
INVARIANTS IN DIVIDED POWER ALGEBRAS

RUDOLF TANGE

Abstract. Let k be an algebraically closed field of characteristic p > 0, let
G = GLn be the general linear group over k, let g = gln be its Lie algebra
and let Ds be subalgebra of the divided power algebra of g∗ spanned by
the divided power monomials with exponents < ps. We give a basis for
the G-invariants in Ds up to degree n and show that these are also the
g-invariants.

We define a certain natural restriction property and show that it doesn’t
hold when s > 1. If s = 1, then D1 is isomorphic to the truncated coordinate
ring of g of dimension pdim(g) and we conjecture that the restriction property
holds and show that this leads to a conjectural spanning set for the invariants
(in all degrees).

We give similar results for the divided power algebras of several matrices
and of vectors and covectors, and show that in the second case the restriction
property doesn’t hold.

We also give the dimensions of the filtration subspaces of degree ≤ n of
the centre of the hyperalgebra of the Frobenius kernel Gs.

Introduction

Let k be an algebraically closed field of characteristic p > 0, let G = GLn

be the general linear group over k and let g be its Lie algebra: the n × n
matrices with entries in k. For the representation theory of G and g it is
of interest to understand the centres U [p](g)g and Dist(G)G of the restricted

enveloping algebra U [p](g) and the hyperalgebra or distribution algebra Dist(G).
In this paper we study their commutative analogues: the truncated symmetric
algebra S(g) = S(g)/(xp |x ∈ g) and the divided power algebra D(g). They
are isomorphic to their noncommutative analogues as G-modules under the
conjugation action. The connection with the representations of G and g is
described in more detail in Remark 1.2.3 and Corollary 3 to Theorem 2.1 (the
hyperalgebras of G and Gs) and Remark 1.2.4 (the Schur algebra). To state
our results it is more convenient to work with A1(g) = S(g∗) and D(g∗). This
is harmless, since g ∼= g∗ as G-modules.

Initially we were interested in describing the invariants for the group and the
Lie algebra in A1(g) and its higher analogues As(g) = S(g∗)/(fps | f ∈ g∗). It is
easy to see that A1(g)

G is bigger than the image of S(g∗)G (or S(g∗)g): the top
degree element (unique up to a scalar multiple) of A1(g)

G is not in the image
of S(g∗)G. It turned out to be more convenient to work with the dual versions
Ds(g

∗) of the As(g), inside the divided power algebra D(g∗) where we have the

2020 Mathematics Subject Classification. 13A50, 16W22.
Key words and phrases. general linear group, divided power algebra, truncated coordinate

ring, invariants, centre.
1



2 R. TANGE

divided power maps. Up to degree n it is easy to give a basis for the invariants
in D(g∗). In fact we can give three different bases, see Section 1.5. So the task
is then to describe the invariants of the subalgebras Ds(g

∗) in terms of these
bases. For one of the three aforementioned bases of D(g∗) we obtain a basis
of Ds(g

∗) by forming equivalence class sums for a certain equivalence relation
on the basis, for the other two we obtain a basis of Ds(g

∗) by taking a suitable
subset of the basis, see Theorem 2.2.

We also consider the so-called “restriction property” for several families of
algebras, see Section 1.6. Intuitively, when the restriction property holds one
may expect a universal description of the invariants, independent of the rank
n. When it doesn’t hold the description of the invariants will depend on the
rank. In all the classical cases (invariants in the coordinate rings of vectors and
covectors and of several matrices) the restriction property holds, at least for
the group. For the algebras D(g∗) and Ds(g

∗) that we study, the restriction
property almost never holds. We can only conjecture it for D1(g

∗) = A1(g), see
Conjecture 2.1.

The paper is organised as follows. In Section 1 we discuss some, mostly
well-known, results about divided power algebras, truncated coordinate rings,
polarisation and Z-forms, and multilinear invariants of several matrices that we
will need later on.

Section 2 contains our main result which describes the G-invariants in the
algebra Ds(g

∗): Theorem 2.2. To prove it, it is more convenient to first work
with Ds(g). Theorem 2.1 is our main result for this algebra. Infinitesimal
invariants are discussed in Proposition 2.1. In Corollary 3 to Theorems 2.1
and 2.2 we give the dimensions of the filtration subspaces of degree ≤ n of the
centre of the hyperalgebra of Dist(Gs). In Remark 2.3.3 and 4 we show that
the restriction property doesn’t hold for the algebras As(g) when s ≥ 2 and
also not for the algebras Ds(g

∗) when s ≥ 2. In Section 2.4 we give dimensions
for the invariants in the graded pieces of some of the As(g).

In Section 3 we study the divided power algebra and its “truncated” subalge-
bras for several matrices. Theorem 3.1 describes the G-invariants and Proposi-
tion 3.1 describes the infinitesimal invariants. To state and prove these results
we first need to state some, mostly well-known, results about conjugacy classes
in the symmetric group for a Young subgroup, partial polarisation, and invari-
ants in the full divided power algebra.

In Section 4 we study the divided power algebra and its truncated subal-
gebras for vectors and covectors. Proposition 4.1(i) describes the G-invariants
and Proposition 4.1(ii) describes the infinitesimal invariants. As preliminar-
ies we first state some, mostly well-known, results about partial polarisation,
and orbits in the symmetric group for the multiplication action of a product of
two Young subgroups. In Remark 4.1.3 we show that the restriction property
doesn’t hold in this case.

1. Preliminaries

Throughout this paper k is an algebraically closed field of characteristic p > 0
and s is an integer ≥ 1.



INVARIANTS IN DIVIDED POWER ALGEBRAS 3

1.1. Lucas’s Theorem and Legendre’s Theorem. We remind the reader
of two basic results from number theory.

Theorem (Lucas’s Theorem). Let a =
∑

i≥0 aip
i and b =

∑
i≥0 bip

i be the

p-adic expansions of the integers a, b ≥ 0. Then
(
a
b

)
≡

∏
i≥0

(
ai
bi

)
mod p.

Theorem (Legendre’s Theorem). Let νp : Z>0 → Z≥0 be the p-adic valuation,
let a ≥ 1 be an integer, and let sp(a) be the sum of the p-adic digits of a. Then

νp(a!) =
a−sp(a)
p−1 .

1.2. The divided power algebra and certain subalgebras.
Let V = k⊗ZVZ be a vector space over k “defined over Z” where VZ has Z-basis
(y1, . . . , ym). We will denote 1⊗yi ∈ V just by yi. Inside the symmetric algebra

S(VQ) of VQ = Q ⊗Z VZ we can form the divided power monomials
∏m

i=1 y
(ti)
i

where ti ≥ 0 and x(t) = 1
t!x

t. They are linearly independent over Q and their
Z-span is a Z-subalgebra D(VZ) of S(VQ). Now we put D(V ) = k ⊗Z D(VZ).

The algebra S(VQ) has the divided power map γi = (x 7→ x(i)) : IQ → S(VQ)
where IQ consists of the polynomials without constant term. The γi, i ≥ 1,
preserve IZ = D(VZ) ∩ IQ and therefore induce divided power maps γi : IZ →
D(VZ). These γi preserve pIZ for i ≥ 1 and, reducing mod p and extending from

Fp = Z/pZ to k, we obtain divided power maps γi = (x 7→ x(i)) : I → D(V ),
where I = k ⊗ IZ, which satisfy:

(1) γ0(x) = 1, γ1(x) = x and γi(x) ∈ I for i ≥ 1 and for all x ∈ I,

(2) γi(x+ y) =
∑i

j=0 γj(x)γi−j(y) for i ≥ 0 and for x, y ∈ I,

(3) γi(xy) = xiγ(y) for i ≥ 0, x ∈ D(V ) and y ∈ I,

(4) γi(x)γj(x) =
(
i+j
i

)
γi+j(x) for i, j ≥ 0 and x ∈ I, and

(5) γi(γj(x)) =
(ij)!
(i!)jj!

γij(x) for i, j ≥ 0 and x ∈ I.

The algebra D(V ) is commutative and graded and has a GL(V )-action which
is “defined over Z”, so it is clear that the γi are GL(V )-equivariant. The span

Ds(V ) of the (divided power) monomials
∏

i y
(ti)
i , 0 ≤ ti < ps is a GL(V )-stable

graded subalgebra of D(V ) of dimension psm. It can be characterised as the
distribution algebra or hyperalgebra of the s-th Frobenius kernel Va,s of the
additive group scheme Va, see [9, I.4.25]. We denote the graded pieces of degree
r of D(V ) and Ds(V ) by Dr(V ) and Dr

s(V ).

Lemma 1.1. Let B =
⊕

r≥2D
r
1(V ). Then B is stable under multiplication and

under the γi, i ≥ 1.

