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Abstract
This paper builds upon our recent work, published in Carpentier et al (2022 Lett.
Math. Phys. 112 94), where we established that the integrable Volterra lat-
tice on a free associative algebra and the whole hierarchy of its symmet-
ries admit a quantisation dependent on a parameter ω. We also uncovered
an intriguing aspect: all odd-degree symmetries of the hierarchy admit an
alternative, non-deformation quantisation, resulting in a non-commutative
algebra for any choice of the quantisation parameter ω. In this study, we
demonstrate that each equation within the quantum Volterra hierarchy can
be expressed in the Heisenberg form. We provide explicit expressions for all
quantum Hamiltonians and establish their commutativity. In the classical limit,
these quantum Hamiltonians yield explicit expressions for the classical ones
of the commutative Volterra hierarchy. Furthermore, we present Heisenberg
equations and their Hamiltonians in the case of non-deformation quantisation.
Finally, we discuss commuting first integrals, central elements of the quantum
algebra, and the integrability problem for periodic reductions of the Volterra
lattice in the context of both quantisations.
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1. Introduction

In this paper, we further develop the quantisation theory of the Volterra lattice [1], based on
the notion of quantisation ideals [2]. In our previous work [1], we proved that the non-Abelian
Volterra lattice, along with the entire hierarchy of its commuting symmetries, admits a quant-
isation with quadratic commutation relations between dynamical variables that depend on a
complex parameter ω. The algebra generated by the dynamical variables becomes commut-
ative in the specialisation ω= 1. This quantisation can be viewed as a finite deformation of
a commutative algebra, a deformation that is consistent with all equations of the hierarchy.
Slightly abusing terminology, we shall call it deformation quantisation, although it does not
use to any Poisson structure of the Volterra lattice and the noncommutative multiplication is
presented in an explicit form in contrast to the well known theory of deformation quantisation
[3, 4]. In addition, we also showed that all odd-degree symmetries of the Volterra hierarchy
admit a non-deformation quantisation whose multiplication law is noncommutative for any
choice of the quantisation parameter ω [1]. While the deformation quantisation for the Volterra
lattice is known in the literature [5], the non-deformation quantisation appeared in [2] for the
first time. In physics, a quantum description of fermions can be regarded as non-deformation
quantisation, since the ‘classical’ limit of the fermion dynamical variables is represented by a
Z2 graded (Grassmann) algebra with commutative and anti-commutative variables. The ‘clas-
sical’ limit of the Volterra non-deformation quantum algebra is not commutative and is not
graded. It is a new type of non-commutative associative algebras whose representation theory
has not yet been developed.

Traditionally, commuting quantum integrals are obtained in the frame of the quantum
inverse scattering method using a lax representation with ultra-local l operator [5–7]. in this
method, the quantum commuting operators, including the hamiltonian of the system, can be
obtained recursively from the logarithm of the trace of the monodromy matrix (the transfer
matrix) using it as a generating function. the coefficients in the expansion of this generating
function commute thanks to the existence of a quantum r-matrix compatible with the ultra-
local l operators. the goal of this paper is to present the hamiltonian operators in explicit form
and show that they are formally self-adjoint, commute with each other, and yield heisenberg
equations for every member of the integrable hierarchy of the commuting symmetries. we
show it without making use of the quantum lax structure or the corresponding transfer matrix.
we prove this result both for the conventional and the non-deformation quantisations.

The notion of quantisation ideals for dynamical systems defined on free algebras was pro-
posed in [2]. Let A be a free associative algebra with a finite or infinite number of multiplic-
ative generators. The dynamical system defines a derivation ∂t : A 7→ A. A quantisation is a
canonical projection of the dynamical system on A to a system defined on a quotient algebra
AI = A⧸I over a two-sided ideal I⊂ A satisfying the following properties:

(i) the ideal I is ∂t–stable, that is, ∂t(I)⊂ I;
(ii) the quotient algebra AI admits an additive basis of normally ordered monomials.
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An ideal satisfying the above two conditions is called a quantisation ideal, and AI is called
a quantum algebra.

In [1], we applied this approach to the integrable nonabelian Volterra lattice

∂t1 (un) = K(1) (un+1,un,un−1) , K(1) = un+1un− unun−1, n ∈ Z (1)

and its hierarchy of symmetries

∂tℓ (un) = K(ℓ) (un+ℓ, . . . ,un−ℓ) , ℓ ∈ N, n ∈ Z, (2)

where K(ℓ)(un+ℓ, . . . ,un−ℓ) are homogeneous polynomials of degree ℓ+ 1 (explicitly given in
section 2.1). The second member of the hierarchy

∂t2 (un) = K(2) = un+2un+1un+ u2n+1un+ un+1u
2
n− u2nun−1 − unu

2
n−1 − unun−1un−2 (3)

is a cubic polynomial andwe refer to it as the cubic symmetry of (1). In this case the free algebra
A= C[ω]〈un ; n ∈ Z〉 is generated by infinite number of non-commutative variables un. We
proved that the Volterra lattice (1) and its whole hierarchy of symmetries admit a quantisation
with the quantization ideal

Ia = 〈{unun+1 −ωun+1un ; n ∈ Z}∪ {unum− umun ; |n−m|> 1, n,m ∈ Z }〉, (4)

leading to the commutation relations

unun+1 = ωun+1un, unum = umun if |n−m|⩾ 2, n,m ∈ Z (5)

in the quotient algebra AIa , where ω ∈ C∗ is a quantisation parameter. Moreover, we showed
that the cubic symmetry of the Volterra lattice, equation (3), and all odd degree members of
the Volterra hierarchy also admit a non-deformation quantisation with the quantisation ideal

Ib = 〈
{
unun+1 − (−1)nωun+1un ; n ∈ Z

}
∪{unum+ umun ; |n−m|> 1, n,m ∈ Z}〉 (6)

with commutation relations

unun+1 = (−1)nωun+1un, unum+ umun = 0 if |n−m|⩾ 2, n,m ∈ Z (7)

in the quotient algebra AIb .
In the quantum theory, real valued dynamical variables are replaced by self-adjoint operat-

ors, with respect to a Hermitian conjugation †. The ideals Ia and Ib and corresponding com-
mutation relations are stable with respect to the Hermitian conjugation † (defined in section 3),
assuming the variables un are self-adjoint and ω = eiℏ. Here ℏ is an arbitrary real parameter, an
analogue of the Plank constant, and i=

√
−1. For the quantised equations of the Volterra hier-

archy, we introduce the factors e
1
2 iℓℏ to make the right-hand side of the equations self-adjoint,

that is,

∂tℓ (un) = qℓK(ℓ) (un+ℓ, . . . ,un−ℓ) , q= e
1
2 iℏ, ℓ= 1,2, . . . , n ∈ Z. (8)

In this paper we show that the infinite sequence of quantum Hamiltonians Hℓ for the quant-
ised Volterra hierarchy defined on the quantum algebra AIa is given by

Hℓ =
∑
k∈Z

∑
α∈N ℓ

ωℓ − 1
ων(α,0) − 1

PIa
α (ω)uα+k,

3
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where the set

N ℓ =

{
α= (α1,α2 · · · ,αℓ−1,0) ∈ Zℓ

∣∣∣αi = ℓ−1∑
s=i

θs, θs ∈ {0,1} ; i = 1, · · · , ℓ− 1

}
,

and ν(α, i) denotes the number of i’s in the ℓ-tuple α. For α ∈N ℓ, the polynomials PIa
α (ω)

are given by products of Gaussian binomials

PIa
α (ω) =

(
ν (α,α1)+ ν (α,α1 − 1)− 1

ν (α,α1)

)
ω

· · ·
(
ν (α,1)+ ν (α,0)− 1

ν (α,1)

)
ω

.

