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A B S T R A C T

Most choice models, e.g. Multinomial Logit (MNL), rely on random utility theory, which
assumes that a compensatory utility maximization decision rule explains an individual’s choice
behaviour. Research has shown, however, that behaviour is sometimes better explained by
non-compensatory decision rules. While some research has used Latent Class Choice Models
(LCCMs) to account for multiple decision rules, many of them – such as the disjunctive rule –
have yet to be explored. This paper formulates, estimates, and evaluates a LCCM that combines
the MNL with a Generalised Random Disjunctive Model (GRDM), a new choice model we
develop. Addressing deficiencies of existing disjunctive choice models, the GRDM allows for
relative importance between attributes and is insensitive to irrelevant attributes. Unlike most
non-compensatory models, it is tractable and incorporates random error terms for capturing
unobserved heterogeneity across choice situations. The GRDM can be expressed as a Universal
Logit (UL) model, which helps derive welfare metrics such as Marginal Rates of Substitution and
elasticities and makes it possible to estimate the model with traditional software packages. The
LCCM combining the GRDM and the MNL is estimated in two large-scale case studies: cyclists’
route choice and public transport route choice. Results are compared with other relevant LCCM
specifications and the individual choice models, where it is found that the MNL + GRDM LCCM
provides the best fit to the data. We also interpret the fitted parameters and calculate the
Marginal Rates of Substitution, which align with behavioural expectations.

. Introduction

The decision rule is a crucial component of choice models, transforming attributes’ performance into predicted choice. Most
ommonly, choice models have been based on the random utility theory (e.g., McFadden (1974b)), which adopts a utility
aximization decision rule. This rule is compensatory, i.e. people’s choice is driven by a trade-off of the attributes of the alternatives,

ggregated in a utility function. Under this assumption, people are willing to substitute one attribute for some quantity of another
ne while keeping the utility (and hence the choice probability) constant.

Conversely, non-compensatory decision rules assume individuals consider alternatives on an attribute-by-attribute basis and
hat attributes are not aggregated into a single utility function. These rules align with what psychologists describe as sequential
nformation processing when solving problems (Newell and Simon, 1972). Examples of non-compensatory decision rules are the
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conjunctive and disjunctive rules (Coombs, 1964), which assume a decision-maker will consider choosing an alternative based
on either conjunction of attributes (all attributes of the alternative must satisfy some criterion) or disjunctions of attributes (at
least one attribute must satisfy some criterion). Alternatively, the Lexicographic rule (Tversky, 1969; Fishburn, 1974) assumes that
decision-makers first rank attributes by relative importance and then choose the best-performing alternative with respect to the
main attribute. If there are ties, the remaining alternatives are compared based on the second main attribute, and so on, until either
no attribute or one alternative remains. The Elimination-By-Aspects (EBA) decision rule Tversky (1972) generalizes Lexicography
by allowing any criterion for each attribute. Regret minimization (Bell, 1982), according to which decision-makers minimize their
anticipated regret, has also been a focus of recent research in non-compensatory choice modelling.

Traditional Random Utility Models (RUMs), such as the Multinomial Logit (MNL) model, can capture some non-compensatory
ehaviour. To some extent, random error terms may capture non-compensatory behaviour, treating it as the analyst’s lack of
nowledge of individual tastes (Hess, 2012). However, some researchers attempted to capture this behaviour systematically. For
nstance, Swait (2001) proposed using a functional form for utilities that included cutoffs, helping the MNL to represent conjunctive
nd disjunctive behaviours. Mela and Lehmann (1995) used multi-linear specifications with interaction terms. More recently, choice
odellers tried to incorporate other behavioural patterns, such as the satisficing principle (e.g. González-Valdés and Ortúzar (2018))

r attribute non-attendance (Swait, 2001; Hensher et al., 2005). However, many possible interactions between attributes may exist,
hich makes these models prone to specification errors. Moreover, as Johnson et al. (1989) highlighted in a simulation study, RUMs

annot approximate any non-compensatory decision rule, most notably when some attributes are negatively correlated. Hess et al.
2018) reviews which behavioural assumptions a RUM can or cannot reproduce.

Consequently, some researchers have shifted from the RUM framework and developed choice models using non-compensatory
ecision rules. For instance, Tversky (1969) designed a choice model based on lexicography, and Tversky (1972), Recker and
olob (1979) created choice models based on the EBA decision rule. Though both are some of the most straightforward decision

ules, it can also be computationally expensive to compute lexicographic choice probabilities in choice situations that include ties
etween attributes. More recently, the paradigm of Random Regret Minimization (RRM) allowed for capturing semi-compensatory
nd non-compensatory behaviour (Chorus, 2010; van Cranenburgh et al., 2015). Models using the conjunctive (e.g., Jedidi and
ohli (2005)) and disjunctive rule or dominance approach (e.g., Ehrgott et al. (2015)) have also been developed. Some recent
esearchers presented choice models that move further from the Random Utility Theory, such as preference accumulation models
e.g., Hancock et al. (2021)), using mathematical psychology models like Decision Field Theory. The main common weakness of
hese non-compensatory models is the difficulty of obtaining easily interpretable welfare metrics (Hess et al., 2018) and an increase
n model estimation computational complexity.

Rather than supposing that a single decision rule can explain the choice behaviour of all individuals across a series of
hoice situations, some research has been carried out to account for decision rule heterogeneity. For instance, Hess et al. (2012)
ypothesized that individuals within a dataset may use different decision rules. They combined several decision rules and models
n a Latent Class Choice Model (LCCM, Kamakura and Russell (1989)), allowing for mixing discrete parameter distributions and
eterogeneous decision rules. Compared to traditional logit models, these models showed substantial improvements in fit when
ombining utility maximization with other non-compensatory decision rules (e.g., lexicography, regret minimization, EBA). A few
ther studies combined the RRM and RUM paradigms (e.g., Dey et al. (2018) for bicycle route choice, Xu et al. (2020) for car
oute choice) and also showed improvements in model fit compared to traditional models. However, regret minimization assumes

pairwise comparison of alternatives, meaning that these models highly depend on the choice set composition. This may be
roblematic in choice situations where the set of unobserved alternatives is potentially large (e.g., route choice). Moreover, according
o Hancock and Hess (2021), combining RUM and RRM in a two-class LCCM will likely lead to confounding between taste and
ecision rule heterogeneity.

In this paper, we continue research into models accounting for multiple decision rules. We use a LCCM to combine non-
ompensatory and compensatory decision rules in a two-class model. We use the traditional MNL in the compensatory part and
evelop a new choice model based on the disjunctive decision rule for the non-compensatory part. This new choice model builds on
he Random Disjunctive Model (RDM) from Ehrgott et al. (2015),1 which, unlike most existing non-compensatory models, includes

random error terms, enabling the model to capture the analyst’s lack of knowledge on the decision-maker choices. It is also less
computationally expensive to compute than other non-compensatory models (e.g., RRM, lexicographic or EBA models).

However, before exploring the combination of MNL and the RDM within a LCCM, there are some weaknesses of the RDM that
need to be addressed. Firstly, the RDM choice probabilities are sensitive to irrelevant attributes. Secondly, one needs to test all
possible combinations of attributes to find the best specification, as models using subsets of attributes are not nested. Thirdly, the
model does not give relative importance to attributes, leading to a confounding effect between preference for an attribute and the
error term variances. To address these weaknesses, we develop, in this paper, a new choice model which generalizes the RDM: the
Generalised Random Disjunctive Model (GRDM). The GRDM parameterizes the relative contribution of each attribute to the choice
probabilities. As a consequence, irrelevant attributes have zero effect on choice probabilities. Moreover, the additional parameters
implicitly determine the best specification of attributes as well as solve the confounding effect. Given the challenge of interpreting
non-compensatory models for welfare analysis (Hess et al., 2018), we present the newly developed GRDM as an instance of the
Universal Logit model (McFadden et al., 1976). This formulation allows for deriving model interpretation metrics, such as the

1 The authors referred to this model as the NCSUE, as they used the model for solving the Stochastic User Equilibrium problem. We gave it a more generic
2

ame, as it may apply to any choice situation.
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Marginal Rates of Substitution (MRS), LogSums, and Elasticities. It also shows how the model can be estimated using software
packages such as Biogeme, Apollo, etc. An estimation example is given for Biogeme using the Swissmetro dataset.

The MNL + GRDM LCCM is estimated in two large-scale case studies focused on the context of route choice. We use two Revealed
reference datasets previously reported in the literature: a bicycle route choice dataset (from Fosgerau et al. (2023)) and a public
ransport route choice dataset (from Nielsen et al. (2021)). Results are compared with other relevant LCCM specifications and
ndividual choice models regarding model fit and interpretation. Additionally, we benchmarked the predictive ability of the different
odel combinations using a Monte Carlo cross-validation method. The posterior class membership probabilities allow for deriving

he posterior distribution of MRS among cyclists and public transport users. We tested the GRDM against two counter hypotheses
hat, rather than capturing another decision rule, the model captured taste heterogeneity or non-linear preferences. An experiment
hat accounted for multiple classes of tastes under utility maximization confirmed that the disjunctive decision rule better explains
significant part of cyclists’ route choices. We also compared the results of models with logarithmic and Box–Cox (Box and Cox,

964) transformed attributes.
The structure of the paper is as follows. Section 2 introduces the disjunctive decision rule, presents current disjunctive choice

odels, and formulates the new GRDM and illustrative examples of its properties. Section 3 presents the disjunctive models as
ogit models and details a methodology for calculating the MRS and Elasticities. Section 4 motivates the need for considering
ultiple decision rules jointly when modelling choice behaviour. Specifically, it demonstrates how one can struggle to capture
on-compensatory choice behaviour with a compensatory choice model, and vice versa. Section 5 presents the combination of
ultiple decision rules in a LCCM and discusses its posterior analysis. Section 6 presents the estimation work of two case studies

n bicycle route choice and public transport route choice, both in the Greater Copenhagen Area. Section 7 concludes the paper.

. Disjunctive choice models

In this section, we assume we observe an individual 𝑛 ∈ {1,… , 𝑁} facing a choice task, where C is the set of alternatives. An
alternative 𝑖 ∈ C is described by its 𝐾 attributes 𝐱𝑖 =

(

𝑥𝑖1 ⋯ 𝑥𝑖𝐾
)

. For 𝑖 ∈ C , we call 𝑦𝑖𝑛 the choice dummy (𝑦𝑖𝑛 = 1 if the individual
𝑛 chooses 𝑖 and 0 otherwise). First, we will present the disjunctive decision rules (Section 2.1) and how they predict choices in a
deterministic framework (Section 2.2). Then, uncertainty will be introduced by including some of these decision rules in stochastic
choice models (Sections 2.3 and 2.4). The traditional utility maximization decision rule assumes that each individual 𝑛 has their
ordinal utility function 𝑈𝑛 of attributes and will choose the alternative that maximizes 𝑈𝑛. Formally, for an individual 𝑛:

𝑦𝑖𝑛 = 1 ⟺ 𝑈𝑛(𝐱𝑖) = max
𝑗∈C

𝑈𝑛(𝐱𝑗 )

Under this decision rule, decision-makers are willing to trade an attribute for a quantity of another while keeping its utility
constant, making it compensatory. Analysts usually model this individual utility function as the sum of a deterministic part based
on attribute performance and a stochastic part that models their lack of knowledge of the decision-maker. For an individual 𝑛, facing
a choice set C , a RUM gives the probability of the event (𝑦𝑖𝑛 = 1):

P(𝑦𝑖𝑛 = 1 ∣ 𝐗) = P(𝑈𝑛(𝐱𝑖) = max
𝑗∈C

𝑈𝑛(𝐱𝑗 ))

where 𝑈𝑛(𝐱𝑖) = 𝑉𝑛(𝐱𝑖) + 𝜖𝑖𝑛

where 𝑉𝑛(𝐱𝑖) is a function of the observed attributes and 𝜖𝑖𝑛 is the random error term for individual 𝑛 and alternative 𝑖. 𝐗 =
(𝐱1 ⋯ 𝐱

|C |

)⊤ is the matrix of the choice set attributes. We will now present choice models that use a disjunctive decision rule.

2.1. The disjunctive decision rule

The disjunctive decision rule assumes that decision-makers consider attributes separately, i.e., not aggregated in a single function.
For each attribute2 𝑘 ∈ {1,… , 𝐾}, the decision maker has a criterion 𝜒𝑘 that the attribute can pass or fail. Let us write 𝑥𝑖𝑘 ∼ 𝜒𝑘 if
alternative 𝑖 passes 𝜒𝑘. Examples of criteria can be, e.g., being one of the best alternatives among the choice set, being better than
a certain threshold, not being much worse than a reference alternative, etc. The flexibility in the criteria means that an infinite
number of decision rules can be invented and included in choice models.

Under a disjunctive decision rule, the analyst assumes that the decision maker will select any alternative that respects the criterion
for at least one attribute.

𝑦𝑖𝑛 = 1 ⟺ ∃𝑘 ∈ {1,… , 𝐾} s.t. 𝑥𝑖𝑘 ∼ 𝜒𝑘

In the example below, let us consider a three-alternative choice situation (C = {1, 2, 3}). These alternatives have two attributes:
travel time (𝑇𝑇 ) and travel cost (𝑇𝐶). Alternative 1 is fast but expensive; Alternative 2 is cheap but long, and Alternative 3 is a
compromise regarding travel time and cost. The attribute values are given in Table 1.

Under a disjunctive decision rule, for each attribute’s criterion is being the best among the choice set, the decision-maker may choose
Alternative 1 or 2. To predict a choice between the two, we must then use another decision rule, which could be, e.g., changing the
criterion to something more stringent, assuming a random choice between the two alternatives, or relying on utility maximization to

2 Attributes can also be grouped into sets of attributes.
3



Journal of Choice Modelling 52 (2024) 100510L. Cazor et al.

r

I
c
p

c
i
p

s

Table 1
Example of a choice situation with three
alternatives and two attributes.

