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Abstract
It is well-known that a formal deformation of a commutative algebra A leads to a
Poisson bracket on A and that the classical limit of a derivation on the deformation
leads to a derivation on A, which is Hamiltonian with respect to the Poisson bracket.
In this paper we present a generalization of it for formal deformations of an arbitrary
noncommutative algebra A. The deformation leads in this case to a Poisson algebra
structure on �(A) := Z(A) × (A/Z(A)) and to the structure of a �(A)-Poisson
module on A. The limiting derivations are then still derivations of A, but with the
Hamiltonian belong to �(A), rather than to A. We illustrate our construction with
several cases of formal deformations, coming from known quantum algebras, such as
the ones associated with the nonabelian Volterra chains, Kontsevich integrable map,
the quantum plane and the quantized Grassmann algebra.
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1 Introduction

By awell-known procedure, usually referred to as “taking the classical limit”, quantum
systems become classical systems, equipped with a Hamiltonian structure (symplectic
or Poisson). Dirac [8] observed that Heisenberg’s noncommutative multiplication of
operators in a quantum algebraA� is a deformation of the commutative multiplication
of functions on phase space.As the deformation parameter, the Planck constant�, tends
to zero, the algebraA� tends to the commutative algebraA of functions of phase space
and the commutator of operators â, b̂ ∈ A� converges to the Poisson bracket

{a, b} = lim
�→0

i

�
[â, b̂]

of the corresponding functions a, b ∈ A on phase space. Heisenberg’s equation with
a quantum Hamiltonian Ĥ ∈ A� tends to the Hamiltonian equation

dâ

dt
= i

�
[Ĥ , â] �→0−−−→ da

dt
= {H , a}

and defines the Hamiltonian derivation ∂H := {H , ·} : A → A.

A novel approach to quantum algebras has recently be introduced by the first author
[14]. These algebras, which will here be simply called quantum algebras, admit by
definition a basis of ordered monomials (see Definition 3.1). They appear naturally
in the study of nonabelian systems [3–5] and by taking the classical limit one obtains
the underlying classical Hamiltonian system, under the assumption that the limiting
algebra is a commutative algebra.

An example of where the method of taking the classical limit fails is given by the
quantum algebra [14]

Aq := C(q)〈xi 〉i∈Z

〈xi+1xi − (−1)i qxi xi+1, xi x j + x j xi 〉|i− j |�=1
, (1.1)

where C(q)〈xi 〉i∈Z is the free algebra on . . . , x−1, x0, x1, . . . . It is clear that for no
value of the deformation parameter q this algebra becomes commutative, or even
graded commutative. On Aq there is a well-defined differential-difference equation

∂2x� = 1

q2 − 1
[H2, x�] = x�x

2
�+1 − x2�−1x� + x2� x�+1 − x�−2x�−1x� + x�x�+1x�+2 − x�−1x

2
�

which is the first member of an infinite hierarchy of odd-degree Volterra type systems.
All equations of the hierarchy can be presented for m = 1, 2, . . . in the Heisenberg
form [5]

∂2mx� = 1

q2m − 1
[H2m, x�] .

They have nontrivial limits when q goes to any 2m-th root of unity. The problem is that
the Hamiltonian structure of these limits cannot be obtained by taking the conventional
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classical limit. It was one of the motivations to undertake this study. We solved this
problem, and in Sect. 5.3 we use this example to illustrate our method.

There were several attempts to develop a Hamiltonian description of differential
equations on associative algebras which are not commutative. In the case of a free
associative algebra A, a Lie (“Poisson”) bracket can be defined on the quotient space
A� = A/[A,A] of the algebraA over the linear space [A,A] spanned by all commu-
tators in A, and elements of A� define Hamiltonian derivations of A [15]. The linear
spaceA� does not admit a structure of a Poisson algebra since a compatible multiplica-
tion is missing. Farkas and Letzter demonstrated that for any prime Poisson algebraA,
which is not commutative, the Poisson bracket must be the commutator inA, up to an
appropriate scalar factor [9]. Consequently, it became widely acknowledged that the
definition of a Poisson algebra in the noncommutative case is too restrictive. Several
modifications of the definition, inspired by noncommutative Poisson and differen-
tial geometries, as well as Hamiltonian description of noncommutative differential
equations were explored in [6, 7, 17].

In this paper we propose another approach, where the structure that we put on
A is that of a Poisson module over a commutative Poisson algebra �(A) which
we also construct from the deformation. Specifically, suppose that (A[[ν]], �) is a
(formal) deformation of an associative algebraA, whose center is denoted Z(A). The
(noncommutative) Poisson algebra (A[[ν]], [· , ·]�) admits Hν := Z(A) + νA[[ν]]
as a Poisson subalgebra, and on it we can define a rescaled Lie bracket [· , ·]ν :=
1
ν
[· , ·]�, which makes (Hν, [· , ·]ν) into a Poisson algebra. The latter admits νHν

as a Poisson ideal, so that Hν/νHν inherits the structure of a Poisson algebra, i.e., a
multiplication and aPoissonbracket. SinceHν/νHν � Z(A)×(A/Z(A)), in a natural
way, �(A) := Z(A) × (A/Z(A)) is a Poisson algebra. It is in fact a commutative
Poisson algebra. The commutative multiplication and the Poisson bracket on �(A)

will be denoted by · and {· , ·}. Like any Poisson bracket on a commutative algebra,
the bracket is completely specified on generators and can be computed for arbitrary
elements by using derivatives (see (4.1)), which is one of the main virtues of Poisson
brackets on commutative algebras.

In order to construct the �(A)-Poisson module structure on A, we first consider
the (noncommutative) Poisson algebra (Hν/ν

2A[[ν]], [· , ·]ν) as a Poisson module
over itself, and then show that νA[[ν]]/ν2A[[ν]] � A is a Poisson submodule. Now
�(A) can be identified with the quotient ofHν/ν

2A[[ν]] with respect to the Poisson
ideal νZ(A) and by reductionA becomes a Poisson module over �(A), with actions
denoted by · and {·; ·}.Moreoverwe show that for anyH ∈ �(A), {H ; ·} is a derivation
of A, making it into a Hamiltonian derivation of A. Since �(A) is commutative, the
Poisson module structure can again easily be computed from the formulas, given in
terms of generators for �(A) and of A.

The construction of �(A) and of the Poisson module structure on A will be illus-
trated at length in several examples (Sect. 4), associated with quantum algebras; its
applications to nonabelian systems, related to these quantum algebras will be illus-
trated in Sect. 5. We will in this introduction only describe shortly one example, which
is worked out in detail in Sects. 4.2 and 5.6.
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For concreteness, we illustrate our approach in a simple example, related to the
integrable Kontsevich equation [18]. Recall that the (two-dimensional) quantum torus
is defined as the quantum algebra

Aq := Tq [x, y] = C(q)〈x, y, x−1, y−1〉
〈yx − qxy〉 . (1.2)

It is a localization of the quantum plane C(q)〈x,y〉
〈yx−qxy〉 . On Aq there is a hierarchy of

commuting derivations, given for n = 1, 2, . . . by

∂nx = 1

1 − qn
[H(n), x] , ∂n y = 1

1 − qn
[H(n), y] . (1.3)

The quantum Hamiltonians H(n) are given for n = 1, 2 by

H(1) = qx−1y−1 + qy−1 + y + qx + x−1 ,

H(2) =
(
H(1)

)2 − (1 + q)H(1) − 4q .

The coefficients in the right-hand side of Eqs. (1.3) are Laurent polynomials in the
variable q. Consequently, the derivation ∂n possesses a well-defined limit as q → ξ ,
where ξ represents a primitiven-th root of unity.By settingq = ξ+ν,we can regardAq

as an algebra of power seriesA[[ν]], whereA = Aξ . In the algebraAξ we have yx =
ξ xy, implying that the center ofA is generated by xn and yn . Moreover, X := (xn, 0),
Y := (yn, 0) andWi, j :=

(
0, xi y j

)
, where 0 � i, j < n, i + j �= 0 generate �(A),

while the �(A)–module A is generated by 1, x and y. Table 1 describes in this case
the Poisson structure {· , ·} on �(A) in terms of these generators. The · action and Lie
action {· ; ·} of �(A) on A are given in Table 2. These tables can be used to describe
the Hamiltonian structure of the limiting derivation of ∂n on A.

{· , ·} X Y Wk,�

X 0 −ξ−1n2XY −ξ−1n�XWk,�

Y ξ−1n2XY 0 ξ−1nkYWk,�

Wi, j ξ−1nj XWi, j −ξ−1niYWi, j

(
ξ jk − ξ i�

)
Wi+k, j+�

Table 1 Poisson brackets between the generators of the Poisson algebra �(A)

Let us consider the case n = 2, q(ν) = −1+ν andA = C〈x, y, x−1, y−1〉/〈xy+yx〉.
Then

H(2)

q(ν)2 − 1
= 1

ν

(
H (2)
0 + νH (2)

1

)
(mod Hν) ,
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· x y

X xn+1 xn y

Y xyn y3

Wi, j 0 0

{· ; ·} x y

X 0 −ξ−1nxn y

Y ξ−1nxyn 0

Wi, j

(
ξ j − 1

)
xi+1y j

(
1 − ξ i

)
xi y j+1

Table 2 Multiplication table and Lie brackets for the generators of the �(A) moduleA

where

H (2)
0 = −1

2

(
x2 + y2 + x−2 + y−2 − x−2y−2

)
,

H (2)
1 = −1

2

(
x − y − xy − xy−1 − x−1y + x−1y−2 − x−2y−1

)
.

LetH(2) := (H (2)
0 , H (2)

1 ). Then, writingU , V and W , respectively, as a shorthand for
W1,0,W0,1 and W1,1,

H(2) = −1

2

(
X + Y + X−1 + Y−1 − X−1Y−1 +U − V − W − Y−1W

+X−1Y−1U − X−1Y−1V
)

.

Using Table 2, we obtain the Hamiltonian equation on the algebra C〈x, y, x−1, y−1〉/
〈xy + yx〉

∂H(2) x =
{
H(2) ; x

}
= ∂H(2)

∂Y
· (−2xy2) + ∂H(2)

∂V
· (−2xy2) + ∂H(2)

∂W
· (−2x2y)

= (1 − Y−2 + X−1Y−2) · xy2 − (1 + X−1Y−1) · xy − (1 + Y−1 + X−1) · x2y
= xy2 − xy−2 + x−1y−2 − xy − x−1y−1 − x2y − x2y−1 − y ,

and similarly for ∂H(2) y (see the detailed calculations in Sect. 5.6).

The structure of the paper is as follows. We show in Sect. 2 how deformations of an
associative algebraA lead to a Poisson algebra �(A) and to a �(A)-Poisson module
structure on A. We show that the construction is functorial and show its relevance
constructing Hamiltonian derivation onA from Heisenberg derivations onA[[ν]]. We
show in Sect. 3 how a quantized algebra, depending on one or several parameters, can
be viewed naturally as a formal deformation of some associative algebra. Examples
of quantized algebras, the corresponding deformations, Poisson algebras and Poisson
modules will be given in Sect. 4, together with an application. Examples of nonabelian
systems related to these quantized algebras will be given in 5; we illustrate how the
Hamiltonian structure of their limit derivations is obtained by our methods.
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Lastly, in the paper,we do not explicitly consider the complex orHermitian structure
of the Hamiltonians and the equations. While it can be straightforwardly incorporated
in each case, doing somight compromise the clarity and readability of the expressions.

The results of this paper were presented at several seminars and conferences,
including the international conference "Geometry and Integrability" at Skoltech and
the Higher School of Economics, Moscow, in September 2023, and in the preprint
arXiv:2402.16191. We are grateful to N. Reshetikhin for the invitation to give a talk
on this subject at his seminar atBIMSA,Beijing,China, inApril 2024.On that occasion
we learned that with his collaborators he was studying some of the problems solved in
this paper using a different approach, based on the notion of a hybrid quantum system,
that they introduced. In particular, they independently discovered the derivations on
a noncommutative algebra, which are Hamiltonian derivations in our approach and
hybrid derivation in theirs. Their results are now available in the preprint [13]. We
are also grateful to N. Reshetikhin for pointing out the reference [16], which contains
useful examples of nonflat Azumaya algebras, that would naturally fit in our list of
examples.

2 Poisson algebras and Poissonmodules from deformations

In this section we show how any deformation of a (not necessarily commutative)
associative algebra A leads in a natural way to a commutative Poisson algebra �(A)

and a �(A)-Poisson module structure on A.

2.1 Poisson algebras and deformations

We first recall the definition of a (not necessarily commutative) Poisson algebra (see,
for example, [9]). LetA be any (unitary) associative algebra over a commutative ring
R. For a, b ∈ A their product a · b in A will simply be denoted by ab and their
commutator ab − ba by [a, b].

Definition 2.1 A skew-symmetric R-bilinear map {· , ·} : A × A → A is said to
be a Poisson bracket on A when it satisfies the Jacobi and Leibniz identities: for all
a, b, c ∈ A,

(1) {{a, b} , c} + {{b, c} , a} + {{c, a} , b} = 0 , (Jacobi identity),

(2) {a, bc} = {a, b} c + b {a, c} , (Leibniz identity).

(A, {· , ·}) or (A, ·, {· , ·}) is then said to be a Poisson algebra (over R). When A is
commutative one says that the Poisson algebra (A, {· , ·}) is commutative.
Example 2.2 Any associative algebra A has a natural Poisson bracket, given by the
commutator {a, b} := [a, b]. Indeed, it is well-known that [· , ·] is a Lie bracket on A
and one easily checks that the Leibniz identity also holds, so (A, [· , ·]) is a Poisson
algebra. This Poisson bracket is trivial if and only if A is commutative.
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Example 2.3 When (A, {· , ·}) is a Poisson algebra and B is a subalgebra of A which
is also a Lie subalgebra of (A, {· , ·}), then (B, {· , ·}) is also a Poisson algebra; we say
that it is a Poisson subalgebra ofA. Similarly, if I is an ideal ofA which is also a Lie
ideal of (A, {· , ·}) then I is a Poisson ideal ofA andA/I is a Poisson algebra; we say
that it is a quotient Poisson algebra of A. The inclusion B → A and the projection
A → A/I are then morphisms of Poisson algebras, that is they are algebra as well as
Lie algebra morphisms.

These examples will be used in what follows to construct, by Poisson reduction,
commutative Poisson algebras from deformations of a (not necessarily commutative)
associative algebra, a notion which we first recall (see, for example, [11, Ch. 13] for
the commutative case). Let A be any associative algebra over R and consider A[[ν]],
the R[[ν]]-module of formal power series in some formal variable ν with the elements
ofA as coefficients. By definition, any element A ofA[[ν]] can be written in a unique
way as A = a0 + νa1 + ν2a2 + · · · , where ai ∈ A for all i .

Definition 2.4 Suppose that A[[ν]] is equipped with the structure of an associative
algebra over R[[ν]], with product denoted by �. Then (A[[ν]], �) (or more simply
A[[ν]]) is said to be a (formal) deformation ofA if for any a, b ∈ A, a�b = ab+O(ν),
i.e., a�b − ab ∈ νA[[ν]].

Said differently, the latter condition states that under the natural identification ofA
withA[[ν]]/νA[[ν]] the canonical projection p : (A[[ν]], �) → (A, ·) is a morphism
of algebras. One naturally views p as evaluation at ν = 0.

Example 2.5 A first classical example is the Moyal product. It defines a nontrivial
deformation of the algebra of functions on any symplectic manifold (M, ω). If we
denote by 
 the inverse to ω, then 
 is a Poisson structure on M and the Moyal
product of f , g ∈ C∞(M) is given by

f �g = m ◦ eν
/2( f ⊗ g) ,

where m denotes the usual multiplication in C∞(M).

Example 2.6 A second classical example is the standard deformation of the algebra
Sym g of polynomial functions on a Lie algebra g. If we denote by T •g the tensor
algebra of g and by I the two-sided ideal of T •g[[ν]] generated by all x ⊗ y− y⊗ x −
ν[x, y] with x, y ∈ g, then by the Poincaré–Birkhoff–Witt Theorem T •g[[ν]]/I �
Sym g[[ν]] making Sym g[[ν]] with the transported product � into a deformation of
Sym g.

See [1, 2] for more information on these examples and for the relevance of defor-
mation theory to quantization. Notice that in both of these examples the associative
algebra A, which is deformed, is commutative.