We prove that the Hamiltonians Hℓ are self-adjoint H†
ℓ = Hℓ and commute with each other

[Hℓ,Hk] = 0, k, ℓ ∈ N. Furthermore, the dynamical equations of the quantum hierarchy (8)
can be written in the Heisenberg form [8]:

∂tℓ (un) =
i

2sin
(
1
2ℓℏ

) [Hℓ,un] , n ∈ Z, ℓ ∈ N .

In the classical limit ℏ→ 0 we obtain the Volterra hierarchy in the Hamiltonian form ∂tℓ(un) =
{un, H̃ℓ} and explicit expressions for all Hamiltonians H̃ℓ = lim

ℏ→0
ℓ−1Hℓ (see section 4).

In the case of the non-deformation quantisation (6) we have also found explicit expressions
for self-adjoint commuting quantum Hamiltonians and present the quantum hierarchy with
even times (ℓ being even in (8)) in the Heisenberg form. These results are stated in theorem 7.

The problem of quantisation of the Volterra lattice has a long history. In 1992, using the
quantum version of the inverse spectral transform method, Volkov proposed quantum com-
mutation relations between the dynamical variables [6] (see also [7]). These commutation
relations are hardly suitable for the derivation of the Heisenberg equations and the study of
the corresponding quantum algebra structure. In the paper by Inoue and Hikami [5], the com-
mutation relations (5), as well as the first four Hamiltonians of the quantum Volterra hierarchy
were found using ultra-local Lax representation and the R–matrix technique. Our alternat-
ive approach does not rely on the existence of an ultra-local Lax representation, R–matrix or
Hamiltonian structures. It enables us to explicitly present all quantum Hamiltonians for the
Volterra hierarchy in the case of the deformation quantisation (5). Moreover, we are able to
explicitly find the Hamiltonians and Heisenberg equations for the non-deformation quantisa-
tion (7), defined for all odd-degree members of the Volterra hierarchy. Both results are new
and rather surprising.

2. The nonabelian Volterra hierarchy and its quantisations

In this section, we derive the explicit expressions for the quantised Volterra hierarchy under
the quantisation ideal Ia defined by (4), making use of Gaussian binomial coefficients. When
ω= 1, this also reduces to the hierarchy of symmetries for the classical (abelian) Volterra chain.
We first give a brief description of the nonabelian Volterra hierarchy and introduce some basic
notations required for this paper.

2.1. The nonabelian Volterra hierarchy

Let A= C〈un ; n ∈ Z〉 be the free associative algebra of polynomials generated by an infinite
number of non-commuting variables un. There is a natural automorphism S : A 7→ A, which

4
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we call the shift operator, defined by

S : a(uk, . . . ,ur) 7→ a(uk+1, . . . ,ur+1) , S : α 7→ α, a(uk, . . . ,ur) ∈ A, α ∈ C.

Thus A is a difference algebra. A derivation D of the algebra A is a C–linear map satisfying
Leibniz’s rule

D (αa+βb) = αD (a)+βD (b) , D (a · b) =D (a) · b+ a · D (b) , a,b ∈ A, α,β ∈ C.

It is uniquely defined by its action on the generators and D(α) = 0, α ∈ C.
A derivation D is called evolutionary if it commutes with the shift operator S. An evolu-

tionary derivation is completely characterised by its action on the generator u (we often write
u instead of u0), that is,

D (u) = a and D (uk) = Sk (a) , a ∈ A.

We adopt the notation Da for the unique evolutionary derivation of A such that Da(u) = a.
Evolutionary derivations form a Lie subalgebra of the Lie algebra of derivations of A, and the
characteristic of a commutator [Da,Db] =Dc is given by c=Da(b)−Db(a). This expression
induces a Lie bracket on the difference algebra A.

Assuming that the generators uk depend on t ∈ C we then identify the evolutionary deriva-
tion Da with an infinite system of Equations

∂t (un) =Da (un) = Sn (a) . n ∈ Z.

From now on we will think of the system of evolutionary equations and the evolutionary deriv-
ation as the same object.

The Volterra lattice (1) defines an evolutionary derivation ∂t1 : A 7→ A. The differential-
difference system (3) defines another evolutionary derivation ∂t2 . Evolutionary derivations
commuting with ∂t1 are called (generalised) symmetries of the Volterra lattice. It can be
straightforwardly verified that [∂t1 ,∂t2 ] = 0 and thus equation (3) is a symmetry of the Volterra
lattice.

It is well known that the Volterra lattice has an infinite hierarchy of commuting symmetries.
They can be found using Lax representations both in commutative [9] and noncommutative
[10] cases, or using recursion operators [11, 12]. Remarkably, the symmetries of the Volterra
lattice (1) can be explicitly presented in terms of a family of nonabelian homogeneous dif-
ference polynomials [12], which was inspired by the family of polynomials discovered in the
commutative case (see [13, 14]).

Let us assume that the generators uk of the free associative algebra A depend on an infinite
set of ‘times’ t1, t2, . . .. It follows from [12] that the hierarchy of commuting symmetries of the
nonabelian Volterra lattice (1) can be written in the following explicit form

∂tℓ (u) = S
(
X(ℓ)

)
u− uS−1

(
X(ℓ)

)
, ℓ ∈ N , (9)

where the (noncommutative) polynomials X(ℓ) are given by

X(ℓ) =
∑

0⩽λ1⩽···⩽λℓ⩽ℓ−1

→ℓ∏
j=1

uλj+1−j

 . (10)

5



Nonlinearity 37 (2024) 095033 S Carpentier et al

Here
∏→ℓ

j=1 denotes the order of the values j, from 1 to ℓ in the product of the noncommutative

generators uλj+1−j. For example, we have X(1) = u and

X(2) = u1u+ u2 + uu−1; (11)

X(3) = u2u1u+ u21u+ uu1u+ u1u
2 + u3 + uu−1u+ u1uu−1 + u2u−1 + uu2−1 + uu−1u−2;

(12)

X(4) = u3u2u1u+ u22u1u+ u2u
2
1u+ u1u2u1u+ u2u1u

2 + uu2u1u+ u2u1uu−1 + u21u
2 + u1uu1u

+ uu21u+ u31u+ uu1u
2 + u1u

3 + u2u1u+ u21uu−1 + u4 + uu1uu−1 + u1uu−1u+ u1u
2u−1

+ uu2−1u+ uu−1uu−1 + uu−1u
2 + uu−1u1u+ u2u2−1 + u2u−1u+ u3u−1 + u1uu

2
−1 + uu3−1

+ u1uu−1u−2 + uu−1u−2u+ u2u−1u−2 + uu−1u−2u−1 + uu2−1u−2 + uu−1u
2
−2 + uu−1u−2u−3.

