INVARIANTS IN DIVIDED POWER ALGEBRAS

RUDOLF TANGE

ABSTRACT. Let k be an algebraically closed field of characteristic p > 0, let
G = GL, be the general linear group over k, let g = gl,, be its Lie algebra
and let Ds be subalgebra of the divided power algebra of g* spanned by
the divided power monomials with exponents < p°. We give a basis for
the G-invariants in Ds up to degree n and show that these are also the
g-invariants.

We define a certain natural restriction property and show that it doesn’t
hold when s > 1. If s = 1, then D; is isomorphic to the truncated coordinate
ring of g of dimension pdim(G) and we conjecture that the restriction property
holds and show that this leads to a conjectural spanning set for the invariants
(in all degrees).

We give similar results for the divided power algebras of several matrices
and of vectors and covectors, and show that in the second case the restriction
property doesn’t hold.

We also give the dimensions of the filtration subspaces of degree < n of
the centre of the hyperalgebra of the Frobenius kernel Gs.

INTRODUCTION

Let k be an algebraically closed field of characteristic p > 0, let G = GL,
be the general linear group over k and let g be its Lie algebra: the n x n
matrices with entries in k. For the representation theory of G and g it is
of interest to understand the centres UP!(g)® and Dist(G)C of the restricted
enveloping algebra UP!(g) and the hyperalgebra or distribution algebra Dist(G).
In this paper we study their commutative analogues: the truncated symmetric
algebra S(g) = S(g)/(z” |z € g) and the divided power algebra D(g). They
are isomorphic to their noncommutative analogues as G-modules under the
conjugation action. The connection with the representations of G and g is
described in more detail in Remark 1.2.3 and Corollary 3 to Theorem 2.1 (the
hyperalgebras of G and G5) and Remark 1.2.4 (the Schur algebra). To state
our results it is more convenient to work with A;(g) = S(g*) and D(g*). This
is harmless, since g = g* as G-modules.

Initially we were interested in describing the invariants for the group and the
Lie algebra in A;(g) and its higher analogues A,(g) = S(g*)/(f*" | f € g*). Tt is
easy to see that A;(g)“ is bigger than the image of S(g*)“ (or S(g*)?): the top
degree element (unique up to a scalar multiple) of A;(g)“ is not in the image
of S(g*)¥. Tt turned out to be more convenient to work with the dual versions
Dy(g*) of the A4(g), inside the divided power algebra D(g*) where we have the
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divided power maps. Up to degree n it is easy to give a basis for the invariants
in D(g*). In fact we can give three different bases, see Section 1.5. So the task
is then to describe the invariants of the subalgebras D4(g*) in terms of these
bases. For one of the three aforementioned bases of D(g*) we obtain a basis
of Ds(g*) by forming equivalence class sums for a certain equivalence relation
on the basis, for the other two we obtain a basis of D4(g*) by taking a suitable
subset of the basis, see Theorem 2.2.

We also consider the so-called “restriction property” for several families of
algebras, see Section 1.6. Intuitively, when the restriction property holds one
may expect a universal description of the invariants, independent of the rank
n. When it doesn’t hold the description of the invariants will depend on the
rank. In all the classical cases (invariants in the coordinate rings of vectors and
covectors and of several matrices) the restriction property holds, at least for
the group. For the algebras D(g*) and D4(g*) that we study, the restriction
property almost never holds. We can only conjecture it for D;(g*) = Ai(g), see
Conjecture 2.1.

The paper is organised as follows. In Section 1 we discuss some, mostly
well-known, results about divided power algebras, truncated coordinate rings,
polarisation and Z-forms, and multilinear invariants of several matrices that we
will need later on.

Section 2 contains our main result which describes the G-invariants in the
algebra Dg(g*): Theorem 2.2. To prove it, it is more convenient to first work
with Dgs(g). Theorem 2.1 is our main result for this algebra. Infinitesimal
invariants are discussed in Proposition 2.1. In Corollary 3 to Theorems 2.1
and 2.2 we give the dimensions of the filtration subspaces of degree < n of the
centre of the hyperalgebra of Dist(Gs). In Remark 2.3.3 and 4 we show that
the restriction property doesn’t hold for the algebras As(g) when s > 2 and
also not for the algebras D4(g*) when s > 2. In Section 2.4 we give dimensions
for the invariants in the graded pieces of some of the A;(g).

In Section 3 we study the divided power algebra and its “truncated” subalge-
bras for several matrices. Theorem 3.1 describes the G-invariants and Proposi-
tion 3.1 describes the infinitesimal invariants. To state and prove these results
we first need to state some, mostly well-known, results about conjugacy classes
in the symmetric group for a Young subgroup, partial polarisation, and invari-
ants in the full divided power algebra.

In Section 4 we study the divided power algebra and its truncated subal-
gebras for vectors and covectors. Proposition 4.1(i) describes the G-invariants
and Proposition 4.1(ii) describes the infinitesimal invariants. As preliminar-
ies we first state some, mostly well-known, results about partial polarisation,
and orbits in the symmetric group for the multiplication action of a product of
two Young subgroups. In Remark 4.1.3 we show that the restriction property
doesn’t hold in this case.

1. PRELIMINARIES

Throughout this paper k is an algebraically closed field of characteristic p > 0
and s is an integer > 1.
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1.1. Lucas’s Theorem and Legendre’s Theorem. We remind the reader
of two basic results from number theory.

Theorem (Lucas’s Theorem). Let a = )5 ap’ and b = 5. >0 bip' be the
p-adic expansions of the integers a,b > 0. Then (a) = szo (ZZ) mod p.

Theorem (Legendre’s Theorem). Let vy, : Zso — Z>o be the p-adic valuation,
let a > 1 be an integer, and let sy(a) be the sum of the p-adic digits of a. Then
vp(al) = a;‘g_”£a)
1.2. The divided power algebra and certain subalgebras.
Let V = k®gz V7 be a vector space over k “defined over Z” where V7 has Z-basis
(Y1, -, Ym). We will denote 1®y; € V just by y;. Inside the symmetric algebra
S(Vg) of Vg = Q®z Vz we can form the divided power monomials [[;, yz(ti)
where t; > 0 and z® = +a'. They are linearly independent over Q and their
Z-span is a Z-subalgebra D(Vz) of S(Vg). Now we put D(V) = k ®z D(Vz).
The algebra S(Vg) has the divided power map v; = (2 — @) : Iy — S(Vg)
where Ig consists of the polynomials without constant term. The ~;, ¢ > 1,
preserve Iz = D(Vz) N Ig and therefore induce divided power maps v; : Iz —
D(Vz). These ~; preserve plz for i > 1 and, reducing mod p and extending from
F, = Z/pZ to k, we obtain divided power maps v; = (z +— ) : T — D(V),
where I = k ® Iz, which satisfy:
) v0(x) =1, v1(z) =2 and v;(z) € [ for i > 1 and for all x € I,

(1

(2) iz +y) = X i (@)ri-j(y) for i > 0 and for z,y € I,
(3) vi(zy) = 2'y(y) fori >0,z € D(V) and y € I,
(4
(5

) vi(x)yi(z) = (itj)wﬂ(a:) fori,7 >0 and x € I, and

) i(v(w)) = (E!ljjj);!')/ij(x) fori,j >0and z € I.
The algebra D(V) is commutative and graded and has a GL(V')-action which
is “defined over Z”, so it is clear that the v; are GL(V')-equivariant. The span
Dy (V) of the (divided power) monomials [ [, ygti), 0 <t; <p®isa GL(V)-stable
graded subalgebra of D(V') of dimension p*™. It can be characterised as the
distribution algebra or hyperalgebra of the s-th Frobenius kernel V,, of the

additive group scheme V, see [9, 1.4.25]. We denote the graded pieces of degree
r of D(V) and Ds(V) by D"(V) and D3 (V).

