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Abstract

We consider the problem of landmark matching between two unlabelled point sets, in particular where the number of points in

each cloud may differ, and where points in each cloud may not have a corresponding match. We invoke a Bayesian framework

to identify the transformation of coordinates that maps one cloud to the other, alongside correspondence of the points. This

problem necessitates a novel methodology for Bayesian data selection, simultaneous inference of model parameters, and

selection of the data which leads to the best fit of the model to the majority of the data. We apply this to a problem in

developmental biology where the landmarks correspond to segmented cell centres, where potential death or division of cells

can lead to discrepancies between the point-sets from each image. We validate the efficacy of our approach using in silico tests

and a microinjected fluorescent marker experiment. Subsequently we apply our approach to the matching of cells between real

time imaging and immunostaining experiments, facilitating the combination of single-cell data between imaging modalities.

Furthermore our approach to Bayesian data selection is broadly applicable across data science, and has the potential to change

the way we think about fitting models to data.

Keywords Bayesian data selection · Landmark matching · Multi-modal image analysis

1 Introduction

Understanding early mammalian development is key to the

advancement of in vitro fertilisation (IVF) techniques and

improved understanding of early cell specification within

mammals. Within developmental biology there have been

significant advances in experimental techniques, includ-

ing the ability to culture preimplantation embryos ex vivo

and monitor their development through periodic 3D imag-

ing, known as real time imaging (RTI) (Abe and Fujimori

2013; Grabarek and Plusa 2012; Plusa 2008). In conjunc-

tion with the generation of mouse reporter lines, such as the

H2b:GFP line, we are able to visualise the development of the

murine embryo and monitor the behaviour of individual cells

(Hadjantonakis and Papaioannou 2004). One of the highly

disputed questions regarding the development of the preim-
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plantation embryo, is the effect of cell history and changes in

embryo architecture on cell lineage specification (Płusa and

Piliszek 2020; Fischer 2020; Forsyth 2021).

After RTI experiments, embryos can be fixed to halt

their development and stained for proteins of interest via

immunostaining. The cells’ respective fates can then be

inferred from their protein expression profiles. In order to

interrogate the relationship between cell history and cell

specification it is crucial to link historical information (gained

from RTI experiments) with protein expression (quantified

from immunostaining) at the single cell level. However, the

cell-to-cell matching across these two imaging modalities is

non-trivial due to the random re-orientation of the embryo

during staining and potential deformation during the fixation

process.

Coordinates of cell centres can be extracted from the final

frame of the RTI experiment, using the H2b:GFP signal, and

from the immunostained image, using the nuclear stain. The

formulation of this problem as a collection of two point sets to

be registered is analogous to point-set registration problems

where sets of noisily observed points are to be registered,

or ‘matched’ where the correspondence of points can be

partially or entirely unknown a priori. Point-set registration
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problems appear in a broad range of applications reliant on

accurate alignment or registration of landmarks including

the comparison of evolutionary protein structures (Dryden

2007; Challis and Schmidler 2012; Rodriguez and Schmidler

2014; Fallaize et al. 2020), and medical image assessments

(Gutierrez-Becker 2017; Ramalhinho 2021).

It is most common for point/landmark registration to be

approached using variational techniques (Gutierrez-Becker

2017; Kent et al. 2004), but these approaches lack compre-

hensive description of the uncertainty associated with the

identified registration. A well known and extensively used

example is the Procrustes algorithm that aligns two point

sets through optimisation of the scaling, translation and rota-

tion of the point sets. However, the Procrustes algorithm is

dependent on a known matching of points and therefore must

be combined with other methods to infer the matching of

the points which can be variational or probabilistic (Hurley

and Cattell 1962; Gower 1975; Dryden and Mardia 2016).

Another variational algorithm is the iterative closest point

(ICP) method, this approach iterates over potential matchings

of points and then performs a rigid transformation between

the point sets, aiming to minimise an energy function describ-

ing the mismatch of the points (Besl and McKay 1992).

However, the ICP method can be highly sensitive to out-

liers or non-corresponding points. An alternative approach,

the robust point matching (RPM) approach was developed

by Gold et al. in an attempt to improve this (Gold 1998).

The RPM algorithm however can still prove to be highly

dependent on the initialisation of the optimiser in complex

problems and often requires additional information in more

complex registration problems (Gold 1998).

There have been some probabilistic approaches devel-

oped, which work to identify not only the correct matching

of points but also the relative uncertainty of the matching

(Dryden 2007; Green and Mardia 2006; Challis and Schmi-

dler 2012; Rodriguez and Schmidler 2014; Fallaize et al.

2020). Myronenko et al. developed the Coherent Point Drift

(CPD) algorithm which models the points in one point-set

as the centroids of a Gaussian mixture model and then inter-

prets the optimal matching of the points across the point

sets to be the maximum of the Gaussian mixture poste-

rior (Myronenko et al. 2006; Myronenko and Song 2010).

This method allows for non-rigid transformations between

point sets as does the large deformation diffeomorphic met-

ric matching (LDDMM) method (Younes 2009; Joshi and

Miller 2000). The LDDMM uses a curve to describe dif-

feomorphic mapping of individual landmarks between the

target and template point clouds (Younes 2009; Joshi and

Miller 2000). A Bayesian approach of shape matching via

a non-linear deformation is also presented in Cotter (2013),

where the geodesic map which takes one shape to the other

is inferred. Other probabilistic approaches use affine trans-

formations where point-sets are matched to hidden point sets

described by Poisson processes, which allows the subsequent

inference of point matching (Green and Mardia 2006; Hu

et al. 2019; Fallaize et al. 2020).

Ultimately the quality of the identified matching is depen-

dent on the quality of the point sets as well as the approach.

If there are points without matches, these can bias the reg-

istration and potentially prevent the identification of the

correct matching. Fallaize et al. and Hu et al. account for

non-corresponding points through the introduction of gap

penalties for points without identified matches and Gold et

al. uses the ‘softassign’ method to describe the matching of

cells where non-corresponding cells were present (Fallaize

et al. 2020; Hu et al. 2019; Gold 1998).

In this work we invoke the Bayesian framework in order to

find likely cell matchings, as well as quantify the uncertainty

in those matchings. Our biological example has additional

difficulties, since the landmarks are unlabelled, and the

assumption that all landmarks exist in both point-sets does

not hold. This discrepancy in landmarks can occur due to cell

death or division between the time that the RTI experiment

was stopped and fixation, or due to inaccurate segmentation

of cell centres. One approach would be to manually clean

the data and select only cells with guaranteed matches in the

corresponding image, however this is highly subjective with

potential for significant errors as we do not know a priori

which cells to eliminate from the registration.

There has been some work on data selection with regards

to single and multi-source data acquisition (Rahm and Do

2000), and data ‘re-weighting’ in a Bayesian context (Wang

et al. 2017) which has similarities with Bayesian model selec-

tion (Ando 2010) and outlier detection (Aggarwal 2017). In

this work, we introduce a novel approach to Hierarchical

Bayesian data selection within this point registration prob-

lem (Cotter 2022). This approach limits the effect that cells

which do not appear in both images have on the inference.

This is implemented through the introduction of parameters

which describe our belief in the fidelity of each observation

in the data rather than the binary inclusion/exclusion of the

points within the matching (Fallaize et al. 2020; Challis and

Schmidler 2012; Rodriguez and Schmidler 2014). The val-

ues of these fidelity parameters are jointly inferred alongside

the model parameters describing the transformation and cor-

respondence of the landmarks.

We implement Markov chain Monte Carlo (MCMC)

methods to explore the complex distribution on the model

and fidelity parameters. The posterior is frequently highly

multimodal, preventing complete exploration of the parame-

ter state space due to ‘trapping’ in local minima. We therefore

implement tempering of the likelihood to optimise our sam-

pling and minimise trapping.

Although the introduction of data selection is primarily

introduced to facilitate landmark registration within our spe-

cific biological example, it is clear that this framework could
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Fig. 1 Experimental design with examples of two-dimensional slices

from images. Spot detection using IMARIS (BitPlane) from final frames

of RTI (using H2b:GFP signal) and immunostained image (Hoechst).

Cell matching via observation operator G(θ; Y2). Experimental proto-

cols for embryo collection, visualisation and staining can be found in

Sections (S1.1–S1.4)

be expanded to a very broad range of inferential problems,

with potential for wide-ranging impact in many applications

of data science.