The commutator in (A[[ν]], �) is denoted by [· , ·]�: [A, B]� := A�B − B�A for
A, B ∈ A[[ν]]. We also introduce for all i ∈ Z>0, R-bilinear maps (·, ·)i , {· , ·}i :
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A × A → A by setting, for all a, b ∈ A ⊂ A[[ν]],

a�b = ab + ν(a, b)1 + ν2(a, b)2 + · · · , (2.1)

[a, b]� = [a, b] + ν {a, b}1 + ν2 {a, b}2 + · · · , (2.2)

where the values of the leading terms follow from p(a�b) = ab and p([a, b]�) =
ab − ba = [a, b]. Of course, {a, b}i = (a, b)i − (b, a)i for all i and all a, b ∈ A.

2.2 Commutative Poisson algebras from deformations

It is well-known that when the associative algebraA is commutative,A inherits from
any deformation (A[[ν]], �) ofA a Poisson bracket (see, for example, [1, 11]). Recall
that this Poisson bracket is classically defined for a, b ∈ A ⊂ A[[ν]] by

{a, b} = lim
ν→0

a�b − b�a

ν
, (2.3)

and that the fact that it is a Poisson bracket follows from the associativity of �. In
order to anticipate the construction of the Poisson bracket in the noncommutative
case, we first reformulate the construction of the Poisson bracket (2.3) in a different,
more abstract way. In view of Example 2.2, (A[[ν]], [· , ·]�) is a Poisson algebra over
R[[ν]]. Since A is commutative, the commutator [· , ·]� takes values in νA[[ν]] and
we can also consider on A[[ν]] its rescaling, defined for A, B ∈ A[[ν]] by

[A, B]ν := 1

ν
[A, B]� = A�B − B�A

ν
∈ A[[ν]] . (2.4)

It is clear that this rescaling does not affect the Leibniz and Jacobi identities, so that
(A[[ν]], [· , ·]ν) is also a Poisson algebra over the ring R[[ν]]. Since

[νA[[ν]],A[[ν]]]ν = [A[[ν]],A[[ν]]]� ⊂ νA[[ν]] ,

the (associative) ideal νA[[ν]] of A[[ν]] is also a Lie ideal of (A[[ν]], [· , ·]ν), hence
is a Poisson ideal of it. The quotient A[[ν]]/νA[[ν]] is therefore a Poisson algebra.
Under the natural identification ofA withA[[ν]]/νA[[ν]], we recover from (2.4) the
Poisson bracket (2.3) on A.

Example 2.7 In the case of Example 2.5, the Poisson structure that one obtains is 
.
In the case of Example 2.6 one obtains the canonical Lie–Poisson structure on Sym g
(see [11, Ch. 7]).

We now consider the more general case in whichA is not necessarily commutative.
The center of A is denoted Z(A). We suppose that A[[ν]] is a deformation of A and
consider again the Poisson algebra (A[[ν]], [· , ·]�). In this case we cannot define the
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rescaled bracket on A[[ν]] as in (2.4) because [· , ·]� does not take values in νA[[ν]]
(in general). Let us define

Hν := Z(A) + νA[[ν]],
the R[[ν]]-submodule of A[[ν]] generated by Z(A) and νA. It consists of those
elements of A[[ν]] whose ν-independent term belongs to the center Z(A) of A.

Lemma 2.8 Hν is a Poisson subalgebra of (A[[ν]], [· , ·]�). Moreover, the commutator
[· , ·]�, restricted to Hν takes values in νHν , so that (Hν, [· , ·]ν) is also a Poisson
algebra.

Proof Since Z(A) is a subalgebra of A,Hν is a subalgebra of A[[ν]]. ButHν is also
a Lie subalgebra of (A[[ν]], [· , ·]�) because

[Hν,Hν]� = [Z(A) + νA[[ν]], Z(A) + νA[[ν]]]� ⊂ νA[[ν]] ⊂ Hν ,

where we have used that [Z(A), Z(A)]� ⊂ νA[[ν]]. It follows that Hν is a Poisson
subalgebra of (A[[ν]], [· , ·]�), which is the first statement, and that the bracket [· , ·]�,
restricted to Hν takes values in νA[[ν]]. In order to prove the second statement, we
need to show that the restriction of [· , ·]� to Hν actually takes values in νHν , i.e.,
that when A, B ∈ Hν then [A, B]� ∈ νHν . Writing A = a + νa1 + O(ν2) and
B = b+ νb1 +O(ν2) we have, using that a and b belong to the center ofA and using
(2.2), that

[A, B]� = [a, b]� + ν [a, b1] + ν [a1, b] + O
(
ν2
)

= ν {a, b}1 + O
(
ν2
)

, (2.5)

so we need to show that {a, b}1 ∈ Z(A) for any a, b ∈ Z(A). Let c be any element
ofA. In view of the Jacobi identity for [· , ·]� (which follows from the associativity of
�),

[[a, b]� , c]� + [[b, c]� , a]� + [[c, a]� , b]� = 0 . (2.6)

Using (2.5) and that a ∈ Z(A), the first term reads

[[a, b]� , c]� = ν
[{a, b}1 , c

]
�
+ O

(
ν2
)

= ν({a, b}1 c − c {a, b}1) + O
(
ν2
)

.

Now since a, b ∈ Z(A),

[[b, c]� , a]� = ν
[{b, c}1 , a

]
�
+ O

(
ν2
)

= ν2 {{b, c}1 , a}1 + O
(
ν2
)

= O
(
ν2
)

,

and similarly [[c, a]� , b]� = O(ν2). Substituted in (2.6) we get {a, b}1 c−c {a, b}1 =
0 for all c ∈ A, which shows that {a, b}1 ∈ Z(A). �


We are now ready to construct the commutative Poisson algebra which is naturally
associated with a deformation.

Proposition 2.9 Let (A[[ν]], �) be a deformation of an associative algebra A.
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(1) νHν is a Poisson ideal of (Hν, [· , ·]ν).
(2) The quotient algebra Hν/νHν is a commutative Poisson algebra.

Proof νHν ⊂ Hν , which is an ideal ofHν , is also a Lie ideal for the bracket [· , ·]ν on
Hν because

[νHν,Hν]ν = ν [Hν,Hν]ν ⊂ νHν .

It follows that νHν is a Poisson ideal of (Hν, [· , ·]ν) and that the quotient algebra
Hν/νHν is a Poisson algebra. According to Lemma 2.8, A�B − B�A = [A, B]� ∈
νHν when A, B ∈ Hν , which shows that the Poisson algebra (Hν/νHν, [· , ·]ν) is
commutative. �


By construction, Hν/νHν is a Poisson algebra over R[[ν]], in particular it is
a Poisson algebra over R. Moreover, we will write elements of Hν/νHν as pairs
(a, b) := (a, b + Z(A)) with a ∈ Z(A) and b ∈ A, and identify Hν/νHν with

�(A) := Z(A) × A
Z(A)

,

which we call the Poisson algebra associated to the deformation (A[[h]], �) ofA.
Notice that the quotientA/Z(A) is not a quotient of algebras (Z(A) is in general not
an ideal ofA) but of R-modules. Under this identification and notation, the canonical
projection p� : Hν → �(A) is given by A = a0 + νa1 + ν2a2 + . . . �→ (a0, a1).
The associative product and Poisson bracket on �(A) are denoted by · and {· , ·},
respectively. If we denote the unit of A by 1, then (1, 0) is the unit of �(A). By
construction, we have the following corollary of Proposition 2.9:

Proposition 2.10 The projection p� : (Hν, [· , ·]ν) → (�(A), {· , ·}) is a surjective
morphism of Poisson algebras. �


Explicit formulas for · and {· , ·} are given in the following proposition:

Proposition 2.11 Let (a, a1), (b, b1) ∈ �(A). Then

(a, a1) · (b, b1) =
(
ab, ab1 + a1b + (a, b)1

)
, (2.7)

and

{
(a, a1), (b, b1)

} = ({a, b}1 , {a, b}2 + {a1, b}1 + {a, b1}1 + [a1, b1]
)

. (2.8)

Proof Since p� is surjective, we can write (a, a1) = p�(A) and (b, b1) = p�(B),
where A = a+ νa1 + ν2a2 +· · · and B = b+ νb1 + ν2b2 +· · · belong toHν . Then,
using Proposition 2.10,

(a, a1) · (b, b1) = p�(A) · p�(B) = p�(A�B) = p�((a + νa1)�(b + νb1))
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(2.1)= p�(ab + ν(ab1 + a1b + (a, b)1)) =
(
ab, ab1 + a1b + (a, b)1

)
,

and

{
(a, a1), (b, b1)

} = p�

[
a + νa1 + ν2a2, b + νb1 + ν2b2

]
ν

(2.2)= p�({a, b}1 + ν({a, b}2 + {a1, b}1 + {a, b1}1 + [a1, b1]))

= ({a, b}1 , {a, b}2 + {a1, b}1 + {a, b1}1 + [a1, b1]
)
.

�

Remark 2.12 When A is commutative, Z(A) = A and Hν = A[[ν]] so that, as
Poisson algebras,

�(A) � Hν/νHν � A[[ν]]/νA[[ν]] � A ,

and we recover the (commutative) Poisson algebra constructed in the commutative
case, with Poisson bracket {· , ·} = {· , ·}1.
Example 2.13 Let A be any associative algebra over R and consider the trivial defor-
mation of A: the product � on A[[ν]] is the R[[ν]]-linear extension of the product
on A. Then (a, b)i = {a, b}i = 0 for a, b ∈ A and i � 1, since a�b = ab for all
a, b ∈ A. Hence, the formulas (2.7) and (2.8) for the product and Poisson bracket on
�(A) become

(a, a1) · (b, b1
) = (ab, ab1 + a1b

)
, and

{
(a, a1),

(
b, b1

)} = (0, [a1, b1]
)

.

(2.9)

It follows that for any associative algebra A, (2.9) defines the structure of a com-
mutative Poisson algebra on �(A). The Poisson bracket in (2.9) is trivial if and only
if A is two-step nilpotent, [[A,A] ,A] = 0.

In order to define the�(A)-Poisson module structure onA, we will need a slightly
larger Poisson algebra, which is non necessarily commutative, given by the following
proposition. Its proof is very similar to the proof of Proposition 2.9.

Proposition 2.14 Let (A[[ν]], �) be a deformation of an associative algebra A.

(1) ν2A[[ν]] is a Poisson ideal of (Hν, [· , ·]ν).
(2) The quotient algebra Hν/ν

2A[[ν]] � Z(A) × A is a Poisson algebra. �

By a similar computation as in the proof of Proposition 2.11, the product and the

Poisson bracket of (a, a1), (b, b1) ∈ Z(A)×A, again denoted by · and {· , ·}, take the
following form:

(a, a1) · (b, b1) = (ab, ab1 + a1b + (a, b)1) ,

{(a, a1), (b, b1)} = ({a, b}1 , {a, b}2 + {a1, b}1 + {a, b1}1 + [a1, b1]) . (2.10)

123



  108 Page 12 of 51 A. V. Mikhailov, P. Vanhaecke

It is clear that, alternatively, the commutative Poisson algebra�(A) can be constructed
as a quotient of the Poisson algebra (Z(A) × A, {· , ·}) by considering the Poisson
ideal {0} × Z(A) of Z(A) × A.

The Poisson algebra Z(A) × A is not commutative when A is not commutative.
According to [9], the Poisson bracket of any prime Poisson algebra that is not com-
mutative is a multiple of the commutator a ·b−b ·a, where · denotes the (associative)
product of the Poisson algebra. This result does not apply to Z(A) × A because it is
not prime. In fact, in this case the Poisson bracket is not a multiple of the commutator.

2.3 Poissonmodules from deformations

We first recall the definition of a Poisson module over a (not necessarily commutative)
Poisson algebra.

Definition 2.15 Let (A, ·, {· , ·}) be a Poisson algebra over R and let M be an R-
module. ThenM is said to be aA-Poisson module (or Poisson module over A or over
(A, {· , ·})) whenM is both a (A, ·)-bimodule and a (A, {· , ·})-Lie module, satisfying
the following derivation properties: for all a, b ∈ A and m ∈ M,

{a ; b · m} = {a, b} · m + b · {a ;m} , (2.11)

{a ;m · b} = m · {a, b} + {a ;m} · b , (2.12)

{a · b ;m} = a · {b ;m} + {a ;m} · b . (2.13)

In the above formulas, the three actions of A onM have been written a · m, m · a
and {a ;m} for a ∈ A and m ∈ M. In this notation, the fact that M is a A-bimodule
(respectively, a (A, {· , ·})-Lie module), takes the form

a · (b · m) = (a · b) · m , (m · a) · b = m · (a · b) , a · (m · b) = (a · m) · b ,

(2.14)

{{a, b} ;m} = {a ; {b ;m}} − {b ; {a ;m}} , (2.15)

for a, b ∈ A and m ∈ M. When A is commutative and the left and right actions of
A on M coincide, (2.11) and (2.12) are equivalent, just like the first two conditions
in (2.14). The properties (2.14) and (2.15) are similar to the associativity and Jacobi
identity in A, while the properties (2.11)–(2.13) are similar to the Leibniz identity in
A. In the example that follows, they are exactly these properties.

Example 2.16 It is well-known that every associative algebra is a bimodule over itself
and that every Lie algebra is a Lie module over itself, in both cases in a natural way.
When (A, {· , ·}) is a Poisson algebra this leads to a natural A-bimodule structure on
A, given by left and right multiplication, as well as a (A, {· , ·})-Lie module structure,
given by taking the Poisson bracket. Then {· ; ·} = {· , ·} and each one of the properties
(2.11)–(2.13) is equivalent to the Leibniz identity in (A, {· , ·}). It follows that every
Poisson algebra is in a natural way a Poisson module over itself.
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Proposition 2.17 Let (A[[ν]], �) be a deformation of an associative algebra A. Con-
sider the Poisson algebra (Z(A) × A, ·, {· , ·}) (Proposition 2.14).

(1) A is a Poisson module over (Z(A) × A, ·, {· , ·}).
(2) A is a Poisson module over (�(A), ·, {· , ·}), with actions given for a ∈ Z(A) and

a1, b ∈ A by

(a, a1) · b = ab , b · (a, a1) = ba = ab , {(a, a1) ; b} = {a, b}1 + [a1, b] .

(2.16)

Proof It is clear from Example 2.16 that the Poisson algebra (Z(A) × A, {· , ·}) is
a Poisson module over itself. The formulas for the product and bracket are given
by (2.10). Let (a, a1), (0, b) ∈ Z(A) × A. Then (2.10) specializes to

(a, a1) · (0, b) = (0, ab) , (0, b) · (a, a1) = (0, ba) ,

{(a, a1), (0, b)} = (0, {a, b}1 + [a1, b]) , (2.17)

so that · and {· , ·} can be restricted to {0}×A, making the latter into a Poisson module
over (Z(A) × A, {· , ·}). Under the identification {0} × A � A we get (1). We use
these formulas to prove (2), where we need to show that the restriction to the Poisson
ideal {0} × Z(A) of both actions of Z(A) × A on A is trivial. Let a ∈ Z(A) and
b ∈ A. Then (2.17) becomes

(0, a) · (0, b) = (0, 0) = (0, b) · (0, a) , and {(0, a), (0, b)} = (0, [a, b]) = (0, 0) ,

(2.18)
where we have used that a ∈ Z(A). In terms of the notation that we have introduced
for the elements of �(A), upon identifying {0} × A with A and writing {· ; ·} for the
induced Lie action, we get (2.16) from (2.17). �


We stress that the Poisson moduleA that we have constructed is a Poisson module
over the commutative Poisson algebra�(A). Notice also that the left and right actions
of Z(A) × A, and hence of �(A), on A are the same (see (2.16) and (2.18)).

Example 2.18 As we have already pointed out, whenA is commutative,�(A) � A as
a Poisson algebra, where both algebras have the rescaled commutator [· , ·]ν as Poisson
bracket. Under this identification, theA-Poisson module structure ofA constructed in
Proposition 2.17 is precisely the canonical Poisson module structure ofA as a Poisson
module over itself (cfr. Example 2.16).

2.4 Hamiltonian derivations from deformations

We now show how any elementH of�(A) leads to a derivation ∂H onA, i.e., a linear
mapA → A satisfying the Leibniz identity. We call them Hamiltonian derivations in
analogy with the terminology used in the classical case, i.e., whenA is commutative,
so that �(A) � A. For a ∈ A, we define ∂Ha := {H ; a}. We show in the following
proposition that ∂H is a derivation of A.
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Proposition 2.19 The map ∂H : A → A is a derivation of A.