Lemma 1.1. Let B =@, -, D{(V). Then B is stable under multiplication and
under the v;,1 > 1. a

Ei aipi
> bap?

7, 1
mod p if 0 < b; < a; < p for all ¢ by Lucas’s Theorem, and (?)P;)' is nonzero

Proof. Clearly, B is stable under multiplication. Note that ( ) is nonzero

mod p by Legendre’s Theorem. So in view of (4) and (5) it is enough to show
that B is stable under ,. Clearly, B is stable under the ~;, 1 < i < p, so
by (2) it is enough to show that ~,(u) = 0 for any divided power monomial

u in the y; of degree j with 2 < j < p. If u involves at least two variables,

() for some 7. Then

(4p)!
(3hrp!

then this follows immediately from (3). So assume u = y,

Yp(u) = (gff’;;! yl(j P) by (5). By Legendre’s Theorem the p-adic valuation of
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ip=sp(Gp) _ (p(j_i”l(j)) + 1), where sp(j) denotes the sum of the p-adic digits

is

p—1 P
of j. Now s,(jp) :'sp(j) = j, since j < p, so this p-adic valuation equals j — 1
which is > 1. So (g.{f’p);! =0 mod p. O

1.3. Truncated coordinate rings. Define the ideal I of the coordinate ring
A= A(V) = K[V] = S(V*) of V by I, = (f?| f € V*) = (&#' |1 < i < m),
where (21, ..., x,,) is the dual basis of (y1,...,ym). Put Ay = A,(V') = k[V]/I.
We call A;(V) the s-th truncated coordinate ring of V. It is a commutative
graded algebra of dimension p*™ and can be characterised as the coordinate ring
of the aforementioned infinitesimal group scheme V, ;. We denote the graded
pieces of degree r of A(V) and As(V) by A"(V) and AL(V'). There is a GL(V)-

equivariant isomorphism of graded Hopf algebras Ds(V) = A4(V)*. It maps

I, yz(ti), 0 < t; < p®, to the dual basis element of [[*, z;". Put A} = AL(V).
The top degree of As is N = (p* — 1)m and A4(N) = k[[, z" ! is 1-
dimensional. Since GL(V) acts through det'™" on A4(N), the multiplication
defines an GL(V)-invariant pairing A7 x (AN~" ® det?” 1) — k. This pairing
is nondegenerate, so we obtain isomorphisms (A7)* = AN~ @ det?"~! and
Dy(V) =2 A (V)* =2 A,(V) ® det?" ! of GL(V)-modules. The latter maps

ti S —t;
[T yz( ! to | JESE
1.4. The polarisation map and Z-forms. The polarisation map
P:S"(V*) = (S"V)*

in degree r sends f € S”(V*) to the the multi-homogeneous component of degree
(1,...,1) of the r-variable polynomial function (vi,...,v,) — f(v1 + -+ + v.).
Let F : V®" — k be r-linear, and let f = (v — F(v,...,v)) € S"(V*), then

P(f) = ((v1,...,0,) = Z F(UU(1)7~--7UU(1))>7

UES’V‘

where S, denotes the symmetric group or rank r. We extend P to a linear
map from k[V] = S(V*) to the graded dual S(V)*8" of S(V) and this is an
algebra homomorphism. The multiplication on this graded dual comes from
the comultiplication on S(V), see [3, IIL.11].

Inside S(V{) we have the “divided power Z-form” D(Vy). The polarisa-

tion map over Q maps this Z-form onto the standard Z-form of the graded

dual of S(Vg). Reducing mod p we obtain an isomorphism from D aef D(V*)

to S(V)*¢'. We now identify these two. Then D" e Dr(v*) = S"(V)* =

((V®)*)5r: the space of symmetric r-linear functions V¥" — k, and D’ =
D% (V*) consists of the symmetric r-linear functions that vanish when p® ar-
guments are the same. Furthermore the polarisation map over k£ can now be
identified with the map k[V] = S(V*) — D(V*) given by inclusion of Z-forms.
We note that for a symmetric r-linear function V®" — k to vanish when p* ar-
guments are the same it is enough to check that this holds for r-tuples of basis
vectors. This follows from the fact that the S)s-stabiliser of a nonconstant map
{1,...,p°} = {1,...,t}, t any integer > 2, is a proper Young subgroup of Sps,
so the orbit of such a map has size divisible by p.
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We now return to the polarisation map in characteristic p. It follows easily
from the definition that P has image D; and kernel I3, so it induces a GL(V)-
equivariant isomorphism A; = A;(V) = D1(V*) = D; of graded algebras.

1.5. Adjoint invariants and symmetric functions. From now on until the
end of Section 2 we specialise V' to g = gl,, = End(k") with G = GL,, acting
by conjugation. So D = D(g*) and A = A(g). The symbol V may now denote
another vector space. We work with the bases (Ejj)1<i j<n of g with dual basis
(xij)1<ij<n of g*, where Ej; is the elementary matrix which is 1 in row ¢ and
column j and 0 elsewhere. Note that the trace form on g is nondegenerate and
gives an isomorphism g = g* of G-modules which maps Ej;; to zj;. Note also
that the G-action factors through the SL(g)-action, so we have isomorphisms of
G-modules D" = (A7)* = AN~ where N = (p°—1)n? is the top degree. The G-
invariants in D" = ((g®")*)% are the S,-invariants in the space of G-invariants
of (g%")*. By “Schur-Weyl duality” [4, Sect 4], the space of G-invariants of
(g®")* can be described as the image of the group algebra k.S, of the symmetric
group S, under the S.-equivariant linear map

T fr,
where fr(X1,...,X,) = [[[_; tr(X,,), @ = 0105 is the disjoint cycle form

of 7 (including 1-cycles), tr(X,) def tr(X;, - -+ X;,) for any cycle o = (i1,...,14),
and the Sy-action on kS, is by conjugation. This map is injective when r < n.
If we work with g®" instead of the isomorphic module (g®")*, then the map is
given by 7 +— E,, where E; = Zie{17m7n}r ®?=1Eirr(z)il-1

We make some observations about symmetric functions. For the basics
we refer to [10]. For an integer ¢ > 1 and X € Mat,, we define ¢;(X) =
tr(ATX), hi(X) = tr(S°X) and p;(X) = tr(X?). Clearly, the e;, h;,p; can be
considered as elements of k[g] and therefore also as elements of D(g), see Sec-
tion 1.4. For a partition A of r we define ey to be the product of the ey, and
we define h) and py in the same way. Via the Chevalley Restriction Theorem
(CRT) we can identify these functions with the equally named symmetric func-
tions. Writing A in the form A = 1"12™2... we define z) = [[,~;™m;! and
uy = [[;1 mi!. Recall that z) is the order of the centraliser in S, of a permu-

tation of cycle type A. We will call ip)\, %h)\, ie,\ IS S(g(’é) divided py, hy and

€.

For the divided ey’s and h)’s, A a partition of r, it is clear that by reduction
mod p they can be considered as elements of (D")%: ey = [[;5, egmi), hy =
[L>1 hgmi). We claim that the same is true for the divided py’s and that, for
n > r, these three families form three bases of (D")¢. For the first claim we
work over Q. By [10, Ex 1.6.10, p 110] the Z-span of the p)’s is the same
as that of the uym)’s, where the m)’s are the monomial symmetric functions.
Taking the “dual” lattices, i.e. everything that is integral on the lattice via the
canonical form, we obtain that the Z-span of the divided p)’s is the same as
that of the divided h)’s, see [10, 1.4.5, 1.4.7]. Applying the involution w we see

Hdentifying g®" with End((k™)®"), the action of S, on tensor space is given by m — E,_ 1.
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that Z-span of the divided p)’s is also the same as that of the divided e)’s, see
[10, 1.2.6-13]. So %p,\ belongs to D(g7).