In Sect. 2 we introduce the transformation model, includ-

ing the description of a 3D affine transformation and a

non-linear deformation, and a method of describing landmark

correspondence within the model. In Sect. 3 we introduce the

concept of Bayesian data selection and its implementation.

In Sect. 4 we describe the construction of the posterior dis-

tributions that we wish to characterise. We then go on to

describe the MCMC implementation in Sect. 5. In Sect. 6 we

firstly present several in silico test problems demonstrating

the efficacy of our approach. We then perform inference on

embryos with microinjected fluorescent cells which enable

us to identify a subset of the cells in both images for validation

on a real data set. Finally we demonstrate the applicability of

our approach on a problem in which we wish to match cells

from the final frame of an RTI experiment with correspond-

ing immunostained images, with the additional challenge of

embryo matching. We conclude with a discussion in Sect. 7.

2 Landmarkmatching

In order to better understand mammalian development, spa-

tiotemporal information from RTI experiments must be

linked with protein expression which is inferred from sec-

ondary immunostaining images. To link these two data sets,

cell centres are extracted from the final frame of the RTI study

and the immunostained image and matched, Fig. 1. Previ-

ously, attempts have been made to manually match the cells

between images, however this is non-trivial due to the manip-

ulation of the embryos during staining and can lead to low

confidence matchings of cells between images.

We can generalise this problem to the matching of two

unlabelled point clouds:

Y1 ∈ R
d×n1, Y2 ∈ R

d×n2 , (1)

where d ∈ N is the dimension of the observation space, in our

application d = 3, and the number of points in Y1 and Y2 is

n1, n2 respectively where we assume n1 ≤ n2. In the context

of cell matching, potential differences in n1 and n2 may arise

from cell death or division after the completion of the RTI

prior to fixation of the embryos, or due to segmentation errors.

Y1 and Y2 are pre-processed such that the average coordinate

in each cloud is shifted to (0, 0, 0), and re-scaled through

division by the minimum cell-to-cell Euclidean distance.

The two point clouds can be considered to be noisily trans-

formed versions of each other, with labels subject to a random

permutation, along with the potential addition or subtraction

of points in both clouds. The transformation of Y2 to Y1 can

be described by the composition of a non-linear deforma-

tion, an affine transformation and a permutation of labels,

described by an observation operator G(θ; Y2) with param-

eters θ .

2.1 Non-linear deformations via geodesic motion

Deformation to the embryo can occur due to continued

growth of the embryo prior to fixation or manipulation of

the embryo during immunostaining. Therefore we include

an explicit description of a non-linear deformation within

G(θ; Y2) in addition to an affine transformation.
The non-linear deformation to the point-set is modelled as

a geodesic transformation resulting from the application of

an initial momentum, p0 ∈ R
d×n2 to Y2 where q0 ∈ R

d×n2

is the initial position of the points in Y2 (Bock and Cotter
2021; Younes 2019). The deformed points, q1, are evaluated
using:

d p
j
t

dt
=

(

−
n2
∑

i=1

(qi
t − q

j
t )

σ 2
K

exp

(

−
‖qi

t − q
j
t ‖2

2

2σ 2
K

)

pi
t

)⊤

· p
j
t , (2a)
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dq
j
t

dt
=

n2
∑

i=1

exp

(

−
‖qi

t − q
j
t ‖2

2

2σ 2
K

)

pi
t , (2b)

over the time interval t = [0, 1], where q
j
t ∈ R

d×1 is the posi-

tion of the j th point at time t and p
j
t ∈ R

d×1 is the momentum

of the j th point at time t , details given in “Appendix A”.

The application of the geodesic flow is computationally

expensive due to the solving of 2n2 differential equations. We

envisage that for smaller embryos, deformation is minimal,

in which case we set p0 to be a matrix of zeros. However for

larger embryos, it may not be possible to accurately match

cells without the addition of inference of a non-linear trans-

formation between Y1 and Y2.

2.2 Affine transformation

Our observation operator, G(θ; Y2), also incorporates a three

dimensional affine transformation to account for shear scal-

ing, rotation and translation of points.

The affine transformation matrix A(θ) is d ×d and applies

the shear scaling and rotation. We define A(θ) = R1SR2

where an initial rotation is applied through R1(φ
x
1 , φ

y
1 , φz

1), a

scaling performed in the new rotated axis through S(s1, s2, s3)

and then a final second rotation through R2(φ
x
2 , φ

y
2 , φz

2),

where R1, S, and R2 are all d×d matrices given in “Appendix

B”.

Parameters φ are Euler angles, and s are scaling parame-

ters in each of the axes. We chose to define A(θ) using two

rotations and a scale matrix which results in a shear scal-

ing and rotation of points, described in Glassner (2013), as

it allows us to better define our prior distributions on the

parameters used to generate A(θ). To account for translation

we introduce the d × 1 vector b(b1, b2, b3) where b· are the

translation parameters in the three axes x, y and z.

The affine transformation is applied to the deformed points

to give

F(θ; Y2) = A(θ)D(θ; Y2) + b(θ)1⊤
n2

, (3)

where 1n2 ∈ R
n2 is a column vector of ones andD(θ; Y2)= Y2

when no deformation is applied.

2.3 Permutation of labels

Our overall aim is to find the labelling of points in order

to match cells across images. We introduce a permutation

vector as a method of describing the matching of cells from

Y1 in Y2. The permutation vector P ∈ N
n2 contains each

of the numbers {1, . . . , n2} exactly once, and describes the

ordering of cells in Y2 in order to match them with cells in

Y1. Note that in the case that n1 < n2, the cell numbers in

the n2 −n1 last entries of the permutation vector are assumed

not to have a corresponding match in Y1, and as such are not

required for the calculation of the likelihood.

Our aim is to compare the positions of points in Y1 with

their corresponding matches, as given by P , in the trans-

formed cell centres in Y2. As such, we define the matrix

MP ∈ {0, 1}n2×n1

MP =
(

eP1 eP2 . . . ePn1

)

,

where ei ∈ R
n2×1 are the standard canonical basis column

vectors for R
n2 . The permutation matrix MP relates to the

permutation vector P via MP (Pi , i) = 1 and MP ( j �=
Pi , i) = 0, where we define Pi is the i th entry of P . Post mul-

tiplication of the transformed Y2 coordinates by MP gives us

a matrix of the new cell center positions ordered according

to P .

2.4 The observation operator

We define our observation operator G(θ; Y2) : (� ×
R

d×n2) → R
d×n1 , which takes the cell center coordinates

of Y2, applies a non-linear transformation (if being applied),

an affine transformation, and then reorders the subset of the

cells which we aim to match to Y1 according to the permu-

tation vector P . Therefore we arrive at

G(θ; Y2) =
(

A(θ)D(θ; Y2) + b(θ)1⊤
n2

)

MP (θ). (4)

3 Hierarchical Bayesian data selection

The observation operator G(θ; Y2) describes the transforma-

tion and permutation of points in Y2 to match Y1, but assumes

that all cells in Y1 have a corresponding match in G(θ; Y2).

This assumption does not always hold, since cells can divide

or undergo apoptosis in between the RTI experiment and fix-

ation, or may be too faint for accurate segmentation, resulting

in the presence of cells within one or both of the point clouds

with no corresponding match. We cannot know which cells

do not have a match a priori, and therefore we aim to infer

this information, thereby conducting what we will refer to

as Hierarchical Bayesian data selection (Cotter 2022). This

refers to any approach where additional parameters are intro-

duced into the inference which dictate the sensitivity of the

posterior to a given observation, where the values of these

parameters are themselves inferred from data, jointly with

the model parameters.
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3.1 Data fidelity

The likelihood function is ordinarily a function fL of the mis-

match between each observation and the observation operator

at a given value of the model parameters such that

L(Y1, Y2|θ)= fL (Y1
1−[G(θ; Y2)]1, . . . , Y1

n − [G(θ; Y2)]n),

(5)

where Y 1
i is the i th column of Y1 and [G(θ; Y2)]i is the i th

column of the transformed Y2. In ordinary Bayesian infer-

ence the likelihood is sensitive to each of the data-model

mismatches Y 1
i −[G(θ; Y2)]i , which causes issues when the

data is corrupted, or where the model does not adequately

describe the entirety of the data.

We now aim to infer which of these data can be well-

matched to the model, we introduce fidelity parameters γi ∈
(0, 1) for each observation (in our case a cell center from Y1),

that controls the relative contribution of that observation to

the likelihood.