Proof Writing H = (H0, H1), we find from (2.16) that

{H ; a} = {H0, a}1 + [H1, a] . (2.19)

It is clear that ∂H is a linear map, so we only need to establish that {H ; ·} satisfies the
Leibniz identity. Now [H1, ·] satisfies the Leibniz identity, so according to (2.19) we
only need to check that for any a, b ∈ A, {H0, ab}1 = a {H0, b}1 + {H0, a}1 b. This
follows by comparing the following two expressions for [H0, ab]�:

[H0, ab]� = [H0, ab] + ν {H0, ab}1 + O
(
ν2
)

= a [H0, b] + [H0, a] b + ν {H0, ab}1 + O
(
ν2
)

,

[H0, ab]� = a [H0, b]� + [H0, a]� b = a [H0, b] + aν {H0, b}1
+ [H0, a] b + ν {H0, a}1 b + O

(
ν2
)

.

�


The Hamiltonian derivation ∂H onA should not be confused with the Hamiltonian
derivation ∂ ′

H on �(A), which is defined for F ∈ �(A) by ∂ ′
HF := {H,F}, where

we recall that the latter Poisson bracket is explicitly given by (2.8). When A is com-
mutative, ∂H and ∂ ′

H are both derivations ofA (under the obvious identifications) and
they coincide. When A is not commutative, these derivations are defined on different
algebras and though they are related, none of the two determines the other one.

The followingproposition generalizes awell-knownproperty from the commutative
case:

Proposition 2.20 Suppose that F = (F0, F1),G = (G0,G1) ∈ �(A). Then
[∂F, ∂G] = ∂{F,G}. In particular, if F and G are in involution, {F,G} = 0, their
associated derivations ∂F and ∂G ofA commute and both F0 and G0 are first integrals
of them.

Proof For the first statement, we need to prove that for any a ∈ A,

∂F(∂Ga) − ∂G(∂Fa) = ∂{F,G}a ,

i.e., that
{F ; {G ; a}} − {G ; {F ; a}} = {{F,G} ; a} .

This is precisely the property that A is a Lie module over (�(A), {· , ·}) (see (2.15)).
For the last statement, it remains to be shown that G0 is a first integral of ∂F, i.e., that
∂FG0 = 0. According to (2.19), ∂FG0 = {F ;G0} = {F0,G0}1 + [F1,G0] and both
terms in the sum are zero, the first one because F and G are in involution (see (2.8))
and the second one because G0 ∈ Z(A). �
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The proposition also shows that the commutator of two Hamiltonian derivations
of A is a Hamiltonian derivation of A and the Poisson algebra �(A) provides a tool
to compute a corresponding Hamiltonian. Notice that, contrarily to the classical case
where �(A) � A, in the general case Hamiltonians are pairs of Z(A) × A

Z(A)
, while

first integrals are elements of A, so they live on different spaces.

The derivation ∂H of A, given by (2.19), is naturally obtained as the limit of a
Heisenberg derivation ofA[[ν]], an observationwhichhas beenour originalmotivation
for the construction of the Poisson algebra �(A) and the Poisson module A over it.
Indeed, let H ∈ Hν be any element with H = H0 + νH1 + ν2H2 + · · · , and denote
as before H = (H0, H1). The Heisenberg derivation associated with H , which we
denote by δH , is by definition the derivation of A[[ν]], given for a ∈ A ⊂ A[[ν]] by

δHa = 1

ν
[H , a]� .

We get, using (2.2) and (2.19),

δHa = 1

ν
[H0 + νH1 + · · · , a]� = {H0, a}1 + [H1, a] + O(ν) = ∂Ha + O(ν) ,

so that in the limit ν → 0 we get indeed the Hamiltonian derivation ∂H of A.

Example 2.21 WhenA is commutative one recovers the well-known fact that the limit
of the Heisenberg derivation associated with H0, where H = (

H0, H1
) = (H0, 0),

is the Hamiltonian derivation associated with H0 by means of the Poisson structure,
associated with the deformation since ∂Ha = {H0, a}1 + [H1, a] = {H0, a}, since in
the commutative case the commutator vanishes and {· , ·}1 is the Poisson bracket (see
Remark 2.12).

2.5 The reduced Poisson algebra

Let (A, �) be a deformation of an associative algebra A and recall that �(A) =
Z(A)×(A/Z(A)) is the associated Poisson algebra. Explicit formulas for the product
and bracket on �(A) are given in (2.7) and (2.8). It is clear from these formulas that
Z(A) × {0} is in general neither a subalgebra nor a Lie subalgebra of �(A). Yet,
we show that, by reduction, Z(A) is also a (commutative) Poisson algebra. In fact,
{0}× (A/Z(A)) is both an ideal and a Lie ideal of �(A), since according to (2.7) and
(2.8),

(0, a1) · (b, b1
) = (0, a1b

)
,
{
(0, a1),

(
b, b1

)} = (0, {a1, b}1 + [a1, b1]
)

.

It follows that {0} × (A/Z(A)) is a Poisson ideal of �(A), so that �(A)/({0} ×
(A/Z(A))) � Z(A) is a Poisson algebra, where the latter isomorphism is according
to (2.7) not just an isomorphism of modules but of (associative) algebras. The induced
Poisson structure on Z(A) is given for a, b ∈ Z(A) by {a, b}1 since according to
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(2.8), {(
a, 0
)
,
(
b, 0
)} = ({a, b}1 , {a, b}2

)
.

We call (Z(A), {· , ·}1) the reduced Poisson algebra (associated to the deformation).
Notice that it follows that {· , ·}1 satisfies the Jacobi identity when restricted to Z(A),
though in general {· , ·}1 does not satisfy the Jacobi identity on A, since in general
{a, b}2 is nonzero, for a, b ∈ Z(A); see Sect. 4.6 for a counterexample.

Example 2.22 According to Example 2.13, the reduced Poisson structure associated
with a trivial deformation is trivial.

2.6 Functoriality

In deformation theory, the natural notion of isomorphism is the one of equivalence.
We will show in this subsection that equivalent deformations of an algebra lead to iso-
morphic Poisson algebras.We first recall the definition of equivalence of deformations
(see, for example, [11, Ch. 13]).

Definition 2.23 Two deformations (A[[ν]], �) and (A[[ν]], �′) of an associative alge-
bra A are said to be equivalent if there exists a morphism of R[[ν]]-algebras
F : (A[[ν]], �) → (A[[ν]], �′) such that F(a) = a + O(ν) for all a ∈ A. Then
F is called an equivalence (of deformations).

Notice that F is automatically an isomorphism and that F can be viewed as a
deformation of the identity map on A[[ν]]. More precisely, expanding F(a) for all
a ∈ A as a formal power series in ν,

F(a) = a + νF1(a) + ν2F2(a) + · · · ,

we get R-linear maps Fi : A → A and we can write

F = IdA[[ν]] + νF1 + ν2F2 + · · · (2.20)

where, by a slight abuse of notation, Fi stands for the R[[ν]]-linear extension of Fi to a
morphism Fi : A[[ν]] → A[[ν]]. Formula (2.20) is convenient for computations. One
computes, for example, easily from it that F−1 = IdA[[ν]] −νF1+ν2(F2

1 −F2)+· · · .
The following proposition shows that, under some condition which is automatically

satisfied for equivalences, an algebra homomorphism between deformations of two
algebras induces a Poisson morphism between the two associated Poisson algebras.

Proposition 2.24 Let A and A′ be two associative algebras with deformations
(A[[ν]], �) and (A′[[ν]], �′), and let F = F0 + νF1 + ν2F2 +· · · : A[[ν]] → A′[[ν]]
be a morphism of R[[ν]]-algebras. If F0(Z(A)) ⊂ Z(A′), then F restricts to a mor-
phism of Poisson algebras F : (Hν, [· , ·]ν) → (H′

ν, [· , ·]′ν) and induces a map
F� : �(A) → �(A′). Moreover, F� and the map induced by it between the reduced
Poisson algebras (Z(A), {· , ·}1) and (Z(A′), {· , ·}′1) are morphisms of Poisson alge-
bras.
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Proof Suppose that F0(Z(A)) ⊂ Z(A′). Then

F(Hν) = (F0 + νF1 + · · · )(Z(A) + νA[[ν]]) ⊂ Z(A′) + νA′[[ν]] = H′
ν .

It follows that F can be restricted to a morphism F : Hν → H′
ν . Notice that since

F is a morphism of R[[ν]]-algebras it also preserves the commutator, F([A, B]�) =
[F(A), F(B)]′�, and hence also the rescaled bracket, F([A, B]ν) = [F(A), F(B)]′ν ,
so that F : (Hν, [· , ·]ν) → (H′

ν, [· , ·]′ν) is a morphism of Poisson algebras. Consider
the following diagram of Poisson algebras:

(Hν, [· , ·]ν) (H′
ν, [· , ·]′ν)

(�(A), {· , ·}) (�(A′), {· , ·}′)

p�

F

p�′

F�

As we just showed, F is a morphism of Poisson algebras. According to Proposition
2.10, p� and p�′ are also morphisms of Poisson algebras. Let us now consider F�; by
surjectivity of p�, if a map F� making the diagram commutative exists, it is unique.
In fact, one establishes quite easily a formula for F�: for (a, a1) ∈ �(A),

F�(a, a1) = F� p�(a + νa1 + · · · ) = p�′F(a + νa1 + · · · )
= p�′(F0(a) + ν(F0(a1) + F1(a))) =

(
F0(a), F0(a1) + F1(a)

)
.

(2.21)

This gives a formula for F� and the above computation shows that itmakes the diagram
commutative. The surjectivity of p� and the commutativity of the diagram imply that
F� is a morphism of Poisson algebras. For example, to check that F� is a morphism
of Lie algebras, it suffices to check that F� {p�A, p�B} = {F� p�A, F� p�B}′ for
all A, B ∈ A[[ν]], which follows easily from the cited properties:

F� {p�A, p�B} = F� p� [A, B]ν = p�′F [A, B]ν = p�′ [F(A), F(B)]′ν
= {p�′F(A), p�′F(B)}′ = {F� p�A, F� p�B}′ .

To finish to proof, we consider the corresponding reduced Poisson algebras (see
Sect. 2.5). Consider the following diagram of Poisson algebras:

(�(A), {· , ·}) (�(A′), {· , ·}′)

(Z(A), {· , ·}1) (Z(A′), {· , ·}′1)

F�

F0

The vertical arrows in this diagram are the reduction maps. The lower arrow has been
labeled F0, as it is just the restriction of F0 to the center of A; it is obvious from
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(2.21) that F0 makes the diagram commutative. Since F� and the reduction maps are
Poisson maps, the latter moreover being surjective, we may conclude as above that F0
is a Poisson map. �


When F0 is surjective, the condition F0(Z(A)) ⊂ Z(A′) is automatically satisfied.
In particular, the proposition can be applied to equivalences of deformations and we
get the following result:

Corollary 2.25 Let (A[[ν]], �) and (A[[ν]], �′) be equivalent deformations of an asso-
ciative algebra A. Then the Poisson algebras associated to these deformations are
isomorphic, (�(A), {· , ·}) � (�(A), {· , ·}′); the reduced Poisson algebras are also
isomorphic, (Z(A), {· , ·}1) � (Z(A), {· , ·}′1). �


The converse is not true in general, as the Poisson algebras and reduced Poisson
algebras only “see” the first two terms of the deformation; replacing in a nontriv-
ial deformation ν by νk leads to a nontrivial deformation for which the first k − 1
deformation terms are zero, hence leading to a trivial Poisson algebra �(A) when
k > 2.

We show that under the hypothesis of Corollary 2.25, the Poisson module struc-
ture on A which is induced by the two deformations is the same, i.e., that for any
(a, a1) ∈ �(A) and b inA, one has F�(a, a1) ·′ b = (a, a1) ·b and {F�(a, a1) ; b}′ =
{(a, a1) ; b}, where ·′ denotes the action of �(A) on A coming from the deforma-

tion (A[[ν]], �′). Now F� (a, a1) =
(
a, F1(a) + a1

)
, as follows from (2.21), so that

according to (2.16) we need to show that

(
a, a1 + F1(a)

)
·′ b = (a, a1) · b , and

{(
a, a1 + F1(a)

)
; b
}′ = {(a, a1) ; b} ,

(2.22)
for any a ∈ Z(A) and a1, b ∈ A. The first equality in (2.22) holds because both
sides evaluate to ab (see (2.16)). Proving the second equality amounts in view of the
formulas (2.16) to showing that {a, b}1 = {a, b}′1 + [F1(a), b] for all a ∈ Z(A) and
b ∈ A. To prove the latter, we expand both sides of [F(a), F(b)]′� = F [a, b]� using
(2.21). First,

[F(a), F(b)]′� = [a + νF1(a), b + νF1(b)]
′
� + O

(
ν2
)

= [a, b] + ν({a, b}′1 + [a, F1(b)] + [F1(a), b]) + O
(
ν2
)

= ν({a, b}′1 + [F1(a), b]) + O
(
ν2
)

,

where we have used twice that a ∈ Z(A). Similarly,

F [a, b]� = [a, b]� + νF1 [a, b]� + O
(
ν2
)

= [a, b] + ν({a, b}1 + F1 [a, b])

+ O
(
ν2
)

= ν {a, b}1 + O
(
ν2
)

.
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Comparing these two results yields the required equality, proving the second equality
in (2.22).

3 Free quotients of free algebras

The associative algebra underlying a quantum system usually depends on a parameter,
the Planck constant, which is small and the algebra becomes commutative when the
parameter is set to 0. These algebras can (under some assumptions) naturally be viewed
as deformations (in the sense of Definition 2.4) of that commutative algebra and one
speaks of deformation quantization. We are interested here in the more general case
in which the limiting algebra is not necessarily commutative. Moreover, in view of the
examples which we will treat, we may be interested in other values of the parameter,
such as roots of unity, and we may want to deal with several parameters. We will
describe in this section a natural and quite general setup in which we can view these
more general algebras as deformations, so that we can apply the techniques and results
of the previous sections to them, as we will do in Sects. 4 and 5. We denote by K any
commutative field of characteristic 0, which in the examples in the next sections will
be taken equal to C.

3.1 Quantization ideals and quantum algebras

Wefirst recall the notion of quantization ideal and of quantum algebra which were first
introduced in [14]. Let x1, x2, . . . be a (possible infinite, but at most countable) col-
lection of independent variables. We denote A = K〈x1, x2, . . . 〉 the free associative
(unital) K-algebra on these variables. Elements of A are finite K-linear combinations
of words in x1, x2, . . . , and the product of two words is their concatenation. Assume
that A is equipped with a derivation ∂ : A → A.

Definition 3.1 A two-sided ideal I of A is said to be a quantization ideal for (A, ∂) if
it satisfies the following two properties:

(1) The ideal I is ∂-stable: ∂(I) ⊂ I;
(2) The quotientA/I admits a basisB of normally orderedmonomials1 in x1, x2, . . . .

The quotient algebra A/I is then said to be a quantum algebra (over K).

The first condition implies that ∂ descends to a derivation of A/I; we will come
back to this in Sect. 5. In the absence of a derivation, we can still speak of a quantization
ideal and of a quantum algebra by considering the trivial (zero) derivation of A; then
(1) is automatically satisfied.

The generators of the quantization ideals that define quantum algebras often depend
on one or several parameters q = (q1, q2, . . . ), which can be thought of as being

1 Our convention is that a monomial in the generators x1, x2, x3, . . . is normally ordered when it is of
the form x

n1
m1 x

n2
m2 . . . xnsms wherem1,m2, · · · ,ms is strictly increasing, all ni are (usually positive) integers

and s � 0. Notice that it is not required that all such elements are in the basis B, i.e., that B is a PBW basis.
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elements of the fieldK. Moreover, in all relevant examples this dependency is rational.
It is then natural to think of the family of quantum K-algebras A/I, depending on q,
as being the quantum K(q)-algebra Aq := A(q)/Iq, where A(q) is a shorthand for
K(q)〈x1, x2, . . . 〉 and Iq stands for the ideal of A(q), with the elements of I being
considered as elements of A(q). The basis B of normally ordered monomials is then
a basis for Aq as a K(q)-module and will be simply referred to as a monomial basis
forAq. The product and commutator of elements A, B ofAq will be denoted AB and
[A, B], respectively.