To prove the second claim we return to the above S,-equivariant linear map
from kS, onto the G-invariant multilinear functions of r matrices. It is injective
when n > 7. So in this case (D")% is simply the image of the centre (kS,)""
of kS,. If m € S, has cycle type A, then py = (X — fz(X,..., X)), so, as an
element of S"(gg)* via the polarisation map P, it is > g foro-1. Therefore
the sum of the conjugacy class [rr] is mapped to divided py. So the divided p)’s
form a basis and therefore the divided e)’s and h)’s as well.

Example 1.1. Take p = 2. Put u = divided po; + divided p;3 = %pgpl + %pi’ €
D(g}). Thenu = (X — Str(X?)tr(X)+3tr(X)?) corresponds to the symmetric
3-linear function

(X,Y, Z) = tr(XY)t2(Z) + tr(X Z2)te(Y) + tr(Y Z)tr(X) + te(X)tr(Y)tr(Z) .

In characteristic p, this function vanishes when 2 arguments are the same, so
the reduction mod p of u belongs to D;. When n = 2 this function is nonzero
(take e.g. X = Ej9,Y = E9,Z = Ej1), but is zero on triples of diagonal
2 x 2-matrices. The same is true for any symmetric r-linear function rgl, — k,
r > 2, which vanishes when 2 arguments are the same. Similarly, divided p3 =
ips = (X,Y,2) = t1(XY Z) + tr(Y X Z)) vanishes in characteristic 2 when 2
arguments are the same. This function is clearly nonzero for n > 2, but is zero
on triples of diagonal matrices for all n > 1. Note that eq = 6;2) on the diagonal
matrices for p = 2 and any n > 4, but not on the n X n matrices.

1.6. The restriction properties. Recall that for a g-module V' the subspace
of g-invariants in V' is defined by V¢ = {v € V|z-v =0 for all z € g}. If
V is a commutative k-algebra on which g acts by derivations, for example the
differentiated action of an action of G by automorphisms, then any p-th power
is a g-invariant.

We will occasionally indicate the dependence of our algebras A; and D, on the
rank n with an extra left subscript n. The embedding X — ()0< 8) cgl,_1 —gl,
induces a GL,_1-equivariant surjections ,4 — ,_1A4 and ,A; — ,_1A4s and
therefore restriction maps

(nAS)GLn - (nflAS)GLn71~ (1)
(nAS)g[" - (n—lAS)g[”_l- (2)

We say that the algebras (,A5)n>1 have the group restriction property if the
above maps (1) are surjective for all n > 2. The infinitesimal restriction
property, or Lie algebra restriction property, can be defined analogously us-
ing the maps (2) and one can define similar restriction maps for the algebras
nA=k[gl,], »D and ,, D;.

As is well known, ey, ..., e, are algebraically independent and generate AS.
Clearly, e; for gl,, restricts to e; for gl,,_;, so the algebras ,A, n > 1, have the
group restriction property. Furthermore, by Veldkamp’s Theorem for A, A is
generated by AP and A%, see [13, Sect 3.5] and the references there. So the
algebras , A, n > 1, also have the infinitesimal restriction property.
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Remarks 1.2. 1. Although the S,-invariants of £S,., i.e. the centre of kS, in
general (r > n) does not surject onto the S,-invariants in ((g®")*)%, it seems
that this image does contain the symmetric G-invariant multilinear functions
of r matrices which vanish when p arguments are the same. The first statement
is equivalent to the statement that the algebras ,,D don’t have the restriction
property, see Remark 2.3.4. The second statement is implied by Conjecture 2.1.
2. From our discussion of (D")% we get an isomorphism from (kS,)°" to the
projective limit l@(ST(g[n)*)GLn. This map is a characteristic p version the
n

“characteristic map” from [10, 1.7.3].

3. The map f — (X — f(X — 1)) : k[g] = k[G], I the identity matrix, induces
G-equivariant filtration preserving algebra isomorphisms As; = k[G], s > 1.
Here the filtrations are given by the powers of the maximal ideals of 0 resp.
1. Taking duals we obtain G-equivariant filtration preserving coalgebra isomor-
phisms Dist(Gs) = Ds(g) & Ds, s > 1, where Dist(G5) is the distribution or
hyperalgebra of the s-th Frobenius kernel G4 of G. These fit together to give a
G-equivariant filtration preserving coalgebra isomorphism

Dist(G) = D(g) = D (%)

of which the associated graded is a G-equivariant isomorphism of Hopf algebras.
All this holds in much bigger generality, see [6, Sect 2]. We note that the algebra
Dist(G1) is isomorphic to the restricted enveloping algebra UP!(g) of g.

In [11, Sect 14,15] Okounkov and Olshanski studied the “special symmetri-

sation” map o : S(gc) — U(ge). It maps the divided power Z-form onto the
Kostant Z-form and after reduction mod p one obtains the inverse of the map
(*). Via the Chevalley restriction and Harish Chandra map, the restriction
of o to the invariants corresponds to the map ¢ from symmetric functions to
“shifted symmetric functions” which maps the Schur function sy to the shifted
Schur function s3. It is not clear to me how to obtain elementary formulas for
the images of the symmetric functions ey, h) and py under .
4. The Schur algebra S(n, r) is isomorphic to D" as G x G-module, so the centre
of S(n,r) is isomorphic to (D)% as vector spaces. Computer calculations sug-
gest that (D7) has dimension equal to the number of partitions of 7 of length
< n, independent of p, and that a spanning set can be obtained by dividing
each hy, A a partition of r, by the biggest possible integer in the D(gl}, ;) and
then reducing mod p.

2. THE ALGEBRAS Ds AND Dy(g)

2.1. Group invariants. Call a partition s-reduced if it has < p*® ones. To any
partition we can associate an s-reduced partition by repeatedly replacing p® oc-
currences of 1 by p*~! occurrences of p. We will call two partitions s-equivalent
if their associated s-reduced partitions are the same. Call two elements of the
symmetric group S, s-equivalent if their cycle types are s-equivalent. Recall
the definition of E,, m € S, from Section 1.5.
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Theorem 2.1. The sums of the E; over the s-equivalence classes belong to
D,(9)%, and when n > r they form a basis of D%(g)C.

Proof. As we have seen in Section 1.5, the E,; span the G-invariants in g®” and
they form a basis when n > r. So if n > 7, then the sums of the E, over the
conjugacy classes form a basis of D"(g)¢ = (g®7)@*. The subspace D’(g)
consists of those elements u of D"(g) for which (z;,;, ® -+ ® ;,5,.)(u) = 0 for
all i, j € {1,...,n}" such that (i;j;)ieq1,... ) has at least p° repetitions. First we
observe that (z;,;, ® - -®w;,j,)(Er) = 1if j = iom and 0 otherwise. So, if we put
Esg =3, cqFEs for S C S, then (x4, ® - ® 4,5, )(Es) = |[{c € S|j=ioo}
mod p. We will now show the following;:

Lemma. Let A C {1,...,7} be a set of p° indices and let i,j € {1,...,n}"
such that (iy, ;) is constant for | € A. We extend the permutations in Sym(A)
to {1,...,r} by letting them fix the elements outside A. Let w € S,.
(i) If j # iom or the centraliser Cgyy(p)(m) of ™ in Sym(A) does not contain
a p®-cycle, then (v, @ -+ @ Zi,j, ) (Esym(a).x) = 0.
(ii) If j = i om and Cgymn)(7) contains a p*-cycle, then A is w-stable, and
('Tl'ljl Q- ® xirjr)(ESym(A)'ﬂ') equals
1 if mla = id,
—1 if w|a 45 a product of p*~! disjoint p-cycles, and

0 otherwise.?