These γi are effectively inverse annealing temperatures

for each observation, with high temperatures (where γi ≪
1) resulting in a likelihood which is not sensitive to the

data-model mismatch for this observation. This approach

limits the effect on the posterior of spurious data through

a likelihood which takes into account the fidelity of each

observation, given by:

Lγ (Y1, Y2|θ , γ = [γ1, . . . , γn])
= fL(γ1(Y

1
1 − [G(θ; Y2)]1), . . . ,

γn(Y 1
n − [G(θ; Y2)]n)). (6)

For each point in Y1, γi represents our belief that this cell in

Y1 has a match in Y2. A value of γi = 0 corresponds to a

likelihood which is independent of the data-model mismatch

of the i th observation, and γi = 1 corresponds to a likelihood

which is dependent on the i th cell’s mismatch.

The inclusion of the fidelity parameters works to prevent

the fitting of the model to the entire set of points for which

a subset may not be adequately described by that model.

Without appropriate data selection in the landmark matching

problem, there are no guarantees that the transformation and

permutation that leads to the lowest overall least squares fit

corresponds with the correct matching.

4 Bayesian cell matching

The matching of cells between images can be considered as

an inverse problem where we wish to identify a transforma-

tion of Y2 in order to identify the correct matching, P , of the

cells. The inverse problem of cell matching is complex with

potentially correlated parameters across the components of

the model, leading to potentially multimodal posterior dis-

tributions.

Bayes’ theorem is a fundamental property of sets and mea-

sures that forms the basis of a probabilistic framework for

inverse problems, involving the combination of prior knowl-

edge, observations, and models. Within this study we aim to

characterise two posterior probability densities, π(θ |Y1,Y2)

and π(θ , γ |Y1,Y2). Where the first posterior density is the

original posterior on the model parameters θ conditioned on

the data Y1 and Y2, and the second posterior includes data

selection via the fidelity parameters γ . We first define the

posterior distribution without data selection which by Bayes’

theorem is given by:

π(θ |Y1, Y2) ∝ π0(θ) L(Y1, Y2|θ), (7)

where π0(θ) is the prior density and L(Y1, Y2|θ) is the like-

lihood of the observations given θ .

4.1 The likelihood

We assume that the observations of the cell centers are subject

to mean-zero i.i.d. Gaussian noise, such that:

Y 1
i = [G(θ; Y2)]i + ηi , ηi ∼ N(0,�), (8)

where ηi the combined observational noise of Y 1
i and the

transformation and � is the 3 × 3 unknown noise covariance

matrix combining the effects of the observational noise and

transformation. Therefore the likelihood is given by:

L(Y1, Y2|θ,�) ∝
n1
∏

i=1

exp

(

−
1

2

∥

∥

∥
Y1

i − [G(θ; Y2)]i

∥

∥

∥

2

�

)

,

(9)

where, ‖x‖2
� = x⊤�−1x, is the covariance-weighted norm.

4.2 Priors

We choose mean zero priors on the affine transformation

parameters introduced in Sect. 2.2 and deformation momenta

as shown in Table 1, and a uniform prior on label permuta-

tions.

We define priors directly on the angular and scale param-

eters that generate the affine matrix, this allows us to choose

priors which are more intuitive and results in an implied prior

on each of the affine matrix components. We choose rela-

tively restrictive priors on the deformation momenta, p0
i in

order to prevent large deformations of points which could

mimic affine-like transformations or result in the severe alter-

ation of the topography of the point set.
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Table 1 Prior distributions. Sn2

denotes the symmetric group of

all possible permutations of

{1, . . . , n2}

Parameter description Parameter Prior Hyperparameters

Angles in x, y, z in R1 and R2 φ
x,y,z
1,2 U(−π, π) –

Scale parameters in axis 1, 2, 3 s1,2,3 N(0, σs) σs = 0.1

Translation in x, y, z-axis b1,2,3 N(0, σb) σb = 0.1

Initial momentum of i th point pi
0 N(0, σpI3) σp = 1.0

Permutation vector P U(Sn2 ) –

4.3 Hierarchical Bayes posterior

The noise covariance � within the likelihood is unknown

a priori and so we use a hierarchical Bayes approach to

infer its value alongside the model parameters. We choose

the Inverse-Wishart distribution as a prior on � which is

conjugate to the Gaussian likelihood, enabling marginalisa-

tion of � (Alvarez 2014; Liu 2016). This distribution has

two parameters, the degrees of freedom ν > d − 1, and the

positive definite symmetric scale matrix � ∈ R
d×d . The

Inverse-Wishart distribution has a mean given by

E(�) =
�

ν − d − 1
, (10)

when ν > d + 1, and variance of the diagonal terms given

by

Var(	i i ) =
2
2

i i

(ν − d − 1)2(ν − d − 3)
, (11)

when ν > d + 3. The inverse Wishart distribution can be a

problematic choice as a prior due to the potential for bias-

ing towards large variances, and the issue of controlling the

uncertainty of all parameters through a single parameter.

However we choose ν and � ∝ I3 to achieveE(�) = 0.01I3

and Var(	i,i ) = 0.22, as opposed to the commonly used


 = Id and ν = d + 1, giving us ν = 6.0050 and


 = 0.0201 I3. This choice makes our prior on � more

informative and scaled about smaller values of the variance.

This selection of hyperparameters could therefore poten-

tially lead to an under estimate of the covariance but it can be

argued that we want to encourage these smaller variances as

opposed to encouraging large mismatches through our con-

jugate prior on � (Schuurman 2016). Alternative approaches

include methods such as the extended onion method (Ghosh

and Henderson 2003; Lewandowski 2009) or generating

random covariance matrices using partial correlations with

regular vines (Joe 2006; Lewandowski 2009). These different

methods no longer preserve conjugacy but can help mitigate

some of the issues with the inverse Wishart priors.

By choosing the conjugate inverse Wishart prior on � we

can define the posterior, without data selection as:

π(θ ,�|Y1, Y2) ∝ L(Y1, Y2|θ,�)π0(θ)π0(�), (12)

which can be marginalised by integrating over all � in the

support of the prior, denoted by �, to give the target density:

π(θ |Y1, Y2) ∝ π0(θ)

∫

�

L(Y1, Y2|θ ,�)π0(�) d�, (13a)

∝ π0(θ)

∫

�

n1
∏

i=1

exp

(

−
1

2

∥

∥

∥
Y 1

i − [G(θ; Y2)]i

∥

∥

∥

2

	

)

W−1(�) d�,

(13b)

∝ π0(θ) det
(

� + (Y1 − G(θ; Y2))

(Y1 − G(θ; Y2))⊤
)

−ν+n1
2

, (13c)

∝ π0(θ) L(	)(Y1, Y2|θ), (13d)

where L(	)(Y1, Y2|θ) is the likelihood function with �

integrated out up to a constant of proportionality, equal to

det
(

� + XX⊤)

−ν+n1
2 given that X = Y1 − G(θ; Y2) and

π0(θ) is the prior density on the model parameters.

4.4 Introducing data selection into the posterior

In the previous sections we formulated the target distri-

bution, Eq. 13d, where we do not include data selection. We

now modify our target distribution to include data selection

via the introduction of the fidelity parameters γ .

We write the data selection posterior distribution as

π(θ, γ |Y1, Y2) ∝ π0(θ) π0(γ )
1

Z(γ )
L(	)

γ (Y1, Y2|θ, γ ),

(14)

where L
(	)
γ (Y1, Y2|θ, γ ) = det

(

� + Xγ X⊤
γ

)

−ν+n1
2

is the

likelihood function including data selection with Xγ =
X diag(γ ), and � has been integrated out as in Eqs. 13a

to 13d. As the likelihood is now dependent on the fidelity

parameters which change during sampling, we have to
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include a normalisation factor Z(γ ) which is given by

Z(γ ) ∝
n1
∏

i=1

γ −d
i , (15)

as derived in “Appendix C”.

We choose a beta prior Beta(αγ , βγ ) on each γi , with

αγ = 2 and βγ = 2 such that E(γi ) = 0.5 and Var(γi ) =
0.05.

We now have two target distributions, one for tests where

we do not include data selection given in Eq. 13d and one

when we include data selection given by Eq. 14. We define

both these target distributions such that we can assess the

performance of our point registration without and with data

selection.