Example 3.2 Let A = K〈x1, x2, . . . , xN 〉 be a free associative algebra as above and
consider the ideal Iq of A(q), generated by

{
xi x j − qi, j x j xi | 1 � j < i � N

}
,

where q = (qi, j )1� j<i�N are the parameters. Then it is clear that a monomial basis
B for Aq = A(q)/Iq is given by

B =
{
xi11 xi22 · · · xiNN | i1, i2, . . . , iN ∈ N

}
, (3.1)

where we have used the same notation xi for the generators of A as for their images
in Aq. Notice that in Aq we have xi x j = qi, j x j xi for i > j , which can be written
equivalently as

[
xi , x j

] = (qi, j − 1)x j xi , in particular the commutator in Aq of any
two generators xi is a multiple of their product; more generally, the commutator in
Aq of two monomials in x1, . . . , xN is a multiple of their product. A basis of the form
(3.1) is called a PBW basis.

Example 3.3 With A as in the previous example, consider now the ideal Iq of A(q),
generated by {

xi x j − x j xi − qi, j | 1 � j < i � N
}

,

where q = (qi, j )1� j<i�N are again the parameters. ThenB, as given by (3.1), is again
a PBW basis forAq. However, in this case the commutator inAq of two monomials in
x1, . . . , xN is in general not a multiple of their product. Both examples can of course
be combined to produce more general quantization ideals and quantum algebras with a
PBW basis. See [12] for a very large class of ideals whose associated quotient algebra
has a basis of normally ordered monomials, making it into a quantum algebra.

3.2 Free quotients and deformations

We now show how a quantum algebra which depends on one or several parameters can
be turned into a (formal) deformation of an algebra (Definition 2.4). This will allow
us to apply the results and methods of Sect. 2.

For clarity, and in view of the examples which we will treat, let us assume that
there is only one parameter, q = q; see Remark 3.5 below for the case of several
parameters. We would like to specialize q to a value q0, in such a way that B is still

123



Commutative Poisson algebras from deformations… Page 21 of 51   108 

a basis after specialization. Notice that since B is a basis for Aq = A(q)/Iq , we can
write for any j > i the product x j xi as a finite linear combination of elements of B,
with as coefficients rational fractions in q. When none of these fractions has a pole at
q0, we will say that q0 is a regular value of B.

When q0 is a regular value of B, the expression for x j xi in terms of B can be
evaluated at q0. This shows that B remains a (monomial) basis after specialization.
In fact, these expressions for x j xi with j > i can be taken as generators of Iq ;
they will be used as such in what follows. Suppose that q0 is a regular value of
B and set q(ν) = q0 + c1ν + c2ν2 + · · · , any polynomial or formal power series
in ν with c1 �= 0; in practice we will take q(ν) = q0 + ν, see Remark 3.6 below.
Elements of K(q) which do not have a pole at q0 are then formal power series in ν.
We consider in A[[ν]] := K[[ν]]〈x1, x2, . . . 〉 the closed ideal Iq(ν) generated by the
generators of Iq in which every occurrence of q has been replaced by q(ν), and denote
Aν := A[[ν]]/Iq(ν). We consider in particular the K-algebra A := Aq0 := A/Iq0 .
Then B is a K-basis ofA and is a K[[ν]]-basis ofAν . Notice that since q0 is a regular
value of B, the elements of Iq(ν) are formal power series in ν.

Proposition 3.4 The algebra Aν is isomorphic, as a K[[ν]]-module, to A[[ν]].
Proof We use the basis B construct a surjective morphism A[[ν]] → A[[ν]] with
kernelIq(ν). Let A =∑∞

i=0 aiν
i be any element ofA[[ν]], whereai ∈ A for all i . Since

B is a basis ofAν , each coefficient ai can be written uniquely as ai =∑ j αi, jν
j + ri ,

where the sum is finite, all αi, j belong to SpanK B and ri ∈ Iq(ν). Summing up, we
can write A uniquely as

A =
∞∑
i=0

aiν
i =

∑
i, j

αi, jν
i+ j +

∞∑
i=0

riν
i =

∞∑
k=0

βkν
k +

∞∑
i=0

riν
i , (3.2)

where the first term belongs to A[[ν]], with all βk belonging to SpanK B, while the
second term belongs to Iq(ν), since all ri , which are formal power series in ν, belong
to it (recall that the ideal Iq(ν) is closed). The assignment A �→∑∞

k=0 βkν
k defines a

surjective K[[ν]]-linear map A[[ν]] → A[[ν]]. Since the decomposition (3.2) of A is
unique, its kernel is Iq(ν). It follows that A[[ν]]/Iq(ν) and A[[ν]] are isomorphic, as
was to be shown. �


In view of the proposition, using the monomial basis B of Aν we may identify Aν

with A[[ν]] as K[[ν]]-modules and the product in Aν yields a product � on A[[ν]],
making (A[[ν]], �) into a (formal) deformation ofA. Under this identification wemay
write any A ∈ Aν uniquely as

A = n0(A) + νn1(A) + ν2n2(A) + · · · . (3.3)

Here, every ni (A) belongs to SpanK B and the maps ni are linear maps Aν → A.

Remark 3.5 The adaptation to the case of several parameters is straightforward: one
puts q(ν) = q0 + νq1 +O (ν2), where q0 is a regular value for (q1, . . . , q�) and q1 is
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any nonzero vector. Regular means as in the single parameter case that q0 is a regular
value for all the rational coefficients that appear when writing x j xi for j > i in terms
of the K(q)-basis B ofAq. The algebraAν is constructed as before and from there on
everything proceeds as in the one-parameter case.

Remark 3.6 In the examples we will always set q(ν) = q0 + ν. In fact, the higher-
order terms in ν do not play a role in the construction of the Poisson structure; also,
in the one-parameter case the value of the coefficient of ν is not very important since
it amounts to rescaling ν, so we will always pick it equal to 1.

4 Examples and applications

In this section we show on a few different families of examples how to determine
explicitly the Poisson algebra, the reduced Poisson algebra and the Poisson module,
associated with a (formal) deformation; all our examples are obtained from quan-
tum algebras, as explained in the previous section. As a first application, we use the
(reduced) Poisson algebra to show that two particular deformations of some alge-
bra which is not commutative are not equivalent. As a second application, we will
show in the next section how the Poisson module is used for obtaining a Hamiltonian
formulation of nonabelian systems.

4.1 Computing the Poisson brackets

We first explain a few general facts on the computation of the Poisson brackets {· , ·}
and {· , ·}1 on �(A) and on Z(A), respectively, and on the Lie action {· ; ·} of �(A)

on A. Recall that these are associated with a deformation (A[[ν]], �) of some (not
necessarily commutative) algebraA and that the deformation itself is associated with
a quantum algebra Aq and a regular value q0 of q; in the examples that follow there
is a single parameter, q = q. Also, in these examples we always take as base ring R
the field of complex numbers C so that q0 is just a complex number.

In each example that we consider, the Poisson brackets {· , ·} and {· , ·}1 will be
computed explicitly for generators of �(A) and of Z(A), respectively; also, the Lie
action {· ; ·}will be computed for generators of�(A) and ofA. In view of the Leibniz
identity, this yields the Poisson bracket for any pair of elements of �(A); see section
5.1 for the case of the Lie action. In the case of the Poisson brackets this can be
done by using a formula that generalizes the classical formula for computing Poisson
brackets on C

M in terms of the Poisson brackets between the coordinate functions on
C

M . If, say, X1, X2, . . . , XM are generators of a commutative Poisson algebra and
P = P(X1, X2, . . . , XM ) and Q = Q(X1, X2, . . . , XM ) are two elements expressed
in terms of these generators, then

{P, Q} =
M∑

i, j=1

∂P

∂Xi

∂Q

∂X j

{
Xi , X j

}
. (4.1)
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For a more formal statement and a proof, see [11, Prop. 1.9]; notice that the cited
proposition says in particular that the right hand side of (4.1) is independent of the
way in which P and Q are expressed in terms of the generators. The skew-symmetric
matrix

({
Xi , X j

})
1�i, j�M , which in view of (4.1) completely determines the Pois-

son bracket, is called the Poisson matrix of {· , ·} with respect to the generators
X1, . . . , XM .

We will need to determine the center Z(A) of A and find generators for it. In
general this can be very complicated, but in most examples that follow we have for
every 1 � j < i � N a relation inA of the form xi x j = qi, j x j xi , with qi, j ∈ C

∗. As
we already pointed out in Example 3.2, on the one hand this implies that we have a
monomial basis of A whose elements are of the form xi11 xi22 . . . xiNN , and on the other
hand that the commutator of two such monomials is a multiple (element of C) of
their product. This in turn implies that when an element of the center is written in
the monomial basis, each one of its terms belongs to the center. The center of A is
therefore generated by monomials in x1, . . . , xN . The same argument shows that for
such commutation relations the center ofAq is generated by monomials (the multiple
is then an element of C(q)).

In order to write explicit formulas for the Poisson brackets and for the Lie action,
we will need to find algebra generators for �(A) = Z(A) × (A/Z(A)), where we
recall that the associative product in �(A) is denoted by · and is given by (2.7). Such
generators can be chosen in the union of Z(A) × {0} and {0} ×A/Z(A) since �(A)

is the direct sum of these subspaces. For such generators, (2.7) simplifies to

(a, 0) · (b, 0) = (ab, (a, b)1) , (4.2)

(0, a1) · (0, b1) = (0, 0) , (4.3)

(a, 0) · (0, b1) = (0, ab1
)

, (4.4)

where we recall that (a, b)1 is the coefficient in ν of a�b (see (2.1)). Notice that when
(a, b)1 ∈ Z(A), (4.2) simplifies further to

(a, 0) · (b, 0) = (ab, 0) . (4.5)

This happens, for example, when the commutator of a and b in Aν is a constant
(element of R[[ν]]), or is amultiple of their productab; for the latter, see againExample
3.2. In general, a generating set of �(A) can be constructed using the following
proposition:

Proposition 4.1 Suppose that z1, . . . , zk are generators of Z(A) as a (unital) algebra
and that t1, . . . , t� aregenerators forA/Z(A)asa Z(A)-module.Denote Zi := (zi , 0)
and Tj := (0, t j ) for i = 1, . . . , k and j = 1, . . . , �. Then Z1 . . . , Zk, T1, . . . , T� are
algebra generators of (�(A), ·).
Proof Let (Z , A) ∈ �(A). Since z1, . . . , zk are generators of Z(A), there exists a
polynomial P such that P(z1, . . . , zk) = Z . In view of (4.2)–(4.4), P(Z1, . . . , Zk) =
(Z , T ) where T ∈ A. Since A/Z(A) is generated by t1, . . . , t� as a Z(A)-module,
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there exist α1, . . . , α� ∈ Z(A) such that A − T = ∑�
j=1 α j t j . Writing each of these

α j as α j = Pj (z1, . . . , zk), where each Pj is a polynomial, we get

(Z , A) = P(Z1, . . . , Zk)+(0, A − T ) = P(Z1, . . . , Zk)+
�∑

j=1

Pj (Z1, . . . , Zk)·Tj ,

which expresses explicitly (Z , A) in terms of the elements Z1, . . . , Zk and T1, . . . , T�,
which shows that the latter are generators of �(A). �


Using the algebra generators Z1, . . . , Zk and T1, . . . , T� of �(A), we get a surjec-
tive algebra homomorphismC[Z1, . . . , Zk, T1, . . . , T�] → �(A) andwe can describe
(�(A), ·) as the quotient C[Z1, . . . , Zk, T1, . . . , T�]/J , where J is the kernel of the
homomorphism; we will explicitly compute this kernel in our examples, providing
thereby the algebra structure of �(A).

The Poisson brackets of the chosen generators can then be explicitly computed
from the following formulas, which are a specialization of (2.8):

{
(a, 0), (b, 0)

} = ({a, b}1 , {a, b}2
)

, (4.6){
(0, a1), (0, b1)

} = (0, [a1, b1]
)

, (4.7){
(a, 0), (0, b1)

} = (0, {a, b1}1
)

, (4.8)

where a, b ∈ Z(A) and a1, b1 ∈ A, and so we only need to compute {a, b}1, {a, b}2,
[a1, b1] and {a, b1}1 for such elements to determine these Poisson brackets. Recall
from (2.2) that {a, b}1 and {a, b}2 are the coefficients in ν and ν2 of a�b. As before,
when {a, b}2 ∈ Z(A), (4.6) simplifies further to

{
(a, 0), (b, 0)

} = ({a, b}1 , 0
)

. (4.9)

Similarly, the Lie action of �(A) on A is given for a ∈ Z(A) and a1, b ∈ A by the
following formulas, which are a specialization of (2.16):

{
(a, 0) ; b} = {a, b}1 and {(0, a1) ; b} = [a1, b] . (4.10)

In view of the following proposition, we will also be interested in the center Z(Aq)

of the quantum algebra Aq.

Proposition 4.2 Suppose that X = X0 + νX1 + · · · is a central element of A[[ν]].
Then

(
X0, X1

)
is a Casimir of (�(A), {· , ·}) and belongs to the Lie annihilator ofA.

Proof Let
(
Y0,Y1

)
be any element of �(A) and denote Y = Y0 + νY1 ∈ A[[ν]].

According to Proposition 2.10,

{(
X0, X1

)
,
(
Y0,Y1

)} = p�[X0 + νX1,Y0 + νY1]ν = p� [X ,Y ]ν = 0 ,
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since X belongs to the center ofA[[ν]]. This shows that (X0, X1
)
Poisson commutes

with all elements of �(A), i.e., is a Casimir of �(A). Similarly, for a ∈ A one has{(
X0, X1

) ; a} = 0 since [X , a]� = 0 for any a ∈ A ⊂ A[[ν]]. �


Let A = A(q) ∈ Z(Aq), which we may assume to depend polynomially on q. For
any regular value q0 of q, and any nonzero q1, expand A(q(ν)) = A(q0 + νq1) =
X0 + νX1 + O(ν), which is a central element of A[[ν]], hence leads in view of the
proposition to the Casimir

(
X0, X1

)
of �(A). In general, not all Casimirs of �(A)

are obtained in this way.

4.2 The quantum plane

As a first example, we consider the (complex) quantum plane, which is defined as
being the noncommutative algebra

Aq := Cq [x, y] = C(q)〈x, y〉
〈yx − qxy〉 . (4.11)

As a basisB for this quantum algebra, we take the normally ordered monomials xm yn,
m, n ∈ N. It is a PBW basis and any q0 ∈ C is a regular value of it. In Aq we have
yx = qxy, or equivalently [x, y] = (1−q)xy. As we already pointed out in Sect. 4.1,
this implies that the center of Aq is generated by monomials, from which it is clear
that the center of Aq consists of constants only, Z(Aq) = C(q).

The evaluation of Aq at q = 1 is the polynomial algebra C[x, y], which is com-
mutative, so let us consider its evaluation at q = −1 to illustrate how to obtain the
Poisson and reduced Poisson algebras associated with the deformation; see below for
other values of q. As explained in Sect. 3.2, we set q(ν) = −1 + ν and consider

Aν = C[[ν]]〈x, y〉
〈yx − (ν − 1)xy〉 � A[[ν]] , where A := C〈x, y〉

〈yx + xy〉 .

The product � on A[[ν]] is induced by the above isomorphism and is completely
specified by y�x = (ν−1)x�y. InAwehave yx = −xy, or equivalently [x, y] = 2xy,
so that Z(A) is also generated by monomials. Since x and y anticommute in A, the
center Z(A) consists of all polynomials that are even in x and in y, hence is generated
by x2 and y2. ThenA/Z(A) is generated as a Z(A)-module by x , y and xy. According
to Proposition 4.1, the following 5 elements are algebra generators of �(A):

X =
(
x2, 0

)
, Y =

(
y2, 0

)
, U = (0, x) , V = (0, y) , W = (0, xy) ,

with product · given by (4.3)–(4.5). Consider the algebra homomorphism C[X ,Y ,U ,

V ,W ] → �(A).We show that its kernelJ is the ideal, generated byU2, V 2, W 2, U ·
V , V ·W , U ·W . To do this, first notice that the kernel clearly contains these elements,
while the elements Xi ·Y j ·U ε1V ε2 ·W ε3 with at most one εi equal to 1 and the others
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equal to 0, are all linearly independent. Indeed, they are given by

Xi · Y j =
(
x2i y2 j , 0

)
, Xi · Y j ·U ε1 · V ε2 · W ε3 =

(
0, x2i+ε1+ε3 y2 j+ε2+ε3

)
,

where exactly one of the εi is equal to 1. Therefore, as an algebra, (�(A), ·) �
C[X ,Y ,U , V ,W ]/J , while Z(A) � C[X ,Y ]. The Poisson brackets {· , ·} between
the generators X ,Y , . . . ,W are given in Table 3. They are computed using (4.6)–(4.8).
Let us show for example that {X ,Y } = (4x2y2, 0) = 4X ·Y . For the first equality, one
needs to verify in view of (4.9) that

{
x2, y2

}
1 = 4x2y2. To do this, we first compute,

in Aν ,

[
x2, y2

]
�

=
(
1 − q(ν)4

)
x2y2 =

(
1 − (ν − 1)4

)
x2y2 = 4νx2y2 + O

(
ν2
)

,

from which it follows that
[
x2, y2

]
�

= 4νx2y2 + O (ν2) , as we needed to show. For
the second equality, it suffices to notice that the product X ·Y is given by (4.5) because(
x2, y2

)
1 = 0. Similarly, {U , V } = 2W since [x, y] = 2xy. As a last example,

{X ,W } =
(
0, 2x3y

)
= X · W because

{
x2, xy

}
1 = 2x3y, which follows from

[
x2, xy

]
�

=
(
1 − q(ν)2

)
x3y =

(
1 − (ν − 1)2

)
x3y = 2νx3y + O

(
ν2
)

.