(13)

Clearly, we get the Volterra equation (1) when ℓ= 1 and the system (3) when ℓ= 2.
Let α= (α1,α2, · · · ,αk) ∈ Zk be a k-component vector. For each α ∈ Zk, we define the k-

degree monomial uα = uα1uα2 · · ·uαk . We denote the degree of α by |α|= k. We say that a
monomial uα is normally ordered if αi > αi+1 for all 1⩽ i⩽ k− 1. Conventionally, we write
(α1 + 1,α2 + 1, · · · ,αk+ 1) as α+ 1. Thus we have S i uα = uα+i for i ∈ Z. The multiplicity
of ui in the monomial uα is denoted by ν(α, i). Similarly, we denote by ν(α,⩾ i) the number
of k⩾ i such that uk appears in uα, counted with multiplicities. We say that two monomials uα
and uβ are similar written as α∼ β if ν(α, i) = ν(β, i) for all i ∈ Z.

We define two sets of distinguished monomials, namely, admissible and nonincreasing
monomials. For k⩾ 1, let

Ak =
{
α ∈ Zk

∣∣1− j⩽ αj ⩽ k− j, j = 1, · · · ,k; αi+1 + 1⩾ αi, i = 1, · · · ,k− 1
}
; (14)

Zk
⩾ =

{
α ∈ Zk

∣∣αi+1 + 1⩾ αi ⩾ αi+1, i = 1, . . .,k− 1
}
. (15)

A k-degree monomial uα is admissible if α ∈ Ak and is nonincreasing if α ∈ Zk
⩾.

Using these notations, the expression X(k) given by (10) can be written as

X(k) =
∑
α∈Ak

uα. (16)

In what follows, we use this form to present X(k) in normal ordering under the quantisation
ideals of the Volterra hierarchy and to derive Hamiltonians for their quantised equations.

2.2. The quantised Volterra hierarchies in normal ordering

Assume that I⊂ A is a two-sided ideal generated by the infinite set of polynomials fi,j:

I= 〈fi,j ; i < j, i, j ∈ Z〉, fi,j = ui uj−ωi,jujui, (17)

where ωi,j ∈ C∗ are arbitrary non-zero complex parameters. Specifying the nonzero constants
ωi,j leads to either Ia defined by (4) or Ib defined by (6).

Given such an ideal I, we denote the projection on the quotient algebraAI by πI : A→ AI.
The algebra AI has an additive basis of standard normally ordered monomials

ui1ui2 · · ·uin ; i1 ⩾ i2 ⩾ · · ·⩾ in, ik ∈ Z, n ∈ N.

6
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The canonical projection πI : A→ AI acts on the polynomial X(k) given by (16) as follows:

πI

(
X(k)

)
=

∑
α∈Ak∩Zk

⩾

PI
α (ω)uα, (18)

where PI
α(ω) is the unique polynomial in Z[ω] such that for α ∈ Ak ∩Zk

⩾,

PI
α (ω)uα = πI

 ∑
β∈Ak,β∼α

uβ

 . (19)

We often write it as Pα(ω) if there is no ambiguity regarding the choice of ideal.
We now study the polynomials Pα(ω) for the quantisation ideals Ia (4) and Ib (6). For

example, we have

πIa

(
X(1)

)
= X(1) = u; πIa

(
X(2)

)
= X(2) = u1u+ u2 + uu−1;

πIa

(
X(3)

)
= u2u1u+ u21u+(1+ω)u1u

2 + u3 +(1+ω)u2u−1 + u1uu−1 + uu2−1 + uu−1u−2;

πIa

(
X(4)

)
= u3u2u1u+ u22u1u+ u31u+ u4 + u21uu−1 + u2u1uu−1 + u1uu

2
−1 + u1uu−1u−2

+ uu3−1 + uu−1u
2
−2 + uu−1u−2u−3 +(1+ω)

(
u2u

2
1u+ u2u1u

2 + u2u−1u−2 + uu2−1u−2

)
+(1+ω)2 u1u

2u−1 +
(
1+ω+ω2

)(
u21u

2 + u1u
3 + u2u2−1 + u3u−1

)
(20)

and

πIb

(
X(1)

)
= X(1) = u; πIb

(
X(2)

)
= X(2) = u1u+ u2 + uu−1;

πIb

(
X(3)

)
= u2u1u+ u21u+(1+ω)u1u

2 + u3 +(1−ω)u2u−1 + u1uu−1 + uu2−1 + uu−1u−2;

πIb

(
X(4)

)
= u3u2u1u+ u22u1u+ u2u1uu−1 + u31u+ u21uu−1 + u4 + u1uu

2
−1 + u1uu−1u−2

+ uu3−1 + uu−1u
2
−2 + uu−1u−2u−3 +(1−ω)

(
u2u

2
1u+ u2u1u

2
)
+
(
1+ω2

)
u1u

2u−1

+(1+ω)
(
u2u−1u−2 + uu2−1u−2

)
+
(
1+ω+ω2

)(
u21u

2 + u1u
3
)

+
(
1−ω+ω2

)(
u2u2−1 + u3u−1

)
. (21)

This defines the polynomials Pα(ω) for all α that are admissible, nonincreasing and of degree
1 to 4. For example, PIa

(0,0,−1)(ω) = 1+ω and PIb
(0,0,−1)(ω) = 1−ω.

For the quantisation ideal Ia, these polynomials can be computed explicitly using the
Gaussian binomial coefficients:

(
m
r

)
ω

=
(1−ωm)

(
1−ωm−1

)
· · ·

(
1−ωm−r+1

)
(1−ω)(1−ω2) · · ·(1−ωr)

,

where m and r are non-negative integers. If r>m, this equals zero. When r= 0, its value is 1.

7
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Proposition 1. For α= (α1, · · · ,αk) ∈ Ak ∩Zk
⩾, let κi = ν(α, i), where αk ⩽ i⩽ α1. Then

PIa
α (ω) =

(
κα1 +κα1−1 − 1

κα1

)
ω

. . .

(
κ2 +κ1 − 1

κ2

)
ω

(
κ1 +κ0 − 1

κ1

)
ω

×
(
κ0 +κ−1 − 1

κ−1

)
ω

· · ·
(
καk+1 +καk − 1

καk

)
ω

. (22)

Proof. An admissible monomial similar to α is equivalent to the following data:

(i). for each integer i such that 0⩽ i ⩽ α1 − 1, a monomial similar to uκi+1

i+1 u
κi
i ending on the

right by ui,
(ii). for each integer i such that 0⩾ i ⩾ αk+ 1, a monomial similar to uκii u

κi−1

i−1 starting on the
left by ui.

This is true since we have unum = umun for |n−m|> 1 in the quantised algebra AIa . We
now need to compute the sums of monomials in (i) for fixed i. Let us denote by (n|m) the
monomial uni+1u

m
i and by Q(n|m)(ω) the coefficient in front of uni+1u

m
i when summing all

monomials in (i). Ifm= 1 then we haveQ(n|1)(ω) = 1 since the only monomial similar to (n|1)
and ending by ui is itself. We also haveQ(0|m)(ω) = 1. Otherwise, such admissible monomials
start either with ui or ui+1 that gives the induction formula Q(n|m) = Q(n−1|m) +ωnQ(n|m−1).
This can be integrated into

Q(n|m) (ω) =

(
n+m− 1

n

)
ω

.