Proof. Let 2 be the set of permutations m with j = ¢ o w. Note that € is
Cs, (i) x Cg,(j)-stable, so Sym(A) acts on €2 by conjugation.
(i). If j # iom, then j # i o p for all p € Sym(A) - 7. Therefore we have
(T35, @+ @4,5,) (Egym(n).r) = 0. Now assume that j = iom. Then Sym(A)-w C
Qand (2,5, ® - ®2;,j, ) (Esym(a).x) = [Sym(A)-w[ mod p. So it suffices to show
that Sym(A) - 7 has size divisible by p. Now also assume that Cgyp(a)(7) does
not contain a p*-cycle. Then the same holds for Cgyy,(a)(p) for all p € Sym(A)-7.
Now let o € Sym(A) be any p*-cycle. Then (o) is a p-group and all (o)-orbits
on Sym(A) - 7 have size divisible by p. So Sym(A) - 7 has size divisible by p.
(ii). Since j = iom, we have (z,5, ® -+ ® T,.4,) (Esym(r)r) = [Sym(A) - 7|
mod p, as we have seen in the proof of (i). Let 0 € Cgyyy(a)(m) be a p-cycle.
Then A is m-stable, since 7 commutes with 0. So A is a union of (7)-orbits.
These orbits are permuted transitively by (o). So they all have the same size,
p'say, t € {0,...,s}.

We have |Sym(A) 7| = [Sym(A)- (x|p)] = # see [10, LB.3(1) p171].

If we apply the p-adic valuation to this we get by Legendre’s Theorem

st psft -1
o (tp™" + P )-
If t =0, then w|p =id and |Sym(A) - 7| = 1. Now assume ¢ = 1. Then 7|) is a
product of p*~! disjoint p-cycles. Clearly, |Sym(A) - 7| is nonzero mod p (the p-
adic valuation is zero), so we may assume that p > 2. Foreach a € {1,...,p—1}
we count how often a p-power multiple of a number with remainder ¢ mod p
occurs in the list p*, p* —1,...,p* 1 +1 of factors of pf%g!l!. It occurs as a+ bp for

p’—1
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b=p"2,.. ., p" =1, asap+bp? forb=p* 3, ... .p°2—1,...,as ap* 2+ bp* !
forb=1,...,p—1 and finally as ap*~! for @ > 1 and as p® for a = 1. That is in
total (p*~ 1 —p* ) +(p* 2 —p*3)+---+(p—1)+1 = p* ! times. The product of

s—1

the nonzero numbers in the prime field is —1. So [Sym(A) - 7| = (=1)P" = —1
mod p.
Finally assume that ¢ > 2. Then we have to show that ’;%11 > tpS~t4- P Sp__tl_l,

ie. p* > tp7tH —tp*~t 4+ p5=t ie. that p' > tp —t + 1. This we do by
induction on t. For t = 2 this follows from the fact that p > 2 — %. Now assume
it holds for t. Then we have p > 2 > 1+1% —]%. Soptl >pt+p—1>
tp—t+1+p—1=(t+1)p—(t+1)+1. So Sym(A)- 7 has size divisible by
p. ]

So for 4,7 and A as in the lemma, the Sym(A)-orbits S for which the value
(i, @ - -®x;,5,)(Es) is nonzero, leave A stable and come in “associated pairs”:
one has cycle structure 17° on A and value 1, the other has cycle structure 107”871
on A and value —1. When T is an s-equivalence class, then Ep can be written
as a sum of certain Eg, S a Sym(A)-orbit and with any such orbit which has
nonzero value the associated orbit is also present, so (z;,j, ®- - -®x;,;,)(Er) = 0.
It follows that Er € Dy(g).

Now assume that n > r. Let A C {1,...,r} be a set of p® indices, assume
7 € S, stabilises A, 7|4 is a product of p*~! disjoint p-cycles and 7’ € S,. is the
identity on A and equal to 7 outside A. Denote the S,-conjugacy class of o € S,
by [o]. Note that [7] # [#']. Recall from our discussion in Section 1.5 that the
E4 form a basis of D"(g)%. To prove the theorem it is enough to show that
for any A, 7 and 7’ as above, and any u € D’(g), El and Epp occur with
the same coefficient in u. Define i € {1,...,n}" by iy =1forl € {1,..., 7} \ A
and i = min(A) for [ € A. Put j = ionm =iox’. By our definition of i and
j, j =ioo implies 0 = 7 outside A. So the Sym(A)-orbits of 7 and 7" form
the only associated pair (relative to i,j and A) and the only Sym(A)-orbit S
in [r] resp [n] for which Eg has nonzero value is that of 7 resp. n’. So for
u € (D")%, written as a linear combination of the Eioy, (Tiyjy ® - @ 24,5, (u)
equals the coefficient of Ej;/ minus the coefficient of Ej,). This ends the proof
of the theorem. O

Theorem 2.2.

(i) The sums of the divided py’s over the s-equivalence classes of the partitions
of r belong to (D7), and when n > r they form a basis of (D)€,

(ii) The divided hy’s and the divided ey’s, both with A\ = 1122 ... such that
my < p°, belong to (D7), and when n > r they form two bases of (D%)%.

Proof. (i). This is just a reformulation of Theorem 2.1, where we now work in
the divided power algebra D of g* rather than g. As we have seen in Section 1.5
divided py corresponds to the sum of the E; over the conjugacy class labelled
by A.

(ii). Since these two families are independent, see Section 1.5, and have the
same cardinality as the basis from part (i), it is enough to show that they lie
in Ds. Recall that Dy is spanned by the divided power monomials in the x;;’s
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with exponents < p®. Both the divided h)’s and the divided e)’s are products of
divided powers with exponent < p*® of e; = hy and divided powers of elements
in the span B C D1 of the divided power monomials in the x;;’s of degree > 2
and with exponents < p. Using (2) it follows that ~;(e1) € D; for all i < p®. So
it is enough to show that B is stable under all divided powers -;, ¢ > 1. This
follows from Lemma 1.1. g

Corollary 1. The monomials [} e(mi), my < p®, belong to DS. Further-

i=1 "1
more, for v < n, those with Y, im; = r form a basis of (D.)%

Proof. This is just a reformulation of the statement about the ey’s in Theo-
rem 2.2. ]

Remarks 2.1. 1. Let AG denote the image of A® in A; = D;. By Veldkamp’s
Theorem for k[g], see Section 1.6, AG is also the image of A% in A;. Furthermore,
by [12, Thms 8.2 or 8.4] it has the monomials in the e; with exponents < p as
a basis. From Corollary 1 it is clear that when n > 2p the first degree where
a “new” invariant (i.e. not in AG) shows up in A; is 2p. Indeed (A?p )¢ is the
direct sum of the image of (A%)% and kegp ). In the introduction of [15] it is
pointed out that A modulo AG s isomorphic to H'(G1, 1), where I is the
ideal from Section 1.3. We note that conjecturally A} and A1G are the same,
see the remarks after Conjecture 2.1.