𝑇𝑇 𝑇𝐶

Alternative 1 1 2
Alternative 2 2 1
Alternative 3 1.2 1.2

model the choice. Manski and Lerman (1977), Swait and Ben-Akiva (1987), or Ben-Akiva and Boccara (1995) developed two-stage
models, on which the first stage filtered the considered alternatives to be considered with a non-compensatory decision rule, and then
modelled choice between these alternatives with a compensatory model. An overview of other existing decision rules (Conjunctive,
Lexicographic and EBA) and their application to this example can be found in Appendix A.

2.2. The deterministic disjunctive model (DDM)

Let us assume a choice model in which the decision-maker considers each attribute individually and uses the disjunctive decision
ule, for which each attribute criterion 𝜒𝑘 is ‘‘being the best alternative among the choice set’’. We further assume the decision-maker

chooses indifferently between all the alternatives that respect the criterion for at least one attribute. According to this model, the
choice probability 𝑃DDM

𝑖 ∶= P(𝑦𝑖𝑛 = 1 ∣ DDM,𝐗) of an alternative 𝑖 ∈ C (independent of an individual) can be written as:

𝑃DDM
𝑖 =

1 −
∏𝐾

𝑘=1

(

1 − 1𝑘𝑖
∑

𝑙∈C 1𝑘𝑙

)

∑

𝑗∈C

[

1 −
∏𝐾

𝑘=1

(

1 − 1𝑘𝑗
∑

𝑙∈C 1𝑘𝑙

)] (1)

where 1𝑘𝑖 = 1 if alternative 𝑖 is among the bests in the choice set for attribute 𝑘 and 0 otherwise. The quantity 1𝑘𝑗∕
∑

𝑙∈C 1𝑘𝑙 means
that, for an attribute 𝑘, if a number 𝐶𝑘 =

∑

𝑙∈C 1𝑘𝑙 of alternatives are equally the best performing in the choice set, each of these
has an equal split probability 1∕𝐶𝑘 of passing criterion 𝜒𝑘. The model properties are further presented in an example in Section 2.6.

2.3. The random disjunctive model

The Random Disjunctive Model (RDM) (Ehrgott et al., 2015) is based on the same decision rule and criteria as the DDM but
adds uncertainty to the model of the analyst’s lack of knowledge of the individual’s relative sensitivity to attributes change. For an
alternative 𝑖 and its attribute 𝑘, we define �̃�𝑖𝑘 by adding a random error term to 𝑥𝑖𝑘, i.e.,

�̃�𝑖𝑘 = 𝑥𝑖𝑘 + 𝜖𝑖𝑘

If we assume that, for every 𝑖, 𝑘, 𝜖𝑖𝑘 ∼ Gumbel
(

0, 1∕𝛼2𝑘
)

, where 𝛼𝑘 parametrizes the absolute uncertainty around an attribute perceived
value, and that these error terms are independent, we get the RDM choice probabilities 𝑃 RDM

𝑖 ∶= P(𝑦𝑖𝑛 = 1 ∣ RDM,𝜶,𝐗) for an
alternative 𝑖 ∈ C :

𝑃 RDM
𝑖 =

1 −
∏𝐾

𝑘=1

(

1 − exp (𝛼𝑘𝑥𝑖𝑘)
∑

𝑗∈C exp (𝛼𝑘𝑥𝑗𝑘)

)

∑

𝑙∈C

[

1 −
∏𝐾

𝑘=1

(

1 − exp (𝛼𝑘𝑥𝑙𝑘)
∑

𝑗∈C exp (𝛼𝑘𝑥𝑗𝑘)

)] (2)

𝜶 = (𝛼1 ⋯ 𝛼𝐾 ) ∈ R𝐾 is a set of parameters to be estimated. Adding this error term also allows the model to be more flexible.
ndeed, an alternative close to being the best alternative in an attribute, even if it is not the best in any attribute, will have a larger
hoice probability than an alternative far from this criterion. One can interpret the choice probability of an alternative as being
roportional to the probability of it being chosen for at least one of its attributes, i.e.,

𝑃 RDM
𝑖 ∝ 1 −

𝐾
∏

𝑘=1

(

1 − P(�̃�𝑖𝑘 ≥ max
𝑗∈C

�̃�𝑗𝑘)
)

= P

( 𝐾
⋃

𝑘=1
(�̃�𝑖𝑘 ≥ max

𝑗∈C
�̃�𝑗𝑘)

)

This model, however, has some theoretical weaknesses:
Sensitivity to irrelevant attributes: We call an attribute irrelevant if every alternative 𝑖 from the choice set C has the same

hoice probability 1∕|C |. This can happen when the attribute has the same value for each alternative or when the decision-maker is
ndifferent to the attribute. If we add many of these attributes, the probability of at least one attribute being perceived as the best
erforming will tend to be one for any alternative. If we add 𝑁 irrelevant attributes to the 𝐾 other attributes, then for all 𝑖 ∈ C :

P

( 𝐾
⋃

𝑘=1
(�̃�𝑖𝑘 ≥ max

𝑗∈C
�̃�𝑗𝑘)

)

= 1 −
(

1 − 1
|C |

)𝑁 𝐾
∏

𝑘=1

(

1 −
exp (𝛼𝑘𝑥𝑖𝑘)

∑

𝑗∈C exp (𝛼𝑘𝑥𝑗𝑘)

)

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑁→+∞

1 (3)

as (1 − 1∕|C |)𝑁 tends to 0 when 𝑁 tends to +∞. This implies that, for each alternative, the probability that the disjunctive rule is
atisfied tends to be one. As a result, 𝑃 RDM tends to 1∕|C | for every 𝑖 ∈ C , i.e., to an equal split probability.
4

𝑖
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Fig. 1. Collapsing properties of the presented disjunctive models.

Model specification issues: Models using nested sets of attributes are not nested (i.e. a constrained version of each other on the
parameter space). This weakness complicates the model specification, as one needs to test all the possible combinations of attributes
to find the best-performing one.

Attribute relative importance: The model does not explicitly give relative importance to attributes. However, if observed
choices reveal a preference for one attribute, a confounding effect may appear: the RDM model will explain this preference by
giving a lower variance to the error term linked to this attribute so that the best-performing alternative will have a higher choice
probability. However, it is impossible to disentangle heterogeneity (variance of the error term) and the importance of an attribute.

The novel model, developed in the following paragraphs, aims to solve these shortcomings.

2.4. The generalised random disjunctive model

To solve the weaknesses of the RDM discussed above, we develop an extended version of the RDM: the Generalised RDM (GRDM).
For each attribute 𝑘, we add an exponent 𝜆𝑘 ≥ 0 to the probability of not being chosen for this attribute. This exponent adds flexibility
to the probability relation, allowing some attributes to influence the choice probabilities more than others and some of them to have
no influence. The GRDM choice probabilities 𝑃GRDM

𝑖 ∶= P(𝑦𝑖𝑛 = 1 ∣ GRDM,𝜶,𝝀,𝐗) of an alternative 𝑖 ∈ C are given by:

𝑃GRDM
𝑖 =

1 −
∏𝐾

𝑘=1

(

1 − exp (𝛼𝑘𝑥𝑖𝑘)
∑

𝑗∈C exp (𝛼𝑘𝑥𝑗𝑘)

)𝜆𝑘

∑

𝑙∈C

[

1 −
∏𝐾

𝑘=1

(

1 − exp (𝛼𝑘𝑥𝑙𝑘)
∑

𝑗∈C exp (𝛼𝑘𝑥𝑗𝑘)

)𝜆𝑘
] (4)

where 𝜶 = (𝛼1 ⋯ 𝛼𝐾 ) ∈ R𝐾 and 𝝀 = (𝜆1 ⋯ 𝜆𝐾 ) ∈ R𝐾
+ are sets of parameters to be estimated. It is to be noted that at least one 𝜆𝑘

must be strictly larger than 0. Otherwise, the probabilities cannot be computed. It is important to notice that, due to the error terms
structure, and unlike the DDM, the RDM and GRDM always give a non-zero probability to every alternative in the choice set. The
GRDM generalises the RDM, as the RDM is a constrained version of the GRDM where all the 𝜆𝑘s are set to 1.

The GRDM can be interpreted in a similar way as we interpreted the RDM in the previous subsection, by looking at the following
proportionality relation:

𝑃GRDM
𝑖 ∝ 1 −

𝐾
∏

𝑘=1

(

1 − P(�̃�𝑖𝑘 ≥ max
𝑗∈C

�̃�𝑗𝑘)
)𝜆𝑘

This relation can be interpreted as the probability of being chosen for at least one attribute with 𝜆𝑘 draws of the error term
for each attribute 𝑘 (𝜆𝑘 is a real number, so one must be able to imagine a non-integer number of draws). The higher the 𝜆𝑘, the
more draws of the error term for a given attribute, and the higher the choice probabilities will be for this attribute, regardless of
its relative performance.

This model solves the three RDM weaknesses we discussed:
Sensitivity to irrelevant attributes: An irrelevant attribute 𝑘 will have its 𝜆𝑘 estimated to 0 and will not influence choice

probabilities.
Model specification issues: The GRDM has the property that models specified with nested sets of attributes are nested into each

other (a constrained version in the parameter space). This is because a model without attribute 𝑘0 equals a model including 𝑘0 and
setting 𝜆𝑘0 = 0. Consequently, the GRDM solves the attribute/model specification issue by implicitly specifying the best attributes
(by setting attribute exponents to zero).

Attribute relative importance: A higher relative 𝜆𝑘 > 𝜆𝑙 value for attributes 𝑘 and 𝑙 means that the performance of attribute 𝑘
has a larger impact on choice probabilities than attribute 𝑙 if both have the same error term variances.

2.5. Collapsing properties

Fig. 1 summarises the collapsing properties of the three presented models. The DDM is a RDM with error terms that have zero
variance, which can be parametrized by setting the vector 𝛼𝑘 to +∞ if the attribute is desirable and to −∞ if it is not desirable. The
5

RDM is a GRDM with an equal contribution of each attribute to the choice probabilities and a 𝜆𝑘 set to 1 for each 𝑘.
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Table 2
Example of a choice situation with four alternatives and three
attributes.

𝐴 𝐵 𝐶

Alternative 1 1 1 2
Alternative 2 2 1 2
Alternative 3 2 2 1
Alternative 4 1.1 1.1 1.1

Fig. 2. Example for a RDM with equal error term variances for each attribute.

2.6. Illustrative examples

In this subsection, we will show how the three presented disjunctive models predict choice probabilities using the example from
Table 2.

In this choice situation, we assume that a lower value for an attribute is better. Then, alternative 1 performs best in attributes
𝐴 and 𝐵. Alternative 2 performs best in attribute 𝐵, but is tied with alternative 1. Alternative 3 performs best in attribute 𝐶, but is
not tied with other alternatives. Alternative 4 is the compromise alternative, which does not perform best in any attribute.

The DDM: The DDM probabilities are given by 𝑃DDM
1 ∝ 1 − (1 − 1∕2)(1 − 1) = 1, 𝑃DDM

2 ∝ 1∕2 and 𝑃DDM
3 ∝ 1. This means that

1 = 𝑃3 = 0.4 and 𝑃2 = 0.2. Alternatives 1 and 3 have the same choice probabilities because they perform best for one attribute
ithout being tied, while alternative 2 performs best in one attribute but is tied. The compromise alternative probability 𝑃DDM

4 is
qual to 0.
Random models:
We can see that the RDM probabilities (see Fig. 2) tend to the DDM probabilities when 𝛼 tends to −∞. For lower values of 𝛼,

owever, the uncertainty introduced by the error term allows the compromise alternative to have a non-zero choice probability to
he point that it is the most probable alternative for very small 𝛼 values (or large error term variances). To some extent, the RDM
an thus also accommodate compensatory behaviour. Unlike the MNL, the RDM can reproduce the market shares even if no one
hooses the compromise alternative. However, when estimating the model, if more observations showed a choice for Alternative 1
han Alternative 3, i.e., a preference for attribute A over attribute C, the model will assume that the value of 𝛼𝐴 is more negative
han the one of 𝛼𝐶 , which can be interpreted as a lower variance in perception of travel time than travel cost (𝜶2 being inversely
roportional to the error terms variance). As illustrated in Fig. 3, the GRDM can solve this issue using a more flexible functional
orm. Compared to the RDM, when adding attributes of relative importance, we see that the probability of alternative 1 increases,
hile the one of alternatives 2 and 3 decreases. However, with significant negative 𝛼 values, the probability of alternatives 1 and
have the same limit, as they both perform best in an attribute without being tied.
Estimation example: Under the choice scenarios from Table 3, we estimate a RDM and a GRDM choice model on this dataset.

he results are presented in Table 4. Let us assume we observe 1000 choices for each of three choice situations whose attributes
nd number of choices are given in Table 3.3

3 The number of choice situations has been increased from the previous example to allow more variation in the choice set. Models estimated on only one
6

hoice situation raised identification problems.
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Fig. 3. Example for a GRDM with equal error term variances for each attribute.

Table 3
Example of a choice situation with three alternatives and two attributes.
Situation 1 𝑇𝑇 𝑇𝐶 Situation 2 𝑇𝑇 𝑇𝐶 Situation 3 𝑇𝑇 𝑇𝐶

Alt 1: 𝑁1 = 600 1 2 Alt 1: 𝑁1 = 400 3 4 Alt 1: 𝑁1 = 700 2 3
Alt 2: 𝑁2 = 400 2 1 Alt 2: 𝑁2 = 600 4 3 Alt 2: 𝑁2 = 300 3 2
Alt 3: 𝑁3 = 0 1.2 1.2 Alt 3: 𝑁3 = 0 3.4 3.4 Alt 3: 𝑁3 = 0 2.6 2.6

Table 4
Estimation results with observed shares.
Attribute RDM GRDM (𝜶|𝝀)

Travel Time −91.75 −244.9 0.081
Travel Cost −80.16 −183.5 0.031

Final LL −2079.4 −2059.3
Adj. 𝝆2 0.370 0.376

The negative signs for the 𝜶’s make sense because they mean that choice probabilities decrease with travel costs and duration.
heir relative magnitude also makes sense, as more choices are made for the alternative with the best travel time, meaning that
his attribute is – in aggregate – more important than cost. The GRDM performs better than the RDM, which was to be expected
s the RDM is a constrained version of the GRDM with the exponents being fixed to 1. It also shows a preference for travel time
ith the exponents as 𝜆𝑇𝑇 > 𝜆𝑇𝐶 . The estimated error term variances are minimal because it must be unlikely that the compromise
lternative is considered the best performing in one attribute.