Using a mirror argument, one sees that the sum of all monomials in (ii) is equal to(
κi+κi−1 − 1

κi−1

)
ω

uκii u
κi−1

i−1 ,

which concludes the proof.

It follows from this proposition that

PIa
α (ω)+ων(α,0)PIa

α−1 (ω) = PIa
α−1 (ω)+ων(α,1)PIa

α (ω) , α ∈ Zk
⩾, (23)

which was alternatively proved based on combinatoric counting in [1] when we showed that
the ideal Ia defined by (4) is preserved by the symmetry flows (9), for all ℓ ∈ N.

Using proposition 1, one can directly compute the canonical projections under the quant-
isation ideal Ia without first writing down X(l). For example,

PIa
(1,0,0,−1) (ω) =

(
2
1

)
ω

(
2
1

)
ω

= (1+ω)
2
,

which is the coefficient of u1u2u−1 in πIa(X
(4)) as shown in (20).

For the quantisation ideal Ib, we have not been able to obtain such neat formula since an
admissible monomial is not the product of canonical projections of monomials uκii u

κi−1

i−1 due
to the relation unum+ umun = 0 for |n−m|> 1 in the quantum algebra AIb . In [1], we proved
the following important identity:

PIb
α (ω)+ (−1)ν(α,⩾0)ων(α,0)PIb

α−1 (−ω) = PIb
α−1 (−ω)+ (−1)ν(α,⩾2)ων(α,1)PIb

α (ω) , α ∈ Z2k
⩾ .

(24)

8
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In order to write down the quantised equations in normal ordering (18), we investigate the
set Ak ∩Zk

⩾. We define a subset of Ak ∩Zk
⩾ (cf (14) and (15)), denoted by N k:

N k =
{
α ∈ Zk

⩾ ∩Ak
∣∣αk = 0

}
, k ∈ N, (25)

which is useful to write explicitly the Hamiltonians for the quantised Volterra hierarchy next
section. For any fixed k ∈ N, all its elements can be constructed following the same manner of
Pascal’s triangle. For example, N 1 = {(0)}, N 2 = {(1,0),(0,0)} and

N 3 = {(2,1,0) ,(1,1,0) ,(1,0,0) ,(0,0,0)} ; (26)

N 4 = {(3,2,1,0) ,(2,2,1,0) ,(2,1,1,0) ,(2,1,0,0) ,(1,1,1,0) ,
(1,1,0,0) ,(1,0,0,0) ,(0,0,0,0)}. (27)

In fact, the set N k is in bijection with the set

U k =
{
(θ1, . . . ,θk)

∣∣θk = 0, θs ∈ {0,1} , s= 1, · · · ,k− 1
}
.

Elements of U k are sequences of zeros and ones of length k with the last element θk = 0. The
set U k has 2k−1 elements. The bijection withN k is given by the invertible linear transformation

(α1, . . .αk) = (θ1, . . . ,θk)B, Bij =
{

0 if i < j
1 if i⩾ j

, (28)

or simply αm =
k∑

n=m
θn. Thus, we can rewrite the set N k given by (25) as

N k =

{
α= (α1,α2 · · · ,αk−1,0) ∈ Zk

∣∣∣ αi = k−1∑
s=i

θs, θs ∈ {0,1} ; i = 1, · · · ,k− 1

}
. (29)

Proposition 2. The cardinality of set N k+1 is 2k, and set Ak+1 ∩Zk+1
⩾ has a cardinality of

(k+ 2)2k−1, 0⩽ k ∈ Z.

Proof. Due to the bijection (28), the first part of the statement is obvious. To prove the second
half, we define a subset of N k+1 as N k+1

( j) =
{
α ∈N k+1

∣∣0⩽ α1 = j⩽ k
}
, whose cardinal

number is
(k
j

)
. Note that N k+1 = ∪k

j=0N
k+1
( j) and there is no intersection among any subsets

with different j. The setAk+1 ∩Zk+1
⩾ can be obtained from the subsetN k+1

( j) : for anyα ∈N k+1
( j) ,

we can generate j more distinct elements in the set, namely, S−lα ∈ Ak+1 ∩Zk+1
⩾ \N k+1 for

1⩽ l⩽ α1. Thus its cardinality is

k∑
j=0

( j+ 1)

(
k
j

)
=

k∑
j=0

(
k
j

)
+

k∑
j=1

j

(
k
j

)
= 2k+ k2k−1 = (k+ 2)2k−1

as stated in the proposition.

Combining proposition 1 and the construction of the setAk+1 ∩Zk+1
⩾ described in propos-

ition 2, we are able to explicitly write down the expressions of X(k) in the quantum algebras:

9
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Theorem 3. Let I be either Ia or Ib. Then

πI

(
X(k)

)
=

∑
α∈N k

α1∑
j=0

PI
α−α1+j (ω)uα−α1+j. (30)

Using this theorem and (9), we can explicitly write down the quantum Volterra hierarchy.
In the quantum algebra AIa , for k ∈ N, we have

∂tk (u) =
∑
α∈N k

α1∑
j=0

PIa
α−α1+j (ω) πIa (uα−α1+j+1u− uuα−α1+j−1)

=
∑
α∈N k

α1∑
j=0

PIa
α−α1+j (ω)

(
ων(α−α1+j,−2)uα−α1+j+1,0 −ων(α−α1+j,2)u0,α−α1+j−1

)
,

(31)

where the notation uβ stands for the standard normally ordered monomial which is similar
to uβ .

As an example, we work out the case when k= 3. The elements in the set N 3 are listed
in (26). According to (31), we have

∂t3 (u) = PIa
(2,1,0) (ω)

(
u3u2u1u−ωu1u

2u−1

)
+PIa

(1,0,−1) (ω)
(
u2u1u

2 − u2u−1u−2

)
+PIa

(0,−1,−2) (ω)
(
ωu1u

2u−1 − uu−1u−2u−3

)
+PIa

(1,1,0) (ω)
(
u22u1u− u3u−1

)
+PIa

(0,0,−1) (ω)
(
u21u

2 − uu2−1u−2

)
+PIa

(1,0,0) (ω)
(
u2u

2
1u− u2u2−1

)
+PIa

(0,−1,−1) (ω)
(
u1u

3 − uu−1u
2
−2

)
+PIa

(0,0,0) (ω)(u
3
1u− uu3−1)

= u3u2u1u+ u2u1u
2 − u2u−1u−2 − uu−1u−2u−3 + u22u1u− u3u−1

+(1+ω)(u21u
2 − uu2−1u−2)+ (1+ω)(u2u

2
1u− u2u2−1)+ u1u

3 − uu−1u
2
−2 + u31u− uu3−1,

where we compute PIa
α (ω) using (22) in proposition 1.

Although theorem 3 is valid for the quantisation ideal Ib, to compute the quantum Volterra
hierarchy in the quantum algebra AIb is much harder since we do not have the similar result
for Ib as the one in proposition 1 for Ia.