It is clear from the table that the reduced Poisson algebra (Z(A), {· , ·}1) can be
described as the polynomial algebra C[X ,Y ], with Poisson bracket {X ,Y }1 = 4XY .
The action and Lie action of the generators of �(A) on the generators x and y of
A is given in Table 4. The entries of the rightmost table are computed from (4.10).
For example, {X ; y} = {(

x2, 0
) ; y} = {

x2, y
}
1 = 2x2y, where the last equality is

obtained from
[
x2, y

]
= (1 − q(ν)2)x2y =

(
1 − (1 − ν)2

)
x2y = 2νx2y + O(ν2) .

Also, {U ; y} = {(0, x) ; y} = [x, y] = 2xy, since in A, x and y anticommute.

{· , ·} X Y U V W

X 0 4X · Y 0 2X · V 2X · W
Y −4X · Y 0 −2U · Y 0 −2Y · W
U 0 2U · Y 0 2W 2X · V
V −2X · V 0 −2W 0 −2Y ·U
W −2X · W 2Y · W −2X · V 2Y ·U 0

Table 3 Poisson brackets between the generators of the Poisson algebra�(A) in the case of quantum plane
with q = −1
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· x y

X x3 x2y

Y xy2 y3

U 0 0

V 0 0

W 0 0

{· ; ·} x y

X 0 2x2y

Y −2xy2 0

U 0 2xy

V −2xy 0

W −2x2y 2xy2

Table 4 Multiplication table and Lie brackets for the generators of the �(A) module A in the case of
quantum plane with q = −1

We now consider arbitrary values of q. Since
[
xi y j , x

] = (q j−1)xi+1y j inAq , the
center ofA will be C, unless q is a root of unity. Let us therefore consider a primitive
n-th root of unity ξ (where n > 1). Setting q(ν) = ξ + ν, the above considerations
and computations for n = 2 are easily generalized. First, since we know that Z(A) is
generated by monomials, it is easily checked as above that xn and yn generate Z(A)

and from it that X := (xn, 0), Y := (yn, 0) andWi, j :=
(
0, xi y j

)
, where 0 � i, j <

n, i + j �= 0 generate �(A). As an algebra, (�(A), ·) � C[X ,Y ,Wi, j ]/〈Wi, jWk,�〉,
where the indices i, j, k, � are in the range 0, . . . , n−1, with i+ j �= 0 and k+� �= 0.
The Poisson brackets of these generators are computed as above and are given in Table
1 in the introduction.

Notice thatWi+k, j+� is for large values of i, j, k, � not one of the chosen generators
of�(A) but can easily be rewritten in terms of these generators usingWαn+β,α′n+β ′ =
Xα · Y α′ · Wβ,β ′ . The reduced Poisson algebra (Z(A), {· , ·}1) can be described as the
polynomial algebraC[X ,Y ], with Poisson bracket {X ,Y }1 = −ξ−1n2XY . The action
and Lie action of �(A) on A are given in Table 2.

Remark 4.3 Thequantumplane (4.11) is closely related to the (two-dimensional) quan-
tum torus, which is defined as the noncommutative algebra

Aq := Tq [x, y] = C(q)〈x, y, x−1, y−1〉
〈yx − qxy〉 . (4.12)

The above considerations and computations are easily adapted to this case. Still
considering the case of q being an n-th root of unity, Z(A) is now generated by
xn, x−n, yn and y−n and Z(A) � C[X ,Y , X−1,Y−1], where X−1 := (

x−n, 0
)

and Y−1 := (
y−n, 0

)
are two extra generators for �(A). The ideal J has two extra

generators XX−1−1 and YY−1−1. The above tables containing the Poisson brackets
of �(A) and the actions of �(A) on A in the case of the quantum plane still contain
all information for the case of the quantum torus because by the Leibniz identity,{
X−1, ·} = −X−2 {X , ·} and {X−1 ; ·} = −X−2 · {X ; ·}, and similarly for the brack-

ets with Y−1. In more formal terms, for any value of q ∈ C
∗, the Poisson algebra
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�(A) for the quantum torus is the localization of the Poisson algebra �(A) of the
quantum plane, with respect to the multiplicative system of A generated by X and Y
(see [11, Section 2.4.2]). The algebra A, which is a Poisson module over �(A), then
becomes a Poisson module over this localization of �(A).

4.3 A quantum algebra related to theVolterra chain

We next consider a more elaborate example which is related to the N -periodic non-
abelian Volterra chain (see Sect. 5.2). The quantum algebra, which is a particular case
of Example 3.2, is generated by x1, . . . , xN , which all commute except the neighbor-
ing pairs xi+1xi = qxi xi+1 for i = 1, . . . , N ; in this formula the index i of xi is taken
modulo N , so that x1xN = qxN x1. For 1 � i, j � N let us denote their N -periodic
distance by dN (i, j); so dN (i, j) = min {|i − j |, N − |i − j |}. Then xi x j = x j xi
when dN (i, j) �= 1. We therefore consider

Aq := C(q)〈x1, . . . , xN 〉
Iq , where Iq = 〈xi+1xi − qxi xi+1, xi x j − x j xi 〉dN (i, j) �=1 .

(4.13)
An automorphism of order N ofAq is defined by S(xi ) := xi+1 for all i . We use as a

basisB ofAq the normally orderedmonomials xi11 . . . xiNN with i1, . . . , iN ∈ N. Notice
that q0 = 0 is not a regular value of B, since xN x1 = q−1x1xN , but all other values
are regular values. Again, B is a PBW basis. As we explained in Sect. 4.1, the center
of Aq is in this case generated by monomials. We use this fact to show that Z(Aq) is
generated by x1x2 . . . xN when N is odd, while it is generated by x1x3 . . . xN−1 and
x2x4 . . . xN when N is even. A monomial xi11 xi22 . . . xiNN ofAq belongs to the center if
and only if its commutator (in Aq ) with any x� vanishes. From

0 =
[
xi11 . . . xiNN , x�

]
= (qi�+1−i�−1 − 1)x�x

i1
1 . . . xiNN (4.14)

it follows that if xi11 . . . xiNN belongs to the center of Aq , then ik = ik+2 for k =
1, . . . , N , which yields the claim (recall that the indices of x are N -periodic, so that
also iN+1 = i1 and i0 = iN ). It is also clear from (4.14) that for values of q that are not
roots of unity, the center of the corresponding algebraAwill contain no other elements
and hence Z(A) × {0} ⊂ �(A) consists of Casimirs only (Proposition 4.2) and the
only nontrivial Poisson brackets in �(A) are given by commutators (see (4.6)–(4.8)).
We will therefore consider the evaluation of q at roots of unity only. Also, in view of
the difference between N even and odd, we will first consider in detail the case that
N is odd and spell out afterward how to adapt the results in case N is even.

Let N > 2 be odd and let ξ denote a primitive n-th root of unity, ξn = 1, where
n > 1; see Remark 4.4 below for the case of n = 1. We set q(ν) = ξ + ν and consider

Aν = C[[ν]]〈x1, . . . , xN 〉
Iq(ν)

� A[[ν]] , where A := C〈x1, . . . , xN 〉
Iξ

.

123



Commutative Poisson algebras from deformations… Page 29 of 51   108 

It is clear that the center ofA contains xn1 , . . . , xnN and x1x2 . . . xN .We claim that Z(A)

is generated by these elements. To show this, we look for monomials xi11 xi22 . . . xiNN
in the center of A, with 0 � i1, i2, . . . , iN < n; as above, it follows however from
(4.14) with q = ξ that then all ik must be equal (recall that N is assumed odd), and
so the monomial is of the form xk1 x

k
2 . . . xkN , for some k. This shows our claim. It is

then also clear thatA is generated as a Z(A)-module by the monomials xi11 xi22 . . . xiNN ,

where 0 � i1, . . . , iN < n are not all zero and at least one of them is zero. In view of
Proposition 4.1, �(A) is generated by

X1 := (xn1 , 0) , . . . , XN := (xnN , 0) , X := (x1x2 . . . xN , 0) and

Wi1,...,iN :=
(
0, xi11 xi22 . . . xiNN

)
,

where 0 � i1, . . . , iN < n are not all zero and at least one of them is zero. Since�(A)

is generated by these elements, we have a surjective morphism C[Xi , X ,Wi1,...,iN ] →
�(A), with kernel

J = 〈X1 · X2 · · · XN − Xn,Wi1,...,iN · X − Wi1+1,...,iN+1,Wi1,...,iN · Wj1,..., jN 〉 ,

(4.15)
where the indices i1, . . . , iN and j1, . . . , jN are as above. It is understood that
when one of the indices of the term Wi1+1,...,iN+1 in (4.15) is at least n, it is
rewritten in terms of the generators, for example, Wn,i2,...,iN = X1W0,i2,...,iN and
Wn,0,0,...,0 = 0. It follows that, as algebras, �(A) � C[Xi , X ,Wi1,...,iN ]/J and
Z(A) � C[Xi , X ]/〈X1X2 . . . XN − Xn〉.

{· , ·} X� WJ

Xk n2(δk,�+1 − δk,�−1)ξ
−1Xk · X� ( jk−1 − jk+1)ξ

−1nXk · WJ

WI (i�+1 − i�−1)ξ
−1nX� · WI

(
ξη(I ,J ) − ξη(J ,I )

)
WI+J

Table 5 Poisson brackets between the generators of the Poisson algebra �(A) (Volterra chain)

In terms of these generators, the Poisson bracket {· , ·} of �(A) is given in Table
5, in which I = (i1, . . . , iN ) and J = ( j1, . . . , jN ). In this table, the indices of i
and j are again taken modulo N , so that iN+1 = i1 and i0 = iN , and similarly for j ;
I + J simply stands for the componentwise sum of I and J . Notice that in view of the
automorphism S we may assume that 1 < k < N , or that 1 < � < N , when verifying
the entries of the table. Also, η(I , J ) is a shorthand for

∑N−1
s=1 is+1 js − iN j1 and is

computed from

(xi11 . . . xiNN )(x j1
1 . . . x jN

N ) = ξη(I ,J )xi1+ j1
1 . . . xiN+ jN

N ,

using the relations inAwhich say that all variables xi commute, except the neighboring
pairs xi+1xi = ξ xi xi+1 for all i mod N . As before, whenWI+J is not one of the chosen
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generators of �(A) it is easily written as a product of such generators. We did not put
the generator X in the table because it is a Casimir, so the brackets of X with any other
generator (or element of �(A)) is zero; it is a Casimir because x1x2 . . . xN is a central
element of Aq , see Proposition 4.2. The reduced Poisson algebra (Z(A), {· , ·}1) is
easily read off from the upper-left corner of Table 5. It is a so-called diagonal Poisson
structure (see [11, Example 8.14]).

For future use,we also compute the Poissonmodule structure onA, still assuming N
odd. It is clear that the actionof�(A)onA is givenby Xk ·x� = xnk x�,WI ·x� = 0 for all
I , k, �. According to (2.16) and since X is in the annihilator ofA (see Proposition 4.2),
{X ; x�} = 0. With k, � = 1, . . . , N and I = (i1, . . . , iN ) (0 � i1, . . . , iN < n),

{Xk ; x�} (2.16)= {
xnk , x�

}
1 = (δk,�+1 − δk,�−1)ξ

−1nxnk x� , (4.16)

and
{WI ; x�} =

[
xi11 xi22 . . . xiNN , x�

]
= α(I , �)xi11 . . . xi�+1

� . . . xiNN , (4.17)

where

α(I , �) = α(i1, . . . , iN , �) =
⎧
⎨
⎩

ξ i2−iN − 1 � = 1 ,

ξ i�+1 − ξ i�−1 1 < � < N ,

1 − ξ iN−1−i1 � = N .

These results were obtained from (4.10) using the commutation rules inAν � A[[ν]].
For example,

[
xnk , x�

]
�

= 0 when dN (k, �) �= 1, since then xk and x� commute.
Also, if k �= N then

[
xnk , xk+1

] = (1 − qn)xnk xk+1 = (1 − (ξ + ν)n)xnk xk+1 =
−ξ−1nνxnk xk+1 +O (ν2), so that [xnk , xk+1

]
�

= −ξ−1nνxnk xk+1 +O (ν2) and hence
{Xk ; xk+1} = {xnk , xk+1

}
1 = −ξ−1nνxnk xk+1; this result is also valid for k = N since

xnN x1 = x1xnN hence belongs toB. The formulas in (4.17) are just commutators inA, so
they follow immediately from the relations inA, which are given by xi+1xi = ξ xi xi+1,
and xi x j = x j xi when dN (i, j) �= 1.

We now consider the minor adaptations to be done in case N is even, N > 2. As
we have already shown, Z(Aq) is generated by x1x3 . . . xN−1 and x2x4 . . . xN . By the
same proof as above, Z(A) is generated by

Xi := (xni , 0) , Y1 := (x1x3 . . . xN−1, 0) , Y2 := (x2x4 . . . xN , 0) ,

where i = 1, . . . , N , and

Wi1,...,iN :=
(
0, xi11 xi22 . . . xiNN

)
, 0 � i1, . . . , iN < n ,

where not all indices ik are zero, where at least one index ik with k even is zero, as well
as at least one index ik with k odd.As an algebra,�(A) � C[Xi ,Y1,Y2,Wi1,...,iN ]/J ′,
where

J ′ = 〈X1 · X3 · · · XN−1 − Yn
1 , X2 · X4 · · · XN − Yn

2 ,Wi1,...,iN · Y1 − Wi1+1,i2,...,iN ,

Wi1,...,iN · Y2 − Wi1,i2+1,...,iN+1 ,Wi1,...,iN · Wj1,..., jN 〉 ,
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and Z(A) � C[Xi ,Y1,Y2]/〈X1X3 . . . XN−1 − Yn
1 , X2X4 . . . XN − Yn

2 〉. The table
of Poisson brackets for the generators is again given in Table 5, where we now leave
out the zero rows and columns corresponding to the Casimirs Y1 and Y2. Also, the
formulas for the actions of �(A) onA are the same. So, finally the cases N even and
odd are formally not very different.

Remark 4.4 When n = 1, ξ = 1 and A is commutative, A = Z(A), so that we are in
the classical case. Then A/Z(A) is trivial and A is generated by X1, . . . , XN , which
now take the simple form Xi = (xi , 0), i.e., Xi = xi under the natural identification of
�(A) with A. The above computation of the Poisson brackets is still valid and leads
to the following nonzero Poisson brackets between the xi :

{
xi , x j

} = (δi, j+1 − δi, j−1)xi x j . (4.18)

It is the standard Poisson structure of the (periodic) Volterra chain.

Remark 4.5 The infinite case (N = ∞) is not very different and is in a sense simpler.
The formula for η(I , J ) in Table 5 simplifies to η(I , J ) = ∑

is+1 js and (4.17)
becomes

{WI ; x�} = (ξ i�+1 − ξ i�−1)xi11 . . . xi�+1
� . . . xiNN .

The Poisson algebra �(A) does not have any Casimirs; it can be extended to a larger
Poisson algebra for which the infinite products

∏
i odd xi and

∏
i even xi are Casimirs.