. Welfare interpretation of the disjunctive models

The disjunctive models we developed can be seen as instances of the Universal Logit (UL) model, which was first described by
cFadden et al. (1976) as a way to relax the MNL Independance of Irrelevant Alternatives (IIA). The UL allows the deterministic

tility of an alternative to be influenced by the other alternatives. As highlighted by Hess et al. (2018), this framework may not
lways be consistent with RUM, and can capture non-compensatory or semi-compensatory behaviour (see e.g., Gaundry and Dagenais
1979), Chorus (2012b)). In this section, we interpret the disjunctive models using standard econometric approaches (see Dekker
2014) for similar work on the semi-compensatory Random Regret Minimization (RRM) models). We present the GRDM as a UL
odel, and then utilise this to derive formulas for the Marginal Rates of Substitution (MRS), LogSums and elasticities. Another key

enefit of this formulation of the GRDM is that it allows the GRDM to be estimated using software packages such as Biogeme,4
pollo, etc., by entering the desired formulas for 𝜇𝑖 rather than utilities.

4 An estimation of the RDM, GRDM and combined Latent Class MNL + RDM and MNL + GRDM has been made using the Pandas Biogeme package and the
7

ublic Swissmetro dataset. The source code and data files are available on the GitHub repository: https://github.com/LauCaz/disjunctive_models.

https://github.com/LauCaz/disjunctive_models
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Table 5
Example of a choice situation with three
alternatives and two attributes.

𝑇𝑇 𝑇𝐶

Alt 1 1 2
Alt 2 2 1
Alt 3 𝑥 𝑦

Fig. 4. exp(𝜇DDM
1 ), exp(𝜇DDM

2 ) and exp(𝜇DDM
3 ) as a function of 𝑇𝑇3 and 𝑇𝐶3.

3.1. The disjunctive models as logit models

We can notice that the GRDM choice probabilities can be written using the logit formula:

𝑃GRDM
𝑖 = 𝑒𝜇𝑖

∑

𝑗∈C 𝑒𝜇𝑗
(5)

where, for each alternative, 𝜇𝑖 is defined as:

𝜇𝑖 = ln
⎛

⎜

⎜

⎝

1 −
𝐾
∏

𝑘=1

(

1 −
exp(𝛼𝑘𝑥𝑖𝑘)

∑

𝑙∈C exp(𝛼𝑘𝑥𝑗𝑘)

)𝜆𝑘
⎞

⎟

⎟

⎠

(6)

e can also find the RDM (𝜇RDM
𝑖 ) and DDM (𝜇DDM

𝑖 ) using the collapsing properties from Section 2.5. The different disjunctive models
an then be derived by assuming that individuals want to maximise their 𝜈𝑖, which is defined as:

𝜈𝑖 = 𝜇𝑖 + 𝜖𝑖

nder the assumption that all the 𝜖𝑖, 𝑖 ∈ C are iid Gumbel (0, 1) distributed, we can derive the DDM, RDM, and GRDM choice
robabilities using the logit formula. The interpretation of the quantity 𝜇𝑖 is less straightforward than for the RUM counterpart.
or the disjunctive models, 𝜇𝑖 ∈ ]−∞, 0[ is the log-probability that alternative 𝑖 performs best in at least one attribute. It is thus an
ndicator of its attractivity under a disjunctive decision rule. For instance, if 𝑖 performs best in an attribute without being tied, its
𝑖 will be close to ln(1) = 0. If, conversely, it is outperformed on every attribute, its 𝜇𝑖 will be close to ln(0) = −∞.

xamples: In the example below, let us reconsider the same choice situation as in Table 1. The only difference is that alternative 3
as variable travel time and travel cost (see Table 5).

Fig. 4 plots the exp(𝜇DDM
𝑖 ) values (we applied the exponential as some values of 𝜇DDM

𝑖 are −∞). We can see from the plot that
𝑖 is zero if and only if an alternative performs best in one attribute and −∞ otherwise, respecting the disjunctive rule.

Fig. 5 shows the exp(𝜇RDM
𝑖 ) (or exp(𝜇GRDM

𝑖 ) with 𝝀 = (1, 1)) values when we modify the travel time and travel costs of alternative
. Unlike RUMs, modifying the attributes of an alternative also modifies the 𝜇𝑖 of the other alternatives, meaning that the disjunctive
odels do not exhibit the IIA property. We see that 𝜇RDM

1 grows with 𝑇𝑇3, while it is not much impacted by 𝑇𝐶3. This is because
ravel cost is already outperformed by alternative 2, while travel time is not. A decrease in travel time for alternative 3 thus decreases
he disjunctive attractivity of alternative 1. We see the same pattern for the value of 𝜇RDM

2 , which is much more impacted by 𝑇𝐶3
han by 𝑇𝑇3. 𝜇RDM

3 is high if either 𝑇𝑇3 or 𝑇𝐶3 is high, which illustrates the disjunctive decision rule. As 𝛼𝑇𝑇 = 𝛼𝑇𝐶 , we observe a
ymmetry of the slopes concerning travel time and cost.

Fig. 6 shows the exp(𝜇GRDM
𝑖 ) values, for which we have given relative importance for travel time that was ten times smaller than

ravel cost. The only difference with the previous example (Fig. 5) is that the relative importance of travel time has been reduced.
his is translated by a lower gradient with respect to 𝑇𝑇3 for all the 𝜇GRDM

𝑖 s.

.2 Marginal rates of substitution

While the DDM can be considered a pure non-compensatory model (i.e., there is no substitution between attributes), the RDM and
RDM allow for some compensation between attributes. They could be referred to as semi-compensatory models. In this subsection,
8
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Fig. 5. exp(𝜇GRDM
1 ), exp(𝜇GRDM

2 ) and exp(𝜇GRDM
3 ) as a function of 𝑇𝑇3 and 𝑇𝐶3, 𝛼𝑇𝑇 = 𝛼𝑇𝐶 = −10, 𝜆𝑇𝑇 = 𝜆𝑇𝐶 = 1.

Fig. 6. exp(𝜇GRDM
1 ), exp(𝜇GRDM

2 ) and exp(𝜇GRDM
3 ) as a function of 𝑇𝑇3 and 𝑇𝐶3, 𝛼𝑇𝑇 = 𝛼𝑇𝐶 = −10, 𝜆𝑇𝑇 = 0.1, 𝜆𝑇𝐶 = 1.

e thus study how attributes can compensate for each other. Following the work from Chorus (2012b), an obvious candidate for
he disjunctive models MRS is, for an alternative 𝑖 ∈ C and two attributes 𝑘, 𝑙:

𝑀𝑅𝑆 𝑖
𝑘𝑙 =

𝜕𝜇𝑖∕𝜕𝑥𝑖𝑘
𝜕𝜇𝑖∕𝜕𝑥𝑖𝑙

hese are not defined for the DDM (because they are either 0 or ∞). For the GRDM, they are given by (see Appendix C for a proof):

𝑀𝑅𝑆 𝑖
𝑘𝑙 =

𝜆𝑘𝛼𝑘𝑃𝑖𝑘
𝜆𝑙𝛼𝑙𝑃𝑖𝑙

(7)

where 𝑃𝑖𝑘 = exp(𝛼𝑘𝑥𝑖𝑘)
∑

𝑙∈C exp(𝛼𝑘𝑥𝑗𝑘)
is the choice probability of 𝑖 for attribute 𝑘. These MRS are easy to interpret. For the RDM, they are linked

o the ratio of sensitivities to the different attributes, multiplied by the ratio of the probabilities of 𝑖 being chosen for these attributes.
For the GRDM, the MRS depend both on the sensitivity to attribute change and to their relative importance. We can see from Eq. (7)
that the MRS are both dependent on the attribute 𝑘 and 𝑙 values for alternative 𝑖, but also all the other alternatives from the choice set.

Examples: Using the same examples as in the previous subsection, we plot each alternative MRS between travel time and cost
(the Value of Time, or VoT) as a function of the attributes of alternative 3. These are calculated as VoT𝑖 =

𝜕𝜇𝑖∕𝜕𝑇 𝑇𝑖
𝜕𝜇𝑖∕𝜕𝑇𝐶𝑖

. Fig. 7 shows
the RDM VoT when we modify the travel time and costs of alternative 3. These were plotted using a logarithmic scale to better see
the low VoT values. We can see that the VoT of the users of alternative 1 (cheap and slow) is always smaller than the MNL output,
while it is always higher for the users of alternative 2 (expensive and fast). For both alternatives, we observe the same pattern of
increasing with 𝑇𝑇3 and decreasing with 𝑇𝐶3. The higher 𝑇𝑇3, the more a marginal change of 𝑇𝑇1 (or 𝑇𝑇2) will impact 𝜇1 (or 𝜇2),
nd the same for travel costs. For the users of alternative 3, the VoT is particularly high when 𝑇𝐶3 is high and 𝑇𝑇3 is low. In that
ase, a marginal change of 𝑇𝑇3 greatly impacts 𝜇3, as the alternative performs best in that attribute. Conversely, a marginal change
f 𝑇𝐶3 has a low impact on 𝜇3, as the alternative already performs best in another attribute. Hence, the ratio of partial derivatives
s particularly high. Using the same reverse arguments, this ratio is particularly low for low values of 𝑇𝐶3 and high values of 𝑇𝑇3.

Fig. 8 plots the VoT in the case Travel Time is parametrized as a less critical attribute than travel cost. These can be comparably
nterpreted to the RDM. The VoT is, however, 𝜆𝑇𝐶∕𝜆𝑇𝑇 = 10 times smaller than the RDM output, as the model considers Travel cost
o be a ten times more important attribute than Travel time.
9
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Fig. 7. VoTRDM
1 , VoTRDM

2 and VoTRDM
3 as a function of 𝑇𝑇3 and 𝑇𝐶3, 𝛼𝑇𝑇 = 𝛼𝑇𝐶 = −2. The green surface corresponds to the MNL VoT for the same values of

𝛼𝑇𝑇 , 𝛼𝑇𝐶 .

Fig. 8. VoTGRDM
1 , VoTGRDM

2 and VoTGRDM
3 as a function of 𝑇𝑇3 and 𝑇𝐶3, 𝛼𝑇𝑇 = 𝛼𝑇𝐶 = −2, 𝜆𝑇𝑇 = 0.1, 𝜆𝑇𝐶 = 1. The green surface corresponds to the MNL VoT for

the same values of 𝛼𝑇𝑇 , 𝛼𝑇𝐶 .

3.3 LogSum

We can also derive a log sum metric, similarly as what Chorus (2012a) did for the RRM, defined as the expected maximum value
of 𝜇𝑖 in a choice set C . It is given by:

𝐿𝑆C = E(max
𝑗∈C

𝜈𝑗 ) = ln

(

∑

𝑗∈C

𝑒𝜇𝑗
)

For the GRDM, it is thus given by:

𝐿𝑆GRDM
C

= ln
∑

𝑙∈C

⎛

⎜

⎜

⎝

1 −
𝐾
∏

𝑘=1

(

1 −
exp (𝛼𝑘𝑥𝑙𝑘)

∑

𝑗∈C exp (𝛼𝑘𝑥𝑗𝑘)

)𝜆𝑘
⎞

⎟

⎟

⎠

(8)

This LogSum is particularly high when many alternatives in the choice set verify the disjunctive decision rule and particularly
low when few alternatives in the choice set verify it. For instance, when one alternative dominates the choice set, it is the only one to
verify the disjunctive decision rule, and the LogSum is low. Conversely, if 𝐾 different alternatives perform best in the 𝐾 attributes,
the LogSum is at its highest (it is bounded between 0 and ln(𝐾)). However, this property may lead to counter-intuitive results if
we assume the LogSum as a welfare metric. Fig. 9 plots the LogSum using the example from Table 5. We see that decreasing the
cost and travel time of Alternative 3 may decrease the LogSum, as this Alternative becomes dominant in the choice set. In general,
we observe a non-monotonicity of the LogSum with respect to the attribute values, similarly to what Chorus (2012a) for the RRM
LogSum. Thus, we do not advise to use the GRDM LogSum as a welfare metric.

3.4 Elasticities

Elasticities measure the relative response of a variable (e.g., the choice probabilities) to the change of another (e.g., an attribute).
For an alternative 𝑖 of a choice set C , we define the disaggregate direct point elasticity as the elasticity of the choice probability to
the 𝑘th attribute of an alternative, it is calculated as:

𝐸𝑃𝑖
𝑥 =

𝜕𝑃𝑖 𝑥𝑖𝑘 =
𝜕 ln𝑃𝑖 𝑥𝑖𝑘 (9)
10

𝑖𝑘 𝜕𝑥𝑖𝑘 𝑃𝑖 𝜕𝑥𝑖𝑘
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Fig. 9. LogSum given that 𝛼𝑇𝑇 = 𝛼𝑇𝐶 = −10, 𝜆𝑇𝑇 = 𝜆𝑇𝐶 = 1.

where 𝑃𝑖 is the probability of alternative 𝑖 ∈ C and 𝑥𝑖𝑘 is its 𝑘th attribute. Similarly, disaggregate cross point elasticities are calculated
as follows:

𝐸𝑃𝑖
𝑥𝑗𝑘 =

𝜕𝑃𝑖
𝜕𝑥𝑗𝑘

𝑥𝑗𝑘
𝑃𝑖

(10)

where 𝑗 ∈ C is another alternative. The general formula for the direct and cross elasticities is given by (see Appendix C for a proof):

𝐸𝑃𝑖
𝑥𝑗𝑘 =

𝜕𝑃𝑖
𝜕𝑥𝑗𝑘

𝑥𝑗𝑘
𝑃𝑖

= 𝜆𝑙𝛼𝑙𝑃
−1
𝑖 𝑥𝑗𝑘

∑

𝑞∈C

(𝛿𝑖𝑞 − 𝑃𝑖)
𝑃𝑞𝑙

1 − 𝑃𝑞𝑙
(1 − 𝑃𝑞)(𝛿𝑞𝑗 − 𝑃𝑞𝑙) (11)

here 𝑃𝑗𝑙 = exp(𝛼𝑙𝑥𝑗𝑙)∕
∑

𝑞∈C exp(𝛼𝑙𝑥𝑞𝑙).