When ω= 1, Gaussian binomial coefficients become the ordinary binomial coefficients.
Proposition 1 gives the formulas Pα(1) for the commutative polynomials X(k) given by (16).
It follows from (31) that the explicit formula for the whole hierarchy of symmetries of the
classical (commutative) Volterra lattice is

∂tk (u) =
∑
α∈N k

α1∑
j=0

Pα−α1+j (1)(uα−α1+j+1 − uα−α1+j−1)u, k ∈ N. (32)

3. Quantum Hamiltonians for the quantised Volterra hierarchies

In the quantum theory we replace real valued commutative variables by self adjoint operators
with respect to some Hermitian conjugation †. The Hermitian conjugation † in algebra A is
defined by the following rules

u†n = un, α† = ᾱ, (a+ b)† = a† + b†, (ab)† = b†a†, un,a,b ∈ A, α ∈ C,

10
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where ᾱ is the complex conjugate of α ∈ C. The Hermitian conjugation † can be extended to
the quantum algebras AIa and AIb by letting ω

† = ω−1. The quantisation ideals Ia (4) and Ib
(6) are †–stable. We introduce the square root q= e

1
2 iℏ of ω = eiℏ with ℏ ∈ R a real constant

(an analog of the Plank constant). The quantised Volterra hierarchy in the quantum algebra
AIa is presented in the form [1]

ut1 = q(u1u− uu−1) , utℓ = qℓ
(
S
(
X(ℓ)

)
u− uS−1

(
X(ℓ)

))
, ℓ ∈ N. (33)

As a consequence of the results shown later in this paper, all these derivations are self-adjoint,
which justifies the rescaling by qℓ.

In the paper [1], we presented the Volterra lattice and its first symmetry in Heisenberg form

∂t1 (un) =
1

q−1 − q
[H1,un] , H1 =

∑
k∈Z

uk;

∂t2 (un) =
1

q−2 − q2
[H2,un] , H2 =

∑
k∈Z

(
u2k + uk+1uk+ ukuk+1

)
,

(34)

where H1 and H2 are self-adjoint, algebraically independent and commuting Hamiltonians in
AIa .

In the quantum algebra AIb with commutation relations (7) we can also write the
equation (3) in Heisenberg form

∂t2 (un) =
1

q−2 − q2
[H2,un] . (35)

Note that in the quantum algebra AIb we have H2 = H2
1 and H†

2 = H2. In this section, we
derive the explicit expressions for the self-adjoint, algebraically independent and commuting
Hamiltonians of the Volterra hierarchy in both quantised algebras AIa and AIb .

3.1. Quantum Hamiltonians Hn in AIa

In section 2.2, we give the definition of the sets Ak, Zk
⩾ and N k, cf (14), (15) and (25) (or

equivalently (29)), whose elements α are associated to the k-degree monomials uα for k ∈ N.
We now define another set related to them, namely,

Mk
j =

{
α ∈ Zk

⩾
∣∣ ∃ i ∈ {1,2, · · · ,k} such that αi = j

}
.

Clearly, we have

Mk
0 = Zk

⩾ ∩Ak and N k ⊂Mk
0.

Note that the definition of the polynomials Pα(ω) for α ∈Mk
0 in (19), which can be extended

to the set Zk
⩾ by the convention Pα(ω) = 0 if α /∈Mk

0.
We first prove several lemmas. In the proofs of these lemmas, we drop the up-index and

simply write Pα(ω) for PIa
α (ω).

Lemma 4. Let α ∈ Zℓ
⩾ be such that ν(α,1) = ν(α,−1). Then PIa

α+1(ω) = PIa
α−1(ω) and u

commutes with uα in AIa , i.e. πIa ([u,uα]) = 0.

Proof. It is obvious that u commutes with such uα inAIa due to the commutation relations (5).
We now prove the rest of the statement by considering two cases. If ν(α,1) = ν(α,−1) = 0,
that is, α contains neither−1 nor 1, this leads to Pα+1(ω) = Pα−1(ω) = 0 since neither α+ 1

11
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nor α− 1 is admissible (requiring to contain 0). If ν(α,1) = ν(α,−1) 6= 0, we also have that
ν(α,0) 6= 0 since α ∈ Zℓ

⩾. From (23) it follows that

Pα+1 (ω) =
ων(α,−1) − 1
ων(α,0) − 1

Pα (ω) ; Pα−1 (ω) =
ων(α,1) − 1
ων(α,0) − 1

Pα (ω) (36)

implying Pα+1(ω) = Pα−1(ω).

Lemma 5. Let Y(ℓ) = S(X(ℓ))u− uS−1(X(ℓ)). Then in the quantum algebra AIa we have

Y(ℓ) =
∑

α∈N ℓ

∑
k∈Z

Pα (ω)

ων(α,0) − 1
[u,uα+k] . (37)

Proof. It follows from (19) that

πIa

(
S
(
X(ℓ)

))
=

∑
α∈Mℓ

0

Pα (ω) uα+1.

Thus we have

πIa

(
S
(
X(ℓ)

)
u
)
=

∑
α∈Mℓ

0

Pα (ω) πIa (uα+1u)

=
∑

α∈Mℓ
0,(0,−2)

Pα (ω) πIa (uα+1u)+
∑

α∈Mℓ
0,(0,−2)

Pα (ω) πIa (uα+1u) , (38)

where we use the notations Mℓ
k,(i,j) = {α ∈Mℓ

k

∣∣ν(α, i) = ν(α, j)} and Mℓ

k,(i,j) =Mℓ
k \

Mℓ
k,(i,j). In the same way, we have

πIa

(
uS−1

(
X(ℓ)

))
=

∑
α∈Mℓ

0,(0,2)

Pα (ω) πIa (uuα−1)+
∑

α∈Mℓ
0,(0,2)

Pα (ω) πIa (uuα−1) .

We claim that ∑
α∈Mℓ

0,(0,2)

Pα (ω)uα−1 =
∑

α∈Mℓ
0,(0,−2)

Pα (ω)uα+1

and that both sides commute with u in AIa . This is equivalent to∑
α∈Mℓ

−1,(−1,1)

Pα+1 (ω)uα =
∑

α∈Mℓ
1,(−1,1)

Pα−1 (ω)uα,

which is indeed true using lemma 4.

12
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We then rewrite the rest of sums in (38) as

∑
α∈Mℓ

0,(0,−2)

Pα (ω)uα+1u=
∑

α∈Mℓ
0,(0,−2)

Pα (ω)

ων(α,0)−ν(α,−2) − 1
[u,uα+1]

=
∑

α∈Mℓ
1,(1,−1)

Pα−1 (ω)

ων(α,1)−ν(α,−1) − 1
[u,uα]

=
∑

α∈Mℓ
1,(1,−1)

ων(α,−1)Pα−1 (ω)

ων(α,1) −ων(α,−1)
[u,uα].

Similarly, we are able to show that

∑
α∈Mℓ

(0,2)

Pα (ω)uuα−1 =
∑

α∈Mℓ
−1,(−1,1)

ων(α,1)Pα+1 (ω)

ων(α,1) −ων(α,−1)
[u,uα].