5 MCMCmethodology

Both of the posterior distributions in Eqs. 13d and 14 are

highly complex and multimodal on high dimensional spaces,

involving a mixture of continuous and discrete variables. In

order to generate samples from the posterior distributions,

we implement MCMC, a commonly used approach to sam-

ple from complex probability distributions. As our model and

data selection approach is inherently modular (transforma-

tion, permutation and fidelity modules), we use a Random

Walk Metropolis-within-Gibbs approach (Tierney 1994). By

using a Metropolis-within-Gibbs approach we are able to

tune the random walk proposal variances for the spatial

transformation parameters and fidelity parameters separately

therefore promoting efficient exploration of the state spaces.

Standard random walk proposals are made on the non-

bounded continuous random variables including the momenta,

scale parameters and translation parameters using

θ ′ = θ + βξ , ξ ∝ N(0, C), (16)

where θ ′ is the proposal, θ the current parameters and β is the

step-size of the proposals on the transformation parameters,

and tuned so that we achieve the optimum 23.4% acceptance

rate within each Gibbs module (Gelman 1997). C is the pro-

posal covariance matrix and chosen to be the diagonal matrix

of prior variances, to help with different scales of parameter

values.

5.1 Proposals on periodic continuous random
variables

The six angles in the affine transformation, φ
x,y,z
1,2 (φ), are

defined on a bounded state space, [−π,+π ], and are peri-

odic due to the equivalence of a rotation by −π radians

and +π radians. Sampling on the rotation matrices using

Euler angles can be challenging and several approaches and

statistical packages have been developed to ensure uniform

exploration of the rotation matrices (Habeck 2009; Stanfill

2014). In order to facilitate the intuitive choice of prior distri-

butions on the affine transformation parameters, we generate

proposals on φ using

φ′ = mod (φ + ω, 2π), ω ∼ TN (0, βσcI6,−π, π) ,

(17)

where φ′ is an array of proposed angles, φ the current angle

values and TN (0, βσcI6,−π, π) is a mean-zero truncated

normal distribution with a standard deviation βσc and lower

and upper bounds −π and +π respectively. Here, rather than

using the variance of the uniform prior imposed on φ, we use

the prior circular variance σc calculated using the MATLAB

toolbox presented in Berens (2009) which helps account for

the periodicity of the domain.

5.2 Proposals on bounded continuous random
variables

The fidelity parameters are defined on bounded state spaces

(0, 1). In order to facilitate efficient proposals on these

parameters we transform them onto an unbounded domain

using the map T(γ ) onto the transformed parameters

θγ = T(γ ) = log

(

1

γ
− 1

)

. (18)

After the transformation onto an unbounded domain, we

perform standard random walk proposals on θγ using

θ ′
γ = θγ + βγ ξ , ξ ∝ N(0, σγ In1), (19)

where the proposal variance σγ is the prior variance on the

transformed fidelity parameters calculated analytically using

samples from the prior on γ and βγ is the step-size for sam-

pling on the transformed fidelity parameters.

We then use the inverse map T−1 to map the proposals

back to the bounded fidelity domain using

T−1(θγ ) =
1

exp(θγ ) + 1
. (20)

By making proposals on the transformed parameters, we

have transformed the likelihood and therefore the posterior,

we can correct for this to find the target density on θγ as

π̃(θ, θγ |Y1, Y2) = π(θ, T−1(θγ )|Y1, Y2) · |det
(

DT−1

)

|,

(21a)

= π(θ, T−1(θγ )|Y1, Y2)
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·
n1
∏

i=1

exp(θγ,i )

(exp(θγ,i ) + 1)2
, (21b)

where DT−1 is the Jacobian of T−1 and θγ,i is the i th trans-

formed fidelity parameter.

5.3 Proposals on the permutation vector

MCMC techniques are predominantly designed for contin-

uous problems, rather than for discrete problems such as

permutation sampling (Zanella 2019). In order to explore

different permutation vectors, we use a proposal distribution

that is uniform on a set of permutations which are one switch

of labels different from the current state. When at an initial

permutation vector P we propose the swapping of two cell

labels i �= j to generate P ′. This proposal is uninformed

and symmetric about P , therefore giving the same accep-

tance probability as a standard random-walk on continuous

random variables.

5.4 Multimodality and tempering

We assume that the parameter state space is dominated by a

single best-fit mode, corresponding to the correct matching

of points. However, the state-space is likely to be multi-

modal and difficult to sample from due to its complexity and

the level of correlation between components of the model.

To facilitate better exploration of the parameter space and

avoid trapping in local minima, we implement likelihood-

tempering, as described in Marinari and Parisi (1992). During

early iterations improved mixing is promoted through a high

temperature T , within the acceptance ratio given by:

α = min

(

1,
π0(θ

′)

π0(θ)
exp

(

1

T
(log(L(	)

γ (Y1, Y2|θ ′, γ ′))

− log(L(	)
γ (Y1, Y2|θ , γ )))

)

Cγ

)

, (22)

where

Cγ =
n1
∏

i=1

exp
(

θ ′
γ,i − θγ,i

)

(

exp(θγ,i ) + 1

exp(θ ′
γ,i ) + 1

)2

,

as defined in Eq. 21b and θ and θ ′ are the current and proposed

model parameters.

The temperature T > 0 is gradually reduced until T = 1

via an exponential cooling schedule along with corrections

to the step-size parameters β and βγ to help account for

the change in the posterior when the likelihood is tempered.

Selection of the start temperature T0, the cooling rate of the

system and the adjustment to the step-size are crucial to the

successful and efficient identification of the dominant mode,

details given in “Appendix D”.

By the point at which we sample at T = 1 we assume that

we have explored the entire state space sufficiently, facilitated

by tempering, and come to reside in a mode with probability

approximately proportional to its probability mass. Chains

are unlikely to switch modes once the temperature has cooled,

but then we are able to explore the local mode. The multi-

modality of the target distributions necessitates the use of

multiple chains. Once T = 1, the temperature is fixed and

subsequent samples from the posterior recorded.

5.5 Interpretation of results

To interpret the results of our sampling on the permutation

vector, we record the number of times each cell in Y1 matches

with each cell in Y2 during sampling at T = 1. The number

of matches is recorded using a matrix Mcounts ∈ R
n1×n2 .

The matrix is then normalised so that the entries represent

the proportion of samples in each matching, which can be

visualised using probability heatmaps.

In order to calculate the most likely matching (MLM)

of the cells in Y1, we solve the linear assignment prob-

lem using the matchpairs MATLAB function (Duff and

Koster 2001)

PMLM = arg minP∈Sn2

n1
∑

i=1

1 − Mcounts(i, Pi ). (23)

From this we can describe the MLM of a given chain, and

compare this to the ground truth permutation vector for the in

silico tests. In tests using real data where the true matching is

unknown, this MLM would be representative of the inferred

matching of points for subsequent analyses.

To assess the accuracy of the spatial matching of the

points, we evaluate and store thinned samples of the cell-

to-match distances for each cell i in Y1 given by

�i = ‖Y 1
i − [G(θ; Y2)]i‖2, (24)

during sampling at T = 1. These values are then used to

evaluate the median and root-mean-squared-error (RMSE)

of the cell-to-match distances for each chain, thereby giving

an indication of the spatial quality of the matchings.

To allow us to visualise the inferred spatial matching, and

compare fidelity parameters of matches, we also calculate the

MAP estimates on the transformation and fidelity parameters,

conditioned on the MLM. During non-tempered sampling (at

T = 1) the minimum value of the negative log of the posterior

(with� marginalised out) is stored, along with corresponding

θ and γ parameter values. This gives us an estimate of the

the deepest mode within the explored state space.

To estimate the MAPs of model parameters conditioned

on the MLM, we use the inbuilt fmincon optimiser in
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Fig. 2 a Example normalised probability heatmap of matches for the 15-cell problem with corresponding MAP estimates (conditioned on MLM)

on γ . b Corresponding spatial matching of Y1 and G(θ; Y2) using MAP estimates (conditioned on the MLM) of the transformation parameters

MATLAB, using starting positions of the parameters as those

identified at the minimum negative log of the posterior.

The permutation vector is not changed from the MLM

during optimisation as optimisation over the discrete permu-

tation vector state space would have been computationally

expensive and likely unnecessary due to the low acceptance

of new permutation vectors during sampling at T = 1. The

maximum number of iterations and evaluations of the func-

tion were set to 106. These values of θ and γ are then used

to generate spatial matching figures and displayed alongside

permutation heatmaps.

