca strepera <0.1 F
mutswa Mute Swan Cygnus olor <0.1 F
comshe Common Shelduck Tadorna tadorna <0.1 C
comswi Common Swift Apus apus <0.1 C
twite1 Twite Linaria flavirostris <0.1 U
gbbgul Great Black-backed Gull Larus marinus <0.1 F
cangoo Canada Goose Branta canadensis <0.1 C
wemhar1 Eurasian Marsh-Harrier Circus aeruginosus <0.1 U
merlin Merlin Falco columbarius <0.1 U
tawowl1 Tawny Owl Strix aluco <0.1 C
comcuc Common Cuckoo Cuculus canorus <0.1 C

Appendix E. Results of GAMs on all bird vocal activity

Table 1
Result of GAM model of all bird vocal activity using both parametric terms and a non-parametric smooth tensor product of latitude and longitude of
the recording units. Hourly data was used in the analysis.

Component Term Estimate Std error t-Value p-Value

A. Parametric coefficients Intercept 5.27 0.12 45.12 ***
Age class: Young 1.00 0.22 4.49 ***
Age class: Old 0.39 0.17 2.32 *
Hedge length − 0.21 0.07 − 2.80 **
Connectivity 0.23 0.07 3.12 **
Herbaceous spp. diversity 1.31 0.17 7.63 ***
Woody spp. diversity 1.02 0.17 6.07 ***
Distance to water 0.09 0.19 0.50
Trees 1.20 0.19 6.25 ***
Woodland − 1.59 0.30 − 5.35 ***
Month (July vs June) − 0.25 0.03 − 8.32 ***
Temperature 0.03 0.02 1.91
Wind speed − 0.24 0.01 − 17.36 ***
Precipitation − 0.20 0.01 − 14.86 ***

Component Term edf Ref. df F-value p-Value

B. Smooth terms te(Lat, Long) 13.69 13.94 996.85 ***
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Adjusted R-squared: 0.51, deviance explained: 0.469.
* P < 0.05.
** P < 0.01.
*** P < 0.001.

Appendix F. Results of GAMs on FBI species vocal activity

Table 1
Result of GAM model of Farmland Bird Indicator species vocal activity using both parametric terms and a non-parametric smooth tensor product of
latitude and longitude of the recording units. Hourly data was used in the analysis.

Component Term Estimate Std error t-Value p-Value

A. Parametric coefficients Intercept − 0.65 0.19 − 3.34 **
Age class: Young 1.99 0.37 5.32 ***
Age class: Old 1.81 0.28 6.43 ***
Hedge length − 0.42 0.13 − 3.15 **
Connectivity 0.46 0.14 3.34 **
Herbaceous spp. diversity 1.05 0.30 3.48 **
Woody spp. diversity 1.14 0.27 4.16 ***
Distance to water 1.08 0.31 3.44 **
Trees 1.81 0.31 5.75 ***
Woodland − 1.43 0.49 − 2.92 **
Month (July vs June) − 0.49 0.05 − 8.91 ***
Temperature 0.06 0.03 2.17 *
Wind speed − 0.12 0.03 − 4.60 ***
Precipitation − 0.23 0.03 − 6.84 ***

Component Term edf Ref. df F-value p-Value

B. Smooth terms te(Lat, Long) 13.64 13.92 515.58 ***

Adjusted R-squared: 0.34, deviance explained: 0.322.
* P < 0.05.
** P < 0.01.
*** P < 0.001.

Appendix G. Results of GAMs on bat vocal activity

Table 1
Result of GAM model of Farmland Bird Indicator species vocal activity using both parametric terms and a non-parametric smooth tensor product of
latitude and longitude of the recording units. Hourly data was used in the analysis.

Component Term Estimate Std error t-Value p-Value

A. Parametric coefficients Intercept 2.17 0.14 15.03 ***
Age class: Young 0.66 0.29 2.24 *
Age class: Old 0.46 0.18 2.58 *
Hedge length − 0.09 0.11 − 0.86
Connectivity − 0.34 0.11 − 3.12 **
Herbaceous spp. diversity 0.33 0.17 1.92
Woody spp. diversity 0.56 0.12 4.52 ***
Distance to water − 0.81 0.29 − 2.82 **
Trees 0.74 0.14 5.20 ***
Woodland − 0.78 0.20 − 3.89 ***
Month (July vs June) − 0.42 0.05 − 8.41 ***
Temperature 0.23 0.03 8.40 ***
Wind speed 0.08 0.02 3.47 **
Precipitation 0.11 0.02 5.19 ***

Component Term edf Ref. df F-value p-Value

B. Smooth terms te(Lat, Long) 11.84 12.26 367.71 ***

Adjusted R-squared: 0.23, deviance explained: 0.236.
* P < 0.05.
** P < 0.01.
*** P < 0.001.
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Radović, A., Nikolov, S.C., Tepić, N., Mikulić, K., Jelaska, S.D., Budinski, I., 2013. The
influence of land abandonment on farmland bird communities: a case study from a
floodplain landscape in Continental Croatia. Folia Zool. 62, 269–281.

Railsback, S.F., Johnson, M.D., 2014. Effects of land use on bird populations and pest
control services on coffee farms. Proc. Natl. Acad. Sci. 111, 6109–6114.

Robinson, M.F., Stebbings, R.E., 1997. Home range and habitat use by the serotine bat,
Eptesicus serotinus, in England. J. Zool. 243, 117–136. https://doi.org/10.1111/
j.1469-7998.1997.tb05759.x.

Rodwell, J.S., 1998. British Plant Communities: Volume 3, Grasslands and Montane
Communities. volume 3. Cambridge University Press.
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