Taking the difference yields

Y(ℓ) =
∑

α∈Mℓ
1,(−1,1)

ων(α,−1)Pα−1 (ω)

ων(α,1) −ων(α,−1)
[u,uα]−

∑
α∈Mℓ

−1,(−1,1)

ων(α,1)Pα+1 (ω)

ων(α,1) −ων(α,−1)
[u,uα]. (39)

We simplify it by splitting into different cases. When ν(α,1)ν(α,−1) 6= 0, α belongs to both
sums in (39). Using (36), the difference of fractions simplifies into

ων(α,−1)Pα−1 (ω)−ων(α,1)Pα+1 (ω)

ων(α,1) −ων(α,−1)
=

Pα (ω)

ων(α,0) − 1
uα.

When ν(α,−1) = 0 but ν(α,0)ν(α,1) 6= 0, α only appears in the first sum in (39) and
using (36) in that case one can write

Pα−1 (ω)

ων(α,1) − 1
=

Pα (ω)

ων(α,0) − 1
.

Similarly, when ν(α,1) = 0 but ν(α,0)ν(α,−1) 6= 0, we have

Pα+1 (ω)

ων(α,−1) − 1
=

Pα (ω)

ων(α,0) − 1
.

Finally, if ν(α,−1) = ν(α,0) = 0 but ν(α,1) 6= 0, then α appears in the first sum only in (39)
and we can rewrite the term as Pβ(ω)

ων(β,0)−1uβ+1, where β is an element of N ℓ, that is, to say
βℓ = 0.

13
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In the mirror case where ν(α,1) = ν(α,0) = 0 but ν(α,−1) 6= 0, then α appears in the
second sum in (39) and we can rewrite the term as Pγ(ω)

ων(γ,0)−1uγ−1, where γ ∈Mk
0 is such that

γ1 = 0.
Thus we have so far proved that

Yℓ =
∑

α∈Mℓ
0,(1,−1)

Pα (ω)

ων(α,0) − 1
[u,uα] +

∑
β∈N ℓ

Pβ (ω)

ων(β,0) − 1
[u,uβ+1]

+
∑

γ∈Mℓ
0 ,γ1=0

Pγ (ω)

ων(γ,0) − 1
[u,uγ−1] .

Since elements uα for α ∈Mℓ
0,(1,−1) commute with u in AIa following from Lemma 4, one

can add them to the first sum in the above formula and it becomes

Yℓ =
∑

α∈Mℓ
0

Pα (ω)

ων(α,0) − 1
[u,uα] +

∑
β∈N ℓ

Pβ (ω)

ων(β,0) − 1
[u,uβ+1]

+
∑

γ∈Mℓ
0 ,γ1=0

Pγ (ω)

ων(γ,0) − 1
[u,uγ−1] . (40)

Recursively applying (23), we get Pα+m(ω)

ων(α+m,0)−1 =
Pα(ω)

ων(α,0)−1 whenα ∈Mℓ
0 andα+m ∈Mℓ

0 for
some m ∈ Z. Hence, we can rewrite (40) as

Yℓ =
∑

α∈N ℓ

1∑
k=−α1−1

Pα (ω)

ων(α,0) − 1
[u,uα+k] .

Finally, adding extra shifts of uα does not change the sum as these commute with u, and thus
we complete the proof of the statement.

Theorem 6. The quantum Volterra hierarchy (33) in the algebra AIa is presented in the
Heisenberg form:

∂tℓ (un) =
i

2sin
(
1
2ℓℏ

) [Hℓ,un] (41)

where the Hamiltonians

Hℓ =
∑

α∈N ℓ

∑
k∈Z

PIa
α (ω)

ωℓ − 1
ων(α,0) − 1

uα+k, ω = q2 = eiℏ, ℓ ∈ N (42)

are self-adjoint and commute with each other.

Proof. The first part of the statement follows immediately from the definition of the quantised
hierarchy (33) and lemma 5.We now show all HamiltoniansHℓ are self-adjoint. First note that,
for any nonnegative integers a and b,(

a+ b− 1
a

)
ω−1

= ωa(1−b)

(
a+ b− 1

a

)
ω

.

14
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Forα ∈N ℓ, we have ℓ= κα1 +κα1−1 + · · ·+κ1 +κ0 and πIa

(
uα†) = ω(κα1κα1−1+···+κ2κ1+κ1κ0)uα.

Thus it follows from proposition 1 that

PIa
α

(
ω−1

)
= ωℓ−κ0−(κα1κα1−1+···+κ2κ1+κ1κ0)PIa

α (ω) , α ∈N ℓ

and hence

H†
ℓ =

∑
α∈N ℓ

ω−ℓ − 1
ω−ν(α,0) − 1

PIa
α

(
ω−1

)∑
k∈Z

SkπIa

(
uα

†)= Hℓ.

Finally, we show that the Hamiltonians commute with each other. Let ℓ1 and ℓ2 be two
positive integers and define Q= [Hℓ1 ,Hℓ2 ]. Then Q is of the form

Q=
∑
k∈Z

∑
α∈N ℓ1+ℓ2

Tα (ω)uα+k

for some fractions Tα(ω). We know from [1] that [∂tℓ1 ,∂tℓ2 ] = 0. Hence for any f ∈ AIa , we
have

[Hℓ1 , [Hℓ2 , f ]]− [Hℓ2 , [Hℓ1 , f ]] = [ f, [Hℓ1 ,Hℓ2 ]] = [ f,Q] = 0.

Thus, if Q 6= 0, then every monomial of Q belongs to the center of AJa , which is impossible
(see the proof of proposition 8).

We apply theorem 6 to find the Hamiltonians for lower numbers ℓ. When ℓ= 1, we know
N 1 = {(0)} leading to

H1 =
∑
k∈Z

uk.

When ℓ= 2, there are two elements in N 2, namely, (1, 0) and (0, 0). It follows from (20) (or
using proposition 1) that P(1,0)(ω) = 1 and P(0,0)(ω) = 1. Thus

H2 =
∑
k∈Z

u2k +(ω+ 1)
∑
k∈Z

uk+1uk.

These are the same as those given by (34).
When ℓ= 3, the set N 3 is given by (26) and we have

P(2,1,0) (ω) = 1, P(1,1,0) (ω) = 1, P(1,0,0) (ω) = 1+ω, P(0,0,0) (ω) = 1.

Hence

H3 =
∑
k∈Z

u3k +
(
ω2 +ω+ 1

)∑
k∈Z

(
uk+2uk+1uk+ u2k+1uk+ uk+1u

2
k

)
.

For the quintic symmetry of the Volterra equation in AIa , that is, ℓ= 4, the cardinality of
N 4 is 8 and whose elements is given in (27). Following (20) or using proposition 1, we get

P(3,2,1,0) (ω) = P(2,2,1,0) (ω) = P(1,1,1,0) (ω) = P(0,0,0,0) (ω) = 1;

P(2,1,1,0) (ω) = P(2,1,0,0) (ω) = 1+ω; P(1,1,0,0) (ω) = P(1,0,0,0) = 1+ω+ω2.
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Thus using theorem 6 we obtain

H4 =
∑
k∈Z

u4k +
(
ω2 + 1

)
(ω+ 1)2

∑
k∈Z

uk+2u
2
k+1uk+

(
1+ω+ω2

)(
ω2 + 1

)∑
k∈Z

u2k+1u
2
k

+
(
ω2 + 1

)
(ω+ 1)

∑
k∈Z

(
uk+3uk+2uk+1uk+ u2k+2uk+1uk+ uk+2uk+1u

2
k + u3k+1uk+ uk+1u

3
k

)
.