The need for multiple decision rules

This section demonstrates the need to consider multiple decision rules when capturing choice behaviour over a series of situations.
pecifically, we demonstrate how compensatory choice models (RUMs) can struggle to capture non-compensatory choice behaviour
nd vice versa. Throughout the section, we demonstrate behaviour for the example in Table 1, where the third alternative is a
ompromise between the first two alternatives.

.1 Compensatory choice models cannot always capture non-compensatory choice behaviour

We first show that a non-compensatory choice strategy can violate necessary conditions for a RUM, thereby showing that a RUM
an struggle to capture non-compensatory behaviour. Block (1974) and Marschak (1959) give a set of testable properties of RUMs,
hich are summarised in Batley and Hess (2016). One of them is regularity: enlarging the set of feasible alternatives decreases the

hoice probabilities of the alternatives in the initial set. If 𝐶0 ⊆ C , let us define 𝑝𝐶0
(𝑖) = P(𝑈𝑛(𝐱𝑖) = max𝑗∈𝐶0

𝑈𝑛(𝐱𝑗 )) for all 𝑖 ∈ 𝐶0.
he regularity property can be defined as:

𝐶1 ⊆ 𝐶0 ⊆ C ⟹ ∀𝑖 ∈ 𝐶1, 𝑝𝐶1
(𝑖) ≥ 𝑝𝐶0

(𝑖) (12)

Assume that an individual faces the choice situation presented in Table 1, and adopts the following non-compensatory choice
trategy:

1. They may choose an alternative if it is the best in at least one attribute
2. If there is a tie, they will choose the alternative whose sum of attributes is the smallest
3. If, again, there is a tie, they will choose any alternative with equal probability

ssuming that individuals may not always be choosing from the full choice set C , but that one alternative may be unavailable.
nder this decision strategy, we can calculate the choice probabilities under the availability constraints (Table 6).

We observe, for instance, that 𝑝{1,2,3}(1) > 𝑝{1,3}(1), and that 𝑝{1,2,3}(2) > 𝑝{2,3}(2), which is inconsistent with the regularity property
rom Eq. (12), and thus with utility maximization. This means that making alternative 2 unavailable will make alternative 3 more
11

ompetitive against alternative 1. This strategy, however, will still be consistent with the disjunctive decision rule.
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Table 6
Observed shares for given choice sets, assuming the decision
makers use a disjunctive strategy.
𝐶 𝑝𝐶 (1) 𝑝𝐶 (2) 𝑝𝐶 (3)

{1, 2, 3} 0.5 0.5 0
{1, 2} 0.5 0.5 –
{1, 3} 0 – 1
{2, 3} – 0 1

Table 7
Estimation results with observed shares.
Attribute MNL RDM GRDM (𝜶|𝝀)

Travel Time 2.66 −91.75 −244.9 0.081
Travel Cost 3.02 −80.16 −183.5 0.031

Final LL −3012.5 −2079.4 −2059.3
Adj. 𝝆2 0.087 0.370 0.376

We next demonstrate how estimating a RUM on a dataset where decision-makers employ a non-compensatory strategy can
ead to counter-intuitive results. Returning to the small choice example from Table 1, we demonstrate how estimating MNL
n a dataset violating utility maximization will not converge to meaningful estimates. Imagine we estimate a linear MNL on a
ataset where people adopt the non-compensatory decision strategy described above. The utilities can be written, for 𝑖 = {1, 2, 3},

𝑈𝑖 = 𝑉𝑖+𝜖𝑖 = 𝜃𝑇𝑇 𝑇𝑇𝑖+𝜃𝑇𝐶𝑇𝐶𝑖+𝜖𝑖. If we observe 𝑁1 > 0 choices of 1 and 𝑁2 > 0 choices of alternative 2, but no choice of alternative
3, 𝑁3 = 0, we get the following log-likelihood function:

𝐿𝐿(𝜃𝑇𝑇 , 𝜃𝑇𝐶 ) =
𝑁1
∑

𝑛=1
log(𝑃1(𝜃𝑇𝑇 , 𝜃𝑇𝐶 )) +

𝑁2
∑

𝑛=1
log(𝑃2(𝜃𝑇𝑇 , 𝜃𝑇𝐶 ))

= 𝑁1 log(𝑃1) +𝑁2 log(𝑃2)

= 𝑁1𝜃𝑇𝐶 +𝑁2𝜃𝑇𝑇 − (𝑁1 +𝑁2) log(𝑒𝜃𝑇𝑇 + 𝑒𝜃𝑇𝐶 + 𝑒(0.2𝜃𝑇𝑇 +0.2𝜃𝑇𝐶 ))

Maximizing the likelihood function means setting the partial derivatives to 0, i.e.,
𝜕𝐿𝐿
𝜕𝜃𝑇𝑇

= 0 ⟺ 𝑁2 − (𝑁1 +𝑁2)(𝑃2 + 0.2𝑃3) = 0

𝜕𝐿𝐿
𝜕𝜃𝑇𝐶

= 0 ⟺ 𝑁1 − (𝑁1 +𝑁2)(𝑃1 + 0.2𝑃3) = 0

Moreover, we have: 𝑃1 + 𝑃2 + 𝑃3 = 1

hese three equations give that 𝑃1 = 𝑁1∕(𝑁1 +𝑁2), 𝑃2 = 𝑁2∕(𝑁1 +𝑁2) and that 𝑃3 = 0 (i.e., the likelihood estimator reproduces
he observed shares). It follows that 𝑉1 − 𝑉3 and 𝑉2 − 𝑉3 must tend to +∞, while 𝑉1 and 𝑉2 must keep values consistent with the

observed shares, i.e., 𝑉1 − 𝑉2 = ln
(

𝑁1∕𝑁2
)

, which gives the following system of equations that 𝜃𝑇𝑇 and 𝜃𝑇𝐶 should verify:

−0.2𝜃𝑇𝑇 + 0.8𝜃𝑇𝐶 = +∞
0.8𝜃𝑇𝑇 − 0.2𝜃𝑇𝐶 = +∞

𝜃𝑇𝑇 − 𝜃𝑇𝐶 = ln
(

𝑁1
𝑁2

)

⎫

⎪

⎬

⎪

⎭

This system has no solution. When performing an estimation of the MNL on observed choices for which no one ever chooses
the compromise alternative, the estimated parameters may lead to non-sensical estimates. Let us estimate a MNL with the observed
choices from Table 3. The model estimates are given in Table 7. We observe that the MNL accommodates the absence of choice for the
compromise alternative as a preference for more travel time and more travel cost. In contrast, it should be interpreted as a decision
strategy for which individuals are averse to making compromises. Moreover, the MNL is outperformed by the non-compensatory
RDM and GRDM, with its fit similar to the Null model.

While this example is hypothetical, this non-compensatory choice behaviour occurs in real-life situations. Some Stated Preference
experiments (e.g., McCausland et al. (2020), Sælensminde (2006)) highlighted that, with high confidence, people were using decision
strategies that violated utility maximization. Other examples of ways RUM assumptions are violated can be found in the literature
(see, e.g. Hess et al. (2018) for a review). Both the RDM and GRDM may also violate the RUM regularity property from Eq. (12)
for some values of parameters.

4.2 Non-compensatory models cannot always capture compensatory choice behaviour

Conversely to what was hypothesised in the previous subsection, we now test if the GRDM is consistent with choice behaviour
if decision-makers mostly choose compromise alternatives (for instance, in the example from Table 1). Using the example from
12

Table 1, the probability of alternative 3 has an upper bound that is strictly lower than 1. The probability of alternative 1 being
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Table 8
Final likelihood when estimating MNL and GRDMs with different market share,
using the example from Table 3 with different shares of observations.
𝑁1 𝑁2 𝑁3 𝐿𝐿𝑀𝑁𝐿 𝐿𝐿𝐺𝑅𝐷𝑀

1700 1300 0 −3012.5 −2059.3
1200 900 900 −3271.5 −3258.9
300 300 2400 −2161.8 −2840.6

chosen for at least one attribute is higher than 1 − (1 − 1∕3)𝜆1 (1 − 0)𝜆2 = 1 − (2∕3)𝜆1 , because it has a probability of at least 1∕3 of
being chosen for its travel time, as it is the best performing from the choice set. For the same reason, the probability of alternative
2 being chosen for at least one attribute is higher than 1 − (2∕3)𝜆2 . The probability of alternative 3 being chosen for at least one
attribute is lower than 1− (1− 1∕2)𝜆1 (1 − 1∕2)𝜆2 = 1− (1∕2)𝜆1+𝜆2 , as it is not the best in travel time (and thus has a lower probability
than alternative 1 to be chosen for this attribute) nor in travel cost. Consequently, each alternative probability respects the following
inequalities:

𝑃GRDM
1 ≥

1 − (2∕3)𝜆1

3 − (2∕3)𝜆1 + (2∕3)𝜆2 + (1∕2)𝜆1+𝜆2

𝑃GRDM
2 ≥

1 − (2∕3)𝜆2

3 − (2∕3)𝜆1 + (2∕3)𝜆2 + (1∕2)𝜆1+𝜆2

𝑃GRDM
3 ≤

1 − (1∕2)𝜆1+𝜆2

3 − (2∕3)𝜆1 + (2∕3)𝜆2 + (1∕2)𝜆1+𝜆2
(13)

Maximizing Eq. (13) with respect to 𝜆1 and 𝜆2 gives that 𝑃GRDM
3 ≤ 0.6304. This maximum is attained when 𝜆1 and 𝜆2 approach

. Conversely, a linear MNL can allocate a probability to alternative 3 higher than 1−𝛿 for any 𝛿 ∈ ]0, 1[ e.g., using a linear additive
pecification with high values of 𝜃𝑇𝑇 and 𝜃𝑇𝐶 . Thus, if decision-makers adopt compensatory behaviour and mainly (or only) choose
he compromise alternative, MNL will have a better fit than the RDM or the GRDM. In a nutshell, compensatory choice models
ail when explaining some non-compensatory choice strategies, and non-compensatory choice models such as the GRDM fail when
xplaining compensatory choice strategies. However, different decision-makers or choice situations may warrant using either of
hese two strategies in real-life choice situations. Thus, combining compensatory and non-compensatory decision rules in a single
odel may be a practical approach to capture both of them.

Combination of decision rules in a single model

In the examples presented throughout the last section (see Tables 1 and 5), we assumed that we observed choices where the
ompromise alternative was never or usually chosen. In practice, when observing a dataset, it is impossible to know if individuals’
hoices result from using different decision rules or heterogeneous preferences. An estimation under different market shares (see
able 8 for final log-likelihoods) on the example shows that the MNL and the GRDM better explain different observed shares,
epending on how many times the compromise alternative was chosen.

If these two models seem to capture different types of choice behaviour, it is likely that combining the two decision rules into
single choice model will lead to an improved fit. In this section, we aim to combine the two decision rules into a choice model

sing a LCCM.

atent class choice models (LCCMs): The LCCM was first developed by Kamakura and Russell (1989). They assume that discrete
lasses can model heterogeneity between individuals or observations, each class representing different tastes or decision rules. The
lass membership being unobserved, it is modelled as a latent variable, modelled probabilistically. This model can be seen as a
ixed Logit with a finite mixing distribution but can also accommodate various decision rules (as did Hess et al. (2012)). The

CCM probabilities, for an alternative 𝑖 ∈ C , is given by the sum over all classes of the joint probability of each model and class,
.e.,

P(𝑦𝑖𝑛 = 1) =
𝑀
∑

𝑚=1
P(𝑦𝑖𝑛 = 1, 𝑚) =

𝑀
∑

𝑚=1
P(𝑦𝑖𝑛 = 1 ∣ 𝑚)P(𝑚)

If 𝑃𝑚
𝑖 (𝛽𝑚) ∶= P(𝑦𝑖𝑛 = 1 ∣ 𝑚) is the probability of alternative according to a model 𝑚 with parameters 𝛽𝑚 and 𝝅 = (𝜋1 ⋯𝜋𝑀−1) ∈

0, 1]𝑀−1 are the class allocation probabilities, which the model must estimate, 𝑃𝑖 ∶= P(𝑦𝑖𝑛 = 1), can be rewritten as:

𝑃𝑖 =
𝑀
∑

𝑚=1
𝜋𝑚𝑃

𝑚
𝑖 (𝛽𝑚),

𝑀
∑

𝑚=1
𝜋𝑚 = 1

Likelihood: Let us assume we observe 𝑁 individuals, where individual 𝑛 has 𝑇𝑛 observations. For an observation 𝑡 ∈ {1,… , 𝑇𝑛},
e note 𝑗𝑛𝑡 ∈ C𝑛𝑡 the index of the chosen alternative in the choice set C𝑛𝑡. The log-likelihood function can be written as:

𝐿𝐿𝐿𝐶 (𝛽1,… , 𝛽𝑀 ) =
𝑁
∑

𝑇𝑛
∑

log

( 𝑀
∑

𝜋𝑚𝑃
𝑚
𝑗𝑛𝑡
(𝛽𝑚)

)

,
𝑀
∑

𝜋𝑚 = 1 (14)
13

𝑛=1 𝑡=1 𝑚=1 𝑚=1



Journal of Choice Modelling 52 (2024) 100510L. Cazor et al.

t

a

T

With this formulation, we do not assume that the same individual always uses the same decision rule (i.e., is always allocated
o the same class). This model thus allows for intra-personal heterogeneity.
Estimation: Standard Maximum Likelihood Estimation (MLE) procedures can be used to estimate parameters of the LCCM,

i.e. by adopting some optimisation algorithm that maximises the LCCM likelihood formulation in Eq. (14). For the experiments
in this paper, we utilised the L-BFGS-B minimisation algorithm, where we minimise the log-likelihood. For accuracy and to speed
up estimation times, we used the analytical gradient computation (see Appendix B). LCCMs are not convex models, meaning the
traditional gradient-based MLE may converge to local optima (Train, 2008). To deal with this problem, we used several random
starting values for the MLE algorithm and showed the model with the best likelihood, similarly as Hess et al. (2012). As the models
contained only two classes, the estimates were relatively stable.