4.4 Another quantum algebra related to theVolterra chain

We now describe the Poisson algebra corresponding to another quantum algebra, also
related to the periodic Volterra chain. The algebra is given by

Aq := C(q)〈x1, . . . , xN 〉
〈xi+1xi − (−1)i qxi xi+1, xi x j + x j xi 〉dN (i, j) �=1

,

with N even, N = 2M . As before, the indices are periodic modulo N and dN (i, j)
denotes the periodic distance between i and j . As a basis ofAq we take the monomials

xi11 . . . xiNN , with i1, . . . , iN ∈ N. It is a PBW basis and again only q0 = 0 is not a
regular value of B. Notice that since N is even we can speak unambiguously of even
and odd indices. A C-algebra automorphism Sq of Aq is defined by Sq(xi ) = xi+1
and Sq(q) = −q. In view of the commutation relations in Aq , the center of Aq is
again generated by monomials. Since

[
xi11 . . . xiNN , x�

]
=
(

(−1)
∑N

k=1 ik−i�−i
�+(−1)�qi�+1−i�−1 − 1

)
x�x

i1
1 . . . xiNN ,

(4.19)
xi11 . . . xiNN belongs to Z(Aq) if and only if (1) all exponents that correspond to even
indices are equal, (2) all exponents that correspond to odd indices are equal and
(3) the sum

∑N
k=1 ik − i� − i�+(−1)� is even for all �. Since this sum is of the form

123



  108 Page 32 of 51 A. V. Mikhailov, P. Vanhaecke

∑N
k=1 ik − i� − i�±1, it contains M−1 terms ik with k even and M−1 terms ik with k

odd; therefore, when M is odd, condition (3) is satisfied as soon as conditions (1) and
(2) are satisfied, while when M is even, (3) imposes furthermore that all the exponents
have the same parity. It follows that

Z(Aq) is generated by

⎧⎪⎨
⎪⎩

∏
i odd

x2i ,
∏

i even
x2i ,

∏
i
xi , M even,

∏
i odd

xi ,
∏

i even
xi , M odd.

We will consider the evaluation of Aq at q = 1 only; notice that in view of the
automorphismSq the Poisson algebras obtained for q = 1 andq = −1 are isomorphic.
When q = 1 the commutation relations in A take the simple form

xi+1xi = (−1)i xi xi+1 , x j xi = −xi x j , dN (i, j) �= 1 , (4.20)

so all variables anticommute, except for half of the neighbors that commute. From
these relations and from the fact that Z(A) is generated by monomials, it follows that

Z(A) is generated by

⎧⎪⎨
⎪⎩

x2k , x2 j x2 j+1 , M even,

x2k , x2 j x2 j+1 ,
∏
i odd

xi ,
∏

i even
xi , M odd,

where k = 1, . . . , N and j = 1, . . . , M .

From these generatorswe construct, usingProposition 4.1, generators for�(A). Let
us denote Xk := (

x2k , 0
)
for k = 1, . . . , N , Y j := (

x2 j x2 j+1, 0
)
for j = 1, . . . , M ,

Y := (∏
i odd xi , 0

)
, Z := (∏

i even xi , 0
)
and Wi1,...,iN :=

(
0, xi11 . . . xiNN

)
. Then

�(A) is generated by X1, . . . , XN ,Y1, . . . ,YM and

⎧
⎪⎨
⎪⎩

Wi1,...,iN , ik ∈ {0, 1}, not all ik = 0, i2 j i2 j+1 = 0 , M even,

Y , Z , Wi1,...,iN , ik ∈ {0, 1}, not all ik = 0, i2 j i2 j+1 = 0, not all

[
even
odd

]
ik = 1 , M odd.

When M is even, (�(A), ·) � C[Xi ,Y j ,Wi1,...,iN ]/J , where

J := 〈Y 2
j − X2 j · X2 j+1,Y j · W...,i2 j−1,1,0,i2 j+2,... − X2 j · W...,i2 j−1,0,1,i2 j+2,...,

Y j · W...,i2 j−1,0,1,i2 j+2,... − X2 j+1 · W...,i2 j−1,1,0,i2 j+2,...,Wi1,...,iN · Wj1,..., jN 〉 ,

and similarly when M is odd. Setting q(ν) = 1+ν, we can now determine the Poisson
brackets between the above generators. Since Y and Z are constructed from central
elements of Aq , they are Casimirs of (�(A), {· , ·}) (Proposition 4.2), so they have
zero brackets with all elements of �(A). We therefore do not add these generators
to the table of Poisson brackets and can provide a table which is valid for both M
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{· , ·} X� Y j WJ

Xk 4
(
δk,�+1 − δk,�−1

)
Xk · X� 2

(
δ
j,
[
k−1
2

] − δ
j,
[
k+1
2

]
)
Xk · Y j 2 ( jk−1 − jk+1) Xk · WJ

Yi 2

(
δ
i,
[

�+1
2

] − δ
i,
[

�−1
2

]
)
Xi · Y�

(
δi, j+1 − δi, j−1

)
Yi · Y j ε(J , i)Yi · WJ

WI 2 (i�+1 − i�−1) X� · WI −ε(I , j)Y jWI
(
(−1)η(I ,J ) − (−1)η(J ,I )

)
WI+J

Table 6 Poisson brackets between the generators of the Poisson algebra �(A) (Volterra chain with alter-
native quantisation)

even and M odd; in the table, we use again the abbreviations I = (i1, . . . , iN ) and
J = ( j1, . . . , jN ), and 1 � k, � � N while 1 � i, j � M .

In this table, ε(I , �) := i2�−1 + i2� − i2�+1 − i2�+2, and the exponent η(I , J ), which
can be reduced modulo 2, is defined by the equality

(xi11 . . . xiNN )(x j1
1 . . . x jN

N ) = (−1)η(I ,J ) xi1+ j1
1 . . . xiN+ jN

N ,

where the product in the left-hand side is the product in A. An explicit for-
mula is computed from it using the commutation relations (4.20) and is given by
η(I , J ) = ∑M

s=1(i2s + i2s+1)
∑2s−1

t=1 jt , where we have set iN+1 := 0. Notice that
againWi1+ j1,...,iN+ jN may not belong to the chosen generators of �(A) (for example,
when one of the indices becomes 2), but is then easily written as a product of such
generators.

For future use, we also give the �(A)-Poisson module structure of A in terms of
the generators X1, . . . , XN ,Y1, . . . ,YM of �(A) (to which the Casimirs Y and Z ,
which belong to the annihilator of A (see Proposition 4.2), need to be added when
M is odd) and the generators x1, . . . , xN of A. Let 1 � k, � � N , 1 � i � M and
I = (i1, . . . , iN ). Then Xk · x� = x2k x�, Yi · x� = x2i x2i+1x� and WI · x� = 0, while

{Xk ; x�} =
{
x2k , x�

}
1

= 2(δk,�+1 − δk,�−1)x
2
k x� , (4.21)

{Yi ; x�} = {x2i x2i+1, x�}1 =
(

δ
i,
[

�+1
2

] − δ
i,
[

�−1
2

]
)
x2i x2i+1x� , (4.22)

and

{WI ; x�} =
[
xi11 . . . xiNN , x�

]

=
{(

(−1)i�+2+···+iN − (−1)i1+···+i�−1
)
xi11 . . . xi�+1

� . . . xiNN � even,
(
(−1)i�+1+···+iN − (−1)i1+···+i�−2

)
xi11 . . . xi�+1

� . . . xiNN � odd.
(4.23)

It is understood that when, for example, � = N then the sums i�+1 + · · · + iN and
i�+2 + · · · + iN in (4.23) have no terms, hence are equal to 0.
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Remark 4.6 A similar remark as Remark 4.5 applies here: the formulas for the infinite
case are the same, only the formula for η(I , J ) needs to be adapted, and the Casimirs
from the periodic case become infinite products to be dealt with appropriately.

4.5 A quantization of the Grassmann algebra

We now consider the deformation of the (complex two-dimensional) Grassmann alge-
bra, given by the following commutation relations:

[x, p] = ν , ψ2 = φ2 = 0 ,

ψφ + φψ = ν , [p, ψ] = [x, ψ] = [p, φ] = [x, φ] = 0 .

We will only be interested in the evaluation for ν = 0, so we can consider right away
the algebra

Aν = C[[ν]]〈p, x, ψ, φ〉
Iν

� A[[ν]] , where A := C〈p, x, ψ, φ〉
I0 ,

and where Iν stands for the closed ideal of C[[ν]], generated by [x, p]− ν, ψ2, φ2,

ψφ + φψ − ν, [p, ψ] , [x, ψ], [p, φ] , [x, φ] , and I0 stands for its evaluation at
ν = 0. As a monomial basis for Aν we take the monomials pi x jψkφ� with i, j ∈ N

and k, � ∈ {0, 1}. In view of the latter restrictions on k and � it is not a PBW basis.
Since inA the commutator of two elements is proportional to their product, its center
is generated by monomials, from which it is clear that Z(A) is generated by p, x
and ψφ and that A/Z(A) is generated as a Z(A)-module by ψ and φ. According to
Proposition 4.1, it follows that �(A) is generated by

P := (p, 0) , X := (x, 0) , W := (ψφ, 0
)

, � := (0, ψ) , � := (0, φ) .

To determine the algebra structure of �(A), we consider the surjective morphism
C[P, X ,W , �,�] → �(A), defined by these generators. LetJ := 〈�2,�2,W 2, � ·
�,� · W ,� · W 〉. It is clear that J is contained in the kernel of this morphism; to
show that it coincides with the kernel, it suffices to notice that

Pi · X j = (pi x j , 0) , Pi · X j · W = (pi x jψφ, 0) , (4.24)

Pi · X j · � = (0, pi x jψ) , Pi · X j · � = (0, pi x jφ) , (4.25)

which shows that the family {Pi · X j , Pi · X j · W , Pi · X j · �, Pi · X j · � |
i, j ∈ N} is linearly independent. To compute the two products in (4.24), we have
used that (pi , x j )1 = 0 and (pi x j , ψφ)1 = 0, for i, j ∈ N. It follows that
(�(A), ·) � C[P, X ,W , �,�]/J . In order to compute the Poisson brackets between
the generators, we use the following nontrivial brackets: {φ,ψ}1 = 1, {x, p}1 = 1,
{ψφ,ψ}1 = ψ and {ψφ, φ}1 = −φ. From these formulas and (4.6)–(4.8), the Pois-
son brackets between the generators of �(A) are easily computed. They are given in
Table 7.
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{· , ·} P X W � �

P 0 −1 0 0 0

X 1 0 0 0 0

W 0 0 0 � −�

� 0 0 −� 0 0

� 0 0 � 0 0

Table 7 Poisson brackets between the generators of the Poisson algebra�(A) in the case of the Grassmann
algebra

For example,

{P, X} = {(p, 0), (x, 0)} = ({p, x}1 , 0) = (−1, 0) = −1 ,

and
{W , �} = {(ψφ, 0), (0, ψ)

} = (0, {ψφ,ψ}1
) = (0, ψ) = � .

It follows that the reduced Poisson algebra Z(A) is isomorphic to the polynomial
algebraC[P, X ,W ]withW asCasimir and {X , P} = 1. The Poissonmodule structure
on A is computed similarly and is given in Table 8.

· p x ψ φ

P p2 px pψ pφ

X px x2 xψ xφ

W pψφ xψφ 0 0

� 0 0 0 0

� 0 0 0 0

{· ; ·} p x ψ φ

P 0 −1 0 0

X 1 0 0 0

W 0 0 ψ −φ

� 0 0 0 2ψφ

� 0 0 2ψφ 0

Table 8 Multiplication table and Lie brackets for the generators of the �(A) module A in the case of the
Grassmann algebra

4.6 The algebraMq(2)

The entries of the 2 × 2-matrices

(
a b
c d

)
which preserve the quantum plane Cq [x, y]

satisfy the following relations (see [10, Ch. 4]):

ba = qab , db = qbd , bc = cb ,

dc = qcd , ca = qac , ad − da = (q−1 − q)bc .
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We are therefore led to consider the following quotient algebra:

Aq = C(q)〈a, b, c, d〉
Iq ,

where Iq is the ideal of C(q) generated by the following polynomials:

ba − qab , db − qbd , bc − cb , dc − qcd , ca − qac , ad − da − (q−1 − q)bc .

(4.26)

It is well-known (and easy to check) that ad −q−1bc = da−qbc is a central element
of Aq . As a monomial basis for Aq we choose the monomials aib j ckd�, with i, j, k
and � in N. It is a PBW basis and q0 = 0 is the only nonregular value of B.

We will first consider the evaluation ofAq to q = 1, which is commutative. We do
it to show how the classical case of deformations of commutative algebras is treated
as a special case of our methods. We set q(ν) = 1 + ν and consider

C[[ν]]〈a, b, c, d〉
Iq(ν)

� A[[ν]] , where A = C〈a, b, c, d〉
I1 � C[a, b, c, d] .

In this case, Z(A) = A and we may identify (�(A), ·) with the polynomial algebra
A. Under this identification the Poisson algebra (�(A), [· , ·]ν) and the reduced Pois-
son algebra (A, {· , ·}1) coincide and only the brackets {· , ·}1 between the elements
a, b, c, d need to be computed. These brackets are given in Table 9.

{· , ·} = {· , ·}1 = {· ; ·} a b c d

a 0 −ab −ac −2bc

b ab 0 0 −bd

c ac 0 0 −cd

d 2bc bd cd 0

Table 9 Poisson brackets for the generators of C[a, b, c, d] corresponding to the deformation of
Mq (2), q → 1

For example, {a, d} = {a, d}1 = −2bc since

[a, d] = ad − da =
(
q−1 − q

)
bc = ((1− ν) − (1+ ν))bc +O

(
ν2
)

= −2νbc +O
(
ν2
)

.

This Poisson structure has rank 2. Since ad − q−1bc is a central element of Mq(2),
ad − bc is a Casimir. Since b/c as also a (rational) Casimir, the Poisson structure can
be described as a Nambu–Poisson structure (see [11, Ch. 8.3]).
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We now consider the case q = −1. We set q(ν) = ν − 1 and consider

C[[ν]]〈a, b, c, d〉
Iq(ν)

� A[[ν]] , where A = C〈a, b, c, d〉
I−1

.

Notice that A is not commutative since the following relations hold in A:

ba = −ab , db = −bd , bc = cb ,

dc = −cd , ca = −ac , ad = da .
(4.27)

It is clear from these relations that Z(A) contains the following 6 elements:

a2, b2, c2, d2, ad, bc . (4.28)

We show that these elements generate Z(A). To do this, first notice that Z(A) is
generated by monomials, since the commutator of any two monomials is a multiple
of their product, as follows from (4.27). Given a monomial in Z(A) we may strip off
any even power of a, b, c and d, which leaves us with a monomial of degree 1 at most
in each of these variables. Among the 15 possible monomials of this type, it is easily
checked that only ad, bc and their product abcd belong to the center. This shows that
the six elements (4.28) generate Z(A). It is then clear that A/Z(A) is generated as
a Z(A)-module by the following 8 elements: a, . . . , d, ab, ac, bd, cd . According to
Proposition 4.1, it follows that the following elements generate (�(A), ·):

U1 =
(
a2, 0

)
,U2 =

(
b2, 0

)
,U3 =

(
c2, 0

)
,U4 =

(
d2, 0

)
,U5 = (ad, 0

)
,U6 = (bc, 0) ,

V1 = (0, a) , V2 = (0, b) , V3 = (0, c) , V4 = (0, d) , (4.29)

W1 = (0, ab) , W2 = (0, ac) , W3 = (0, bd) , W4 = (0, cd) .

We now have all elements needed to determine the algebra structure of (�(A), ·),
to compute the Poisson brackets of the 14 generators U1, . . . ,W4 of �(A) and to
compute the Lie action of these generators on the four generators a, b, c, d ofA. This
can be done as in the previous examples by setting q(ν) = ν − 1 and computing
the first terms of the commutators [· , ·]� and [· , ·] and using (4.6)–(4.8) and (4.10).
We will only describe here the reduced Poisson algebra Z(A). To do this, let us
write Ui = (ui , 0) for i = 1, . . . , 6, so that Z(A) is generated by u1, . . . , u6: as an
associative algebra, it is clear that Z(A) � C[u1, . . . , u6]/〈u25 − u1u4, u26 − u2u3〉.
The reduced brackets, which are the brackets {· , ·}1 of (Z(A), {· , ·}1), are given in
Table 10.