2. For R a commutative ring, put A; p = R[(:Eij)lgi,jgn]/(xf]- |11 <i,57 <n).
We define ¢, : AiZ — A1z, AiZ the truncated polynomials without constant
term, by ¢p(u) = “—p Then ¢, descends to a map ¢, : A;FIF — Ay r,. We have

Arr, = D1, and when u € A1 F, has no linear or constant term, then ¢, (u)
can also be computed in the d1v1ded power algebra Dy by the same formula. Let
u € Dz be a lift of u (without linear or constant term), let m > 0 be an integer,
let m = ZE:O a;p® be the p-adic expansion of m and write m! = ¢p*»(™)_ where

p does not divide q. By Legendre’s Theorem we have v,(m!) = Zf 1 @i —_11 =

Yy (). So 7™ = LI, (S25)® = LT, (o (@) and therefore

t
1 , .

u™ = = T ()

i=1

In particular, any divided power monomial []} ; egmi) with m; < p can be ex-

pressed as a monomial in ey, . . . , e, together with the iterates of ¢, on e, ..., €,.

2.2. Infinitesimal invariants.

Lemma 2.1. Let V = k" be the natural module for G, let r,t > 1 with
n>rt, and put W =V @ (V)% Forie {1,...,r} and j € {1,...,t} let
zi W =V and y; : W — V* be the i-th vector component and j-th covector
component function and (z;,y;) = ((v,w) — w;j(v;)) € k[W]E be the bracket
function. Then
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(i) the monomials in the (x;,y;) with exponents < p form a basis of k[W]?
over k[W1P, and
(ii) (Ve @ (V)& = (V" & (V*)#)*)C.

Proof. (i). We will verify the hypotheses of [14, Thm 5.5]. Using the notation
in [14] we have that ¢g(W) = dim g — mingew dimg, = n?> — (n —r)(n — t) =
(r+t)n—rt, since n > r,t, and dim(W) —¢g(W) = rt. Let U C W be the set of
points (v, w) € W where the differentials d, ., (7i,y;) are linearly dependent.
We have d(, w) (i, y;) = ((z,0) = (vi, u)) + (zi,w05)) = f;(vi) + gi(w;) € W* =
(V¥)9"®V® where f; embeds V in the (r+j)-th position in W* and g; embeds
V* in the i-th position of W*. It is now easy to check that the differentials of the
(z4,y;) at (v,w) will be independent if v € V¥" is independent or if w € (V*)®*
is independent. Since n > r,t we can indeed choose v and w like this, so we
obtain that codim(W \ U) > 2.

(ii). This follows from (i), since ((V®" @ (V*)®")*)¢ consists of the multilinear
functions in k[W]9, so the p-th powers cannot be involved. O

Proposition 2.1. Assumer < n and put N = (p*—1)n?. Then (D)% = (D")¢
and (AN=)9 = (AN=C for r < n.

Proof. Since AN=" = D" as G-modules and D" is a G-submodule of D", it
is enough to prove the first assertion. Put V = k™. Since D, C D" C
(g®")* = (VO @ (V*)®")* it is enough to show that (V" @ (V*)®")*)¢ equals
(Ve @ (V*)®)*) for r < n which follows from Lemma 2.1(ii). O

One can form the divided power algebra of a vector space V = k ®z Vy
where V7 is any free Z-module. If (z;);er is a basis of Vz one just has to work
with monomials J[,.; ajgmi) with all but finitely many m,; zero. For a family of
variables (x;);c; we put D((x;)icr) = D(k®zVz) and Ds((;)icr) = Ds(k®zVz)

where V7 is the free Z-module on (z;);e;s.
Corollary 2 (to Theorems 2.1 and 2.2).
lim(;, Ds)® = lim(, Ds) " = Dy(e1) © D((e1)i>2),

n n

(

where D((e;)i>2) is graded such that eim) has degree mi, and the limit is in the

category of graded k-algebras.
Proof. This follows from Proposition 2.1 and Corollary 1 to Theorem 2.2. [

Corollary 3 (to Theorem 2.1 and 2.2). Denote the centre of Dist(Gs) by Zs
and for a subspace W of Dist(Gs) denote by F"W the intersection of W with
the r-th filtration subspace of Dist(Gg). Assume that r < n.
(i) F"Z, = F"Dist(G)¢ = F"Dist(G,)?.
(ii) The dimension of F" Zs is the number of partitions of 0,1, ..., r with < p®
ones.

Proof. This follows from Remark 1.2.3, Proposition 2.1 and Theorem 2.1. [

Remarks 2.2. 1. The referee mentioned to me the following generalisation of
Lemma 2.1. Call a polynomial dominant weight, i.e. a partition of length < n,
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p®-restricted if \; — A\jy1 <p®fori=1,...,n—1, and A\, < p®. Furthermore,
call a semisimple G-module p*-restricted if all its irreducible submodules have
p®-restricted highest weight. Then we have the following result.

Proposition. Let M and N be finite dimensional polynomial G-modules, ho-
mogeneous of degrees r and t. If r <t and N has p®-restricted socle or if r >t
and M has p®-restricted head, then Homg(M, N) = Homg, (M, N).

This result is not hard to prove using standard facts about polynomial mod-
ules, see [9, App A.1-3], contravariant duality, see [9, 11.1.16,2.12,2.13] or [7,
2.7,5.4¢c|, and the arguments from [9, II.3.16]: One first reduces to the first
alternative using contravariant duality, then one reduces to the case that N is
an injective indecomposable in the polynomial category, and then one proves
the assertion by induction on the number of composition factors, where the
assumption r < t is needed for the basis case that M is irreducible.

From the above result one easily deduces Lemma 2.1. Indeed for n > r
we have Homg(V®" X) = X, where X, is the w-weight space and w =
(1,...,1,0,...,0) (r ones), see [9, A.22,23] or[7, 6.2g Rem 1, 6.4f, 6.4b]. So
V& has p-restricted head, and, by contravariant duality, p-restricted socle.

2. The conclusion of Lemma 2.1 does not hold when n < r or n < ¢. For
example, if we have n = 1,7 > 2,¢ > 1 then w{‘xé’_h, 1 < h < pis a g-invariant,
but it doesn’t belong to the k[X]P-algebra generated by the x;y;.

3. T checked with the computer that dim(D")? > dim(D")¢ when p = 2,n = 2
orn =3, and r = n+1. In the first case I got 8 > 5, in the second case 31 > 23.
When p=3,n=2,and r =51 got 45 > 42.

For p = 2,n = 2,7 = 3 one can easily describe a g-invariant in D"(g) =
(g27)5" which is not a G-invariant. One can take the sum of the 3 S3-conjugates
of (Ell + E22) ® Fi9 ® Eq9, i.e. (Ell + EQQ)Eg).

4. Take n = 2. Let H be the group of diagonal matrices in G and let h be
its Lie algebra. It is easy to check that the nonzero H-weights in A; are also
nonzero for h. So the H-action on A% is trivial. Of course the same holds for all
G-conjugates of H. From the density of the semisimple elements in H it now
follows that A = A§'. This argument was mentioned to me by S. Donkin. It is

not difficult to show that dim(A§) = 37’227_” and that e; = tr, eo = det and e;z)
generate A? by reducing to the sls-case when p > 2.

2.3. The restriction property. Recall that there is a G-equivariant isomor-
phism D1 = A; of graded algebras.

Conjecture 2.1. The algebras (,A1)n>1 have the infinitesimal restriction prop-
erty.