5.1 Posterior analysis

Calculating the class allocation posterior probabilities is possible using Bayes’ theorem. This posterior reflects the probability of
n observation being explained by one of the models. The posterior class membership probability P(𝑚 ∣ 𝑦𝑗𝑛𝑡 = 1) of an observation

𝑗𝑛𝑡 ∈ C𝑛𝑡 is given by:

P(𝑚 ∣ 𝑦𝑗𝑛𝑡 = 1) =
P(𝑦𝑗𝑛𝑡 = 1 ∣ 𝑚)P(𝑚)

P(𝑦𝑗𝑛𝑡 = 1)
=

P(𝑦𝑗𝑛𝑡 = 1 ∣ 𝑚)P(𝑚)
∑

𝑚′ P(𝑦𝑗𝑛𝑡 = 1 ∣ 𝑚′)P(𝑚′)

his means that for observation 𝑡 of individual 𝑛, the class membership posterior probability for class 𝑚0 can be calculated as:

�̃�𝑗𝑛𝑡
𝑚0

=
�̂�𝑚0

𝑃𝑚0
𝑗𝑛𝑡

(𝛽𝑚0
)

∑𝑀
𝑚=1 �̂�𝑚𝑃

𝑚
𝑗𝑛𝑡
(𝛽𝑚)

(15)

where �̂�, 𝛽1,… , 𝛽𝑀 are the LCCM estimated parameters.
We can derive the expected individual MRS for each observation E

[

MRS𝑗𝑛𝑡𝑘𝑙

]

based on the posterior class membership probabil-
ities:

E
[

MRS𝑗𝑛𝑡𝑘𝑙

]

=
𝑀
∑

𝑚=1
�̃�𝑗𝑛𝑡
𝑚0

MRS𝑗𝑛𝑡𝑘𝑙,𝑚 (16)

where MRS𝑗𝑛𝑡𝑘𝑙,𝑚 is the calculated marginal rate of substitution between two attributes 𝑘 and 𝑙 of the chosen alternative according to
model 𝑚.

6 Case studies

In this section, we estimate models developed in this paper on two different route choice datasets. Route choice is a complex task
to model, as, for example, transport networks allow for many different route alternatives between origin and destination. Travellers
will typically compare a subset of these routes but may not have the time or knowledge to weigh all their attributes. Route choice
has thus the potential to exhibit multiple decision rules across and among the users, which will be explored by the combined LCCMs
estimations.

6.1 Case study 1: Bicycle route choice in the greater copenhagen area

Our first case study models cyclists’ route choices in the Copenhagen Metropolitan area.

6.1.1 The data
We utilised a large-scale crowdsourced dataset of bicycle GPS trajectories received from Hōvding.5 The original dataset covers

the entire Greater Copenhagen Area (see Fig. 10) in the period from the 16th September 2019 until 31st May 2021. For a detailed
description of the data, the bicycle network, and the algorithms applied for data processing, we refer to the supplementary
information in Fosgerau et al. (2023). The final dataset for model estimation consists of a subset of this dataset containing 4355
trips made by 4355 cyclists.

The disaggregated network consists of 420,973 directed links and 324,492 nodes and relies on open-source network data from
Open Street Map (OSM6). The OSM network is a free editable map of the world based on crowdsourced data and manual edits from
millions of private users. It contains attributes about road surface (asphalt, gravel, or cobblestones), road importance (e.g., large
road, residential road...), type of bicycle infrastructure (e.g., bike lane, segregated bike path).

5 https://hovding.com
6 www.openstreetmap.org
14
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Fig. 10. Heatmaps of anonymised GPS trajectories from Hōvding.

Choice set generation: The method used for the choice set generation uses a novel approach. First, it uses the stochastic approach
(Nielsen, 2004; Bovy and Fiorenzo-Catalano, 2007), drawing a large number of routes on the network between each OD. These
routes are then filtered with a local optimality criterion (Abraham et al., 2013), defined as the minimum length of a subpath that
is not the shortest path. This criterion constrains the smoothness of the routes and their mutual overlap. Appendix D gives a more
detailed description of the choice set generation method.

6.1.2 Model specification
The attributes of an alternative 𝑖 of a choice set C can be described as:

• 𝐿𝑖 (km): total route length
• 𝐸𝑖 (m): route elevation gain when steepness > 3.5%
• No𝑖 (km): length of route segments where no bicycle infrastructure available
• 𝑆𝑖 (km): route length on a non-asphalt surface (i.e. gravel, cobblestones)
• 𝑊𝑖 (km): route length using wrong ways (cycling against traffic).

Path-Size correction: The Independence of Irrelevant Alternatives (IIA) property of RUMs is usually violated in route choice, as
different routes from a choice set are often correlated through sharing links. Therefore, the route alternatives are not independent. It
is well-known that the MNL RUM cannot account for route correlation, and numerous route choice models have been developed to
address this; see, e.g., Duncan et al. (2020) for a recent review of such models. Due to the computational complexities in capturing
route correlation on detailed networks (such as in this case study), a common approach has been to include heuristic path size
correction factors within the deterministic utilities, i.e. with the Path-Size Logit model (Ben-Akiva and Bierlaire, 1999).

The Path-Size term for an alternative 𝑖 ∈ C is defined as:

𝛾𝑖 =
∑

𝑎∈𝛤𝑖

𝑙𝑎
𝐿𝑖

1
∑

𝑗∈C 𝛿𝑎𝑗
,

where 𝛤𝑖 is the set of links for alternative 𝑖, 𝑙𝑎 is the length of link 𝑎, 𝐿𝑖 is the length of alternative 𝑖, and 𝛿𝑎𝑗 equals 1 if 𝑗 includes link
𝑎 and 0 otherwise. This correction term penalises the utility of alternatives that overlap a lot, as they may not be considered different
by the decision maker. The GRDM model does not have the same IIA property as the MNL, and it has yet to be explored what the
correlation between alternatives means in the context of disjunctive models, as well as non-compensatory models in general, so we
leave this to be investigated in future research.

We estimated the following models (all combined models are combined with a two-class LCCM at the observation level):

1. A simple MNL, with the following deterministic utility specification, for 𝑖 ∈ C :

𝑉𝑖 = 𝛽𝐿 × 𝐿𝑖 + 𝛽𝐸 × 𝐸𝑖 + 𝛽No × No𝑖 + 𝛽𝑆 × 𝑆𝑖 + 𝛽𝑊 ×𝑊𝑖 + 𝛽PS ln(𝛾𝑖) (17)

2. Combination of two MNL, called MNL + MNL, using the same specification (Eq. (17)) for both MNL classes.
3. A simple GRDM, including every attribute
15
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Table 9
Model results (first part). The attributes are Length: route length; Elev. Up: vertical elevation gain when steepness is over 3.5%; No: route length
without bicycle lane or path; Surf. Other : route length on a non-asphalt surface; Wrong Way : route length on wrong ways. We removed the
insignificant parameters, which are marked with a dash.
Attribute MNL MNL + DDM MNL + RDM GRDM MNL + GRDM

Model – – MNL RDM 𝜶 𝝀 MNL GRDM (𝜶|𝝀)

Length (km) −29.3 −34.41 −41.6 −405 −86.75 0.0032 −37.09 −238.09 0.280
Elev. Up (m) −0.062 −0.0860 −0.132 −0.177 – – −0.267 – –
Surf. Other (km) −4.59 −4.546 −7.02 −22.1 −31.93 0.0443 −7.506 −20.36 0.046
BikeNo (km) −4.65 −5.411 −6.58 −12.0 −11.55 0.0212 −6.730 −7.971 0.152
Wrong Way (km) −8.47 −10.25 −13.4 −10.2 −32.7 0.04 −14.25 −6.958 0.116
ln(PS) 1.09 1.208 1.39 1.322
𝜋𝑚 (first model) 0.861 0.807 0.726

Sample size 4,355 4,355 4,355 4,355 4,355
Nb. of parameters 6 7 12 8 15
Final LL −12,666 −11,973 −11,721 −14,127 −11,514
Adj. 𝜌2 0.471 0.500 0.510 0.410 0.519
BIC 25,382 23,971 23,543 28,281 23,083

4. Combination of an MNL and a deterministic disjunctive model, called MNL + DDM, using the specification from Eq. (17) for
the MNL part.

5. Combination of a MNL and a RDM, called MNL + RDM, using the specification from Eq. (17) for the MNL part
6. Combination of a MNL and the GRDM, called MNL + GRDM, using the specification from Eq. (17) for the MNL part
7. Combination of two GRDM, called GRDM + GRDM

The combined MNL + MNL model allows for benchmarking the newly developed model and comparing models with the same
number of classes.

6.1.3 Results
First, before we estimated the models on the dataset, simulation estimation experiments were conducted, similarly to Duncan

et al. (2020), Duncan et al. (2022). Their purpose was to assess whether the GRDM could be successfully estimated and, specifically,
to investigate whether there may be any identification issues between the inverse standard deviation of the error terms (𝜶) and
the exponents (𝝀), as both may have similar effects on choice probabilities. To test this, we conducted the following steps. We
first assumed true model parameters, then drew observations on choice situations from this case study according to the GRDM
probabilities and the assumed true parameters. We then re-estimated the GRDM on this generated choice data. The simulation
estimation experiments were repeated 100 times, where the results showed no identification problems, i.e., the model could replicate
the true values for 𝜶 and 𝝀.

We now proceed to display results from the estimation work on the dataset. To evaluate the performance of the models, the
ollowing goodness-of-fit metrics have been calculated: the adjusted McFadden rho-squared (McFadden, 1974a) and the Bayesian
nformation Criterion (BIC, Schwarz (1978)), given by

Adj. 𝜌2 = 1 −
𝐿𝐿(𝛽) − 𝑘
𝐿𝐿(0)

BIC = 𝑘 ln(𝑁) − 2𝐿𝐿(𝛽)

where 𝑁 is the number of observations in the model, 𝑘 is the number of estimated parameters, 𝐿𝐿(𝛽) is the model final log-likelihood,
and 𝐿𝐿(0) is the likelihood of the null model. Additionally, significance t-tests were conducted for each estimated parameter. For
the MNL parameters and the GRDM exponents (i.e., 𝝀), the estimated parameters were tested against 0. For the GRDM variances
(i.e., 𝜶), the estimated parameters were also tested against ∞, i.e. ∀𝑘, 1∕𝛼𝑘 was tested against 0. These tests were computed by
alculating the Hessian matrix of the likelihood function around the value of the estimates, performing a numerical differentiation
f the analytical gradients (see Appendix B for the calculation of the analytical gradient). The models were first estimated using
he full specification. Then, insignificant parameters were removed, and the models were re-estimated. The results are presented in
ables 9 and 10.

Each model is nested into one another (the RDM collapses to the DDM by setting all its parameters to +∞, and the GRDM
ollapses to the RDM by setting all its exponents to 1), so we can perform Likelihood Ratio Tests (LRTs) on any pair of models:

MNL + MNL vs. MNL ∶ P
[

𝜒2(6) < −2(𝐿𝐿𝑀𝑁𝐿 − 𝐿𝐿𝑀𝑁𝐿+𝑀𝑁𝐿)
]

= 0

MNL + DDM vs. MNL ∶ P
[

𝜒2(1) < −2(𝐿𝐿𝑀𝑁𝐿 − 𝐿𝐿𝑀𝑁𝐿+𝐺𝑅𝐷𝑀 )
]

= 0

MNL + RDM vs. MNL + DDM ∶ P
[

𝜒2(5) < −2(𝐿𝐿𝑀𝑁𝐿+𝐷𝐷𝑀 − 𝐿𝐿𝑀𝑁𝐿+𝑅𝐷𝑀 )
]

= 5.43 × 10−107

MNL + RDM vs. MNL + GRDM ∶ P
[

𝜒2(5) < −2(𝐿𝐿𝑀𝑁𝐿+𝐺𝑅𝐷𝑀 − 𝐿𝐿𝑀𝑁𝐿+𝑅𝐷𝑀 )
]

= 1.42 × 10−87

The LRTs show that including multiple classes can improve the model fit significantly. Furthermore, adding random error
16
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Table 10
Model results (part 2), after removing the insignificant parameters, which are marked with a dash.
Attribute MNL + MNL GRDM + GRDM

Model MNL 1 MNL 2 GRDM 1 (𝜶|𝝀) GRDM 2 (𝜶|𝝀)

Length (km) −67.04 −9.497 −233.0 0.0569 −56.16 10.64
Elev. Up (m) −0.620 – – – – –
Surf. Other (km) −9.353 −2.026 −27.88 0.00531 – –
BikeNo (km) −5.750 −3.942 −11.75 0.0911 – –
Wrong Way (km) −13.43 −5.282 −19.63 0.0342 −9.22 0.00898
ln(PS) 1.873 0.806
𝜋𝑚 (first model) 0.677 0.765

Sample size 4355 4,355
Nb. of parameters 12 13
Final LL −11,903 −13,907
Adj. 𝝆2 0.502 0.419
BIC 23,915 27,861

Table 11
Average log-likelihood on the cross-validation sets.
Model MNL GRDM MNL + MNL MNL + GRDM GRDM + GRDM

Average LL −6,359.11 −7109.28 −6001.14 −5,769.20 −7004.43

rho-squared and BIC metrics confirm this trend. When estimating a Latent Class model with each class using a different decision
rule, Hancock and Hess (2021) highlighted the risk of these models uncovering taste heterogeneity rather than heterogeneity in
decision rule, and showed evidence of this pattern in RUM-RRM mixtures. However, the better fit of the MNL + GRDM than the
MNL + MNL suggests that this model captures not only taste heterogeneity but heterogeneity in the decision rule.