Proof. Clearly, B is stable under multiplication. Note that
(∑

i aip
i∑

i bip
i

)
is nonzero

mod p if 0 ≤ bi ≤ ai < p for all i by Lucas’s Theorem, and pi+1!
(pi!)pp!

is nonzero

mod p by Legendre’s Theorem. So in view of (4) and (5) it is enough to show
that B is stable under γp. Clearly, B is stable under the γi, 1 ≤ i < p, so
by (2) it is enough to show that γp(u) = 0 for any divided power monomial
u in the yi of degree j with 2 ≤ j < p. If u involves at least two variables,

then this follows immediately from (3). So assume u = y
(j)
i for some i. Then

γp(u) =
(jp)!
(j!)pp!y

(jp)
i by (5). By Legendre’s Theorem the p-adic valuation of (jp)!

(j!)pp!
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is
jp−sp(jp)

p−1 − (
p(j−sp(j))

p−1 + 1), where sp(j) denotes the sum of the p-adic digits

of j. Now sp(jp) = sp(j) = j, since j < p, so this p-adic valuation equals j − 1

which is ≥ 1. So (jp)!
(j!)pp! = 0 mod p. □

1.3. Truncated coordinate rings. Define the ideal Is of the coordinate ring
A = A(V ) = k[V ] = S(V ∗) of V by Is = (fp | f ∈ V ∗) = (xi

ps | 1 ≤ i ≤ m),
where (x1, . . . , xm) is the dual basis of (y1, . . . , ym). Put As = As(V ) = k[V ]/Is.
We call As(V ) the s-th truncated coordinate ring of V . It is a commutative
graded algebra of dimension psm and can be characterised as the coordinate ring
of the aforementioned infinitesimal group scheme Va,s. We denote the graded
pieces of degree r of A(V ) and As(V ) by Ar(V ) and Ar

s(V ). There is a GL(V )-
equivariant isomorphism of graded Hopf algebras Ds(V ) ∼= As(V )∗. It maps∏m

i=1 y
(ti)
i , 0 ≤ ti < ps, to the dual basis element of

∏m
i=1 xi

ti . Put Ar
s = Ar

s(V ).
The top degree of As is N = (ps − 1)m and As(N) = k

∏m
i=1 xi

ps−1 is 1-

dimensional. Since GL(V ) acts through det1−ps on As(N), the multiplication
defines an GL(V )-invariant pairing Ar

s × (AN−r
s ⊗ detp

s−1) → k. This pairing
is nondegenerate, so we obtain isomorphisms (Ar

s)
∗ ∼= AN−r

s ⊗ detp
s−1 and

Ds(V ) ∼= As(V )∗ ∼= As(V ) ⊗ detp
s−1 of GL(V )-modules. The latter maps∏m

i=1 y
(ti)
i to

∏m
i=1 x

ps−ti
i .

1.4. The polarisation map and Z-forms. The polarisation map

P : Sr(V ∗) → (SrV )∗

in degree r sends f ∈ Sr(V ∗) to the the multi-homogeneous component of degree
(1, . . . , 1) of the r-variable polynomial function (v1, . . . , vr) 7→ f(v1 + · · ·+ vr).
Let F : V ⊕r → k be r-linear, and let f = (v 7→ F (v, . . . , v)) ∈ Sr(V ∗), then

P (f) = ((v1, . . . , vr) 7→
∑
σ∈Sr

F (vσ(1), . . . , vσ(1))) ,

where Sr denotes the symmetric group or rank r. We extend P to a linear
map from k[V ] = S(V ∗) to the graded dual S(V )∗gr of S(V ) and this is an
algebra homomorphism. The multiplication on this graded dual comes from
the comultiplication on S(V ), see [3, III.11].

Inside S(V ∗
Q) we have the “divided power Z-form” D(V ∗

Z ). The polarisa-
tion map over Q maps this Z-form onto the standard Z-form of the graded

dual of S(VQ). Reducing mod p we obtain an isomorphism from D
def
= D(V ∗)

to S(V )∗gr. We now identify these two. Then Dr def
= Dr(V ∗) = Sr(V )∗ =

((V ⊗r)∗)Sr : the space of symmetric r-linear functions V ⊕r → k, and Dr
s =

Dr
s(V

∗) consists of the symmetric r-linear functions that vanish when ps ar-
guments are the same. Furthermore the polarisation map over k can now be
identified with the map k[V ] = S(V ∗) → D(V ∗) given by inclusion of Z-forms.
We note that for a symmetric r-linear function V ⊕r → k to vanish when ps ar-
guments are the same it is enough to check that this holds for r-tuples of basis
vectors. This follows from the fact that the Sps-stabiliser of a nonconstant map
{1, . . . , ps} → {1, . . . , t}, t any integer ≥ 2, is a proper Young subgroup of Sps ,
so the orbit of such a map has size divisible by p.
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We now return to the polarisation map in characteristic p. It follows easily
from the definition that P has image D1 and kernel I1, so it induces a GL(V )-

equivariant isomorphism A1 = A1(V )
∼→ D1(V

∗) = D1 of graded algebras.

1.5. Adjoint invariants and symmetric functions. From now on until the
end of Section 2 we specialise V to g = gln = End(kn) with G = GLn acting
by conjugation. So D = D(g∗) and A = A(g). The symbol V may now denote
another vector space. We work with the bases (Eij)1≤i,j≤n of g with dual basis
(xij)1≤i,j≤n of g∗, where Eij is the elementary matrix which is 1 in row i and
column j and 0 elsewhere. Note that the trace form on g is nondegenerate and
gives an isomorphism g

∼→ g∗ of G-modules which maps Eij to xji. Note also
that the G-action factors through the SL(g)-action, so we have isomorphisms of
G-modulesDr

s
∼= (Ar

s)
∗ ∼= AN−r

s , whereN = (ps−1)n2 is the top degree. TheG-
invariants in Dr = ((g⊗r)∗)Sr are the Sr-invariants in the space of G-invariants
of (g⊗r)∗. By “Schur-Weyl duality” [4, Sect 4], the space of G-invariants of
(g⊗r)∗ can be described as the image of the group algebra kSr of the symmetric
group Sr under the Sr-equivariant linear map

π 7→ fπ ,

where fπ(X1, . . . , Xr) =
∏r

i=1 tr(Xσi), π = σ1 · · ·σs is the disjoint cycle form

of π (including 1-cycles), tr(Xσ)
def
= tr(Xi1 · · ·Xit) for any cycle σ = (i1, . . . , it),

and the Sr-action on kSr is by conjugation. This map is injective when r ≤ n.
If we work with g⊗r instead of the isomorphic module (g⊗r)∗, then the map is
given by π 7→ Eπ, where Eπ =

∑
i∈{1,...,n}r ⊗r

l=1Eiπ(l)il .
1

We make some observations about symmetric functions. For the basics
we refer to [10]. For an integer i ≥ 1 and X ∈ Matn we define ei(X) =
tr(∧iX), hi(X) = tr(SiX) and pi(X) = tr(Xi). Clearly, the ei, hi, pi can be
considered as elements of k[g] and therefore also as elements of D(g), see Sec-
tion 1.4. For a partition λ of r we define eλ to be the product of the eλi

and
we define hλ and pλ in the same way. Via the Chevalley Restriction Theorem
(CRT) we can identify these functions with the equally named symmetric func-
tions. Writing λ in the form λ = 1m12m2 · · · we define zλ =

∏
i≥1 i

mimi! and

uλ =
∏

i≥1mi!. Recall that zλ is the order of the centraliser in Sr of a permu-

tation of cycle type λ. We will call 1
zλ
pλ,

1
uλ

hλ,
1
uλ

eλ ∈ S(g∗Q) divided pλ, hλ and
eλ.

For the divided eλ’s and hλ’s, λ a partition of r, it is clear that by reduction

mod p they can be considered as elements of (Dr)G: eλ =
∏

i≥1 e
(mi)
i , hλ =∏

i≥1 h
(mi)
i . We claim that the same is true for the divided pλ’s and that, for

n ≥ r, these three families form three bases of (Dr)G. For the first claim we
work over Q. By [10, Ex I.6.10, p 110] the Z-span of the pλ’s is the same
as that of the uλmλ’s, where the mλ’s are the monomial symmetric functions.
Taking the “dual” lattices, i.e. everything that is integral on the lattice via the
canonical form, we obtain that the Z-span of the divided pλ’s is the same as
that of the divided hλ’s, see [10, I.4.5, I.4.7]. Applying the involution ω we see

1Identifying g⊗r with End((kn)⊗r), the action of Sr on tensor space is given by π 7→ Eπ−1 .
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that Z-span of the divided pλ’s is also the same as that of the divided eλ’s, see
[10, I.2.6-13]. So 1

zλ
pλ belongs to D(g∗Z).