6 Results

We first constructed several in silico tests which were

designed to mimic real cell matching problems. The in silico

test problems used real cell centre coordinates segmented

from images of fixed embryos for Y2. We chose to use

embryos from four key stages within the mammalian preim-

plantation period with; 8, 15, 33 and 62 cells respectively,

see S1.1–S1.3 for details. Y1 was then generated by apply-

ing the observation operator with known values of the model

parameters to Y2, parameters given in Section S3, and adding

i.i.d. mean zero Gaussian noise. The permutation was cho-

sen to be the identity to make it simpler to visualise a correct

matching.

All test problems were evaluated through 8 independent

Markov chains, on a machine with specification outlined

in S2. Initial positions of chains were randomly chosen as

draws from the parameter priors, and a random initial per-

mutation vector chosen. A minimum of 7 × 106 tempered

samples were performed (unless stated otherwise) and a fur-

ther 106 samples at T = 1, where thinned chains were used

to characterise the posterior. The average acceptance ratio

ᾱ was evaluated every 2000 iterations, and the step-sizes

adjusted accordingly to ensure efficient sampling.

6.1 In silico cell matching

For the first test, we generated problems where a known ran-

dom affine transformation was applied to the original Y2

coordinates in order to generate Y1, parameters given in Sec-

tion S3. Additive noise of the form N(0, 0.012I3) was then

added to each point.

We performed sampling on the affine transformation

parameters, the permutation vector along with fidelity param-

eters and disregarded non-linear deformation. All chains for

the 8-, 15-, 33- and 62-cell tests converged to a posterior

distribution highly concentrated on the correct matching of

points as can be seen in the example permutation probability

heatmap in Fig. 2a.

In order to spatially map Y2 back on to Y1 and visualise

the matching, we calculated the MAP estimates on the trans-

formation parameters, conditioned on the MLM and plotted

Y1 and G(θ; Y2), Fig. 2b.
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Fig. 3 Marginal posteriors of a

affine matrix entries (A1-A9)

and the translation vector

components (b1-b3). b Fidelity

parameters for the 15-cell in

silico example. Grey and black

dashed lines are the prior and

maximum possible posterior on

γ respectively where d = 3 is

the dimension of each

observation

Example marginal posteriors of the affine matrix entries

A1–A9, the translation vector components b1–b3 and fidelity

parameters γ are shown in Fig. 3a, b. We present the marginal

posteriors on the affine matrix entries (A1–A9) rather than the

marginal posteriors of the affine transformation parameters

(φ
x,y,z
1,2 , s1,2,3), as in cases where there are low levels of shear

scaling within the transformation, there is degeneracy in the

construction of the affine matrix.

The fidelity parameter posteriors for all cells, in all tests,

lie close to the maximum possible fidelity posterior (the

fidelity posterior arising when the model and data are exactly

equal), indicating excellent evidence for inclusion of all

observations in this example. The noisiness of the fidelity

parameter histograms is likely due to high correlations with

the model parameters, causing slower convergence.

We also estimated the MAPs of the fidelity parameters

conditioned on the MLM and found the fidelity parameter

estimates to be close to the maximum possible posterior mode

value for all matches.

Average acceptance ratios were typically stable during

tempering until the average acceptance ratio of the permuta-

tion sampling, ᾱP , decreased rapidly, Fig. 4. Here the average

acceptance ratio of the transformation sampling, ᾱt fluctu-

ated and the step size β adjusted to ensure ᾱt was within

23.4 ± 10%. ᾱP was close to zero during sampling at T = 1

for all successful chains, most likely due to the chains being

within the mode containing the global minimum whereby

Fig. 4 Typical average acceptance ratio (ᾱ) plots for permutation, trans-

formation and fidelity modules (subscript P , t , and f respectively)

during tempering

any proposed move in the permutation vector was unlikely

to be accepted. The average acceptance ratio for the fidelity

sampling ᾱ f appeared more stable than ᾱt but we continued

to adjust βγ whenever the acceptance rate was not within

tolerance limits.

6.2 Data selection in presence of non-corresponding
cells

The assumption that every cell in Y2 has a corresponding

match in Y1 does not always hold, as discussed in Sect. 3,

motivating the introduction of fidelity parameters to facil-

itate the selection of data within the point sets. If there is

sufficient evidence that a match can not be described by the

current model, the fidelity parameter posterior will have a

small mean, dramatically reducing the impact of that obser-

vation on the likelihood.

To investigate the effectiveness of Bayesian data selec-

tion in an in silico setting, we simulated two test problems

based on the 33- and 62-cell embryos. As before, we applied

a random affine transformation, parameter values given in

Section S3, and added noise of the form N(0, 0.012I3) to

each point. To introduce cells without corresponding matches

whilst maintaining n1 = n2, we removed the first nr cells

from Y1 and the last nr cells from Y2, resulting in nr cells in

Y1 and Y2 without corresponding matches. We first gener-

ated two problems where nr = 3, and 6 for the 33- and 62-cell

data sets respectively. We chose to model these two stages

as cells divide asynchronously at this stage in development,

making the presence of points without associated matches

more likely. For now we neglect the non-linear deformation.

Within these simulations we were aiming to sample from

the target distribution given in Eq. 13d when we were not

including data selection and Eq. 14 when we were including

data selection.

All chains for the 33-cell tests when we included data

selection converged to distributions which were highly con-

centrated on the correct permutation vector, with reductions

in the final nr fidelity parameter posterior distributions,
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Fig. 5 Comparison of matching for 33-cell test with nr cells without

corresponding matches. a Example of a permutation heatmap when

data selection was included, with associated MAP estimates of γ , con-

ditioned on MLM. b Corresponding heatmap when data selection was

not included, with two incorrect matches (pink arrows). c, d Spatial

matching of points for example with and without data selection respec-

tively

Fig. 5a. The MLM identified was the expected permutation

vector with the final non-corresponding nr cells in Y1 match-

ing to cells without corresponding matches in Y2.

We then compared these results with examples where we

did not include data selection. All 8 chains in the 33-cell

example were concentrated about an MLM with 2 incorrect

matches, Fig. 5b.

We compared the median and RMSE cell-to-match dis-

tances with and without data selection, see Table 2. It was

evident that at a small cost to the RMSE, we were able to

reduce the median cell-to-match distance, thereby facilitat-

ing a better, more accurate matching for the majority of cells

with definitive matches, as can be seen in Fig. 5c, d and

“Appendix E”. Without data selection, the matching iden-
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Table 2 Example of median and RMSE cell-to-match distances corre-

sponding to the chains with the minimum values of the negative log of

the posterior

With data selection Without data selection

med(�) RMSE(�) med(�) RMSE(�)

33-cell nr = 3 0.0314 2.04 0.726 1.74

62-cell nr = 6 0.0215 1.81 0.689 0.658

tified is the effective result of minimising the RMSE of the

cell-to-match distances for all cells, including those without

corresponding matches. When using data selection, there are

some matchings where the two cells are very far apart, but

have very low fidelity, and as such are not heavily penalised

in the potential. This leads to a higher RMSE than the exam-

ples with data selection, where the posterior concentrates

on regions which have as good a match as possible over all

cells. However, because these problematic matchings have

been tuned out by the fidelity parameters in the data selec-

tion case, the matches with high fidelity have much lower

distance between cells, and we see this in the much reduced

median distance. This effect can be seen clearly in Fig. 5,

where with data selection we can see a large number of very

high quality matches in (c), but with a few outliers, in com-

parison with the results without data selection in (d), where

none of the matches are of high quality, since the two point

sets are inconsistent, leading to incorrect matches.

Larger problems with more densely packed points could

result in an increased number of incorrect matchings, as we

found in the 62-cell example with nr = 6. When we included

data selection, we were able to retrieve an MLM equal to the

correct matching in all chains with non-committal matching

for cells with non-corresponding matches, Fig. 6a, b.

There were between 12 and 50 incorrect matches in the

MLM when data selection was not included, and the distri-

bution appeared less concentrated on the correct permutation

vector in all chains, Fig. 6c and “Appendix E”. This variabil-

ity in the number of errors is indicative of a posterior that

is much more difficult to explore, leading to local trapping.

In this instance, Bayesian data selection helped us not only

identify suitable data to be registered between Y1 and Y2,

but also to smooth the posterior making it easier to explore.

In the 62-cell test problem we observed an increase in

the RMSE of cell-to-match distances when data selection

was included, but improvement in the median cell-to-match

distance, indicative of an improved matching of the majority

of cells, see Tables 2 and “Appendix E”. We conducted a test

with larger values for nr with even more stark differences in

success, see “Appendix F”.