3.2. Quantum Hamiltonians in AIb

Wehave shown in [1] that the derivations with even index ℓ in the nonabelianVolterra hierarchy
stabilise the ideal Ib. In this quantisation we can also find the Hamiltonians following the lines
of the proofs in the previous section, except that we now use the identity (24) instead of (23).
Because of the similarity we will omit the proof and simply state the result with examples.

Theorem 7. The quantum Volterra hierarchy (33) in the quantum algebra AIb is presented in
the Heisenberg form:

∂t2ℓ (un) =
i

2sin(ℓℏ)

[
Ĥ2ℓ,un

]
, Ĥ2ℓ =

∑
α∈N 2ℓ

∑
k∈Z

ω2ℓ − 1(
(−1)kω

)ν(α,0)
− 1

PIb
α

(
(−1)kω

)
uα+k,

(43)

where ω = q2 = eiℏ,ℏ ∈ R and ℓ ∈ N. Moreover, all Hamiltonians are self-adjoint and com-
mute with each other.

We apply theorem 7 to write down the quantum Hamiltonians for the cubic and quintic
members of the Volterra hierarchy in AIb .

Example 1. The cubic symmetry of the Volterra equation corresponds to ℓ= 1 in theorem 7.
We haveN 2 = {(1,0),(0,0)}. It follows from (21) that PIb

(1,0)(ω) = 1 and PIb
(0,0)(ω) = 1. Thus

Ĥ2 =
∑
k∈Z

u2k +
∑
k∈Z

(
1+(−1)kω

)
uk+1uk,

which is the same as those given by (35).

Example 2. When ℓ= 2 in theorem 7, the set N 4 is given in (27). From (21) we get

P(3,2,1,0)(ω) = P(2,2,1,0)(ω) = P(1,1,1,0)(ω) = P(0,0,0,0)(ω) = 1;

P(2,1,1,0)(ω) = P(2,1,0,0)(ω) = 1−ω; P((1,1,0,0)(ω) = P(1,0,0,0) = 1+ω+ω2.

Thus, using theorem 7 we obtain

Ĥ4 =
∑
k∈Z

u4k −
(
ω4 − 1

)∑
k∈Z

uk+2u2k+1uk +
∑
k∈Z

(
ω2 + 1

)(
ω2 +(−1)kω+ 1

)
u2k+1u

2
k

+
∑
k∈Z

(
ω2 + 1

)(
1+(−1)kω

)(
uk+3uk+2uk+1uk + u2k+2uk+1uk + u3k+1uk + uk+1u3k + uk+3uk+2u2k+1

)
.
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3.3. Periodic quantum Volterra system

The infinite Volterra hierarchy admits a periodic reduction un+M = un for any integer period
M. The periodic reduction can be obtained by taking a quotient of the algebra A over the ideal
IM = 〈{un+M− un}n∈Z〉. The ideal IM is obviously ∂tℓ–stable. We denote the quotient algebra
AM = A⧸IM ' C〈u1, . . . ,uM〉. TheM–periodic Volterra system and its symmetries are the sets
of M equations of the form (1) and (2), where the index n ∈ ZM = Z⧸MZ.

The quantisation ideal Ia is S–stable, that is, S(Ia) = Ia. Thus the quantum algebra
AIa admits a periodic reduction for any M> 2 and Aa

M = AIa⧸IM is isomorphic to
C〈u1, . . . ,uM〉⧸IMa , where

IMa = ⟨uMu1 −ωu1uM, unun+1 −ωun+1un, unum− umun ; 1⩽ n<m⩽M, 1<m− n<M− 1⟩.

In contrast to the infinite case, the algebra Aa
M has a nontrivial center Z(Aa

M).

Proposition 8 ([15]). If M is odd then Z(Aa
M) = C[C], where C= uMuM−1 · · ·u1. If M is even,

then Z(Aa
M) = C[C1,C2] where C1 = uM−1uM−3 · · ·u1 and C2 = uMuM−2 · · ·u2.

Proof. [15] We consider the monomials uiMM · · ·ui22 u
i1
1 , where the powers in are nonnegative

integers, as a basis for the algebra Aa
M. Since the commutation relations in Aa

M are homogen-
eous, the center is generated by monomials. A monomial uiMM · · ·ui22 u

i1
1 belongs to the center if

and only if

0=
[
uiMM · · ·ui22 u

i1
1 ,un

]
=
(
ωin−1 −ωin+1

)
uiMM · · ·uin+1

n ui22 u
i1
1 for all n ∈ ZM.

Therefore in+2 = in for n ∈ ZM, which yields the claim due to theM–periodicity of the indices.

The central elements are first integrals (constants of motion) of the corresponding quantum
periodic Volterra system. In the periodic case equations of the quantum Volterra hierarchy can
also be written in Heisenberg form (41) with the commuting self-adjoint Hamiltonians (42)
being the finite sums

Hℓ =
∑

α∈N ℓ

∑
k∈ZM

Pα (ω)
ωℓ − 1

ων(α,0) − 1
uα+k, ℓ ∈ N. (44)

In contrast to the infinite dimensional case, only k= bM−1
2 c first Hamiltonians are algebraically

independent first integrals and the rest are polynomials in the first integrals H1, . . . ,Hk and
central elements of the algebraAa

M. Thus, periodic reductions of the Heisenberg equations (41)
are integrable quantum systems, since

#commuting Hamiltonians =
1
2
(M−#generators of the center) .

The casesM= 3 andM= 4 are superintegrable [1]. The system of three (resp. four) equations
admits two (resp. three) algebraically independent quantum first integrals.

For example, in the case M= 3, the center of algebra Aa
3 is C= u3u2u1. There is only one

commuting Hamiltonian, namely, H1 = u1 + u2 + u3. The Hamiltonians Hk, k⩾ 2 are poly-
nomials in C and H1:

H2 = H2
1, H3 = H3

1 + 3ω2C, H4 = H4
1 + 4ω2 (1+ω)CH1, . . . .
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In the case M= 4, the independent first integrals are

C1 = u3u1, C2 = u4u2, H1 = u1 + u2 + u3 + u4,

where C1,C2 are central elements ofAa
4. The HamiltoniansHk, k⩾ 2 are polynomials in these

first integrals, namely,

H2 = H2
1 − 2(C1 +C2) , H3 = H3

1 − 3(C1 +C2)H1,

H4 = H4
1 − 4(C1 +C2)H

2
1 + 4

(
1+ω2

)
C1C2 + 2

(
C2
1 +C2

2

)
, . . . .

In the caseM= 5, there are two commuting Hamiltonians, namely, H1 and H2, and we have

H3 =
3
2
H2H1 −

1
2
H3

1, H4 = H2
1H2 +

1
2
H2

2 −
1
2
H4

1, . . . .

In the case M= 6, the independent first integrals are C1,C2 as well as H1, H2, and

H3 =
3
2
H2H1 −

1
2
H3

1 + 3(C1 +C2) , H4 = H2
1H2 +

1
2
H2

2 −
1
2
H4

1 + 4(C1 +C2)H1, . . . .