To prove the second claim we return to the above Sr-equivariant linear map
from kSr onto the G-invariant multilinear functions of r matrices. It is injective
when n ≥ r. So in this case (Dr)G is simply the image of the centre (kSr)

Sr

of kSr. If π ∈ Sr has cycle type λ, then pλ = (X 7→ fπ(X, . . . ,X)), so, as an
element of Sr(gQ)

∗ via the polarisation map P , it is
∑

σ∈Sr
fσπσ−1 . Therefore

the sum of the conjugacy class [π] is mapped to divided pλ. So the divided pλ’s
form a basis and therefore the divided eλ’s and hλ’s as well.

Example 1.1. Take p = 2. Put u = divided p21 + divided p13 = 1
2p2p1 +

1
6p

3
1 ∈

D(g∗Z). Then u = (X 7→ 1
2tr(X

2)tr(X)+ 1
6tr(X)3) corresponds to the symmetric

3-linear function

(X,Y, Z) 7→ tr(XY )tr(Z) + tr(XZ)tr(Y ) + tr(Y Z)tr(X) + tr(X)tr(Y )tr(Z) .

In characteristic p, this function vanishes when 2 arguments are the same, so
the reduction mod p of u belongs to D1. When n = 2 this function is nonzero
(take e.g. X = E12, Y = E21, Z = E11), but is zero on triples of diagonal
2× 2-matrices. The same is true for any symmetric r-linear function rgl2 → k,
r > 2, which vanishes when 2 arguments are the same. Similarly, divided p3 =
1
3p3 = ((X,Y, Z) 7→ tr(XY Z) + tr(Y XZ)) vanishes in characteristic 2 when 2
arguments are the same. This function is clearly nonzero for n ≥ 2, but is zero

on triples of diagonal matrices for all n ≥ 1. Note that e4 = e
(2)
2 on the diagonal

matrices for p = 2 and any n ≥ 4, but not on the n× n matrices.

1.6. The restriction properties. Recall that for a g-module V the subspace
of g-invariants in V is defined by V g = {v ∈ V |x · v = 0 for all x ∈ g}. If
V is a commutative k-algebra on which g acts by derivations, for example the
differentiated action of an action of G by automorphisms, then any p-th power
is a g-invariant.

We will occasionally indicate the dependence of our algebras As andDs on the
rank n with an extra left subscript n. The embeddingX 7→

(
X 0
0 0

)
: gln−1 ↪→ gln

induces a GLn−1-equivariant surjections nA ↠ n−1A and nAs ↠ n−1As and
therefore restriction maps

(nAs)
GLn → (n−1As)

GLn−1 . (1)

(nAs)
gln → (n−1As)

gln−1 . (2)

We say that the algebras (nAs)n≥1 have the group restriction property if the
above maps (1) are surjective for all n ≥ 2. The infinitesimal restriction
property, or Lie algebra restriction property, can be defined analogously us-
ing the maps (2) and one can define similar restriction maps for the algebras

nA = k[gln], nD and nDs.
As is well known, e1, . . . , en are algebraically independent and generate AG.

Clearly, ei for gln restricts to ei for gln−1, so the algebras nA, n ≥ 1, have the
group restriction property. Furthermore, by Veldkamp’s Theorem for A, A is
generated by Ap and AG, see [13, Sect 3.5] and the references there. So the
algebras nA, n ≥ 1, also have the infinitesimal restriction property.
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Remarks 1.2. 1. Although the Sr-invariants of kSr, i.e. the centre of kSr, in
general (r > n) does not surject onto the Sr-invariants in ((g⊗r)∗)G, it seems
that this image does contain the symmetric G-invariant multilinear functions
of r matrices which vanish when p arguments are the same. The first statement
is equivalent to the statement that the algebras nD don’t have the restriction
property, see Remark 2.3.4. The second statement is implied by Conjecture 2.1.
2. From our discussion of (Dr)G we get an isomorphism from (kSr)

Sr to the

projective limit lim
←−
n

(Sr(gln)
∗)GLn . This map is a characteristic p version the

“characteristic map” from [10, I.7.3].
3. The map f 7→ (X 7→ f(X − I)) : k[g] → k[G], I the identity matrix, induces

G-equivariant filtration preserving algebra isomorphisms As
∼→ k[Gs], s ≥ 1.

Here the filtrations are given by the powers of the maximal ideals of 0 resp.
I. Taking duals we obtain G-equivariant filtration preserving coalgebra isomor-
phisms Dist(Gs)

∼→ Ds(g) ∼= Ds, s ≥ 1, where Dist(Gs) is the distribution or
hyperalgebra of the s-th Frobenius kernel Gs of G. These fit together to give a
G-equivariant filtration preserving coalgebra isomorphism

Dist(G)
∼→ D(g) ∼= D (∗)

of which the associated graded is a G-equivariant isomorphism of Hopf algebras.
All this holds in much bigger generality, see [6, Sect 2]. We note that the algebra

Dist(G1) is isomorphic to the restricted enveloping algebra U [p](g) of g.
In [11, Sect 14,15] Okounkov and Olshanski studied the “special symmetri-

sation” map σ : S(gC) → U(gC). It maps the divided power Z-form onto the
Kostant Z-form and after reduction mod p one obtains the inverse of the map
(*). Via the Chevalley restriction and Harish Chandra map, the restriction
of σ to the invariants corresponds to the map φ from symmetric functions to
“shifted symmetric functions” which maps the Schur function sλ to the shifted
Schur function s∗λ. It is not clear to me how to obtain elementary formulas for
the images of the symmetric functions eλ, hλ and pλ under φ.
4. The Schur algebra S(n, r) is isomorphic to Dr as G×G-module, so the centre
of S(n, r) is isomorphic to (Dr)G as vector spaces. Computer calculations sug-
gest that (Dr)G has dimension equal to the number of partitions of r of length
≤ n, independent of p, and that a spanning set can be obtained by dividing
each hλ, λ a partition of r, by the biggest possible integer in the D(gl∗n,Z) and
then reducing mod p.

2. The algebras Ds and Ds(g)

2.1. Group invariants. Call a partition s-reduced if it has < ps ones. To any
partition we can associate an s-reduced partition by repeatedly replacing ps oc-
currences of 1 by ps−1 occurrences of p. We will call two partitions s-equivalent
if their associated s-reduced partitions are the same. Call two elements of the
symmetric group Sr s-equivalent if their cycle types are s-equivalent. Recall
the definition of Eπ, π ∈ Sr, from Section 1.5.
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Theorem 2.1. The sums of the Eπ over the s-equivalence classes belong to
Ds(g)

G, and when n ≥ r they form a basis of Dr
s(g)

G.

Proof. As we have seen in Section 1.5, the Eπ span the G-invariants in g⊗r and
they form a basis when n ≥ r. So if n ≥ r, then the sums of the Eπ over the
conjugacy classes form a basis of Dr(g)G = (g⊗r)G×Sr . The subspace Dr

s(g)
consists of those elements u of Dr(g) for which (xi1j1 ⊗ · · · ⊗ xirjr)(u) = 0 for
all i, j ∈ {1, . . . , n}r such that (iljl)l∈{1,...,r} has at least ps repetitions. First we
observe that (xi1j1⊗· · ·⊗xirjr)(Eπ) = 1 if j = i◦π and 0 otherwise. So, if we put
ES =

∑
σ∈S Eσ for S ⊆ Sr, then (xi1j1 ⊗ · · · ⊗ xirjr)(ES) = |{σ ∈ S | j = i ◦ σ}|

mod p. We will now show the following:

Lemma. Let Λ ⊆ {1, . . . , r} be a set of ps indices and let i, j ∈ {1, . . . , n}r
such that (il, jl) is constant for l ∈ Λ. We extend the permutations in Sym(Λ)
to {1, . . . , r} by letting them fix the elements outside Λ. Let π ∈ Sr.

(i) If j ̸= i ◦ π or the centraliser CSym(Λ)(π) of π in Sym(Λ) does not contain
a ps-cycle, then (xi1j1 ⊗ · · · ⊗ xirjr)(ESym(Λ)·π) = 0.