Even when using a disjunctive rule, cyclists, in aggregate, tend to favour some attributes over others. It is an essential finding that
hile the GRDM alone and two-class perform poorly, its combination with MNL is the best fit for the data. This provides empirical

upport for the hypothesis that behaviour over a series of choice situations may be best captured by considering that individuals
ight adopt different decision rules in different choice situations, such as compensatory or non-compensatory.

We see from Tables 9 and 10 that the model estimates for the class allocation probabilities (𝜋𝑀𝑁𝐿) give a higher share for the
MNL than for the non-compensatory counterpart (86.1% for the MNL + DDM, 80.7% for the MNL + RDM, and 72.6% for the MNL
+ GRDM). Hence, most observed choices are better explained by utility maximization than by a disjunctive decision rule. However,
adding flexibility to the disjunctive models, using random error terms and exponents for attributes, allows the non-compensatory
part to explain a larger share of cyclists’ choices.

The significant parameters’ signs and magnitudes all make sense. For instance, MNL will predict a dispreference for routes without
bicycle infrastructure and are willing to detour around 15.9% to avoid them according to the MNL, or 18.1% according to the MNL
part of the MNL + GRDM model. In general, in combined models, the MRS for Length of the MNL component are higher than in
non-combined models, meaning that the GRDM captures some of the observations that strongly prefer Length and are insensitive
to the other attributes. In contrast, the MNL part captures more individuals with a stronger preference for short distances.

For the GRDM component of the MNL + GRDM model, the 𝜶 parameter shows a lower variance for the length error term than
for the other attributes. This indicates a minor variability in how people perceive the shortest route as the best performing one
compared, for instance, to the amount of unprotected bicycle infrastructure. It makes sense from a behavioural point of view, as
decision-makers probably have better knowledge on the total route distance than on other attributes. Regarding attribute relative
importance (the 𝝀 parameter), we see that length is the most decisive attribute, followed by length on bicycle infrastructure, wrong

ays, and on a non-asphalt surface. Elevation gain does not influence choice behaviour for the GRDM part.

.1.4 Model validation
In this subsection, we assess the generalizability of the different estimated models to ensure these do not overfit the data. We

ested each model’s forecasting ability by performing a Monte Carlo cross-validation. To do so, we repeated 𝑁 = 10 times the
following steps:

1. Randomly split the original dataset 𝑆 into a training 𝑆𝑡 and validation set 𝑆𝑣 (|𝑆𝑡| = |𝑆𝑣| = 0.5|𝑆|).
2. Estimate all the models on the training set 𝑆𝑡, obtain, for each model 𝑚, the training parameters 𝛽𝑡𝑚.
3. Calculate, for each model 𝑚, the log-likelihood on the validation set, LL = ∑

𝑥∈𝑆𝑣
log𝑃𝑚

𝑖𝑥
(𝛽𝑡𝑚)

here 𝑖𝑥 is the chosen alternative index for observation 𝑥, and 𝑃𝑚
𝑖𝑥
(𝛽𝑚) is its choice probability according to the model 𝑚 and its

estimated parameters 𝛽𝑡𝑚. Fig. 11 and Table 11 show the cross-validation results. First, we see that the predictive ability of the models
is similar to what indicated the model fit results. Accounting for heterogeneous decision rules allows for a better model generalization
than not doing so and a better one than only accounting for taste heterogeneity. The MNL + GRDM was the best-performing model
17

in all experiments, suggesting that this decision rule combination is the most promising.
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Fig. 11. Cross-validation results.

Fig. 12. Left: Weight of the GRDM class as the number of MNL classes increases. Right: Final log-likelihood and BIC in function of the number of MNL classes.

6.1.5 Decision rule heterogeneity, taste heterogeneity, or non-linear preferences?
While the MNL + GRDM outperforms the two-class MNL in terms of fit and prediction ability, it is hard to know if these

mprovements come from the capture of different tastes or non-linear preferences by the GRDM. One hypothesis could be that
xtreme tastes or non-linear sensitivities not captured well by the MNL class could have been better captured by the GRDM class.
his subsection tests this hypothesis by estimating several additional models, including taste heterogeneity or non-linear sensitivities.
Decision rule or taste heterogeneity?
First, we try to disentangle between decision rule and taste heterogeneity by estimating models that account for both, i.e., we

ombine several MNL classes and one GRDM in a Latent Class framework. This allows testing the impact of adding more MNL
lasses on the GRDM’s weight in the Latent Class model. If this is the case, it would mean that the GRDM may have captured
ome compensatory behaviour with different tastes. We kept increasing the number of MNL classes until the model BIC stopped
ecreasing and added up to eight MNL classes, so nine classes in total. It is important to note that adding more classes in LCCMs
otentially increases the number of local optima for the log-likelihood function. The more classes, the more times we had to repeat
he estimations with random initial conditions. Fig. 12 summarises the evolution of the model fit and the GRDM weight as the number
f classes increases. We can observe that adding more MNL classes decreases the GRDM weight. This suggests that the GRDM possibly
aptured part of what can also be described as taste heterogeneity. We also observe, though, that the GRDM weight decrease slows
own when adding more than five MNL classes, which suggests that there is a significant amount of observations (around 13%)
hat a utility-maximization decision rule cannot explain, while a disjunctive decision rule can. Moreover, we noticed that some MNL
lasses also showed a few positive coefficients, i.e., sensitivities to attributes like elevation gain or absence of bicycle infrastructure.
hese parameters, which are expected to be negative, can also allow MNL to accommodate non-compensatory behaviour, as we
ighlighted in Section 4.
18
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Table 12
Model estimates for the models which transformed the ‘‘Length’’ attribute with a Logarithm or Box–Cox function in the MNL
component.

MNL (log Length) MNL (Box–Cox Length) MNL (Box–Cox Length) + GRDM

Model MNL GRDM (𝜶|𝝀)

Length (km) −49.96 −43.30 −46.63 −249.89 0.3635
Elev. Up (m) −0.0704 −0.0562 −0.1189
Surf. Other (km) −4.332 −4.436 −7.133 −51.33 0.0493
BikeNo (km) −4.497 −4.496 −6.446 −8.500 0.1643
Wrong Way (km) −8.135 −8.210 −13.024 −6.394 0.1492
ln(PS) 0.7479 1.045 1.215
Box–Cox parameter 𝜇 – 0.4313 0.5509
𝜋𝑚 0.756

Nb of parameters 6 7 16
Final LL −12,473 −12,334 −11,452
Adj. 𝝆2 0.4790 0.4847 0.5212
BIC 24 967.83 24 693.47 22962.22

Decision rule heterogeneity or non-linear preferences?
We estimated models incorporating a logarithmic, or Box–Cox transformed ‘‘Length’’ attribute for the MNL component to

isentangle between decision rule heterogeneity. We tested the influence of this inclusion on the fit and weight of the GRDM in a
ombined model. The Box–Cox transformation (Box and Cox, 1964) is defined as:

Box–Cox(𝑥, 𝜇) =
{ 𝑥𝜇−1

𝜇 if 𝜇 ≠ 0

ln(𝑥) if 𝜇 = 0

For the logarithmic model, the MNL deterministic utility is thus given by:

𝑉𝑖 = 𝛽𝐿 × ln(𝐿𝑖) + 𝛽𝐸 × 𝐸𝑖 + 𝛽No × No𝑖 + 𝛽𝑆 × 𝑆𝑖 + 𝛽𝑊 ×𝑊𝑖 + 𝛽PS ln(𝛾𝑖)

or the Box–Cox models, the MNL component deterministic utility is thus given by:

𝑉𝑖 = 𝛽𝐿 × Box–Cox(𝐿𝑖, 𝜇) + 𝛽𝐸 × 𝐸𝑖 + 𝛽No × No𝑖 + 𝛽𝑆 × 𝑆𝑖 + 𝛽𝑊 ×𝑊𝑖 + 𝛽PS ln(𝛾𝑖)

here 𝜇 is a parameter to estimate. Table 12 shows the estimation results from the non-linearly specified models. We compare
hese results from the baseline models in Table 9. The MNL models using a logarithmic or Box–Cox specification for the ‘‘Length’’
ttribute outperformed the ones that assumed a linear sensitivity. However, the improvement in fit is much lower than the one of
dding a GRDM component, which implies that the GRDM captures more than this non-linearity. Moreover, combining a GRDM
ith a Box–Cox-specified MNL drastically improves the model fit compared to a single Box–Cox-specified MNL. The GRDM weight

s similar to the MNL + GRDM from Table 9. These observations imply that the GRDM does not pick up non-linear preferences, but
ather decision rule heterogeneity.

.1.6 Posterior analysis
We can calculate the posterior class membership probabilities of the MNL + GRDM combination to explore the choice situations

n which the GRDM or the MNL explain the choices best.
Willingness To Detour (WTD): We define a cyclist’s willingness to detour for another attribute as the MRS of an attribute

ith length. If an attribute’s WTD is positive, it corresponds to the relative amount of length one is willing to cycle to avoid this
ttribute (e.g., a non-smooth road surface). If it is negative, it corresponds to the relative length one is willing to cycle to get
his attribute (e.g., a segregated bicycle path). We can calculate the a posteriori expected WTD for each observation based on the
osterior probability of class membership (see Eqs. (15) and (16)).

The distributions from Fig. 13 show heterogeneity in the expected value of the distance of every attribute for every observation.
he median values of these WTDs are slightly higher than the ones of the initial MNL model estimates. We can note that, for some
bservations, cyclists have a marginal rate of substitution close to 0, meaning that they are unwilling to trade any cycling distance
or another attribute (or are insensible to it). For some other observations, cyclists are willing to trade more distance for another
ttribute. This heterogeneity may come from tastes or the use of a different decision rule, meaning they are unwilling to trade
ttributes. Some observations cut off from the plots from Fig. 13, also have incredibly high WTD values. An extremely high WTD
ill likely be calculated in a choice situation in which the individual chooses an alternative for another attribute other than distance.
ccording to the GRDM model, the decision-maker will not trade any amount of this attribute for a reduced distance, highlighting
non-compensatory behaviour.

The example from Table 13 shows a chosen route with a particularly high WTD for ‘‘Surface other than asphalt’’, indicating
hat the individual will not trade any added non-asphalt surface for a reduced length. The utility-maximizing alternative dominates
he alternative, which is also the shortest. First, this alternative belongs to the GRDM class with a probability close to 1. While the
NL cannot explain this choice, the GRDM explains the choice because the decision-maker was only interested in minimizing his
19

istance cycled on a non-asphalt surface, being insensitive to increases in length.
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Fig. 13. Value of Distance distribution of the different attributes.

Table 13
Example of chosen route vs utility-maximizing route, very high WTD for riding on asphalt.

Length Elev. Up Surf. Other BikeNo Wrong Way ln(PS)

Chosen route 8.53 4.05 0 3.33 0.596 −3.04
Utility-maximizing route 8.27 4.05 0 0.78 0.12 −3.74

�̃�𝑀𝑁𝐿 = 7.7𝑒 − 12; WTD of Surf. Other: 1.27e12.

Table 14
Example of chosen route vs utility-maximizing route, very high WTD for non-asphalt surface.

Length Elev. Up Surf. Other BikeNo Wrong Way ln(PS)

Chosen route 2.81 2.083 0 1.76 1.00 −6.72
Utility-maximizing route 2.90 1.88 0 0.86 0.071 −6.59

�̃�𝑀𝑁𝐿 = 4.1𝑒− 8; WTD of Elev. Up = 3.06e−10, WTD of Surf. Other = 4.4e−8, WTD of BikeNo = 2.25e−5, WTD of Wrong Way
= 2.06e−7.

Conversely, in the example from Table 14, the WTD of every attribute is very low. This happens because the decision-maker chose
he shortest route, while it is far from being the utility-maximizing route. We can interpret that the decision-maker only wanted to
inimise length, regardless of the other attribute, and is thus not willing to make a detour for any quantity of another attribute.

.1.7 Choice probabilities illustration
Fig. 14 shows a plot of the choice probabilities for the estimated MNL, GRDM, and combined MNL + GRDM with the estimated

arameters from Table 9, using one of the observed ODs from the dataset. From these plots, we can see that the MNL choice
robability increases directly as its length decreases. For the GRDM, however, this choice probability increases only when the
lternative length becomes close to being the shortest in the choice set. The GRDM assumes decision-makers are almost insensitive
o an attribute change until it becomes the best in the choice set, with the coefficient 𝜶 influencing the slope of this increase.
20
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Fig. 14. Choice probability of the chosen alternative as a function of its length (the green line gives original length). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Another observation is that, whatever its length, the GRDM choice probability of the chosen alternative will neither tend to be
ero nor one. This is linked to other alternatives performing best in other attributes, so the disjunctive model will allocate them
on-zero probabilities. The choice probabilities do not tend to zero when Length increases because the chosen alternative also
erforms best in another attribute. This is a major difference with the MNL, for which the choice probability tends to zero with a
maller length and to one when the route length tends to infinity.

For the Latent Class MNL + GRDM, we observe a combination of the MNL and GRDM patterns. There are firstly two probability
rops with increasing length. The first happens when the chosen route is no longer the shortest and is thus less favoured by the
isjunctive decision rule. The second happens as the route deterministic cost increases, i.e., the route is less favoured by cost
inimization. The choice probabilities limits lie between the MNL and GRDM ones.