For example, {u1, u5}1 = −4u1u6 since
{
a2, ad

}
1 = −4a2bc, as follows from

[
a2, ad

]
= a3d − ada2 = a3d − a(ad + 2νbc)a + O

(
ν2
)

= a3d − a2(ad + 2νbc) − 2νa2bc + O
(
ν2
)

= −4νa2bc + O
(
ν2
)

.
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{· , ·}1 u1 u2 u3 u4 u5 u6

u1 0 4u1u2 4u1u3 −8u5u6 −4u1u6 4u1u6

u2 −4u1u2 0 0 4u2u4 0 0

u3 −4u1u3 0 0 4u3u4 0 0

u4 8u5u6 −4u2u4 −4u3u4 0 4u4u6 −4u4u6

u5 4u1u6 0 0 −4u4u6 0 0

u6 −4u1u6 0 0 4u4u6 0 0

Table 10 Reduced brackets for the generators of Z(M−1(2))

Since ad − q−1bc is a central element of Aq , (ad + bc, bc/2) = (ad + bc, 0) =
U5 +U6 is a Casimir of �(A). This is reflected in Table 10 and it reduces the number
of Poisson brackets to be computed, since {· ,U5} = − {· ,U6}, so that {· , u5}1 =
−{· , u6}1.

OnC
6, with coordinates u1, . . . , u6, Table 10 gives the Poisson matrix of a Poisson

structure of rank 2, with Casimirs C1 = u25 − u1u4, C2 = u26 − u2u3, C3 = u2/u3
and C4 = u5 + u6. The Poisson structure on Z(A) can therefore also be described as
the Nambu–Poisson structure on C

6 with respect to these Casimirs, restricted to the
subvariety defined by C1 = C2 = 0.

One considers similarly the Poisson algebra and Poisson module structure for any
primitive n-th root of unity. When n > 2, the bracket {a, b}2 is not zero for some
a, b ∈ Z(A), as already pointed out in Sect. 2.5. See [16] for other examples that are
nonflat in that sense.

4.7 Nonequivalent deformations

As it turns out, we have encountered in the above examples three isomorphic algebras
A and three deformations of it. Indeed, taking N = 4 and q0 = −1 in (4.13), Iq0 =
〈xi+1xi + xi xi+1, xi x j − x j xi 〉dN (i, j) �=1, so that A := C〈x1, . . . , x4〉/Iq0 is defined
by

x2x1 = −x1x2 , x3x2 = −x2x3 , x4x2 = x2x4 ,

x4x3 = −x3x4 , x4x1 = −x1x4 , x3x1 = x1x3 .

These relations are the same relations as (4.27) under the correspondence a ↔ x1,
b ↔ x2, c ↔ x4 and d ↔ x3. We will use the reduced Poisson algebra to show that
the two corresponding deformations are not equivalent, as an application of Corollary
2.25. See Remark 4.7 below for a third deformation ofA. In order to compare the two
Poisson algebras, it will be useful to use the same notation for the generators of Z(A),
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so we will use U1, . . . ,U6, as in (4.29), which means that

U1 = X1 = (x21 , 0) , U2 = X2 = (x22 , 0) , U3 = X4 = (x24 , 0) ,

U4 = X3 = (x23 , 0) , U5 = Y = (x1x3, 0) , U6 = Z = (x2x4, 0) .

We will also again write Ui = (ui , 0) for i = 1, . . . , 6, so that u1, . . . , uN gener-
ates Z(A). As we have seen in Sect. 4.3, Y and Z are Casimirs of �(A) and the
nonzero brackets between the Xi are given by {Xk, Xk±1} = ±2Xk Xk±1. In terms
of u1, . . . , u4 it leads to the Poisson brackets, given in Table 11; we did not add the
brackets with u5 and u6 to the table because they are Casimirs.

{· , ·}′ = {· , ·}′1 u1 u2 u3 u4

u1 0 4u1u2 −4u1u3 0

u2 −4u1u2 0 0 4u2u4

u3 4u1u3 0 0 −4u3u4

u4 0 −4u2u4 4u3u4 0

Table 11 Reduced brackets corresponding to the case of the periodic Volterra chain (N = 4) and q → −1

We denote this Poisson structure on Z(A) by {· , ·}′1. In order to compare the Poisson
structures {· , ·}1 and {· , ·}′1 on Z(A), we look at their singular locus, which is by
definition the locus where the rank of the Poisson structure drops. In our examples,
the rank is two so the singular locus consists of the points where the rank is zero,
which amounts to considering in both cases the ideal generated by the entries of the
table. We are therefore led to consider the following two Poisson ideals of Z(A):

J := 〈u1u2, u1u3, u2u4, u3u4, u1u6, u4u6, u5u6〉 ,

J ′ := 〈u1u2, u1u3, u2u4, u3u4〉 .

It is clear that J ′ is strictly contained in J . Moreover, both ideals have the same
radical, since

(u1u6)
2 = u21u2u3 = (u1u2)(u1u3) ∈ J ′ ,

(u4u6)
2 = u24u2u3 = (u2u4)(u3u4) ∈ J ′ ,

(u5u6)
2 = u1u2u3u4 ∈ J ′ ,

where we have used several times that in A the following relations hold: u2u3 = u26
and u1u4 = u25. It follows that the two reduced Poisson algebras are not isomorphic.
In view of Corollary 2.25, the two deformations (A[[ν]], �) and (A[[ν]], �′) of A are
nonequivalent.
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Remark 4.7 Taking n = 4 in Sect. 4.4 we get again the same algebra A, since we find
the same relations as (4.27) under the correspondence a ↔ x1, d ↔ x2, c ↔ x3 and
b ↔ x4. It can be shown using the same methods that the deformation of A is in this
case again nonequivalent to the two other deformations ofA of which we have shown
in this section that they are nonequivalent.

5 Hamiltonian derivations

Most of the quantum algebras that we have considered in the previous section appear in
the literature as quantum algebras for some nontrivial derivation, defining a nonabelian
system on a free algebra. These derivations can in general be written as Heisenberg
derivations having nontrivial limits for certain values of the deformation parameter q.
We will show in this section that the corresponding limiting derivations are Hamilto-
nian derivations with respect to the commutative Poisson algebra (�(A), {· , ·}) that
we have introduced in Sect. 2, and that they can be easily computed using the formulas
for the actions of �(A) on the Poisson module A that we have computed for these
examples in Sect. 4. As in the previous section, we take R = C as our base ring.

5.1 The limiting procedure

In the paragraphs which follow we will apply the above results to several nonabelian
chains. We outline the procedure in separate steps.

Step 1 Start from a nonabelian system (derivation) ∂ : A → A on a free asso-
ciative algebra A = C〈x1, x2, . . . 〉. Many interesting such systems are known [4].
Often, they are evolutionary, which means that the derivation ∂ is invariant under the
shift x� �→ x�+k , for a fixed k. In our case there will be a finite number of variables
x1, . . . , xN since the index � of x� is taken modulo N , so it still makes sense for ∂ to
be evolutionary.

Step 2 Choose a quantization ideal Iq of (A(q), ∂), depending on a single param-
eter q, where we recall that A(q) = C(q)〈x1, x2, . . . 〉. Many such ideals are known
[4]. Denote by B a basis of normally ordered monomials of the quantum C(q)-algebra
A(q)/Iq . On this algebra, ∂ induces a derivation which may be evolutionary or not,
depending on whether or not Iq is invariant under the shift x� �→ x�+k for fixed k.

Step 3 Write the equation for ∂ on Aq = A(q)/Iq in the Heisenberg form

∂a = 1

λ(q)
[H(q), a] , (5.1)

where a ∈ Aq. This is a nontrivial task but again many examples have been written
in this form. In this formula, H(q) ∈ Aq ; it may be assumed that H(q) and λ(q) are
polynomials in q and have no common nonconstant factor.

Step 4 We can specialize q to any regular value q0, but as we will see the most
interesting choice for q0 is to choose a simple root of λ(q). As before, we write
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q(ν) = q0 +ν. We recall that Iν stands for the closed ideal ofA[[ν]] that corresponds
with Iq(ν). As we have shown in Proposition 3.4, Aν := A[[ν]]/Iν � A[[ν]], where
A is the evaluation of Aq at q0. Since q0 is a simple root of λ(q), H(q0+ν)

λ(q0+ν)
∈ 1

ν
A[[ν]]

and (5.1) takes in terms of ν the Heisenberg form

δHa = 1

ν
[H , a]� = 1

ν

[
H0 + νH1 + ν2H2 + · · · , a

]
�

, (5.2)

where a, H ∈ A[[ν]], with H = H0 + νH1 + ν2H2 + · · · , i.e., all Hi are elements
of A which belong to the C-span of B. If ∂ is evolutionary (on Aq), then so is δH
(on A[[ν]]). Since the left-hand side of (5.2) is a formal power series in ν, it follows
that H0 commutes with any element a of A ⊂ A[[ν]], hence H0 ∈ Z(A) and H :=(
H0, H1

) ∈ �(A). Notice that, in order to determineH it suffices to compute in (5.2)
the leading terms H0 and H1, the latter up to the center Z(A) ofA. We will therefore
compute and write

H(q(ν))

λ(q(ν))
= 1

ν
(H0 + νH1) (mod Hν) , (5.3)

which suffices to determine H.

Step 5 Aswehave shown inSect. 2.4, the limit ν → 0 of theHeisenberg derivation
(5.2) is the Hamiltonian derivation ∂H on A, which can be computed directly from
∂Ha = {H ; a}, where we recall that {· ; ·} denotes the Lie action of �(A) on A.
Let U1, . . . ,UM denote a system of algebra generators of �(A) (recall that, as an
algebra, �(A) is commutative). We write H in terms of the generators of �(A),
H = H(U1, . . . ,UM ). Since {· ; ·} is a derivation in its first argument and since the
left and right actions of�(A) onA coincide (see (2.16)), ∂Hx� can be computed from

∂Hx� = {H ; x�} =
M∑
i=1

∂H
∂Ui

· {Ui ; x�} , (5.4)

where we recall that · denotes the left (= right) action of�(A) onA; notice that (2.16))
says in particular that the action · of {0} × A/Z(A) ⊂ �(A) on A is trivial which
permits to largely simplify the use of (5.4) in explicit computations. The brackets
{Ui ; x�} between the generators of �(A) and of A have been computed for several
examples in Sect. 4. Notice that the computations are done for the variables x� (and
their projections on the different quotient algebras), rather than for arbitrary elements
a of A = C〈x1, x2, . . . 〉 or of A(q) = C(q)〈x1, x2, . . . 〉. On the one hand, it leads
to simpler explicit formulas that are easier to compute and to present, while on the
other hand these formulas completely determine the derivation ∂H of all of A (hence
on A[[ν]]), because ∂H is a derivation of A (Proposition 2.19). Moreover, when δH
is evolutionary, say invariant for the shift x� �→ x�+k then so is ∂H and it suffices to
compute δHx� for k − 1 successive values of � to know it for all �; as we will see this
also simplifies some of the computations.
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Remark 5.1 Suppose there exists an element Ĥ(q) ∈ Aq that commutes with H(q)

and is not in Z(A(q)). The corresponding derivation ∂̂a = 1
λ(q)

[
Ĥ(q), a

]
commutes

with ∂ and represents a symmetry for the quantum system (5.1). Furthermore, the

leading term in the expansion Ĥ(q(ν))
λ(q(ν))

= 1
ν
(Ĥ0 + ν Ĥ1) becomes a first integral of

the Hamiltonian equation (5.4). If Ĥ0 �= 0, then ∂H(Ĥ0) = 0 (see Proposition 2.20).
In the case where Ĥ0 = 0, it follows that ∂H(Ĥ1) = 0. If Ĥ(q) ∈ Z(Aq), then

Ĥ :=
(
Ĥ0, Ĥ1

)
is a Casimir of the Poisson structure (see Proposition 4.2), and

therefore, Ĥ0 is a first integral of (5.4).

5.2 N-periodic nonabelian Volterra hierarchy

The nonabelian Volterra chain [4] is the derivation of A = 〈x�; � ∈ Z〉, given by

∂1x� = x�x�+1 − x�−1x� . (5.5)

It has an infinite family of commuting derivations ∂2, ∂3, . . . , forming the so-called
nonabelian Volterra hierarchy. We consider here the N -periodic case, that is N � 3
and xN+� = x� for all �. It was shown in [4] that all members of this hierarchy admit
a common quantization ideal, namely the ideal Iq of A(q) generated by all

xi+1xi − qxi xi+1 , xi x j − x j xi , (dN (i, j) �= 1) .

It is the quantization ideal whichwe studied in Sect. 4.3, see in particular (4.13). Notice
that Iq is invariant under the shift x� �→ x�+1. We determine some nontrivial limits of
the (evolutionary) derivations ∂n of the quantum algebra Aq = A(q)/Iq . Recall that
we use the monomials xi11 . . . xiNN with i1, . . . , iN ∈ N as a monomial basis for Aq .

To do this we use the results from [5], where the full hierarchy on Aq is written in
the Heisenberg form

∂nx� = 1

qn − 1

[
H(n), x�

]
, � = 1, . . . , N , (5.6)

and where the Hamiltonians H(n) are given explicitly for any n. Here we will use the
first three Hamiltonians

H(1) =
N∑

k=1

xk ,

H(2) =
N∑

k=1

x2k + (1 + q)

N∑
k=1

xkxk+1 ,

H(3) =
N∑

k=1

x3k + (1 + q + q2)
N∑

k=1

(
xkxk+1xk+2 + xkx

2
k+1 + x2k xk+1

)
.
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As we already pointed out in Remark 4.4, when q → 1, the algebraA is commutative
and the Poisson brackets are given by

{
xi , x j

} = (δi, j+1−δi, j−1)xi x j , for 1 � i, j �
N . We are then in the classical case, see Remark 2.12.

We therefore start with the case of n = 2 and q = −1, so we put q(ν) = ξ + ν =
−1 + ν. Then

H(2)

q(ν)2 − 1
= − 1

2ν

(
N∑

k=1

x2k + ν

N∑
k=1

xkxk+1

)
(mod Hν) .

Setting H(2) =
(
H (2)
0 , H (2)

1

)
, where H (2)

0 = − 1
2

∑N
k=1 x

2
k and H (2)

1 = − 1
2

∑N
k=1

xkxk+1, we need to compute
{
H(2) ; x�

}
for � = 1, . . . , N , which we will do for

N > 4. Since ∂2 is evolutionary (under x� �→ x�+1), it suffices to do the computation
for a particular �, so wemay assume that 2 < � < N −1. To do this, we first writeH(2)

in terms of the generators Xk and WI for �(A) that we have constructed in Sect. 4.3.
It will be convenient to write Wk as a shorthand for W0,...,0,1,1,0,...,0 where the two
1’s are at positions k and k + 1 (with the understanding that when k = N then they
are at positions N and 1). Then H(2) = − 1

2

∑N
k=1(Xk + Wk) + WN . Since n = 2

and ξ = −1, the Lie action of �(A) on A, given in (4.16) and (4.17), specializes for
1 < � < N to

{Xk ; x�} = 2(δk,�−1 − δk,�+1)x
2
k x� ,

{Wk ; x�} = ((−1)i�+1 − (−1)i�−1)xi11 . . . xi�+1
� . . . xiNN ,

where ik = ik+1 = 1 and all other is are zero. Notice that these brackets are zero
when k and � are far enough apart, and also that {X� ; x�} = 0. It follows that, if
2 < � < N − 1 then

∂H(2)x� = −({X�−1 + X�+1 ; x�} − {W�−2 + W�−1 + W� + W�+1 ; x�})/2
= (x2�+1 − x2�−1)x� − (x�−2x�−1x� + x�−1x

2
� − x2� x�+1 − x�x�+1x�+2)

= x�x�+1(x�+2 + x�+1 − x�) − (x�−2 + x�−1 − x�)x�−1x� , (5.7)

where we have used in the last step the commutation relations x�+1x� = −x�x�+1 to
write the result in a symmetric form. Since ∂2 is evolutionary, this formula is valid for
all �.

When n = 1, the denominator of (5.6) does not vanish at q = −1, and setting

q = ν − 1 leads to the limiting derivation ∂H(1) on A, where H(1) =
(
0, H (1)

1

)
,

with H (1)
1 = ∑N

k=1 xk . It is given by ∂H(1)x� = x�x�+1 − x�−1x� for � = 1, . . . , N .
Since ∂1 and ∂2 commute, so do ∂H(1) and ∂H(2) ; this follows also from the fact that{
H(1),H(2)

} = 0, see Proposition 2.20. The same remark applies to all odd derivations
∂2m+1 and their limiting derivations ∂H(2m+1) on A, where m ∈ N. The Hamiltonian
system (5.7) has first integrals H (2k−1)

1 , H (2k)
0 , k = 1, 2, . . . (see Remark 5.1).