(ii) If j = i ◦ π and CSym(Λ)(π) contains a ps-cycle, then Λ is π-stable, and
(xi1j1 ⊗ · · · ⊗ xirjr)(ESym(Λ)·π) equals
1 if π|Λ = id,

−1 if π|Λ is a product of ps−1 disjoint p-cycles, and

0 otherwise.2

Proof. Let Ω be the set of permutations π with j = i ◦ π. Note that Ω is
CSr(i)× CSr(j)-stable, so Sym(Λ) acts on Ω by conjugation.
(i). If j ̸= i ◦ π, then j ̸= i ◦ ρ for all ρ ∈ Sym(Λ) · π. Therefore we have
(xi1j1⊗· · ·⊗xirjr)(ESym(Λ)·π) = 0. Now assume that j = i◦π. Then Sym(Λ)·π ⊆
Ω and (xi1j1⊗· · ·⊗xirjr)(ESym(Λ)·π) = |Sym(Λ)·π| mod p. So it suffices to show
that Sym(Λ) · π has size divisible by p. Now also assume that CSym(Λ)(π) does
not contain a ps-cycle. Then the same holds for CSym(Λ)(ρ) for all ρ ∈ Sym(Λ)·π.
Now let σ ∈ Sym(Λ) be any ps-cycle. Then ⟨σ⟩ is a p-group and all ⟨σ⟩-orbits
on Sym(Λ) · π have size divisible by p. So Sym(Λ) · π has size divisible by p.
(ii). Since j = i ◦ π, we have (xi1j1 ⊗ · · · ⊗ xirjr)(ESym(Λ)·π) = |Sym(Λ) · π|
mod p, as we have seen in the proof of (i). Let σ ∈ CSym(Λ)(π) be a ps-cycle.
Then Λ is π-stable, since π commutes with σ. So Λ is a union of ⟨π⟩-orbits.
These orbits are permuted transitively by ⟨σ⟩. So they all have the same size,
pt say, t ∈ {0, . . . , s}.

We have |Sym(Λ)·π| = |Sym(Λ)·(π|Λ)| = ps!

(pt)ps−tps−t!
, see [10, I.B.3(1) p171].

If we apply the p-adic valuation to this we get by Legendre’s Theorem

ps − 1

p− 1
− (tps−t +

ps−t − 1

p− 1
) .

If t = 0, then π|Λ = id and |Sym(Λ) · π| = 1. Now assume t = 1. Then π|Λ is a
product of ps−1 disjoint p-cycles. Clearly, |Sym(Λ) ·π| is nonzero mod p (the p-
adic valuation is zero), so we may assume that p > 2. For each a ∈ {1, . . . , p−1}
we count how often a p-power multiple of a number with remainder a mod p
occurs in the list ps, ps−1, . . . , ps−1+1 of factors of ps!

ps−1!
. It occurs as a+bp for
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b = ps−2, . . . , ps−1−1, as ap+bp2 for b = ps−3, . . . , ps−2−1, . . . , as aps−2+bps−1

for b = 1, . . . , p−1 and finally as aps−1 for a > 1 and as ps for a = 1. That is in
total (ps−1−ps−2)+(ps−2−ps−3)+· · ·+(p−1)+1 = ps−1 times. The product of

the nonzero numbers in the prime field is −1. So |Sym(Λ) ·π| = (−1)p
s−1

= −1
mod p.

Finally assume that t ≥ 2. Then we have to show that ps−1
p−1 > tps−t+ ps−t−1

p−1 ,

i.e. ps > tps−t+1 − tps−t + ps−t, i.e. that pt > tp − t + 1. This we do by
induction on t. For t = 2 this follows from the fact that p > 2− 1

p . Now assume

it holds for t. Then we have p ≥ 2 > 1 + 1
pt−1 − 1

pt . So pt+1 > pt + p − 1 >

tp− t+ 1 + p− 1 = (t+ 1)p− (t+ 1) + 1. So Sym(Λ) · π has size divisible by
p. □

So for i,j and Λ as in the lemma, the Sym(Λ)-orbits S for which the value
(xi1j1⊗· · ·⊗xirjr)(ES) is nonzero, leave Λ stable and come in “associated pairs”:

one has cycle structure 1p
s
on Λ and value 1, the other has cycle structure pp

s−1

on Λ and value −1. When T is an s-equivalence class, then ET can be written
as a sum of certain ES , S a Sym(Λ)-orbit and with any such orbit which has
nonzero value the associated orbit is also present, so (xi1j1⊗· · ·⊗xirjr)(ET ) = 0.
It follows that ET ∈ Ds(g).

Now assume that n ≥ r. Let Λ ⊆ {1, . . . , r} be a set of ps indices, assume
π ∈ Sr stabilises Λ, π|Λ is a product of ps−1 disjoint p-cycles and π′ ∈ Sr is the
identity on Λ and equal to π outside Λ. Denote the Sr-conjugacy class of σ ∈ Sr

by [σ]. Note that [π] ̸= [π′]. Recall from our discussion in Section 1.5 that the
E[σ] form a basis of Dr(g)G. To prove the theorem it is enough to show that

for any Λ, π and π′ as above, and any u ∈ Dr
s(g)

G, E[π] and E[π′] occur with
the same coefficient in u. Define i ∈ {1, . . . , n}r by il = l for l ∈ {1, . . . , r} \ Λ
and il = min(Λ) for l ∈ Λ. Put j = i ◦ π = i ◦ π′. By our definition of i and
j, j = i ◦ σ implies σ = π outside Λ. So the Sym(Λ)-orbits of π and π′ form
the only associated pair (relative to i, j and Λ) and the only Sym(Λ)-orbit S
in [π] resp [π′] for which ES has nonzero value is that of π resp. π′. So for
u ∈ (Dr)G, written as a linear combination of the E[σ], (xi1j1 ⊗ · · · ⊗ xirjr)(u)
equals the coefficient of E[π′] minus the coefficient of E[π]. This ends the proof
of the theorem. □

Theorem 2.2.

(i) The sums of the divided pλ’s over the s-equivalence classes of the partitions
of r belong to (Dr

s)
G, and when n ≥ r they form a basis of (Dr

s)
G.

(ii) The divided hλ’s and the divided eλ’s, both with λ = 1m12m2 · · · such that
m1 < ps, belong to (Dr

s)
G, and when n ≥ r they form two bases of (Dr

s)
G.

Proof. (i). This is just a reformulation of Theorem 2.1, where we now work in
the divided power algebra D of g∗ rather than g. As we have seen in Section 1.5
divided pλ corresponds to the sum of the Eπ over the conjugacy class labelled
by λ.
(ii). Since these two families are independent, see Section 1.5, and have the
same cardinality as the basis from part (i), it is enough to show that they lie
in Ds. Recall that Ds is spanned by the divided power monomials in the xij ’s
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with exponents < ps. Both the divided hλ’s and the divided eλ’s are products of
divided powers with exponent < ps of e1 = h1 and divided powers of elements
in the span B ⊆ D1 of the divided power monomials in the xij ’s of degree ≥ 2
and with exponents < p. Using (2) it follows that γi(e1) ∈ Ds for all i < ps. So
it is enough to show that B is stable under all divided powers γi, i ≥ 1. This
follows from Lemma 1.1. □

Corollary 1. The monomials
∏n

i=1 e
(mi)
i , m1 < ps, belong to DG

s . Further-

more, for r ≤ n, those with
∑n

i=1 imi = r form a basis of (Dr
s)

G.

Proof. This is just a reformulation of the statement about the eλ’s in Theo-
rem 2.2. □

Remarks 2.1. 1. Let AG denote the image of AG in A1 = D1. By Veldkamp’s

Theorem for k[g], see Section 1.6, AG is also the image of Ag in A1. Furthermore,
by [12, Thms 8.2 or 8.4] it has the monomials in the ei with exponents < p as
a basis. From Corollary 1 it is clear that when n ≥ 2p the first degree where

a “new” invariant (i.e. not in AG) shows up in A1 is 2p. Indeed (A2p
1 )G is the

direct sum of the image of (A2p)G and ke
(p)
2 . In the introduction of [15] it is

pointed out that Ag
1 modulo AG is isomorphic to H1(G1, I1), where I1 is the

ideal from Section 1.3. We note that conjecturally Ag
1 and AG

1 are the same,
see the remarks after Conjecture 2.1.
2. For R a commutative ring, put A1,R = R[(xij)1≤i,j≤n]/(x

p
ij | 1 ≤ i, j ≤ n).

We define φp : A+
1,Z → A1,Z, A

+
1,Z the truncated polynomials without constant

term, by φp(u) =
up

p . Then φp descends to a map φp : A
+
1,Fp

→ A1,Fp . We have

A1,Fp = D1,Fp , and when u ∈ A+
1,Fp

has no linear or constant term, then φp(u)

can also be computed in the divided power algebraDZ by the same formula. Let
u ∈ DZ be a lift of u (without linear or constant term), let m ≥ 0 be an integer,

let m =
∑t

i=0 aip
i be the p-adic expansion of m and write m! = qpνp(m!), where

p does not divide q. By Legendre’s Theorem we have νp(m!) =
∑t

i=1 ai
pi−1
p−1 =∑t

i=1 aiνp(p
i!). So u(m) = 1

q

∏t
i=1(

upi

pνp(p
i!)
)ai = 1

q

∏t
i=1(φ

i
p(u))

ai and therefore

u(m) =
1

q

t∏
i=1

(φi
p(u))

ai .

In particular, any divided power monomial
∏n

i=1 e
(mi)
i with m1 < p can be ex-

pressed as a monomial in e1, . . . , en together with the iterates of φp on e2, . . . , en.