6.3 Non-linear deformations

We next sought to incorporate non-linear deformation within

the data. We generated a test problem based on the 33-cell

data set where we assigned non-zero momenta, drawn from

the prior, to 18 points where the x coordinates of Y2 were

less than 0 after the pre-processing of Y2. These points were

then deformed explicitly through Eqs. 2a and 2b to simu-

late a deformation that has occurred in one region of the

embryo, rather than a global deformation. The points were

then subject to an affine transformation, all parameters given

in Section S3. Noise of the form N(0, 0.012I3) was then

added. We designed four tests covering all combinations of

inclusion of deformation in the observation operator and/or

data selection.

When neglecting non-linear deformation and data selec-

tion, referred to as test (a), we found that all chains had the

same MLM with two incorrect matches, see “Appendix G”.

Although the number of errors in this particular example

is low, when we tried another test problem with the initial

momenta scaled by a factor of 1.1, we found three unique

MLMs with up to 31 incorrect matches. Without data selec-

tion and the inclusion of the non-linear deformation, even

small increases in problem difficulty can lead to large num-

bers of incorrect matches.

Next we included non-linear deformation withinG(θ; Y2),

and neglected data selection, test (b). The posterior here is

higher dimensional and more complex, leading to potentially

poor mixing. We therefore increased the minimum number

of tempered samples to 10 × 106 which enforced a slower

cooling within the tempering regime. We only found one

out of eight chains that converged to the correct permutation

vector, see “Appendix G”. This supports our initial belief

that this higher-dimensional state space is more difficult to

explore and has a higher likelihood of chain trapping within

local minima. Additionally, without the fidelity parameters

to assist in interpretation of the results, the identification of

good matches is ambiguous within this test and therefore the

interpretation of the results is limited to the assessment of

the negative log of the posterior or cell to match distances.

We then included data selection and non-linear deforma-

tion within G(θ; Y2), test (c). We increased the number of

tempered samples to 10 × 106 to account for the increased

dimensionality of the state space. There was evidence of a

highly multi-modal state space, as in test (b), as we iden-

tified five unique MLMs with between 0 and 9 incorrect

matches. However, we did identify three chains out of the

eight chains that converged to the correct permutation vec-

tor, see “Appendix G”. This increase in chain success could

be indicative of a smoothing effect of the fidelity param-
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Fig. 6 Example of the 62-cell test with nr = 6 non-corresponding cells. a Permutation heatmap when data-selection is included. b Inset of region

where cells have no corresponding matches and reduced γ . c Example permutation heatmap when data selection is not included, 14 incorrect

matches in the MLM

eters, making the multi-modal distribution somewhat easier

to explore and reducing the likelihood of chain trapping. This

test however has the additional difficulty that the prior on the

momenta must be carefully balanced with the prior on the

fidelity parameters.

We are most interested in the identification of cell match-

ings where we are confident in the identified matching, i.e.

not necessarily identifying all cells’ matches. We therefore

neglected non-linear deformation but included data selection,

test (d). Due to the reduced dimensionality, compared to tests

(b) and (c), we reduced the minimum number of tempered

samples back to 7×106. We found that the 8 chains identified

2 unique MLMs with either 5 or 6 incorrect matches. The cells

with incorrect matches were associated with reduced fidelity
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Fig. 7 Permutation heatmap for the non-linear deformation test (d).

Cells ordered vertically according to the ordering of the MAP estimates

of the fidelity parameters conditioned on the MLM. Un-deformed cells

highlighted with cyan box

parameter posterior means (γi < 0.15) and corresponded to

cells which were explicitly deformed in the generation of

the test problem. Two cells that were not deformed explicitly

did have reduced posterior means of their fidelity param-

eters, but this is due to the interaction of points and their

mutual repulsion via σK in Eqs. 2a and 2b. We identified

consistent matching for cells with MAP estimates of fidelity

parameters (conditioned on the MLM) greater than 0.5 which

corresponded with cells from the un-deformed region, see

Fig. 7.

We compared the median and RMSE cell-to-match dis-

tances for test (d) with the previous tests and found that all

chains in test (d) had higher distances. However, when we

considered only the un-deformed cells, we found that the

median cell-to-match distances were reduced, indicating a

successful matching of this subset of un-deformed cells, see

“Appendix G”.

We also trialled the more difficult test where the initial

momentum was scaled by a factor of 1.1, and sampled only

on the affine transformation, permutation vector and fidelity

parameters. The 8 chains identified one unique MLM, and all

cells that were subject to an initial deformation had low pos-

terior means of their fidelity parameters (<0.15) indicating

the successful reduction of their contribution to the likeli-

hood. As for the previous example, we observed reduction of

the median cell-to-match distance for the un-deformed cells,

with correct matchings, again suggesting a good matching

for the subset of un-deformed cells.

A final key point regarding the benefit of including data

selection rather than complex non-linear deformation mod-

els is the significant improvement in run-time, due to the cost

of solving the ODEs given in Eqs. 2a–2b. Tests (b) and (c)

that included the deformation took approximately 30 hours to

run, and suffered from slow mixing due to additional dimen-

sionality, correlation between parameters and complexity of

the posterior. On the other hand, test (d) took approximately

one hour and converged to consistent MLMs therefore mak-

ing it a far more feasible approach to match subsets of cells

accurately within reasonable time frames.

6.4 Validation of cell matching for fixed embryos
using referencemarkers

Next we devised a simple biological test problem where we

introduced reference markers within the embryo via microin-

jection. We collected embryos at the 8-cell stage and then

microinjected a single cell with H2b-mCherry, a fluorescent

protein. Embryos were then subject to 24 h ex vivo culture

and then fixed and stained with Hoechst to facilitate nuclear

segmentation. See Sects. S1.1–S1.3, S1.5, Al-Anbaki (2017)

and Plusa (2005) for full protocols.

We selected one embryo where four mCherry positive

cells were identified and used as reference markers. The

embryo was imaged and then moved randomly using a pipette

before a second image of the embryo was taken, Fig. 8a, b.

Cell centres were approximated through segmentation of the

nuclei in both images, see Section S1.3.

We performed inference including data selection, neglect-

ing non-linear deformations, and initiated 8 chains randomly

using draws from the priors. A minimum of 7 × 106 tem-

pered iterations were conducted, and a further 106 iterations

at T = 1.

All eight chains were found to have the same MLM and

had good spatial matching between the two point sets, with

an average median cell-to-match distance equal to 0.0400

units across the 8 chains. We noticed that 6 cells had reduced

fidelity posterior means in this example, Fig. 8c, but not so

low as to indicate poor overall matching. We were able to

confirm this by ordering the cells in the permutation heatmap

such that the cells in Y1 were ordered according to the MAP

estimates (conditioned on the MLM) of the fidelity param-

eters, and then the order of Y2 changed according to the

maximum match probability for each cell in Y1. The result-

ing heatmap was a diagonal matrix and we were able to show

that the reference cells in Y1 corresponded to the reference

(RFP positive) cells in Y2, Fig. 8c.
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Fig. 8 a The first confocal image of the embryo prior to movement on

the imaging stage- reference cells marked with arrows b Second image

of embryo after random reorientation. Scale bar equal to 20μm. c Exam-

ple permutation heatmap with four known mCherry reference markers,

ordered by MAP estimates of the fidelity parameters and most likely

cell matches in Y2. Highlighted rows/columns indicate the successful

matching of the four reference marker (RFP positive) cells

6.5 Matching of cells and embryos across imaging
modalities

Finally, we wanted to trial matching cells between the final

frame of a RTI experiment and an immunostained image.

H2b:GFP embryos were chosen to facilitate the segmentation

of cell centres from the movie, and were subject to ex vivo

culture. Prior to removal of the embryos from the confocal

microscope, they were imaged a final time using a z-axis

resolution of 1μm to increase the accuracy of the extracted

cell centres. Embryos were then fixed to halt development and

stained using Hoechst to enable visualisation of the nuclei

for segmentation. Details of experimental protocol given in

Sections S1.1–S1.4.

We chose a group of four embryos (embryos 1–4) that

were co-cultured and successfully stained (embryos A-D).

Due to the co-culture of the embryos, the embryo matching

was unknown a priori, Fig. 9. Embryos 1–4 had 39, 22, 37 and

28 cells respectively, and embryos A–D had 39, 23, 27 and 40

cells respectively. Each embryo combination was attempted

(8 chains for each combination) using data selection and

excluding the non-linear deformation. We ran a minimum

of 7 × 106 tempered iterations and a further 106 iterations at

T = 1.