If this conjecture holds, then A = AIG by Proposition 2.1 and the monomials
I e(mi), my < p, span AY by Corollary 1 to Theorem 2.2. The point is that

e
thze resztriction property allows us to reduce to the situation that n is > the
degree 7. Conversely, if these monomials span A}, then A = A§ and the
algebras (nA1)n>1 have the infinitesimal restriction property. Note that by
Remark 1.2.3 A = A implies that the centre UP!(g)¢ of UPl(g) is contained

in the centre Dist(G) of Dist(G), see [8, Lem 6.5].
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Remarks 2.3. 1. We consider the surjectivity of the map (yA;)S¥N — (,41)Cn,
N > n. By Remark 2.2.4 it is surjective for n = 2, since the generators there lift
to any (yA1)S¥~. T also checked that it is surjective for n = 3 and p = 2,3, 5,
n =4 and p =2, 3 (up to degree 8), n =5 and p = 2 (up to degree 7), p =3
(up to degree 6). This was done by checking in each of these cases that the
monomials from Corollary 1 to Theorem 2.2, span (, A7)Sln = (,, D})Gln,

2. We consider the conjecture A = A?. By Remark 2.2.4 it holds for n = 2. 1
checked it with the computer for n = 3 and p =2,3,5, n =4 and p =2, 3 (up
to degree 7) and 5 (up to degree 6), n =5 and p = 2 (up to degree 5), 3 (up to
degree 5).

3. The algebras (,As)n>1, § > 2, don’t have the group or Lie algebra restriction
property. I checked this for the restriction 3430 — 9 A1 when p = 2: (;410)GL2
is spanned by %, 2352323, + 21,0123, 23, and @ 21ya3 w20 + 2t 2fy23, 03, +
T1173975, 735, but the image in 2As of (343°)%, bs the upper triangular matri-
ces in gls, is spanned by the first element.

4. The algebras (,Ds)n>1, s > 2, and (,D),>1 don’t have the group or Lie al-
gebra restriction property. By Proposition 2.1 and Theorem 2.2(i) it is enough
to check that the dimension of the span of the sums of the divided p)’s is
< dim(,D7)C. First we consider the case n = 2. For r =5, p=21got 1 < 2
fors=2and 2 <3 fors >3, forr=8 p=31got4d<5fors>2 and for
r=14,p=51got 7T<8for s >2. Inthecasen=3,r=6,p=2Igot4<5
for s=2and 6 < 7 for s > 3.

2.4. Dimensions of some of the A,. We give some dimensions that we cal-
culated using a computer program. For n = 2 the dimensions of the A} were

1—1P°  1-T73@° - 1+2
I 5= X 172 Z[T]

for p = 2. The total dimension was

always given as the coefficients of the polynomia
1—7%° 1—73(P°—1)+2
1-77 X -7
always p?* + w. We checked the cases s =2,p=2,3,5and s = 3,p = 2.
For the case s = 1, see Remark 2.2.4.

which we calculate as

In the table below we give dimensions for n > 3. Let A¢ denote the image
of A% in A,. The first row gives the dimensions of the (A7)%, the second row
gives the dimensions of the graded pieces of AG, and the third row, if it exists,
gives the dimensions of the (A7)?. If the dimensions can be computed in all
degrees, then the single number to the right gives the total dimension.
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n=3,p=2,5=1:{1,1,1,2,2,2,2,1,1,1}, 14
{1,1,1,2,1,1,1,0,0,0}, 8
{1,1,1,2,2,2,2,1,1,1}, 14
n=3,p=3,s=1:{1,1,2,2,3,3,4,4,5,5,5,4,4,3,3,2,2,1,1},55
{1,1,2,2,3,3,3,3,3,2,2,1,1,0,0,0,0, 0, 0}, 27
{1,1,2,2,3,3,4,4,5,5,5,4,4,3,3,2,2,1,1},55
n=3,p=5,s=1:{1,1,2,3,4,4,6,6,7,8,9,9,11,11,12,13, 14, 14,15, 14,14, 13,12, 11,11,9,9,8,7,6,6,4,4,3,2, 1, 1}, 285
{1,1,2,3,4,4,6,6,7,8,8,8,9,8,8,8,7,6,6,4,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0, 0}, 125
{1,1,2,3,4,4,6,6,7,8,9,9,11,11,12,13, 14, 14,15, 14,14, 13,12,11,11,9,9,8,7,6,6,4,4,3,2, 1, 1}, 285
n=3,p=2,5=2:{1,1,2,3,3,4,5,5,6,7,7,8,9,9,9,9,8,7,7,6,5,5,4,3,3,2,1, 1}, 140
{1,1,2,3,3,4,5,5,5,6,5,5,5,4,3,3,2,1,1,0,0,0,0,0, 0,0, 0, 0}, 64
n=4,p=2,=1:{1,1,1,2,3,3,4,4,4,4,4,3,3,2,1,1,1},42
{1,1,1,2,2,2,2,2,1,1,1,0,0,0,0, 0, 0}, 16
{1,1,1,2,3,3,4,4,4,4,4,3,3,2,1,1,1},42
n=4,p=3,s=1:{1,1,2,2,4,4,6,6,9, ....... }
{1,1,2,2,4,4,5,5,7,6,7,6,7,5,5,4,4,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0, 0}
{1,1,2,2,4,4,6,6, ... }
n=4,p=5,=1:{1,1,2,3,5,5,8, .......... }
{1,1,2,3,5,5,8,9,12, 13,16, 17, 21, 21, 24, 25, 28, 27, 30, 29, 31, 29, 30, 27, 28, 25, 24, 21, 21,17, 16, 13, 12,9, 8,5,5,3,2,1,1,0, ...,0}
{1,1,2,3,5,5,8, ..
n=5,p=2,5=1:{1,1,1,2,3,4,5,6,
{1,1,1,2,2,3,3,3,3,3,3,2,2,1,1,1,0,0,0,0,0,0,0,0, 0, 0}
{1,1,1,2,3,4,........... }
n=5,p=3,5=1:{1,1,2,2,4,5,7, .......... )
{1,1,2,2,4,5,6,7,9,10,12,12, 14, 14,15, 15,15, 14, 14,12, 12,10,9,7,6,5,4,2,2,1,1,0, ..., 0}

1,
1,

n=5,p=5,5=1:{1,1,2,3,5,6,9, o000 L
{1,1,2,3,5,6,9, 11, 15, 18, 22, 26, 32, 36, 42, 47, 54, 59, 66, 71, 78, 83, 89, 93, 99, 102, 106, 108, 111, 111, 113, ......... }
(1,1,2,3,5, s, }

Dimensions of the invariants in some of the A7

3. SEVERAL MATRICES

In this section we study the invariants in the algebras Dg((g®™)*).

3.1. Conjugacy classes for the conjugation action of S, on S,. We recall
some notation and results from [5] about conjugacy classes of a Young subgroup
in S,. For a finite sequence i = (i1,...,7;) of elements of {1,...,m} we define
Content(i) to be the m-tuple whose j-th component is the number of occur-
rences of 7 in . We say that sequences i and j as above are equivalent if one is
a cyclic shift of the other, we denote the equivalence class of i by [i] and we put
I[i]| = t. We will call these equivalence classes cycle patterns. Clearly, equiv-
alent sequences have the same content, so the content function is also defined
on cycle patterns. For [ > 1 we define the [-th power of ¢ by

[;']l:[3’1,...,1',57...,2'1,...,@.

| copies of ¢

We call a cycle pattern primitive if it is not the [-th power of another cycle
pattern for some [ > 2 and we denote the set of primitive cycle patterns by .
Let P be the set of partitions. For A = (Aq,Ag,...) € P we put [A| =D o, N\
and we denote the length of ), i.e. the number of nonzero parts of A, by I(\).
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For a function A : & — P such that all but finitely many values are the empty
partition we define the content of A to be ) ;4 |A(b)|Content(b) and we denote
the set of such functions with content a by ,.