.2 Case study 2: Public transport route choice in the Greater Copenhagen area

In this second case study, the newly developed models are tested on a route choice model for the Greater Copenhagen Region’s
arge-scale multimodal public transport network. The dataset includes metro, urban rail, local trains, regional trains and busses. A
horough presentation of this dataset can be found in Nielsen et al. (2021). Anderson (2013) collected the 4810 observed routes
s part of the Danish travel survey. These observations are separated into two subsets: work-related trips (2553 observations) and
eisure trips (2257 observations), and separate models were estimated for these two datasets. The alternatives to the chosen route
ere generated using a Doubly-Stochastic method (Nielsen, 2004). A first model was estimated for the combined MNL + GRDM
odels, including all attributes for both models. All the insignificant parameters were removed, and a new reduced model was

stimated.

.2.1 Results
The model results are in Table 15.7 The time attributes are expressed in minutes. All estimated parameters for the MNL part have

the expected signs and relative magnitudes (see Nielsen et al. (2021)8 for a further discussion of the MNL estimates). Combining
the MNL and the GRDM significantly improves fit for both trip purposes. The 𝜋𝑚 estimates indicate that even more than for cyclist’s
oute choice, public transport user choices are better explained by the MNL component than by the GRDM component. This is more
rue for work trips (93.8%) than for leisure trips (88.9%). Similarly to the previous case study, we performed LRTs to compare the
NL + GRDM and the MNL:

MNL + GRDM vs. MNL, Work ∶ P
[

𝜒2(13) < −2(𝐿𝐿𝑀𝑁𝐿 − 𝐿𝐿𝑀𝑁𝐿+𝐺𝑅𝐷𝑀 )
]

= 3.38 × 10−217

MNL + GRDM vs. MNL, Leisure ∶ P
[

𝜒2(13) < −2(𝐿𝐿𝑀𝑁𝐿 − 𝐿𝐿𝑀𝑁𝐿+𝐺𝑅𝐷𝑀 )
]

= 2.55 × 10−194

7 The GRDM alone and the combine GRDM + GRDM were also estimated on this dataset but gave a much inferior fit to the data, so it is not presented here.
heir performance on the cross-validation dataset is however presented in the next subsection.

8 The original model omitted Alternative Specific Constants (ASCs) in its specification. Our MNL specification with ASCs improved the model fit and estimates
21

lausibility compared to the cited work.
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Table 15
Model results.

Model MNL - Work MNL - Lei. MNL + GRDM - Work MNL + GRDM - Leisure MNL + MNL - Work MNL + MNL - Leisure

Attributes MNL GRDM (𝜶|𝝀) MNL GRDM (𝜶|𝝀) MNL 1 MNL 2 MNL 1 MNL 2

Alternative Specific Constants
Bus −0.5147 −0.3498 −0.8993 −0.1145 −0.7662 −0.0389 −0.1063 −1.1002
Local train −0.2486 0.9933 −3.3548 −0.4492 −0.6233 −0.5893 −0.6063 0.8681
Metro 2.0474 2.0759 2.4728 3.0081 2.3623 2.3094 3.1960 0.9203
Reg. and intercity train −0.3639 −0.7410 −0.9470 −1.3671 −0.6272 0.0496 −3.316 0.6307
S-train 1.5846 1.5689 1.7331 1.8636 1.8097 1.1471 3.0864 0.2256
In-vehicle time
Bus −0.2486 −0.2005 −0.3451 – – −0.3162 – – −0.3251 −0.0882 −0.3672 −0.1014
Local train −0.2370 −0.2110 −0.1918 – – −0.1270 – – −0.2531 −0.1305 −0.1273 −0.1544
Metro −0.2854 −0.2395 −0.4146 – – −0.3840 – – −0.3452 −0.2403 −0.2832 −0.2250
Reg. and intercity train −0.2251 −0.1912 −0.2630 −13.973 5.212e−3 −0.2200 −10.913 2.773e−3 −0.2445 −0.1358 −0.1650 −0.2395
S-train −0.2649 −0.2129 −0.3476 – – −0.2750 – – −0.3152 −0.1491 −0.2930 −0.1902
Transfer components
Transfer penalty −2.5323 −2.5345 −3.0451 −14.080 3.601e−2 −3.452 −16.221 2.192e−2 −3.430 −0.6914 −4.635 −1.207
Transfer walking time −0.1786 −0.2260 −0.2474 – – −0.3404 −13.751 5.057e−3 −0.2563 −0.1031 −0.4238 −0.0871
Transfer waiting time −0.0469 −0.0431 −0.0581 – – −0.0605 – – −0.0536 −0.0428 −0.0613 −0.0451
Other components
Access time −0.4569 −0.4449 −0.6573 −35.124 2.162e−2 −0.6416 −17.933 1.418e−2 −0.6819 −0.0490 −0.8882 −0.1671
Egress time −0.4002 −0.3829 −0.5628 −16.472 2.571e−2 −0.5920 −16.843 1.275e−2 −0.5936 −0.04289 −0.7769 −0.1378
Half of highest headway −0.1006 −0.0948 −0.1733 −10.388 2.441e−3 −0.1517 −10.02 8.275e−4 −0.1728 0.0221 −0.1636 −0.0458
𝜋𝑚 0.9380 0.8889 0.9545 0.8164

Number of observations 2553 2257 2553 2257 2553 2257
Number of parameters 16 16 27 24 23 23
Null LL −12,522 −10,770 −12,522 −10,770 −12,522 −10,770
Final LL −3,007 −3,346 −2,544 −2,957 −2,620 −3,032
Adjusted rho-square 0.759 0.688 0.795 0.719 0.788 0.715
BIC 6,148 6,826 5,314 6,148 5,517 6,341

Table 16
Average log-likelihood on the cross-validation sets.
Model MNL GRDM MNL + MNL MNL + GRDM GRDM + GRDM

Average LL (work) −1,519.95 −3,482.64 −1,377.53 −1,310.62 −3,380.53
Average LL (leisure) −1,693.79 −2,882.11 −1,583.56 −1,534.56 −2,777.38

These LRTs favour the model combination with high significance. We also see that combining two MNLs improves the fit to a
ower degree than combining the MNL and the GRDM. In the following paragraphs, we interpret the estimates of the GRDM part
or the best-performing models for Work and Leisure trips, i.e., the combination of MNL and GRDM.
MNL + GRDM - Work: First, for the error terms’ variances (the 𝜶 parameter), we see the lowest variances for access and egress

time. It could be explained by the better reliability of access and egress times or by a lower variability in people’s dispreference for
access and egress times. For the attributes’ relative importance (the 𝝀 parameter), we observe that the Regional and Intercity Trains
are the only transport modes for which in-vehicle time influences choice probabilities, which may be linked to the possibility that
these types of modes are less punctual than other modes. The most important attributes, however, are access, egress time, and the
presence of a transfer.

MNL + GRDM - Leisure: The error terms’ variances are similar to the work trips. For the attributes’ relative importance (the
𝝀 parameter), we observe that the Bus is the only transport mode for which in-vehicle time influences choice probabilities, which
can be explained by a stronger aversion to travelling in buses than other modes.

6.2.2 Model validation
Similarly to the bicycle route choice case study, we perform the same cross-validation technique for the two public transport

route choice datasets. The results are reported on Figs. 15 and 16 as well as on Table 16. We can see that the GRDM and the GRDM
+ GRDM perform poorly on this dataset (particularly for work trips). However, when combined with a MNL, this model becomes the
best-performing amongst benchmarked models for every experiment when it comes to forecasting Public Transport’s chosen routes.

6.2.3 Posterior analysis: relative values of time
Similarly to what was done for the bicycle route choice case study, we can infer the posterior MRS for each attribute. In this

case, we can compare the relative values of time to a base reference (e.g., the access time). A relative VoT is the amount of time
the decision-maker would be willing to spend for a reduced unit of time of the baseline. For instance, if the metro had a relative
VoT of 0.5 to access time, it would mean that the decision-maker would trade two minutes more metro time for each minute of
walk to the metro station. Table 17 shows each model’s relative Values of Time to access time. While the MNL models give the
same relative VoT for each observation, the LCCM gives a different value for each observation. Fig. 17 presents an example of the
posterior distribution of the relative values of access time to egress time. It shows that the median value is slightly below one for
both purposes, meaning individuals are willing to walk slightly longer from the station than to the station. The table thus reports
the median of these values. The median is used instead of the mean as the GRDM relative Values of Time can approximate infinity.
22
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Fig. 15. Cross-validation results — Work trips.

Fig. 16. Cross-validation results — Leisure trips.

Fig. 17. Left: Distribution of the relative VoT of Egress time, work trips. Right: Distribution of the relative VoT of Egress time, leisure trips.
23
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Table 17
Relative VoT given by each model. For the MNL + GRDM model, the median of the individual posterior relative VoT is given.
Model MNL - Work MNL - Lei. MNL + GRDM - Work MNL + GRDM - Leisure

In-vehicle time
Bus 0.5449 0.4517 0.5232 0.4896
Local train 0.5186 0.3820 0.2908 0.1966
Metro 0.6236 0.5416 0.6286 0.5945
Reg. and intercity train 0.4923 0.4247 0.4397 0.3428
S-train 0.5799 0.4809 0.5270 0.4258
Transfer components
Transfer penalty 5.541 5.649 4.633 5.401
Transfer walking time 0.3917 0.4989 0.3751 0.5338
Transfer waiting time 0.1028 0.0966 0.0881 0.0937
Other components
Access time 1 1 1 1
Egress time 0.8753 0.8607 0.8566 0.9228
Half of highest headway 0.2210 0.2135 0.2642 0.2364

As Table 17 shows, the MNL and the MNL + GRDM give similar results regarding expected relative Values of Time. However,
e can see that the MNL + GRDM indicates a slightly higher relative VoT for, e.g., headway, while a lower one for local train travel

ime.

Conclusion and future work

In this paper, we developed a new choice model that adopts a disjunctive decision rule, shifting from the compensatory
ssumption of RUMs. The new Generalised Random Disjunctive Model (GRDM) extends the existing Random Disjunctive Model
RDM) from Ehrgott et al. (2015) to allow for ranking attributes by relative importance and address issues with irrelevant attributes.
e first presented the model properties and how it relates to the Universal Logit model. We then presented the formulas for the
RS, the LogSum and Elasticities. Using a LCCM, we proposed the combination of utility maximization and this disjunctive decision

ule. We developed a two-class model, one using a MNL model and the other the GRDM. This combination was then tested on
wo large-scale case route choice studies, where we saw large improvements in fit for the combined MNL + GRDM. We gave an
nterpretation of the model estimates and studied the posterior MRS.

The developed GRDM offers new choice modelling insights, capturing choice behaviour that a RUM cannot explain. Its
ombination with a MNL in a LCCM proved effective in model fit. We tested this model and other model combinations on a bicycle
oute choice and a public transport route choice case study. For these cases, it outperformed by far the individual models, which
upports the hypothesis that, over a series of choice situations, accounting for multiple decision rules best captures the behaviour.
he MNL + GRDM LCCM outperformed the MNL + RDM LCCM, supporting the new GRDM’s development. The MNL + GRDM LCCM
lso outperformed the MNL + MNL LCCM, which indicates that the addition of classes does not only uncover taste heterogeneity (a
oncern brought by Hancock and Hess (2021)) but heterogeneity in the decision rule. We also tried to disentangle further taste and
ecision rule heterogeneity by estimating models using a Box–Cox specification and models with many MNL latent classes. These
odels estimations confirmed the hypothesis that the GRDM was capturing more than taste heterogeneity or non-linear preferences.

The class allocation probabilities give interesting insights into the proportion of individuals more likely to use the disjunctive
ecision rule. For cyclists’ route choice, it amounts to around 27.4%. For public transport leisure trips, it goes down to 11.1%,
nd goes further down to 6.2% for public transport work trips. These percentages can likely be attributed to the complexities of
hese choice tasks. Bicycle route choice is a more complicated cognitive task than public transport route choice, as the number of
lternatives is much larger. Moreover, work-related trips are more likely to be repeated many times, and decision-makers are likely
etter to know the possible alternatives than for their leisure trips.

The GRDM also permits alternative interpretations of an individual’s choice behaviour. For instance, extreme tastes for an
ttribute, attribute non-attendance (Swait, 2001; Hensher et al., 2005) or non-optimal choices may as well be explained by the
se of a disjunctive decision rule. When studying substitution rates, individuals’ non-compensatory behaviour may lead to MRS
e.g., WTD) near zero or infinity, indicating a pure non-compensatory behaviour. However, these substitution rates are choice-
ituation and alternative-specific and require proper posterior analysis. This model is less straightforward to interpret than traditional
ompensatory models, as is true for all non-compensatory models. For instance, similarly to RRM, the GRDM LogSum cannot be
nterpreted as a welfare metric. This model, as we saw in the cross-validation experiments, seems to have – when combined with
NL – a better forecasting ability than a model accounting for taste heterogeneity only. This model is thus particularly promising

or scenario analysis and predictions. An analysis of a real-life case study confirmed the hypothesis that the GRDM is not only
apturing preference heterogeneity or non-linear sensitivities but also a disjunctive behaviour that cannot be well explained by a
andom Utility Model.

Future research could explore other combinations of compensatory and non-compensatory decision rules within an LCCM. The
RDM model has proved effective in capturing choice behaviour beyond utility maximization. Its performance could be compared

o other non-compensatory choice models integrated within an LCCM. Moreover, a more complex RUM model could be adopted
or the compensatory part of the LCCM, for example, cross nested logit (Vovsha, 1997), Mixed Logit (Revelt and Train, 1998), or
Bounded Choice Model (Watling et al., 2018). Another interesting path for future research is to investigate whether the use of
24

ecision rule is linked to any individual sociodemographic attribute.
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Appendix A. Other decision rules and examples

Conjunctive rule: For each attribute 𝑘 ∈ {1,… , 𝐾}, the decision maker has a criterion 𝜒𝑘 that the attribute can pass or fail.
Let us write 𝑥𝑖𝑘 ∼ 𝜒𝑘 if alternative 𝑖 passes 𝜒𝑘. Under a conjunctive decision rule, the analyst assumes that the decision maker will
select any alternative that respects the criterion for every quality.