We identified one unique MLM for the embryo pairings

2B and 4C, with the other embryo combinations (2A, 2C, 2D,

4A, 4B, 4D) displaying at least 5 unique MLMs, see Table 3.

The identification of one unique MLM for embryo parings

2B and 4C suggests that we had found the dominating mode

of the posterior distribution which we assume to represent

the correct matching of the cells within the correct embryo

pairing.

We identified 2 unique MLMs for the embryo pairing 1A,

with seven out of eight chains sharing one of the unique

MLMs, and the remaining chain converging to a different

permutation vector. The other embryo pairings for embryo

1 (1B, 1C, 1D) all had more than 5 unique MLMs across

the eight chains and typically had more diffuse permutation

heatmaps, Fig. 10.
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Fig. 9 Representative 2D slices

from RTI study and

immunostaining, confocal

image. Embryos 1-4 from the

final frame of the RTI, with cell

nuclei visualisation via the

green fluorescent channel

(H2b:GFP signal).

Corresponding immunostained,

confocal image, embryos A-D

with nuclei visualisation via

Hoechst staining

Table 3 Number of unique MLMs identified for each embryo combi-

nation, out of 8 chains

emA emB emC emD

em1 2 7 5 8

em2 7 1 5 8

em3 8 8 7 6

em4 8 6 1 8

Due to the increase in embryo size (and therefore the num-

ber of points), the state space describing the matching of the

cells in embryo 1 was likely to be more difficult to explore.

We therefore tried running the matching between embryo 1

and A with a slower cooling rate by increasing the number

of tempered samples to 15 × 106. In this test, all chains con-

verged to the same permutation vector which was the same

permutation vector identified in 7 out of 8 chains previously,

see Fig. 11a. This suggests that the one chain that converged

to a different permutation vector in the shorter run was sim-

ply trapped in a local minimum due to the complexity of the

state space.

We did notice that two cells in embryo 1 had reduced

fidelity parameters in all chains, Fig. 11a. Upon closer inspec-

tion we identified the corresponding points of these cells and

found they were in different regions of the embryo, Fig. 11b,

suggesting that there were some segmentation errors within

this dataset. This highlights the strength of the data selection

approach as its inclusion has not only allowed us to identify

the matching despite the non-corresponding cells, but also

allows us to go back to the biological images and potentially

re-segment the images more accurately.

By deduction we could infer that embryo 3 should match

with embryo D. However this was not as clear when consid-

ering the identification of unique MLMs. We trialled each

embryo pairing (3A, 3B, 3C, and 3D), but found at least 6

unique MLMs for each pairing, suggesting that there is no

clear matching for embryo 3. We tried running the assumed

embryo pairing, 3D, with a slower cooling rate, as performed

for the embryo pairing 1A, however we still identified 6

unique MLMs leading us to believe that embryo 3 is poten-

tially a low quality data set. The permutation heatmaps were

typically more diffuse for all embryo combinations, again

suggesting that we were unable to identify a single global

minimum indicative of the true cell matching, see Fig. 10. We

referred back to the biological data and noticed that several

cells in both the final frame of the movie and the stained image

were undergoing cell division which could have caused dif-

ferences in cell position and number that our algorithm was

unable to account for.

However, it is important to highlight the fact that this

result is not discouraging as we were able to robustly identify

what embryos had point sets that were of sufficient quality

to enable the matching of the majority of cells using our

approach which is not possible when attempting matching

manually.

To extend our analysis past the MLMs, we recorded the

cell-to-match distances during sampling at T = 1 and then

compared the median and RMSE distances from the chain

that converged to the minimum negative log of the poste-

rior for each embryo pairing, see Table 4. By considering the

median cell-to-match distance, we were able to clearly sup-

port the three identified embryo matchings; embryo 1, 2 and

4 with A, B and C respectively and we could clearly iden-

tify the low quality matches identified for embryo 3 which

consistently had larger RMSE and median cell to match dis-

tances.

The identified embryo pairings did not always correspond

to the lowest RMSE distances. For instance, the pairing of

embryo 1 with embryo A had the largest RMSE distance,
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Fig. 10 Example permutation heatmaps for embryo 1 and 3 with

embryos A, B, C and D. Heatmaps ordered according to the MAP

estimate of γ conditioned on the MLM and then the corresponding

maximum match in Y2. More diffuse permutation heatmaps for embryo

pairings 1B, 1C, 1D and 3A-D suggesting poor matching of these

embryo combinations

despite having the overall minimum median cell-to-match

distance. This is a result of cells 5 and 19 in Y1 being matched

with cells 14 and 31 in Y2 which were clearly in different

regions of the embryo, and therefore had large cell to match

distances. With data selection, the effect of these outliers can

be minimised, reducing the median distance but increasing

the overall RMSE.

To help us evaluate the impact of the data selection within

this test, we performed the cell matching for each of the

well-identified embryo matches (embryo pairs 1A, 2B and

4C) without data selection. All 8 chains for embryo pairings

2A and 4C identified the same MLM as with data selection,

as we would hope for high quality data. However, when we

tried to match embryo 1 with embryo A without data selec-

tion, we identified 2 MLMs with large numbers of differences

when compared to the MLM identified previously with data

selection. One chain had 39 differences and the remaining

seven chains had 11 differences indicating the identification

of completely different MLMs. This highlights our need to

include the data selection framework, to ensure the accu-

rate matching where there are cells without corresponding

matches. Furthermore, the inclusion of data selection facili-

tates further inference and interpretation of the confidence of

the matches presented within the MLM, and enables better

mixing of the Markov chains due to its smoothing properties.

7 Discussion

In this work we presented a solution to an unlabelled land-

mark registration problem by introducing a novel Bayesian

data selection approach to account for non-corresponding

cells. We included non-linear deformation, 3D affine trans-

formation and description of the matching of cells via a

permutation matrix within the registration model. By using

MCMC and tempering of the likelihood, we were able to

explore the complex, multimodal posterior and identify most

likely matchings of two point-sets. To demonstrate the effi-

cacy of the approach, we constructed a series of in silico

problems, and used real data from biological imaging exper-

iments. We were able to determine the matching of cells

between the final frame of a RTI experiment and corre-

sponding immunostained images, even when the embryo

correspondence was originally unknown due to co-culture

of the embryos.

Our development of an approach to match single cells

between imaging modalities enables the combination of his-

torical cell data extracted from RTI studies, with protein

expression at the single cell level. Previously this has been

approached manually, resulting in potentially subjective con-

clusions relating cell behaviour and protein expression. By

enabling this joint assessment of spatio-temporal information

at the single cell level using our approach, we can begin to
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Fig. 11 a Example permutation

heatmap for the matching of

embryo 1 with embryo A after

performing sampling at T = 1

for 15 × 106 iterations. Two

cells with significantly reduced

fidelity parameter MAP

estimates conditioned on the

MLM highlighted in pink box. b

Spatial mapping of Y2 onto Y1

using the MAP estimates

(conditioned on the MLM) of

the affine transformation

parameters, low fidelity cells

marked in pink. Cells with low

fidelity parameters found in

regions deep in the embryo and

in the extremes of the z-axis

where segmentation errors are

more likely to occur

Table 4 Median and RMSE

cell-to-match distances for each

embryo combination, given in

arbitrary units corresponding to

the chain that converged to the

minimum negative log of the

posterior density

med(�) emA emB emC emD RMSE(�) emA emB emC emD

em1 0.3875 0.6700 0.7912 1.3080 em1 1.3968 0.7908 0.9749 1.3552

em2 0.6632 0.2381 0.6586 0.7235 em2 0.7343 0.1886 0.6462 0.8066

em3 1.5321 0.6942 1.0230 0.6514 em3 1.2241 0.8166 1.0347 0.9454

em4 1.0067 0.6595 0.3433 0.7580 em4 0.8093 0.5523 0.3209 0.7575

Bold entries correspond to high confidence embryo matchings
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investigate the importance of cell history during cell lineage

specification within the mammalian preimplantation period.

Existing landmark registration approaches are predom-

inantly framed as optimisation problems, and therefore

provide no measure of uncertainty in the identified match-

ing of points (Kent et al. 2004). Some of these approaches

also rely on some partial labelling of matches and additional

information relating the points such as the properties of the

landmarks (Kent et al. 2004; Dryden 2007; Green and Mar-

dia 2006). In contrast our approach is based solely on the

geometrical coordinates of the landmarks.