Now fix a composition o = (a,...,ay,) of r. For i € {1,...,m} put A; =
ez YiZiay <j < Yi_ o} Define ¢ : {1,...,r} — {1,...,m} by
((j) = i when j € A;. Let S, be the simultaneous stabiliser of the A; in
Sy. Note that Sy = Sa, X -+ X S,,,. For a cycle o = (i1,...,i) € Sp we
put [o] = [((41),...,{(i)]. We can associate to every 7 with disjoint cycle
decomposition 7 = [];.;0; the multiset of cycle patterns ([o;]|j € J). This
multiset is equal to (B*®:|b e ®,1 < i < I(A(b))) for a unique A € O, which
we call the S, cycle type of w. Clearly, m, 7" € S, are S,-conjugate if and only
if they have the same S, cycle type.

3.2. Partial polarisation. Let «, r, the A;, S, and { be as in the previous
section and let V' be a vector space over k. The algebra S(V®™) = S(V)&™
is Z™-graded and we denote the piece of degree a by S*(V®™). We apply
analogous notation to the algebras S((V®™)*), D(V®™) and D4(V®™). Note
that S*(Vo™) = S (V)®-.-@ 5% (V), so S¥(V™)* can be regarded as the r-
linear functions V" — k which are symmetric in each of the sets of positions A;,
i.e. which are S,-invariants. For an integer ¢ > 0 let 1, denotes the all-one vector
of length t. The partial polarisation map P, : S*((V®™)*) — S*(VE™)* gends
[ € S((VF™)*) to the multi-homogeneous component of degree (1,,,...,1, )
of the r-variable polynomial function
(v%,...,vél,...,vT,...,vgm) r—)f(v%+---—l—vél,...,v{”—i—~~+v21m).

If F: VO — kis r-linear and f = ((v1,...,vm) = F(vcays-- -, v¢@))), then
Po(f) = (01, 00) = D F(0p(1)s- -1 0o(r) -

0€Sa
As in Section 1.4 we obtain isomorphisms D®((V®™)*) = §o(y¥m)*  Un-
der these isomorphisms D% ((V®™)*) can be regarded as the r-linear functions
VO — k which are symmetric in each of the sets of positions A; and which
vanish when the arguments in p® positions within a A; are the same. Further-

more, these isomorphisms are compatible with the isomorphism D((V®™)*) =
S(VEm)*er from Section 1.4.

3.3. Invariants in the algebra D((g®™)*). We keep the notation of Sec-
tion 3.1. For f € k[g]® and b = [iy, ..., 4] a cycle define f, € k[g®™]¢ by

fo(x1, o ovmm) = fag - a,) .

For A € ©, define P = Hbe@ PAb),b» EX = Hbecb ex(b).b and hy = HbeCI) hA(b),b-
Furthermore define ux = [[cg ure) and zx = [[cq 21(p), and call ipA, ihA,
ieA € S((g%m)*) divided px, hx and ex. As shown in [5] zy is the order of the
centraliser in S, of an element in S, of S, cycle type A. Clearly, the divided hy
and ey can be considered as elements of D*((g®™)*)¢ by reduction mod p. We
will now show that the same holds for the divided py and that, for n > r, they
form three bases of D*((g®™)*)%. First we note that for b € ® the map f — fj,
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can be defined over Q and then it maps divided power Z-form into divided
power Z-form. So for each b € ®, the three families (%h,\yb)Aep, (%G)\Vb))\ep

and (ip,\b),\ep have the same Z-span in S((g%m)*). But then the same holds
for the three families (ihA)Aeea, (ﬁ@\)ke@a and (ipk))\eea- In particular,
%p)\ belongs to D((g3™)*).

Now let m# € S, be of S, cycle type A. Then it is easy to see that py =
(X1, Xon) = fa(Xe@ys -+ -5 X¢)))s fro as in Section 1.5. So as an element
of S¢ (g%m)*, via the partial polarisation map P,, it is

((Xla"' 7X'r) = Z fﬂ'(XO'(l)7"' 7XO'(T))) = Z f(nro*l .

O'ESa UESa

So under the S,-equivariant isomorphism 7 — fr : kS, — ((g®7)*)“ the sum of
the conjugacy class [r]g, corresponds to divided py. So the divided px, A € O,
form a basis of D®((g¥™)*)& = ((g®7)*)¢*%, and the same must then hold for
the other two families.

3.4. Invariants in the algebras D ((g®™)*). We keep the notation of Sec-
tion 3.1. Call XA € ©, s-reduced if A([j]) has < p® ones for all j € {1,...,m}.
To A € ©, we can associate its s-reduced form by repeatedly replacing p® oc-
currences of 1 in a A([j]) by p*~! occurrences of p. We will call two elements of
B4 s-equivalent if they have the same s-reduced form. Call two elements of the
symmetric group S, (s, a)-equivalent if their S, cycle types are s-equivalent.
As in Section 2 we can now show that the sums of the E; over the (s, a)-
equivalence classes belong to D,(g®™)%, and when n > r they form a basis of
D% (g®™)%. We only need the lemma in the proof of Theorem 2.1 for sets A that
are contained in one of the A;. The proof of the theorem below is completely
analogous to that of Theorem 2.2 and we leave this to the reader as well.

Theorem 3.1.

(i) The sums of the divided py’s over the s-equivalence classes in ©, belong
to D ((g®™)")C, and when n > r they form a basis of D2((g®™)*)%.

(ii) The divided hy’s and the divided ey’s, both with X € ©4 such that A([j])
has < p* ones for all j € {1,...,m}, belong to DX((g®™)*)¢, and when
n > r they form two bases of D*((g®™)*)%.

Corollary 1. The monomials ngign,beb el(.rgi‘b), my ;) <p° forj € {1,...,m},
belong to D" ((g¥™)*)¢
r form a basis of D%((g®™)*)¢.

Proof. Given that D% ((g®™)*) is the direct sum of the D¥((g®™)*), a € Z™ a

composition of r, this is just a reformulation of the statement about the e)’s in
Theorem 3.1. ]

Proposition 3.1. Assume r < n. Then D ((g¥™)*)9 = D7((g®™)*)C.

Proof. For a a composition of r we have D ((g®™)*) is a G-submodule of (g®")*,
so this follows as in the proof of Proposition 2.1. ]
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Corollary 2.
lim Dy ((g67™)*)%" = lim Dy ((a17™)*) " = Ds((e1 )1<j<m)OD((€i)i or pf22);

where D((€;p)i or|p|>2) 18 graded such that egtg has degree ti|b|, and the limit is

in the category of graded k-algebras.
Proof. This follows from Proposition 3.1 and Corollary 1 to Theorem 3.1. [

4. VECTORS AND COVECTORS

Let V =V,, = k" be the natural module for G, let mi,ms > 0 be integers
and put W = W,, = VO™ @ (V*)¥™2_ In this section we study the invariants in
the algebras Dg(W*). For ¢ € {1,...,mi} and j € {1,...,mao} let x; : W =V
and y; : W — V* be the i-th vector component and j-th covector component
function and (z;,y;) = ((v,w) — w;(v;)) € k[W]Y be the bracket function.
By Section 1.4 these bracket functions can also be considered as elements of
D(W*)&. The algebra S(W) is Z™ x Z™-graded and Z x Z-graded and we
denote the piece of multidegree (o', a?) by S ot o (W) and the piece of bidegree
(ri,m2) by S™"2(W). We apply analogous notation to the algebras S(W*),
D(W*) and Ds(W™).