𝑦𝑖𝑛 = 1 ⟺ ∀𝑘 ∈ {1,… , 𝐾}, 𝑥𝑖𝑘 ∼ 𝜒𝑘

Elimination-by-Aspects (EBA): Under the EBA decision rule (Tversky, 1972), The decision-maker is assumed to rank qualities
by importance and to select an alternative that respects the criterion for the main quality. If several options remain, he/she will
choose from the remaining ones according to the second quality, and so on, until one alternative remains or all qualities have been
inspected. The Lexicographic decision rule is an example of an EBA rule, where the criterion for each quality is ‘‘being the best
among the choice set’’.

According to these rules, none or several alternatives may remain after applying the decision rule. If several remain, the modeller
can assume several outcomes:

• The decision maker changes their criteria and applies the same decision rule to the remaining set of alternatives
• The decision maker changes their criteria and rule and applies it to the remaining set of alternatives (e.g., Utility maximiza-

tion...).
• The decision maker is indifferent to all the selected alternatives and thus chooses from them with equal probabilities.

Similarly, if no alternatives remain, the decision-maker is expected to change their criteria for something less stringent.
Let us assume the route choice example from Table 1. For simplicity, we assume each attribute has the same criterion in that

example.

• Under a conjunctive decision rule, for which the criterion is being no more than 0.5 units worse than the best alternative, the
decision-maker chooses alternative 3.

• Under a disjunctive decision rule, for which the criterion is being the best, the decision-maker may choose alternative 1 or
alternative 2.

• Under a lexicographic decision rule, for which the main attribute is Travel Cost, the decision-maker chooses alternative 2.
• Under an EBA decision rule, for which the main attributes are Travel Time, then Travel Cost, and the criterion is being smaller

than 1.5, the decision-maker chooses alternative 3.

Appendix B. Gradient of the GRDM log-likelihood function

The gradient of the GRDM probabilities can be calculated analytically. They are useful for speeding up estimation, generating the
25

MRS, and testing for parameter significance. Below, we describe the calculation of the hessian of the GRDM probabilities natural
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f

T

logarithm, as it is used in maximum likelihood estimation. For an alternative 𝑖 ∈ C , if we note 𝑃𝑖𝑘 = exp (𝛼𝑘𝑥𝑖𝑘)
∑

𝑗∈C exp (𝛼𝑘𝑥𝑗𝑘)
, we get the

ollowing derivatives, for a variance term 𝛼𝑙:

𝜕 ln𝑃𝐺𝑅𝐷𝑀
𝑖
𝜕𝛼𝑙

= 𝜕
𝜕𝛼𝑙

ln

(

1 −
𝐾
∏

𝑘=1
(1 − 𝑃𝑖𝑘)𝜆𝑘

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(1)

− 𝜕
𝜕𝛼𝑙

ln

(

∑

𝑗∈C

1 −
𝐾
∏

𝑘=1
(1 − 𝑃𝑗𝑘)𝜆𝑘

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(2)

The left-hand side of the equation (1) can be calculated:

(1) =
𝜆𝑙

𝜕𝑃𝑖𝑙
𝜕𝛼𝑙

(1 − 𝑃𝑖𝑙)𝜆𝑙−1
∏

𝑘≠𝑙(1 − 𝑃𝑖𝑘)𝜆𝑘

1 −
∏𝐾

𝑘=1(1 − 𝑃𝑖𝑘)𝜆𝑘

If 𝛿𝑖𝑗 is the Kronecker symbol, equal to 1 if 𝑖 = 𝑗 and 0 otherwise, we have that:

𝜕𝑃𝑖𝑙
𝜕𝛼𝑙

= 𝑃𝑖𝑙
∑

𝑗∈C

(𝛿𝑖𝑗 − 𝑃𝑗𝑙)𝑥𝑗𝑙

hus, we have:

(1) =
𝜆𝑙𝑃𝑖𝑙

(

∑

𝑝∈C (𝛿𝑖𝑝 − 𝑃𝑝𝑙)𝑥𝑝𝑙
)

(1 − 𝑃𝑖𝑙)𝜆𝑙−1
∏

𝑘≠𝑙(1 − 𝑃𝑖𝑘)𝜆𝑘

1 −
∏𝐾

𝑘=1(1 − 𝑃𝑖𝑘)𝜆𝑘

(2) =

∑

𝑗∈C 𝜆𝑙𝑃𝑗𝑙

(

∑

𝑝∈C (𝛿𝑗𝑝 − 𝑃𝑝𝑙)𝑥𝑝𝑙
)

(1 − 𝑃𝑗𝑙)𝜆𝑙−1
∏

𝑘≠𝑙(1 − 𝑃𝑗𝑘)𝜆𝑘
∑

𝑗∈C 1 −
∏𝐾

𝑘=1(1 − 𝑃𝑗𝑘)𝜆𝑘

We can simplify this equation multiplying the left side by ∑

𝑗∈C 1 −
∏𝐾

𝑘=1(1 − 𝑃𝑗𝑘)𝜆𝑘 :

𝜕 ln𝑃𝐺𝑅𝐷𝑀
𝑖
𝜕𝛼𝑙

= 𝜆𝑙𝑃
−1
𝑖

∑

𝑗∈C

[

(𝛿𝑖𝑗 − 𝑃𝑖)
𝑃𝑗𝑙

1 − 𝑃𝑗𝑙
(1 − 𝑃𝑗 )

∑

𝑝∈C

(𝛿𝑗𝑝 − 𝑃𝑝𝑙)𝑥𝑝𝑙

]

(18)

The differentiation of the GRDM probabilities with respect to a scale 𝜆𝑙 is slightly more straightforward:

𝜕 ln𝑃𝐺𝑅𝐷𝑀
𝑖
𝜕𝜆𝑙

= 𝜕
𝜕𝜆𝑙

ln

(

1 −
𝐾
∏

𝑘=1
(1 − 𝑃𝑖𝑘)𝜆𝑘

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

− 𝜕
𝜕𝜆𝑙

ln

(

∑

𝑗∈C

1 −
𝐾
∏

𝑘=1
(1 − 𝑃𝑗𝑘)𝜆𝑘

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜕 ln𝑃𝐺𝑅𝐷𝑀
𝑖
𝜕𝜆𝑙

=
ln(1 − 𝑃𝑖𝑙)

∏𝐾
𝑘=1(1 − 𝑃𝑖𝑘)𝜆𝑘

1 −
∏𝐾

𝑘=1(1 − 𝑃𝑖𝑘)𝜆𝑘
−

∑

𝑗∈C ln(1 − 𝑃𝑗𝑙)
∏𝐾

𝑘=1(1 − 𝑃𝑗𝑘)𝜆𝑘
∑

𝑗∈C 1 −
∏𝐾

𝑘=1(1 − 𝑃𝑗𝑘)𝜆𝑘

This expression can be simplified similarly to Eq. (18):

𝜕 ln𝑃𝐺𝑅𝐷𝑀
𝑖
𝜕𝜆𝑙

= 𝑃−1
𝑖

∑

𝑗∈C

(𝛿𝑖𝑗 − 𝑃𝑖)(1 − 𝑃𝑗 ) ln(1 − 𝑃𝑗𝑙) (19)

Appendix C. Analytical GRDM MRS and elasticities

We can analytically calculate the MRS and elasticities of the GRDM model. Keeping the same notations as Appendix B, let us
remark that, for an alternative 𝑖 ∈ C :

𝜕𝑃𝑖𝑙
𝜕𝑥𝑖𝑙

= 𝛼𝑙𝑃𝑖𝑙(1 − 𝑃𝑖𝑙)

and for 𝑖 ≠ 𝑗 ∈ C ,
𝜕𝑃𝑖𝑙
𝜕𝑥𝑗𝑙

= −𝛼𝑙𝑃𝑖𝑙𝑃𝑗𝑙

which means that, if we define 𝛿𝑖𝑗 as the Kronecker symbol, equal to 1 if 𝑖 = 𝑗 and 0 otherwise, we can write, for any 𝑖, 𝑗 ∈ C :

𝜕𝑃𝑖𝑙
𝜕𝑥𝑗𝑙

= 𝛼𝑙𝑃𝑖𝑙(𝛿𝑖𝑗 − 𝑃𝑗𝑙)

We can then calculate the numerator partial derivative as follows:

𝜕
𝜕𝑥𝑗𝑙

(

1 −
𝐾
∏

𝑘=1

(

1 − 𝑃𝑖𝑘
)𝜆𝑘

)

= 𝜆𝑙𝛼𝑙𝑃𝑖𝑙(𝛿𝑖𝑗 − 𝑃𝑗𝑙)(1 − 𝑃𝑖𝑙)𝜆𝑙−1
∏

𝑘≠𝑙

(

1 − 𝑃𝑖𝑘
)𝜆𝑘

= 𝜆𝑙𝛼𝑙
𝑃𝑖𝑙 (𝛿𝑖𝑗 − 𝑃𝑗𝑙)

𝐾
∏

(

1 − 𝑃𝑖𝑘
)𝜆𝑘 (20)
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Fig. 18. Example of a choice set with the observed route. The links’ width is proportional to the number of routes generated using the link (see legend in the
top right corner).

It follows that:

𝜕𝑃𝐺𝑅𝐷𝑀
𝑖

𝜕𝑥𝑗𝑙
=

𝜆𝑙𝛼𝑙
[

𝑃𝑖𝑙
∏𝐾

𝑘=1(1 − 𝑃𝑖𝑘)𝜆𝑘
(

∑

𝑞∈C 1 −
∏𝐾

𝑘=1(1 − 𝑃𝑞𝑘)𝜆𝑘
)

−
∑

𝑞∈C
𝑃𝑞𝑙

1−𝑃𝑞𝑙
(𝛿𝑖𝑞 − 𝑃𝑞𝑙)

∏𝐾
𝑘=1

(

1 − 𝑃𝑞𝑘
)𝜆𝑘

(

1 −
∏𝐾

𝑘=1(1 − 𝑃𝑖𝑘)𝜆𝑘
)]

(

∑

𝑞∈C 1 −
∏𝐾

𝑘=1(1 − 𝑃𝑞𝑘)𝜆𝑘
)2

= 𝜆𝑙𝛼𝑙
∑

𝑞∈C

(𝛿𝑖𝑞 − 𝑃𝑖)
𝑃𝑞𝑙

1 − 𝑃𝑞𝑙
(1 − 𝑃𝑞)(𝛿𝑞𝑗 − 𝑃𝑞𝑙)

The general formula for direct and cross elasticities is given by:

𝐸𝑃𝑖
𝑥𝑗𝑘 =

𝜕𝑃𝑖
𝜕𝑥𝑗𝑘

𝑥𝑗𝑘
𝑃𝑖

= 𝜆𝑙𝛼𝑙𝑃
−1
𝑖 𝑥𝑗𝑘

∑

𝑞∈C

(𝛿𝑖𝑞 − 𝑃𝑖)
𝑃𝑞𝑙

1 − 𝑃𝑞𝑙
(1 − 𝑃𝑞)(𝛿𝑞𝑗 − 𝑃𝑞𝑙) (21)

If we set 𝜇𝑖 = ln
(

1 −
∏𝐾

𝑘=1
(

1 − 𝑃𝑖𝑘
)𝜆𝑘

)

, we have from Eq. (20) that (𝑖 = 𝑗):

𝜕𝜇𝑖
𝜕𝑥𝑖𝑘

= 𝜆𝑘𝛼𝑘
1 − 𝑒𝜇𝑖
𝑒𝜇𝑖

It follows that the MRS between attribute 𝑘 and attribute 𝑙, for the GRDM model, are given by:

MRS𝑖𝑘𝑙 =

𝜕𝜇𝐺𝑅𝐷𝑀
𝑖
𝜕𝑥𝑖𝑘

𝜕𝜇𝐺𝑅𝐷𝑀
𝑖
𝜕𝑥𝑖𝑙

=
𝜆𝑘𝛼𝑘𝑃𝑖𝑘
𝜆𝑙𝛼𝑙𝑃𝑖𝑙

(22)

As the term 1−𝑒𝜇𝑖
𝑒𝜇𝑖 simplifies. We can easily derive the MRS for the RDM as we know a GRDM is a RDM with 𝝀 = (1...1), so that:

MRS𝑖𝑘𝑙 =

𝜕𝜇𝑅𝐷𝑀
𝑖
𝜕𝑥𝑖𝑘

𝜕𝜇𝑅𝐷𝑀
𝑖
𝜕𝑥𝑖𝑙

=
𝛼𝑘𝑃𝑖𝑘
𝛼𝑙𝑃𝑖𝑙

(23)

These equations show that the MRS between two attributes of an alternative depend on all the other attributes (𝑃𝑖 is a function of
all the attributes values) and all the other alternatives 𝑗 ∈ C .

Appendix D. Choice-set generation algorithm

The choice set generation uses a novel approach. First, it uses the stochastic approach (Nielsen, 2004; Bovy and Fiorenzo-
Catalano, 2007), consisting of repeated shortest paths queries, where the link lengths are drawn randomly, following a truncated
normal distribution so that negative lengths can never be drawn; 𝐿 ∼ T N (𝐿, 𝜎𝐿) with 𝜎 = 0.3. However, this method is likely
27
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to generate many highly overlapping routes because of a higher probability of a small detour becoming shorter than the actual
shortest alternative than the one of a larger one. To prevent this effect, we set the number of draws to a huge number (10,000
draws for this case study). Routes were then filtered according to a local optimality criterion (Abraham et al. (2013), later used in
route choice set generation by Fischer (2020)). The local optimality of a path is defined as the minimum length of a subpath of
this path that is not the shortest. For instance, a route has a local optimality of 1 km if every subsection shorter than 1 km uses
the shortest alternative. By setting a minimum local optimality threshold for the generated routes, we can remove routes that are
not smooth (i.e., do not contain small detours) and are too similar. Indeed, two different generated routes must differ from at least
the local optimality threshold. In our case, we chose a local optimality threshold of 100 m and discarded all the routes that did not
respect the criterion. A minimum number of 100 routes was kept for each OD pair, even if the criterion was not respected, leading
to an average choice set size of 428 routes. An example of a generated choice set is mapped in Fig. 18.
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