2.2. Infinitesimal invariants.

Lemma 2.1. Let V = kn be the natural module for G, let r, t ≥ 1 with
n ≥ r, t, and put W = V ⊕r ⊕ (V ∗)⊕t. For i ∈ {1, . . . , r} and j ∈ {1, . . . , t} let
xi : W → V and yj : W → V ∗ be the i-th vector component and j-th covector
component function and ⟨xi, yj⟩ = ((v, w) 7→ wj(vi)) ∈ k[W ]G be the bracket
function. Then
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(i) the monomials in the ⟨xi, yj⟩ with exponents < p form a basis of k[W ]g

over k[W ]p, and
(ii) ((V ⊗r ⊗ (V ∗)⊗t)∗)g = ((V ⊗r ⊗ (V ∗)⊗t)∗)G.

Proof. (i). We will verify the hypotheses of [14, Thm 5.5]. Using the notation
in [14] we have that cg(W ) = dim g −minx∈W dim gx = n2 − (n − r)(n − t) =
(r+ t)n−rt, since n ≥ r, t, and dim(W )− cg(W ) = rt. Let U ⊆ W be the set of
points (v, w) ∈ W where the differentials d(v,w)⟨xi, yj⟩ are linearly dependent.
We have d(v,w)⟨xi, yj⟩ = ((z, u) 7→ ⟨vi, uj⟩+ ⟨zi, wj⟩) = fj(vi) + gi(wj) ∈ W ∗ =

(V ∗)⊕r⊕V ⊕t, where fj embeds V in the (r+j)-th position in W ∗ and gi embeds
V ∗ in the i-th position ofW ∗. It is now easy to check that the differentials of the
⟨xi, yj⟩ at (v, w) will be independent if v ∈ V ⊕r is independent or if w ∈ (V ∗)⊕t

is independent. Since n ≥ r, t we can indeed choose v and w like this, so we
obtain that codim(W \ U) ≥ 2.
(ii). This follows from (i), since ((V ⊗r ⊗ (V ∗)⊗t)∗)g consists of the multilinear
functions in k[W ]g, so the p-th powers cannot be involved. □

Proposition 2.1. Assume r ≤ n and put N = (ps−1)n2. Then (Dr)g = (Dr)G

and (AN−r
s )g = (AN−r

s )G for r ≤ n.

Proof. Since AN−r
s

∼= Dr
s as G-modules and Dr

s is a G-submodule of Dr, it
is enough to prove the first assertion. Put V = kn. Since Dr

s ⊆ Dr ⊆
(g⊗r)∗ ∼= (V ⊗r ⊗ (V ∗)⊗r)∗ it is enough to show that ((V ⊗r ⊗ (V ∗)⊗r)∗)g equals
((V ⊗r ⊗ (V ∗)⊗r)∗)G for r ≤ n which follows from Lemma 2.1(ii). □

One can form the divided power algebra of a vector space V = k ⊗Z VZ
where VZ is any free Z-module. If (xi)i∈I is a basis of VZ one just has to work

with monomials
∏

i∈I x
(mi)
i with all but finitely many mi zero. For a family of

variables (xi)i∈I we put D((xi)i∈I) = D(k⊗ZVZ) andDs((xi)i∈I) = Ds(k⊗ZVZ)
where VZ is the free Z-module on (xi)i∈I .

Corollary 2 (to Theorems 2.1 and 2.2).

lim
←−
n

(nDs)
gln = lim

←−
n

(nDs)
GLn = Ds(e1)⊗D((ei)i≥2),

where D((ei)i≥2) is graded such that e
(m)
i has degree mi, and the limit is in the

category of graded k-algebras.

Proof. This follows from Proposition 2.1 and Corollary 1 to Theorem 2.2. □

Corollary 3 (to Theorem 2.1 and 2.2). Denote the centre of Dist(Gs) by Zs

and for a subspace W of Dist(Gs) denote by F rW the intersection of W with
the r-th filtration subspace of Dist(Gs). Assume that r ≤ n.

(i) F rZs = F rDist(Gs)
G = F rDist(Gs)

g.
(ii) The dimension of F rZs is the number of partitions of 0, 1, . . . , r with < ps

ones.

Proof. This follows from Remark 1.2.3, Proposition 2.1 and Theorem 2.1. □

Remarks 2.2. 1. The referee mentioned to me the following generalisation of
Lemma 2.1. Call a polynomial dominant weight, i.e. a partition of length ≤ n,
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ps-restricted if λi − λi+1 < ps for i = 1, . . . , n − 1, and λn < ps. Furthermore,
call a semisimple G-module ps-restricted if all its irreducible submodules have
ps-restricted highest weight. Then we have the following result.

Proposition. Let M and N be finite dimensional polynomial G-modules, ho-
mogeneous of degrees r and t. If r ≤ t and N has ps-restricted socle or if r ≥ t
and M has ps-restricted head, then HomG(M,N) = HomGs(M,N).

This result is not hard to prove using standard facts about polynomial mod-
ules, see [9, App A.1-3], contravariant duality, see [9, II.1.16,2.12,2.13] or [7,
2.7,5.4c], and the arguments from [9, II.3.16]: One first reduces to the first
alternative using contravariant duality, then one reduces to the case that N is
an injective indecomposable in the polynomial category, and then one proves
the assertion by induction on the number of composition factors, where the
assumption r ≤ t is needed for the basis case that M is irreducible.

From the above result one easily deduces Lemma 2.1. Indeed for n ≥ r
we have HomG(V

⊗r, X) ∼= Xω where Xω is the ω-weight space and ω =
(1, . . . , 1, 0, . . . , 0) (r ones), see [9, A.22,23] or[7, 6.2g Rem 1, 6.4f, 6.4b]. So
V ⊗r has p-restricted head, and, by contravariant duality, p-restricted socle.
2. The conclusion of Lemma 2.1 does not hold when n < r or n < t. For
example, if we have n = 1, r ≥ 2, t ≥ 1 then xh1x

p−h
2 , 1 < h < p is a g-invariant,

but it doesn’t belong to the k[X]p-algebra generated by the xiyj .
3. I checked with the computer that dim(Dr)g > dim(Dr)G when p = 2, n = 2
or n = 3, and r = n+1. In the first case I got 8 > 5, in the second case 31 > 23.
When p = 3, n = 2, and r = 5 I got 45 > 42.

For p = 2, n = 2, r = 3 one can easily describe a g-invariant in Dr(g) =
(g⊗r

n )Sr which is not a G-invariant. One can take the sum of the 3 S3-conjugates

of (E11 + E22)⊗ E12 ⊗ E12, i.e. (E11 + E22)E
(2)
12 .

4. Take n = 2. Let H be the group of diagonal matrices in G and let h be
its Lie algebra. It is easy to check that the nonzero H-weights in A1 are also
nonzero for h. So the H-action on Ag

1 is trivial. Of course the same holds for all
G-conjugates of H. From the density of the semisimple elements in H it now
follows that Ag

1 = AG
1 . This argument was mentioned to me by S. Donkin. It is

not difficult to show that dim(AG
1 ) =

3p2−p
2 and that e1 = tr, e2 = det and e

(2)
2

generate AG
1 by reducing to the sl2-case when p > 2.

2.3. The restriction property. Recall that there is a G-equivariant isomor-
phism D1

∼= A1 of graded algebras.

Conjecture 2.1. The algebras (nA1)n≥1 have the infinitesimal restriction prop-
erty.

If this conjecture holds, then Ag
1 = AG

1 by Proposition 2.1 and the monomials∏n
i=1 e

(mi)
i , m1 < p, span Ag

1 by Corollary 1 to Theorem 2.2. The point is that
the restriction property allows us to reduce to the situation that n is ≥ the
degree r. Conversely, if these monomials span Ag

1, then Ag
1 = AG

1 and the
algebras (nA1)n≥1 have the infinitesimal restriction property. Note that by

Remark 1.2.3 Ag
1 = AG

1 implies that the centre U [p](g)g of U [p](g) is contained
in the centre Dist(G)G of Dist(G), see [8, Lem 6.5].
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Remarks 2.3. 1. We consider the surjectivity of the map (NA1)
GLN → (nA1)

GLn ,
N > n. By Remark 2.2.4 it is surjective for n = 2, since the generators there lift
to any (NA1)

GLN . I also checked that it is surjective for n = 3 and p = 2, 3, 5,
n = 4 and p = 2, 3 (up to degree 8), n = 5 and p = 2 (up to degree 7), p = 3
(up to degree 6). This was done by checking in each of these cases that the
monomials from Corollary 1 to Theorem 2.2, span (nA

r
1)

GLn = (nD
r
1)

GLn .
2. We consider the conjecture Ag

1 = AG
1 . By Remark 2.2.4 it holds for n = 2. I

checked it with the computer for n = 3 and p = 2, 3, 5, n = 4 and p = 2, 3 (up
to degree 7) and 5 (up to degree 6), n = 5 and p = 2 (up to degree 5), 3 (up to
degree 5).
3. The algebras (nAs)n≥1, s ≥ 2, don’t have the group or Lie algebra restriction
property. I checked this for the restriction 3A

10
2 → 2A

10
2 when p = 2: (2A

10
2 )GL2

is spanned by x211x
3
12x

3
21x

2
22 + x311x

2
12x

2
21x

3
22 and x311x

3
12x

3
21x22 + x211x

3
12x

3
21x

2
22 +

x11x
3
12x

3
21x

3
22, but the image in 2A2 of (3A

10
2 )b3 , b3 the upper triangular matri-

ces in gl3, is spanned by the first element.
4. The algebras (nDs)n≥1, s ≥ 2, and (nD)n≥1 don’t have the group or Lie al-
gebra restriction property. By Proposition 2.1 and Theorem 2.2(i) it is enough
to check that the dimension of the span of the sums of the divided pλ’s is
< dim(nD

r
s)

G. First we consider the case n = 2. For r = 5, p = 2 I got 1 < 2
for s = 2 and 2 < 3 for s ≥ 3, for r = 8, p = 3 I got 4 < 5 for s ≥ 2, and for
r = 14, p = 5 I got 7 < 8 for s ≥ 2. In the case n = 3, r = 6, p = 2 I got 4 < 5
for s = 2 and 6 < 7 for s ≥ 3.