Let r1,72 > 0 be integers and let ol = (af,...,a}, ) and o = (af,...,a2,,)
be compositions of r; and r5. As in Section 3.1 we associate to these A%,
1 € {1,...,m1}, A?, Jj € {1,...,m2}, (1 : {1,...,7“1} — {1,...,m1}, (o
{1,...,m2} = {1,...,ma}, and S,1,S,2 < S,. We have a partial polarisation
map

S,1x8
}3&1’0‘2 . Salvo‘2(W*) - Sal’az(W)* _ ((V®r1 ® (V*)(XJTQ)*) ol X042
If F: Vo1 @ (V)92 — k is multilinear and f equals
((’Ul, cee s Umyg, W1,y - - ,wmg) — F(UC1(1)7 ceey Uy () s Weg (1) - - 7wC2(T2))) s

then P, ,2(f) equals

((vl,...,vrl,wl,...,wm)»—> Z F(vo'(l)a"'7vo(r1)7w7(1)7'-'7w7'(r2)))'
o€S,1,7€S 2

As in Section 1.4 we obtain isomorphisms D" (W*) = §o"9*(W)*. Under
these isomorphisms D¢ (W*) can be regarded as the multilinear functions
Vg (V*)®r2 — k which are symmetric in each of the sets of vector positions
Al and in each of the sets of covector positions A?, and which vanish when the
arguments in p*® positions within a A%, ¢ € {1,2}, are the same. Furthermore,
these isomorphisms are compatible with the isomorphism D(W*) = S(W)*&"
from Section 1.4.

Assume now that o' and ? above are compositions of r. The group S, x S,
acts on S, via (o, 7)-m = ot~ 1. Each S,1 x S,2-orbit has a unique representant
7 such that 7 is increasing on each A? and 7! is increasing on each A}. Let
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m € S.. Put A}j = Al ﬂﬂ'(A?) and m;; = \Ailj| for 1 <i<mp,1<j<ms.

Then
mo mi
1 _ . 2 _ |
a; = E m;; and o = g mij - (3)
j=1 i=1

For 0,7 € S, we have (0,7) € S;1 x S,2 and on7~! = 7 if and only if o €

S NmS,em™t and 7 = 7 lomw. So the S,1 x S,2-centraliser of 7 has size

-1 _
|Sa1 N 7TSa27T ‘ = H1§i§m1,1§j§m2 ’I?’LZ]‘
Conversely, if we are given integers m;; > 0, 1 < i < mq,1 < j < mg, which
sum to r, then we can define a! and a2 by (3) and we can define the A} and A?

as before. We divide each A} into ms consecutive intervals A}, ... ,A}mz and
we divide each A? into mq consecutive intervals A%j, e ,A?m ; such that Azlj

and A?j have length m;;. Now we define 7 € S, by requiring that 7 : A?j — A}j
is increasing. Then 7 is increasing on each A? and 7! is increasing on each

Al

1

Proposition 4.1. Let r1,72 > 0 be integers.
(i) If r1 # rq, then D™"2(W*) = 0. If ri1 = ro = 7, then the divided power
monomials in the (z;,y;) of bidegree (r,r) belong to DT (W*)¥, and when
n > r they form a basis of D™ (W*)& = D} (W*)€.
(ii) If n > 71,72, then D"02(W*)8 = D2 (W*)G,

Proof. (i). By considering the action of the centre of G it follows that if r; # 7o,
then D"1"2(W*)¢ = 0, so we assume now that r; = ro = r. By Lemma 1.1
the given monomials belong to D] (W*). Denote the vector and covector com-
ponent functions of V& & (V*)®" by z; and y;, i € {1,...,7}. The function
fr € (g%7)* from Section 1.5 can also be seen as an element of (V& ® (V*)®")*.
Then we have fr = [[i_ (Tx(), ¥;) and we see that the map 7+ fr is S; x S,-
equivariant.

Let m;; > 0, 1 < i < my,1 < j < mo, be integers which sum to r.
Define a! and o? by (3) and then define A}, A?, (1, C2, S,1, S,z as in
Section 3.2, and define 7w as before the proposition. It is easy to see that
Hléiéml,lé_jémz <xi,.yj>.mij = H;”:l(x@(.ﬂ(i.)), Yeo(i))- SO as anrelement of S™"(Wo)*,
via the partial polarisation map P,1 42, it is ZUESQ17T€SQQ [li=1 Fo(n(i))s Urii)) =
Y ves L reS 5 Jonr—1. So under the S, x Sy-equivariant isomorphism 7 — fr :
kS, — (Ve ® (V*)®T)*)G the sum of the orbit [r]s ,xs , corresponds to
Ii<icmy 1<j<m, (i y;)(™i3). So these divided power monomials form a basis of
DT’T(W*)G — @al,oﬂ Dal’a2 (W*)G

* Sa XS& . .o
(ii). As Do (W)* = <(V®”®(V*)®’"2) ) ' 2, this follows from Lemma 2.1(ii).
U

Note that we have a natural embedding V,,_1 — V), by adding a zero compo-
nent in the n-th position, and a natural embedding V* | < V¥ by extending a
function f € V*_; by sending the n-th standard basis vector to 0. This gives us
a natural embedding W,,_; — W,,, and we get restriction maps for the algebras
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(EWnDn>1, (D(W}))n>1 and (Ds(W;¥))n>1. From the previous proposition we
immediately obtain the following corollary, where we may omit the subscript s.

Corollary.
l(iﬂl(Ds(W;))g[n = ljﬂl(Ds(W:;))GLn = D((zi, Y5j)1<i<mi,1<j<ma)

where the grading is such that (:Ui,yj>(t) has degree 2t, and the limit is in the
category of graded k-algebras.

Remarks 4.1. 1. It is immediate from classical invariant theory, see [4], that
the algebras (k[W),]),>1 have the restriction property.

2. Since W,, = (VP2 @ (V¥)®™1)* we get restriction maps W,, — W,,_1. From
the description of A(W,)% in [1, Sect 5] it is clear that the algebras A(Wy)n>1
have the restriction property. This implies that when p = 2, the algebras
(A1(W,))n>1 have the restriction property.

3. For p = 3 the algebras (D(W}))n>1 and (Ds(W}¥)),>1 don’t have the re-
striction property. I checked with the computer for p = 3,n = 2,m; =
1,my = 3 that dim D}(W}) = 1,0,3,0,6,0,11,0,15 for r = 0,...,8 and 0
for r > 8, and that the dimensions of the span of the invariants from Proposi-
tion 4.1 in degrees = 0,...,8 are 1,0, 3,0, 6,0, 10,0, 15. In degree 6 the invariant
xlxg(xlygl — xzyzg)(y12y31 — y11y32) is outside this span, where Yji denotes the
i-th component of the j-th covector.

4. Similar to [1, Sect 5] one could try to determine the invariants in A; (W) =
D1 (W) by using the isomorphism Aj(W;) = A;1((V*)®™) @ det™ =Py =
m1 + ma, of GL,-modules, and then use the commuting GL,,-action. Let
U, < GL,, be the subgroup of upper uni-triangular matrices. Then we get

Ay (W) Gl = Al((VJ)@m)nUﬁ(p_l)ln, where 1,, is the all-one vector of length

n. Now one could hope that Al((Vj)@m)z)”_l)V =~ Aqr,, ((p — D)D), Acw,, (1)

the Weyl module of highest weight p and v” the transpose of v, at least for
v a multiple of 1,. Indeed the analogue for the exterior algebra holds by [2]
or [1]. However, in the case p = 3,n = 2,m; = 1,my = 3, Al((VQ*)®4)(UQ22
not even a quotient of some Weyl module. Indeed its socle and ascending’rad—
ical series both have two layers: the first one is the irreducible Lqy,(2,2,0,0)
of dimension 19 and the second layer is Lar,(1,1,1,1) & Lar,(4,0,0,0) of di-
mension 1 + 16 = 17. The Weyl module Agr,(4,0,0,0) has dimension 35 and
the two layers of its socle and ascending radical series are Lgr,(2,2,0,0) and

La1,(4,0,0,0).

)is
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