The quantisation ideal Ib is S2–stable. Thus the quantum algebra AIb admits a peri-
odic reduction for any even M= 2N> 2. The algebra Ab

M = AIb⧸IM is isomorphic to
C〈u1, . . . ,uM〉⧸IMb , where

IMb = 〈uMu1 −ωu1uM, unun+1 − (−1)nωun+1un, unum+ umun ;

1⩽ n< m⩽M, 1< m− n<M− 1〉.

Proposition 9 ([15]). Let M= 2N.

(i) If N is odd, then Z(Ab
M) = C[C1,C2] where

C1 = uM−1uM−3 · · ·u1, C2 = uMuM−2 · · ·u2.

(ii) If N is even, then the center of Ab
M is generated by the elements

Ĉ1 = u2M−1u
2
M−3 · · ·u21, Ĉ2 = u2Mu

2
M−2 · · ·u22, Ĉ= uMuM−1 · · ·u2u1,

where the generators Ĉ1, Ĉ2 and Ĉ are algebraically dependent Ĉ1Ĉ2 = ωM−2Ĉ2.

Proof. The proof is similar to the proposition 8. Details of the proof can be found in [15]

Example 3. In the caseM= 4, the center of algebra Ab
4 is generated by Ĉ1 = u23u

2
1, Ĉ2 = u24u

2
2

and Ĉ= u4u3u2u1. The Hamiltonian of the cubic member of the periodic Volterra hierarchy is

Ĥ2 =
4∑

k=1

u2k +(1−ω)(u2u1 + u4u3)+ (1+ω)(u3u2 + u1u4) = H2
1,

s where H1 = u1 + u2 + u3 + u4. The elements B1 = u3u1 and B2 = u4u2 commute with each
other, with Ĥ2 and anti-commute with H1, that is,

[B1,B2] = 0,
[
B1, Ĥ2

]
= 0,

[
B2, Ĥ2

]
= 0, [B1,H1]+ = B1H1 +H1B1 = 0, [B2,H1]+ = 0.
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Moreover, the generators of the center Z(Ab
4) can be represented as

Ĉ= ω−1B2B1 = u4u3u2u1, Ĉ1 =−B2
1 = u23u

2
1, Ĉ2 =−B2

2 = u24u
2
2.

In algebra Ab
4, we have the Hamiltonian Ĥ4 = Ĥ2

2 − 2Ĉ1 − 2Ĉ2.
Since the elements B1 and B2 commute with the Hamiltonian Ĥ2, and are not central, they

can be regarded as Hamiltonians of commuting quantum symmetries

∂τ1 (un) = [B1,un] = 2u3u1un, ∂τ2 (un) = [B2,un] = 2u4u2un, n ∈ Z4,

which is not possible in the commutative case.

The results in the above example can be generalised to the case whenM= 2N andN is even.
In Ab

M the elements B1 = uM−1uM−3 · · ·u1 and B2 = uMuM−2 · · ·u2 satisfy the commutation
relations

[B1,uk]+ = [B2,uk]+ = 0, k ∈ ZM,

[B1,B2] =
[
B1, Ĥ2ℓ

]
=
[
B2, Ĥ2ℓ

]
= 0, ℓ ∈ N,

and the generators of the center Z(Ab
M) can be represented as

Ĉ1 = (−1)
N(N−1)

2 B2
1, Ĉ2 = (−1)

N(N−1)
2 B2

2, Ĉ= (−1)
(N−1)(N−2)

2 ω1−NB2B1,

where Ĉ1, Ĉ2 and Ĉ are same as in the second statement of proposition 9.

4. Summary and discussion

In this paper, we present explicit expressions for the infinite hierarchy of quantum
Hamiltonians corresponding to both quantisations of the Volterra hierarchy, namely, quant-
isation ideals Ia and Ib, and show that they are self-adjoint and commute with each other.
Moreover, the dynamical equations of the quantum hierarchy can be written in the Heisenberg
form using these Hamiltonians. The proofs mainly rely on the explicit expressions of the
Volterra hierarchy on a free associative algebra.

The quantum algebra AIa [ω] can be regarded as a deformation of the commutative algebra
Ã= AIa [1] = C[un;n ∈ Z]. It is well known that taking the classical limit ℏ→ 0, and thus ω =
eiℏ → 1, one can equip Ã with a Poisson algebra structure and turn the Heisenberg equations
into the corresponding Hamiltonian ones [8, 16, 17]. Let us denote by ã ∈ Ã the limit of a ∈
AIa [ω], that is, ã= limℏ→0 a. It is clear that for any a,b ∈ AIa [ω] the commutator [a,b] ∈
(ω− 1)AIa [ω] and thus we can define the bracket{

ã, b̃
}
= lim

ℏ→0

1

e
1
2 iℏ − e−

1
2 iℏ

[a,b] . (45)

The bracket (45) is a Poisson bracket on Ã. Indeed, it is C–bilinear and skew symmetric sat-
isfying the Jacobi and Leibniz identities. Thus, we have

{um,un}= (δm,n−1 − δm,n+1)umun. (46)

It follows from theorem 6 that

∂tℓ (un) = lim
ℏ→0

1

e−
1
2 iℓℏ − e

1
2 iℓℏ

[Hℓ,un] =
{
un, H̃ℓ

}
,
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where

H̃ℓ = lim
ℏ→0

1
ℓ
Hℓ =

∑
k∈Z

∑
α∈N ℓ

Pα (1)
ν (α,0)

uα+k.

Hence the densities h̃ℓ of the local conservation laws for the Volterra hierarchy are given by
H̃ℓ =

∑
k∈ZSk(h̃ℓ) with

h̃ℓ =
∑

α∈N ℓ

Pα (1)
ν (α,0)

uα =
∑

α∈N ℓ

1
κα0

(
κα1 +κα1−1 − 1

κα1

)
. . .

(
κ2 +κ1 − 1

κ2

)(
κ1 +κ0 − 1

κ1

)
uα,

where we recall that κi = ν(α, i) is the number of i’s in α. Indeed, we have

h̃1 = u, h̃2 =
u2

2
+ u1u, h̃3 =

u3

3
+ u1u

2 + u21u+ u2u1u,

h̃4 = u3u2u1u+ u22u1u+ u31u+
u4

4
+ 2u2u

2
1u+ u2u1u

2 +
3
2
u21u

2 + u1u
3, · · ·

As a byproduct of our results, we obtained explicit expressions for all local classical
Hamiltonians h̃ℓ of the classical commutative Volterra hierarchy. Traditional approaches [5],
based on the Lax representation of the Volterra lattice or the transfer matrix approach, enable
one to find a generating function for the Hamiltonians, but not their explicit expressions.

The quantum algebra AIb [ω] can be regarded as a deformation of the noncommutative
algebra Ă= AIb [1]. A Poisson algebra structure and Hamiltonian description of equations
associated with deformations of noncommutative algebras have been recently developed in
[15].

In the classical theory of integrable systems with commutative variables and systems on
free associative algebra, there are numerous powerful tools and useful concepts, including
Lax representations, Darboux transformations, recursion operators, and master symmetries
[12, 18–20]. Their connections with the concept of quantisation ideals have not been explored
yet. Developing this aspect of the theory will enable us to take advantage of a wide range of
results in integrable systems and to advance the theory based on quantisation ideals.
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