2.4. Dimensions of some of the Ar
s. We give some dimensions that we cal-

culated using a computer program. For n = 2 the dimensions of the Ar
s were

always given as the coefficients of the polynomial 1−T ps

1−T × 1−T 3(ps−1)+2

1−T 2 ∈ Z[T ]
which we calculate as 1−T ps

1−T 2 × 1−T 3(ps−1)+2

1−T for p = 2. The total dimension was

always p2s + ps(ps−1)
2 . We checked the cases s = 2, p = 2, 3, 5 and s = 3, p = 2.

For the case s = 1, see Remark 2.2.4.

In the table below we give dimensions for n ≥ 3. Let AG denote the image
of AG in As. The first row gives the dimensions of the (Ar

s)
G, the second row

gives the dimensions of the graded pieces of AG, and the third row, if it exists,
gives the dimensions of the (Ar

s)
g. If the dimensions can be computed in all

degrees, then the single number to the right gives the total dimension.
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n=3,p=2,s=1: {1, 1, 1, 2, 2, 2, 2, 1, 1, 1}, 14

{1, 1, 1, 2, 1, 1, 1, 0, 0, 0}, 8

{1, 1, 1, 2, 2, 2, 2, 1, 1, 1}, 14

n=3,p=3,s=1: {1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1}, 55 

{1, 1, 2, 2, 3, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0}, 27

{1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1}, 55

n=3,p=5,s=1: {1, 1, 2, 3, 4, 4, 6, 6, 7, 8, 9, 9, 11, 11, 12, 13, 14, 14, 15, 14, 14, 13, 12, 11, 11, 9, 9, 8, 7, 6, 6, 4, 4, 3, 2, 1, 1}, 285

{1, 1, 2, 3, 4, 4, 6, 6, 7, 8, 8, 8, 9, 8, 8, 8, 7, 6, 6, 4, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 125

{1, 1, 2, 3, 4, 4, 6, 6, 7, 8, 9, 9, 11, 11, 12, 13, 14, 14, 15, 14, 14, 13, 12, 11, 11, 9, 9, 8, 7, 6, 6, 4, 4, 3, 2, 1, 1}, 285

n=3,p=2,s=2: {1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 9, 9, 8, 7, 7, 6, 5, 5, 4, 3, 3, 2, 1, 1}, 140

{1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 5, 5, 5, 4, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 64

n=4,p=2,s=1: {1, 1, 1, 2, 3, 3, 4, 4, 4, 4, 4, 3, 3, 2, 1, 1, 1}, 42 

{1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0}, 16  

{1, 1, 1, 2, 3, 3, 4, 4, 4, 4, 4, 3, 3, 2, 1, 1, 1}, 42

n=4,p=3,s=1: {1, 1, 2, 2, 4, 4, 6, 6, 9, ........},

{1, 1, 2, 2, 4, 4, 5, 5, 7, 6, 7, 6, 7, 5, 5, 4, 4, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

{1, 1, 2, 2, 4, 4, 6, 6, ........}

n=4,p=5,s=1: {1, 1, 2, 3, 5, 5, 8, ..........},

{1, 1, 2, 3, 5, 5, 8, 9, 12, 13, 16, 17, 21, 21, 24, 25, 28, 27, 30, 29, 31, 29, 30, 27, 28, 25, 24, 21, 21, 17, 16, 13, 12, 9, 8, 5, 5, 3, 2, 1, 1, 0, ... ,0 }

{1, 1, 2, 3, 5, 5, 8, ..........}

n=5,p=2,s=1: {1, 1, 1, 2, 3, 4, 5, 6, .........},

{1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

{1, 1, 1, 2, 3, 4,............}

n=5,p=3,s=1: {1, 1, 2, 2, 4, 5, 7, ..........},

{1, 1, 2, 2, 4, 5, 6, 7, 9, 10, 12, 12, 14, 14, 15, 15, 15, 14, 14, 12, 12, 10, 9, 7, 6, 5, 4, 2, 2, 1, 1, 0, ... , 0}

{1, 1, 2, 2, 4, 5,..........}

n=5,p=5,s=1: {1, 1, 2, 3, 5, 6, 9, ............},

{1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 22, 26, 32, 36, 42, 47, 54, 59, 66, 71, 78, 83, 89, 93, 99, 102, 106, 108, 111, 111, 113, ...........}

{1, 1, 2, 3, 5,...............}

Dimensions of the invariants in some of the Ar
s

3. Several matrices

In this section we study the invariants in the algebras Ds((g
⊕m)∗).

3.1. Conjugacy classes for the conjugation action of Sα on Sr. We recall
some notation and results from [5] about conjugacy classes of a Young subgroup
in Sr. For a finite sequence i = (i1, . . . , it) of elements of {1, . . . ,m} we define
Content(i) to be the m-tuple whose j-th component is the number of occur-
rences of j in i. We say that sequences i and j as above are equivalent if one is
a cyclic shift of the other, we denote the equivalence class of i by [i] and we put
|[i]| = t. We will call these equivalence classes cycle patterns. Clearly, equiv-
alent sequences have the same content, so the content function is also defined
on cycle patterns. For l ≥ 1 we define the l-th power of i by

[i]l = [i1, . . . , it, . . . , i1, . . . , it︸ ︷︷ ︸
l copies of i

] .

We call a cycle pattern primitive if it is not the l-th power of another cycle
pattern for some l ≥ 2 and we denote the set of primitive cycle patterns by Φ.
Let P be the set of partitions. For λ = (λ1, λ2, . . .) ∈ P we put |λ| =

∑
i≥1 λi

and we denote the length of λ, i.e. the number of nonzero parts of λ, by l(λ).
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For a function λ : Φ → P such that all but finitely many values are the empty
partition we define the content of λ to be

∑
b∈Φ |λ(b)|Content(b) and we denote

the set of such functions with content α by Θα.
Now fix a composition α = (α1, . . . , αm) of r. For i ∈ {1, . . . ,m} put ∆i =

{j ∈ Z |
∑i−1

l=1 αl < j ≤
∑i

l=1 αl}. Define ζ : {1, . . . , r} → {1, . . . ,m} by
ζ(j) = i when j ∈ ∆i. Let Sα be the simultaneous stabiliser of the ∆i in
Sr. Note that Sα

∼= Sα1 × · · · × Sαm . For a cycle σ = (i1, . . . , it) ∈ Sr we
put [σ] = [ζ(i1), . . . , ζ(it)]. We can associate to every π with disjoint cycle
decomposition π =

∏
j∈J σj the multiset of cycle patterns ⟨[σj ] | j ∈ J⟩. This

multiset is equal to ⟨bλ(b)i | b ∈ Φ, 1 ≤ i ≤ l(λ(b))⟩ for a unique λ ∈ Θα which
we call the Sα cycle type of π. Clearly, π, π′ ∈ Sr are Sα-conjugate if and only
if they have the same Sα cycle type.

3.2. Partial polarisation. Let α, r, the ∆i, Sα and ζ be as in the previous
section and let V be a vector space over k. The algebra S(V ⊕m) = S(V )⊗m

is Zm-graded and we denote the piece of degree α by Sα(V ⊕m). We apply
analogous notation to the algebras S((V ⊕m)∗), D(V ⊕m) and Ds(V

⊕m). Note
that Sα(V ⊕m) ∼= Sα1(V )⊗· · ·⊗Sαm(V ), so Sα(V ⊕m)∗ can be regarded as the r-
linear functions V ⊕r → k which are symmetric in each of the sets of positions ∆i,
i.e. which are Sα-invariants. For an integer t ≥ 0 let 1t denotes the all-one vector
of length t. The partial polarisation map Pα : Sα((V ⊕m)∗) → Sα(V ⊕m)∗ sends
f ∈ Sα((V ⊕m)∗) to the multi-homogeneous component of degree (1α1

, . . . , 1αm
)

of the r-variable polynomial function

(v11, . . . , v
1
α1
, . . . , vm1 , . . . , vmαm

) 7→ f(v11 + · · ·+ v1α1
, . . . , vm1 + · · ·+ vmαm

) .