123



  108 Page 44 of 51 A. V. Mikhailov, P. Vanhaecke

We now consider n = 3, with ξ a primitive cubic root of unity. As above we will
only do this for N > 6. We still use the results of Sect. 4.3 and put q(ν) = ξ +ν. Then

1

q(ν)3 − 1
= ξ

3ν
+ O(1) , and

1

q(ν) − 1
= 1

ξ − 1
+ O(ν) ,

and

H(3)

q(ν)3 − 1
= ξ

3ν

N∑
k=1

x3k + 1

ξ − 1

N∑
k=1

(xkxk+1xk+2 + xkx
2
k+1 + x2k xk+1) (mod Hν),

so that H(3) =
(
H (3)
0 , H (3)

1

)
, with

H (3)
0 = ξ

3

N∑
k=1

x3k , and H (3)
1 = 1

ξ − 1

N∑
k=1

(xkxk+1xk+2 + xkx
2
k+1 + x2k xk+1) .

(5.8)
It suffices again to compute

{
H(3) ; x�

}
for a particular value of � since ∂3 is evolution-

ary (under x� �→ x�+1). In order to take care of the terms in H (3)
1 , let us write Wk as a

shorthand forW0,...,0,1,1,1,0,...,0,where the three 1’s are at positions k−1, k, k+1,W ′
k as

a shorthand forW0,...,0,1,2,0,...,0 where the 1 is at position k andW ′′
k forW0,...,0,2,1,0,...,0

where the 2 is at position k. In terms of this notation, H(3) can be written as

H(3) = ξ

3

N∑
k=1

Xk + 1

ξ − 1

( N−2∑
k=1

(Wk+1 + W ′
k + W ′′

k ) + ξ−1(W1 + WN ) + W ′
N−1

+W ′′
N−1 + ξ(W ′

N + W ′′
N )

)
.

By our choice of �we will manage that the 6 boundary terms which appear above play
no role in the computation. In order to compute ∂H(3)x� = {

H(3) ; x�

}
, we need the

following brackets, which are a specialization of (4.16) and (4.17) for 1 < � < N ,

{Xk ; x�} = 3(δk,�+1 − δk,�−1)ξ
−1x3k x� , (5.9)

{Wk ; x�} = (ξ i�+1 − ξ i�−1)xi11 . . . xi�+1
� . . . xiNN , (5.10)

where the latter formula is also valid forW ′
k andW

′′
k , each time upon using the proper

values for the indices i�; for example, in the case of Wk , all indices are zero except
ik−1 = ik = ik+1 = 1. In view of (5.9) and (5.10), {X� ; x�} = {W� ; x�} = 0. Also,
the only nonzero brackets

{
W ′

k ; x�

}
and

{
W ′′

k ; x�

}
are for k = � − 2, . . . , � + 1,

while the only nonzero brackets {Wk ; x�} are for k = � ± 1 and k = � ± 2. Let
3 < � < N − 2, where we recall that N > 6. Then

∂H(3) x� = ξ

3

{
X�−1 + X�+1 ; x�

}+ 1

ξ − 1

{
W�−2 + W�−1 + W�+1 + W�+2 ; x�

}
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+ 1

ξ − 1

{
W ′

�−2 + W ′
�−1 + W ′

� + W ′
�+1 + W ′′

�−2 + W ′′
�−1 + W ′′

� + W ′′
�+1 ; x�

}

=
(
x3�+1 − x3�−1

)
x� + (1 + ξ)(x�x

2
�+1x�+2 − x�−2x

2
�−1x� + x2� x

2
�+1 − x2�−1x

2
� )

+ x�x�+1x�+2x�+3 − x�−3x�−2x�−1x� + x2� x�+1x�+2 − x�−2x�−1x
2
�

+ x�x�+1x
2
�+2 − x2�−2x�−1x� + x3� x�+1 − x�−1x

3
� .

The formulas that we have computed for the limiting derivations are also valid for the
infinite (nonperiodic) case are the same, with the same proof (see Remark 4.5).

5.3 2M-periodic even nonabelian Volterra hierarchy: another quantization

We now consider another quantization ideal of the even elements δn = δ2m of the
N -periodic nonabelian Volterra hierarchy, in case N > 2 is even, N = 2M (see [4]).
The ideal Iq of A(q) is now generated by all

xi+1xi − (−1)i qxi xi+1 , xi x j + x j xi , (dN (i, j) �= 1) . (5.11)

We have already considered this quantization ideal, the corresponding quantum alge-
bras Aq = A(q)/Iq and its evaluation at q = 1 in Sect. 4.4; we will use here the
Poisson brackets from that section to obtain the limiting derivation of ∂2 (see (5.6))
when q → 1. The derivation ∂2 is given on Aq in Heisenberg form by

∂2x� = 1

q2 − 1
[H, x�] = 1

q2 − 1

[
N∑

k=1

(
x2k + (1 + (−1)kq)xkxk+1

)
, x�

]
.

We put, as in Sect. 4.4, q(ν) = 1 + ν. Then

1

q(ν)2 − 1
= 1

2ν
+ O(ν0) , and 1 + (−1)kq(ν) =

{
2 + ν k even,

−ν k odd.

and

H

q(ν)2 − 1
= 1

2ν

⎛
⎝

N∑
k=1

x2k +
M∑
j=1

x2 j x2 j+1 − ν

2

M∑
j=1

x2 j−1x2 j

⎞
⎠ (mod Hν) ,

so that

H0 = 1

2

N∑
k=1

x2k +
M∑
j=1

x2 j x2 j+1 and H1 = −1

2

M∑
j=1

x2 j−1x2 j .
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Let us write Wk as a shorthand for W0,...,0,1,1,0,...,0 where the two 1’s are at posi-
tions 2k − 1 and 2k. Then

H = 1

2

N∑
k=1

Xk +
M−1∑
j=1

Y j − YM − 1

2

M∑
j=1

Wj ,

where X1, . . . , XN , Y1, . . . ,YM are the generators of �(A), constructed in Sect. 4.4.
We need to compute ∂Hx�, which we do for even � only, the computation for odd �

being very similar. Then the only nonzero brackets {Xk ; x�},
{
Y j ; x�

}
and {Wk ; x�}

are according to (4.21)–(4.23) given by

{X�−1 ; x�} = −2x2�−1x� , {X�+1 ; x�} = 2x�x2�+1 ,
{
Y�/2−1 ; x�

} = −x�−2x�−1x� ,
{
Y�/2 ; x�

} = x2� x�+1 ,
{
W�/2−1 ; x�

} = 2x�−1x2� ,
{
W�/2+1 ; x�

} = −2x�x�+1x�+2 .

Suppose that 1 < � < N (recall that � and N are even). Then

∂Hx� = 1

2
{X�−1 + X�+1 ; x�} + {Y�/2−1 + Y�/2 ; x�

}− 1

2

{
W�/2−1 + W�/2 ; x�

}

= x�x
2
�+1 − x2�−1x� + x2� x�+1 − x�−2x�−1x� + x�x�+1x�+2 − x�−1x

2
� .

Since the Volterra hierarchy and the ideal are invariant under the shift xi �→ xi+2, the
above formula is valid also for � = N . It is in fact valid for all �, even in the infinite
(N = ∞) case.

5.4 A system on the Grassmann algebra

We now consider some simple dynamics on the Grassmann algebra, which we already
considered, together with its deformation in Sect. 4.5. On Aν � A[[ν]], consider the
derivation defined for a ∈ A by

∂a = 1

ν
[H, a] , where H = 1

2
(p2 + x2) + xψφ .

It is already written in the Heisenberg form and the corresponding Hamiltonian H ∈
�(A) is given by H = 1

2 (P
2 + X2) + XW . The limiting derivation, for ν → 0, is

given by

∂Hψ = xψ , ∂Hφ = −xφ , ∂H p = x + ψφ , ∂Hx = −p .

This is an easy consequence of (5.4), upon using Table 8. For example,

∂Hψ =
{
1

2
(P2 + X2) + XW ; ψ

}
= P · {P ;ψ} + (X + W ) · {X ; ψ} + X · {W ; ψ}
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= X · ψ = xψ ,

∂H p =
{
1

2
(P2 + X2) + XW ; p

}
= P · {P ; p} + (X + W ) · {X ; p} + X · {W ; p}

= (X + W ) · 1 = x + ψφ .

5.5 A hierarchy on the quantum plane

We now consider an example related to the quantum plane which we considered in
Sect. 4.2. On the free algebra C〈x, y〉, there is a hierarchy of commuting derivations
∂n , n > 0, defined by

∂nx = xy(y − x)n−1, ∂n y = yx(y − x)n−1 ; (5.12)

see [15]. The ideal Iq := 〈yx − qxy〉 of C〈x, y〉 is a quantization ideal for each one
of these derivations, since ∂n(yx − qxy) ∈ 〈yx − qxy〉. The derivations ∂n therefore
descend to commuting derivations of the quantum plane C(q)〈x,y〉

〈yx−qxy〉 , and they can be
written in the Heisenberg form

∂nx = 1

qn − 1
[Hn, x] , ∂n y = 1

qn − 1
[Hn, y] , (5.13)

whereH(n) = (y−qx)n . Notice that, using the q-binomial formula [10, Prop. IV.2.2],

H(n) =(y−qx)n =
n∑

k=0

(
n

k

)

q
(−qx)k yn−k = yn+(−q)nxn+

n−1∑
k=1

(
n

k

)

q
(−qx)k yn−k,

where the q-binomial coefficients are given by

(
n

k

)

q
= (qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(q − 1)(q2 − 1) . . . (qk − 1)
.

It is easily checked that they satisfy the following well-known recursion relation

(
n

k

)

q
= qn − 1

qn−k − 1

(
n − 1

k

)

q
, (5.14)

which we will use. We consider the limiting derivation of (5.13) for q → ξ , where ξ

is a primitive n-th root of unity. We therefore set, as in Sect. 4.2, q(ν) = ξ + ν. Since
q(ν)n − 1 = ξ−1nν + O(ν2), while

(n−1
k

)
q = (n−1

k

)
ξ

+ O(ν), where the constant
term is nonzero, we get, using (5.14), for 0 < k < n,

(
n

k

)

q(ν)

= ξ−1nν

ξn−k − 1

(
n − 1

k

)

ξ

+ O(ν2)
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and

H(n)

q(ν)n − 1
= ξ

nν
(yn + (−1)nxn) +

n−1∑
k=1

(−ξ)k
(n−1

k

)
ξ

ξn−k − 1
xk yn−k (mod Hν) ,

(5.15)

so that

H (n)
0 = ξ

n
(yn + (−1)nxn) , and H (n)

1 =
n−1∑
k=1

(−ξ)k

ξn−k − 1

(
n − 1

k

)

ξ

xk yn−k .

Recall that the center of A is generated by X = (xn, 0), Y = (yn, 0) and Wi, j =(
0, xi y j

)
, with 0 � i, j � n, i + j �= 0 (see Sect. 4.2). SettingH(n) = (H (n)

0 , H (n)
1 )

we can write H(n) in terms of these generators as

H(n) = ξ

n
(Y + (−1)n X) +

n−1∑
k=1

(−ξ)k

ξn−k − 1

(
n − 1

k

)

ξ

Wk,n−k .

Using Table 2 the limiting derivation ∂H(n) = {H(n) ; ·} is given by

∂H(n)x =
{
H(n) ; x

}
= xyn +

n−1∑
k=1

(−1)kξ k
(
n − 1

k

)

ξ

xk+1yn−k ,

∂H(n) y =
{
H(n) ; y

}
= (−1)n−1xn y +

n−1∑
k=1

(−1)kξ2k
(
n − 1

k

)

ξ

xk yn−k+1 .

5.6 A hierarchy on the quantum torus

We now consider an example related to the quantum torus (see Sect. 4.2, espe-
cially Remark 4.3). According to [18], Kontsevich considered on the algebra A :=
C〈x, y, x−1, y−1〉 the derivation, defined by

∂1x = −y−1 + xy − xy−1 , ∂1y = x−1 − yx + yx−1 , (5.16)

together with a discrete symmetry, which we will not consider here, and conjectured
the integrability of (5.16) (and of the discrete symmetry). The integrability of (5.16)
was proven in [18], where a Lax representation for (5.16), as well as a symmetry for
it were found; the latter is given by

∂2x = xyx + xy2 − xy − (yx)−1 − y−2 − x2y−1 + xyx−1 − xy−2 − (yxy)−1 − x(yxy)−1 ,

∂2y = −yxy − yx2 + yx + (xy)−1 + x−2 + y2x−1 − yxy−1 + yx−2 + (xyx)−1 + y(xyx)−1 .

(5.17)
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Since ∂i (yx − qxy) ⊂ 〈yx − qxy〉 ⊂ A(q), for i = 1, 2, both (5.16) and (5.17)
define a derivation of the quantum torus Aq = A(q)/〈yx − qxy〉. On Aq , (5.16) can
be written in the Heisenberg form

∂1x = 1

q − 1
[H(1), x] , ∂1y = 1

q − 1
[H(1), y] , (5.18)

withH(1) = qx−1y−1+qy−1+ y+qx+x−1. TakingH(2) := (H(1)
)2−(1+q)H(1)−

4q, we can recast (5.17) also in the Heisenberg form

∂2x = 1

q2 − 1
[H(2), x] , ∂2y = 1

q2 − 1
[H(2), y] . (5.19)

This gives an alternative proof that (5.16) and (5.17) are derivations ofAq . Expanded,
and using the commutation relation yx = qxy (which implies, for example, that
y−1x = q−1xy−1), H(2) can be written as

H(2) = y2 + q2x2 + q2y−2 + x−2 + q3x−2y−2

+ (q + 1)(−y − qx + qxy + qxy−1 + q−1x−1y + q2x−1y−2 + qx−2y−1) .

(5.20)

We first consider the limits of (5.18) and (5.19) when q → 1. In this case A =
C[x, x−1, y, y−1] is the algebra of Laurent polynomials in two variables, in particular
it is commutative and we are in the case of a classical limit. Setting q(ν) = 1+ ν, the
limit ∂H(1) is given by

∂H(1)x =
{
x−1y−1 + y−1 + y + x + x−1, x

}
= x−1

{
y−1, x

}
+
{
y−1 + y, x

}

= xy − (x + 1)y−1,

and similarly ∂H(1) y = xy + (y + 1)x−1. We can use this result for computing ∂H(2)

since H(2) is a polynomial in H(1). The result is that

∂H(2)x = (H − 1)(xy − (x + 1)y−1) , ∂H(2) y = (H − 1)((y + 1)x−1 − xy) ,

where H is H(1) evaluated at q = 1, that is H = x−1y−1 + y−1 + y + x + x−1.

To finish, we consider the limiting derivation of ∂2 when q → −1, setting q =
−1 + ν. We easily get from (5.20)

H(2)

q(ν)2 − 1
= 1

ν

(
H (2)
0 + νH (2)

1

)
(mod Hν) ,

where

H (2)
0 = −1

2

(
x2 + y2 + x−2 + y−2 − x−2y−2

)
,
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H (2)
1 = −1

2

(
x − y − xy − xy−1 − x−1y + x−1y−2 − x−2y−1

)
.

Let H(2) := (H (2)
0 , H (2)

1 ). Then, in terms of the generators of �(A),

H(2) = −1

2

(
X + Y + X−1 + Y−1 − X−1Y−1 +U − V − W − Y−1W

+X−1Y−1U − X−1Y−1V
)

.

Using (5.4) and Table 4,

∂H(2)x =
{
H(2) ; x

}
= ∂H(2)

∂Y
· (−2xy2) + ∂H(2)

∂V
· (−2xy2) + ∂H(2)

∂W
· (−2x2y) .

As we already pointed out, U , V and W act trivially on A and we get

∂H(2) x = (1 − Y−2 + X−1Y−2) · xy2 − (1 + X−1Y−1) · xy − (1 + Y−1 + X−1) · x2y
= −y − xy + xy2 − xy−2 + x−1y−2 − x−1y−1 − x2y − x2y−1 ,

and similarly

∂H(2) y = x − xy − x−1y−1 + xy2 − x2y + x−1y2 + x−2y − x−2y−1 .

The derivations ∂1 and ∂2 admit higher symmetries ∂n of the form

∂nx = 1

1 − qn
[H(n), x] ∂n y = 1

1 − qn
[H(n), y] ,

for which the limiting derivation as q → ξ , with ξ an n-th root of unity, can be obtained
in the same way.
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