If F : V ⊕r → k is r-linear and f = ((v1, . . . , vm) 7→ F (vζ(1), . . . , vζ(r))), then

Pα(f) = ((v1, . . . , vr) 7→
∑
σ∈Sα

F (vσ(1), . . . , vσ(r))) .

As in Section 1.4 we obtain isomorphisms Dα((V ⊕m)∗) ∼= Sα(V ⊕m)∗. Un-
der these isomorphisms Dα

s ((V
⊕m)∗) can be regarded as the r-linear functions

V ⊕r → k which are symmetric in each of the sets of positions ∆i and which
vanish when the arguments in ps positions within a ∆i are the same. Further-
more, these isomorphisms are compatible with the isomorphism D((V ⊕m)∗) ∼=
S(V ⊕m)∗gr from Section 1.4.

3.3. Invariants in the algebra D((g⊕m)∗). We keep the notation of Sec-
tion 3.1. For f ∈ k[g]G and b = [i1, . . . , it] a cycle define fb ∈ k[g⊕m]G by

fb(x1, . . . , xm) = f(xi1 · · ·xit) .

For λ ∈ Θα define pλ =
∏

b∈Φ pλ(b),b, eλ =
∏

b∈Φ eλ(b),b and hλ =
∏

b∈Φ hλ(b),b.

Furthermore define uλ =
∏

b∈Φ uλ(b) and zλ =
∏

b∈Φ zλ(b), and call 1
zλ
pλ,

1
uλ

hλ,
1
uλ

eλ ∈ S((g⊕m
Q )∗) divided pλ, hλ and eλ. As shown in [5] zλ is the order of the

centraliser in Sα of an element in Sr of Sα cycle type λ. Clearly, the divided hλ
and eλ can be considered as elements of Dα((g⊕m)∗)G by reduction mod p. We
will now show that the same holds for the divided pλ and that, for n ≥ r, they
form three bases of Dα((g⊕m)∗)G. First we note that for b ∈ Φ the map f 7→ fb
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can be defined over Q and then it maps divided power Z-form into divided
power Z-form. So for each b ∈ Φ, the three families ( 1

uλ
hλ,b)λ∈P , (

1
uλ

eλ,b)λ∈P

and ( 1
zλ
pλ,b)λ∈P have the same Z-span in S((g⊕m

Q )∗). But then the same holds

for the three families ( 1
uλ

hλ)λ∈Θα , (
1
uλ

eλ)λ∈Θα and ( 1
zλ
pλ)λ∈Θα . In particular,

1
zλ
pλ belongs to D((g⊕m

Z )∗).

Now let π ∈ Sr be of Sα cycle type λ. Then it is easy to see that pλ =
((X1, · · · , Xm) 7→ fπ(Xζ(1), . . . , Xζ(r))), fπ as in Section 1.5. So as an element

of Sα(g⊕m
Q )∗, via the partial polarisation map Pα, it is

((X1, · · · , Xr) 7→
∑
σ∈Sα

fπ(Xσ(1), . . . , Xσ(r))) =
∑
σ∈Sα

fσπσ−1 .

So under the Sr-equivariant isomorphism π 7→ fπ : kSr → ((g⊗r)∗)G the sum of
the conjugacy class [π]Sα corresponds to divided pλ. So the divided pλ, λ ∈ Θα,
form a basis of Dα((g⊕m)∗)G = ((g⊗r)∗)G×Sα , and the same must then hold for
the other two families.

3.4. Invariants in the algebras Ds((g
⊕m)∗). We keep the notation of Sec-

tion 3.1. Call λ ∈ Θα s-reduced if λ([j]) has < ps ones for all j ∈ {1, . . . ,m}.
To λ ∈ Θα we can associate its s-reduced form by repeatedly replacing ps oc-
currences of 1 in a λ([j]) by ps−1 occurrences of p. We will call two elements of
Θα s-equivalent if they have the same s-reduced form. Call two elements of the
symmetric group Sr (s, α)-equivalent if their Sα cycle types are s-equivalent.

As in Section 2 we can now show that the sums of the Eπ over the (s, α)-
equivalence classes belong to Ds(g

⊕m)G, and when n ≥ r they form a basis of
Dα

s (g
⊕m)G. We only need the lemma in the proof of Theorem 2.1 for sets Λ that

are contained in one of the ∆i. The proof of the theorem below is completely
analogous to that of Theorem 2.2 and we leave this to the reader as well.

Theorem 3.1.

(i) The sums of the divided pλ’s over the s-equivalence classes in Θα belong
to Dα

s ((g
⊕m)∗)G, and when n ≥ r they form a basis of Dα

s ((g
⊕m)∗)G.

(ii) The divided hλ’s and the divided eλ’s, both with λ ∈ Θα such that λ([j])
has < ps ones for all j ∈ {1, . . . ,m}, belong to Dα

s ((g
⊕m)∗)G, and when

n ≥ r they form two bases of Dα
s ((g

⊕m)∗)G.

Corollary 1. The monomials
∏

1≤i≤n,b∈Φ e
(mi,b)
i,b , m1,[j] < ps for j ∈ {1, . . . ,m},

belong to Dr
s((g

⊕m)∗)G. Furthermore, for r ≤ n, those with
∑

1≤i≤n,b∈Φmi,b|b| =
r form a basis of Dr

s((g
⊕m)∗)G.

Proof. Given that Dr
s((g

⊕m)∗) is the direct sum of the Dα
s ((g

⊕m)∗), α ∈ Zm a
composition of r, this is just a reformulation of the statement about the eλ’s in
Theorem 3.1. □

Proposition 3.1. Assume r ≤ n. Then Dr
s((g

⊕m)∗)g = Dr
s((g

⊕m)∗)G.

Proof. For α a composition of r we haveDα
s ((g

⊕m)∗) is aG-submodule of (g⊗r)∗,
so this follows as in the proof of Proposition 2.1. □
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Corollary 2.

lim
←−
n

Ds((gl
⊕m
n )∗)gln = lim

←−
n

Ds((gl
⊕m
n )∗)GLn = Ds((e1,[j])1≤j≤m)⊗D((ei,b)i or |b|≥2),

where D((ei,b)i or |b|≥2) is graded such that e
(t)
i,b has degree ti|b|, and the limit is

in the category of graded k-algebras.

Proof. This follows from Proposition 3.1 and Corollary 1 to Theorem 3.1. □

4. Vectors and covectors

Let V = Vn = kn be the natural module for G, let m1,m2 ≥ 0 be integers
and put W = Wn = V ⊕m1 ⊕(V ∗)⊕m2 . In this section we study the invariants in
the algebras Ds(W

∗). For i ∈ {1, . . . ,m1} and j ∈ {1, . . . ,m2} let xi : W → V
and yj : W → V ∗ be the i-th vector component and j-th covector component
function and ⟨xi, yj⟩ = ((v, w) 7→ wj(vi)) ∈ k[W ]G be the bracket function.
By Section 1.4 these bracket functions can also be considered as elements of
D(W ∗)G. The algebra S(W ) is Zm × Zm-graded and Z × Z-graded and we

denote the piece of multidegree (α1, α2) by Sα1,α2
(W ) and the piece of bidegree

(r1, r2) by Sr1,r2(W ). We apply analogous notation to the algebras S(W ∗),
D(W ∗) and Ds(W

∗).
Let r1, r2 ≥ 0 be integers and let α1 = (α1

1, . . . , α
1
m1

) and α2 = (α2
1, . . . , α

2
m2

)

be compositions of r1 and r2. As in Section 3.1 we associate to these ∆1
i ,

i ∈ {1, . . . ,m1}, ∆2
j , j ∈ {1, . . . ,m2}, ζ1 : {1, . . . , r1} → {1, . . . ,m1}, ζ2 :

{1, . . . , r2} → {1, . . . ,m2}, and Sα1 , Sα2 ≤ Sr. We have a partial polarisation
map

Pα1,α2 : Sα1,α2
(W ∗) → Sα1,α2

(W )∗ =
((

V ⊗r1 ⊗ (V ∗)⊗r2
)∗)Sα1×Sα2

.

If F : V ⊕r1 ⊕ (V ∗)⊕r2 → k is multilinear and f equals

((v1, . . . , vm1 , w1, . . . , wm2) 7→ F (vζ1(1), . . . , vζ1(r1), wζ2(1), . . . , wζ2(r2))) ,

then Pα1,α2(f) equals(
(v1, . . . , vr1 , w1, . . . , wr2) 7→

∑
σ∈Sα1 ,τ∈Sα2

F (vσ(1), . . . , vσ(r1), wτ(1), . . . , wτ(r2))
)
.

As in Section 1.4 we obtain isomorphisms Dα1,α2
(W ∗) ∼= Sα1,α2

(W )∗. Under

these isomorphisms Dα1,α2

s (W ∗) can be regarded as the multilinear functions
V ⊕r1 ⊕ (V ∗)⊕r2 → k which are symmetric in each of the sets of vector positions
∆1

i and in each of the sets of covector positions ∆2
i , and which vanish when the

arguments in ps positions within a ∆ι
i, ι ∈ {1, 2}, are the same. Furthermore,

these isomorphisms are compatible with the isomorphism D(W ∗) ∼= S(W )∗gr

from Section 1.4.
Assume now that α1 and α2 above are compositions of r. The group Sr ×Sr

acts on Sr via (σ, τ)·π = σπτ−1. Each Sα1×Sα2-orbit has a unique representant
π such that π is increasing on each ∆2

j and π−1 is increasing on each ∆1
i . Let
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π ∈ Sr. Put ∆1
ij = ∆1

i ∩ π(∆2
j ) and mij = |∆1

ij | for 1 ≤ i ≤ m1, 1 ≤ j ≤ m2.
Then

α1
i =

m2∑
j=1

mij and α2
j =

m1∑
i=1

mij . (3)

For σ, τ ∈ Sr we have (σ, τ) ∈ Sα1 × Sα2 and σπτ−1 = π if and only if σ ∈
Sα1 ∩ πSα2π−1 and τ = π−1σπ. So the Sα1 × Sα2-centraliser of π has size
|Sα1 ∩ πSα2π−1| =

∏
1≤i≤m1,1≤j≤m2

mij !.
Conversely, if we are given integers mi,j ≥ 0, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, which

sum to r, then we can define α1 and α2 by (3) and we can define the ∆1
i and ∆2

j

as before. We divide each ∆1
i into m2 consecutive intervals ∆1

i1, . . . ,∆
1
im2

and

we divide each ∆2
j into m1 consecutive intervals ∆2

1j , . . . ,∆
2
m1j

such that ∆1
ij

and ∆2
ij have length mij . Now we define π ∈ Sr by requiring that π : ∆2

ij → ∆1
ij

is increasing. Then π is increasing on each ∆2
j and π−1 is increasing on each

∆1
i .

Proposition 4.1. Let r1, r2 ≥ 0 be integers.

(i) If r1 ̸= r2, then Dr1,r2(W ∗) = 0. If r1 = r2 = r, then the divided power
monomials in the ⟨xi, yj⟩ of bidegree (r, r) belong to Dr,r

1 (W ∗)G, and when
n ≥ r they form a basis of Dr,r(W ∗)G = Dr,r

1 (W ∗)G.
(ii) If n ≥ r1, r2, then Dr1,r2(W ∗)g = Dr1,r2(W ∗)G.

Proof. (i). By considering the action of the centre of G it follows that if r1 ̸= r2,
then Dr1,r2(W ∗)G = 0, so we assume now that r1 = r2 = r. By Lemma 1.1
the given monomials belong to Dr,r

1 (W ∗). Denote the vector and covector com-
ponent functions of V ⊕r ⊕ (V ∗)⊕r by xi and yi, i ∈ {1, . . . , r}. The function
fπ ∈ (g⊗r)∗ from Section 1.5 can also be seen as an element of (V ⊗r⊗(V ∗)⊗r)∗.
Then we have fπ =

∏r
i=1⟨xπ(i), yi⟩ and we see that the map π 7→ fπ is Sr × Sr-

equivariant.
Let mi,j ≥ 0, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, be integers which sum to r.

Define α1 and α2 by (3) and then define ∆1
i , ∆2

j , ζ1, ζ2, Sα1 , Sα2 as in
Section 3.2, and define π as before the proposition. It is easy to see that∏

1≤i≤m1,1≤j≤m2
⟨xi, yj⟩mij =

∏r
i=1⟨xζ1(π(i)), yζ2(i)⟩. So as an element of Sr,r(WQ)

∗,

via the partial polarisation map Pα1,α2 , it is
∑

σ∈Sα1 ,τ∈Sα2

∏r
i=1⟨xσ(π(i)), yτ(i)⟩ =∑

σ∈Sα1 ,τ∈Sα2
fσπτ−1 . So under the Sr × Sr-equivariant isomorphism π 7→ fπ :

kSr →
(
(V ⊗r ⊗ (V ∗)⊗r)∗

)G
the sum of the orbit [π]Sα1×Sα2 corresponds to∏

1≤i≤m1,1≤j≤m2
⟨xi, yj⟩(mij). So these divided power monomials form a basis of

Dr,r(W ∗)G =
⊕

α1,α2 Dα1,α2
(W ∗)G.

(ii). AsDα1,α2
(W )∗ =

((
V ⊗r1⊗(V ∗)⊗r2

)∗)Sα1×Sα2

, this follows from Lemma 2.1(ii).

□

Note that we have a natural embedding Vn−1 ↪→ Vn by adding a zero compo-
nent in the n-th position, and a natural embedding V ∗

n−1 ↪→ V ∗
n by extending a

function f ∈ V ∗
n−1 by sending the n-th standard basis vector to 0. This gives us

a natural embedding Wn−1 ↪→ Wn, and we get restriction maps for the algebras
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(k[Wn])n≥1, (D(W ∗
n))n≥1 and (Ds(W

∗
n))n≥1. From the previous proposition we

immediately obtain the following corollary, where we may omit the subscript s.

Corollary.

lim
←−
n

(Ds(W
∗
n))

gln = lim
←−
n

(Ds(W
∗
n))

GLn = D(⟨xi, yj⟩1≤i≤m1,1≤j≤m2),

where the grading is such that ⟨xi, yj⟩(t) has degree 2t, and the limit is in the
category of graded k-algebras.

Remarks 4.1. 1. It is immediate from classical invariant theory, see [4], that
the algebras (k[Wn])n≥1 have the restriction property.
2. Since Wn

∼= (V ⊕m2
n ⊕ (V ∗

n )
⊕m1)∗, we get restriction maps Wn → Wn−1. From

the description of
∧
(Wn)

G in [1, Sect 5] it is clear that the algebras
∧
(Wn)n≥1

have the restriction property. This implies that when p = 2, the algebras
(A1(Wn))n≥1 have the restriction property.
3. For p = 3 the algebras (D(W ∗

n))n≥1 and (Ds(W
∗
n))n≥1 don’t have the re-

striction property. I checked with the computer for p = 3, n = 2,m1 =
1,m2 = 3 that dimDr

1(W
∗
n) = 1, 0, 3, 0, 6, 0, 11, 0, 15 for r = 0, . . . , 8 and 0

for r > 8, and that the dimensions of the span of the invariants from Proposi-
tion 4.1 in degrees = 0, . . . , 8 are 1, 0, 3, 0, 6, 0, 10, 0, 15. In degree 6 the invariant
x1x2(x1y21 − x2y22)(y12y31 − y11y32) is outside this span, where yji denotes the
i-th component of the j-th covector.
4. Similar to [1, Sect 5] one could try to determine the invariants in A1(Wn) =

D1(W
∗
n) by using the isomorphism A1(Wn) ∼= A1((V

∗
n )

⊕m) ⊗ detm1(1−p), m =
m1 + m2, of GLn-modules, and then use the commuting GLm-action. Let
Un ≤ GLn be the subgroup of upper uni-triangular matrices. Then we get
A1(Wn)

GLn ∼= A1((V
∗
n )

⊕m)Un

m1(p−1)1n
, where 1n is the all-one vector of length

n. Now one could hope that A1((V
∗
n )

⊕m)Un

(p−1)ν
∼= ∆GLm((p − 1)νT ), ∆GLm(µ)

the Weyl module of highest weight µ and νT the transpose of ν, at least for
ν a multiple of 1n. Indeed the analogue for the exterior algebra holds by [2]

or [1]. However, in the case p = 3, n = 2,m1 = 1,m2 = 3, A1((V
∗
2 )

⊕4)U2

(2,2) is

not even a quotient of some Weyl module. Indeed its socle and ascending rad-
ical series both have two layers: the first one is the irreducible LGL4(2, 2, 0, 0)
of dimension 19 and the second layer is LGL4(1, 1, 1, 1) ⊕ LGL4(4, 0, 0, 0) of di-
mension 1 + 16 = 17. The Weyl module ∆GL4(4, 0, 0, 0) has dimension 35 and
the two layers of its socle and ascending radical series are LGL4(2, 2, 0, 0) and
LGL4(4, 0, 0, 0).
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