The development of the data selection aspect of this

approach was crucial to the accurate registration in the

real-world problem due to the presence of cells without cor-

responding matches in either image. We demonstrated that

without the incorporation of the data selection framework,

the accuracy of identified cell matchings was reduced, espe-

cially in larger embryos where the number of cells without

corresponding matches was potentially increased. We also

demonstrated that the inclusion of data selection facilitated

better mixing of the MCMC chains by reducing the rough-

ness of the state space, thus improving chain convergence

and improving the robustness of the approach. More sophis-

ticated MCMC methods that are known to be more efficient

in multimodal targets, such as parallel tempering, could be

used to further improve mixing and reduce computational

complexity. Choosing conjugate priors for the fidelity terms

could also reduce the dimensionality of the problem, and

further improve mixing (Cotter 2022).

The idea of Bayesian data selection, in which parameters

which govern the effect of an observation on the posterior

are inferred alongside the model parameters, is extremely

general, with great potential to be applicable to a very broad

class of inferential problems in statistics and data science.

Data cleaning is a subjective and laborious task which is

often undertaken by hand, the results of which can have a

profound impact on the outputs of the inference, and this

approach automates that process in a way which is consis-

tent and free from user-bias. In future work we plan to explore

these ideas in more depth, and apply them to a range of dis-

parate application areas.

Supplementary Information The online version contains supplemen-

tary material available at https://doi.org/10.1007/s11222-023-10259-
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Appendix A: Description of the non-linear
geodesic deformation

During fixation of the embryo and immunostaining, the

embryo structure can undergo some deformation due to

partial collapse or through mechanical damage which is sub-

sequently reflected in the coordinates of the cell centres.

Providing the level of the deformation is relatively small and

does not affect the outcome of the intended analyses, the

data can still be used. However, the transformation between

the two point sets can no longer be described via an affine

transformation only as the deformation can often be localised

within the embryo and non-linear. We therefore include the

description of a non-linear deformation to Y2 using the

approach introduced in Cotter (2013).

The displacement to the cells is applied through a flow

field ut , which can be evaluated at the current position of the

landmarks q0 = Y2. The flow field advects the landmarks

over the time interval t ∈ [0, 1]. The flow field is chosen to

be a geodesic which minimises the energy of the deformation

given by

1

2

∫ 1

0

‖ut‖2
V dt,
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which is uniquely determined by the initial momenta p
j
t at

t = 0 at each landmark with coordinate q
j
t . Here V is a

reproducing kernel Hilbert space (Younes 2019) with norm

‖·‖V , and with kernel KV , which we assume to be Gaussian:

KV (x, y) = exp

(

−
‖x − y‖2

2

2σ 2
K

)

.

The geodesic deformation is then given by the solution of the

following differential equations

d p
j
t

dt
= −∇(ut (q

j
t ))

⊤ · p
j
t , (25a)

dq
j
t

dt
= ut (q

j
t ), (25b)

over the time interval [0, 1], where q
j
t and p

j
t are the initial

position and momentum of the j th cell respectively, at time

t in three dimensions. We define ut at q
j
t as

ut (q
j
t ) =

n2
∑

i=1

KV (qi
t , q

j
t ) pi

t , =
n2
∑

i=1

exp

(

−
‖qi

t − q
j
t ‖2

2

2σ 2
K

)

pi
t ,

(26)

where σK describes the variance of the kernel. As the data

is pre-processed to ensure a minimum cell-to-cell distance

of one, we found that σK = 1 was a sensible value to use.

Using Eqs. 26, 25a and 25b can be re-written as

d p
j
t

dt
=

(

−
n2
∑

i=1

(qi
t − q

j
t )

σ 2
K

exp

(

−
‖qi

t − q
j
t ‖2

2

2σ 2
K

)

pi
t

)⊤

· p
j
t ,

(27a)

dq
j
t

dt
=

n2
∑

i=1

exp

(

−
‖qi

t − q
j
t ‖2

2

2σ 2
K

)

pi
t . (27b)

The deformation is applied to q0 = Y2, the original posi-

tions of the cell points prior to deformation, through p0 and

Eqs. 27a and 27b solved over t = [0, 1] to give D(θ; Y2), the

deformed Y2 coordinates at time t = 1.

Appendix B: Affine transformation in three
dimensions

To apply an affine transformation to three dimensional points

we define the matrix A(θ) as a combination of two rota-

tion matrices R1(φ
x
1 , φ

y
1 , φz

1), R2(φ
x
2 , φ

y
2 , φz

2), and a scaling

matrix S(s1, s2, s3)

R1(θ) =

⎡

⎣

cos(φz
1) sin(φz

1) 0

− sin(φz
1) cos(φz

1) 0

0 0 1

⎤

⎦

⎡

⎣

cos(φ
y
1 ) 0 − sin(φ

y
1 )

0 1 0

sin(φ
y
1 ) 0 cos(φ

y
1 )

⎤

⎦

⎡

⎣

1 0 0

0 cos(φx
1 ) sin(φx

1 )

0 − sin(φx
1 ) cos(φx

1 )

⎤

⎦ , (28)

S =

⎡

⎣

s1 + 1 0 0

0 s2 + 1 0

0 0 s3 + 1

⎤

⎦ , (29)

R2(θ) =

⎡

⎣

cos(φz
2) sin(φz

2) 0

− sin(φz
2) cos(φz

2) 0

0 0 1

⎤

⎦

⎡

⎣

cos(φ
y
2 ) 0 − sin(φ

y
2 )

0 1 0

sin(φ
y
2 ) 0 cos(φ

y
2 )

⎤

⎦

‘

⎡

⎣

1 0 0

0 cos(φx
2 ) sin(φx

2 )

0 − sin(φx
2 ) cos(φx

2 )

⎤

⎦ , (30)

where A(θ) = R1SR2, φ are Euler angles, and s are the scal-

ing coefficients. We describe the affine transformation matrix

by applying two rotational matrices and a scaling matrix to

achieve a shear scaling and rotation of the points as in Glass-

ner (2013). This enables us to set more intuitive priors on

each of the affine transformation parameters.

The affine transformation is applied as

F(θ; Y2) = A(θ)D(θ; Y2) + b(θ)1⊤
n2

, (31)

where b(θ) ∈ R
3 is a column vector of the translation

parameters b1, b2, b3 and 1n2 ∈ R
n2 is a column vector of

ones. When non-linear deformation is not included within

the transformation model D(θ; Y2) = Y2.

Appendix C: Calculating the 
-dependent
normalisation to the posterior density

The normalisation factor of the posterior distribution when

we include data selection, is no longer constant when we

include data selection, instead it is dependent on γ as

Z(γ ) =
∫

det
(

� + (Xγ )(Xγ )⊤
)− ν+n1

2
dX, (32)

where Xγ = X diag(γ ). We can directly calculate the γ -

dependent normalisation by considering the substitution Y =
Xγ , equivalent to yi j = γi xi j . Given that dX = dY

|det(DJ )| ,
where DJ is the Jacobian of the transformation from X to Y,
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given by

DJ =

⎛

⎜

⎝

γ1I3

. . .

γn1I3

⎞

⎟

⎠
(33)

and the absolute value of the determinant given by

| det(DJ )| =
n1
∏

i=1

γ d
i . (34)

From this we can re-write dX and write Z(γ ) as a combina-

tion of a γ dependent function multiplied by some constant

Z(γ ) =
(

n1
∏

i=1

γ −d
i

)

∫

∣

∣

∣

 + YY⊤

∣

∣

∣

− ν+n1
2

dY, (35a)

=
(

n1
∏

i=1

γ −d
i

)

πdn1/2Ŵd( ν
2
)

|
|ν/2Ŵd( ν+n1
2

)
, (35b)

where Ŵd(·) is the gamma-function. By dropping the con-

stant terms in Z(γ ) and retaining only the factor dependent

on γ , we re-write the posterior as

π(θ, γ |Y1, Y2) ∝ π0(θ)π0(γ )

⎛

⎝

n1
∏

i=1

γ d
i

⎞

⎠

∣

∣

∣
� + Xγ Xγ

⊤
∣

∣

∣

−ν+n1
2

.

(36)

Appendix D: Selection of the start tempera-
ture and cooling rate

The start temperature T0, and the cooling rate tc of the tem-

pering schedule, must be chosen carefully. If T0 is too low,

then the chain will not be able to explore the state space freely,

and become trapped in a local minima early in the simulation.

Alternatively, if T0 is initiated too high, sampling is ineffi-

cient with too many samples obtained from the priors in early

iterations of the tempering regime.

To inform our selection of T0 appropriately, we first sam-

ple randomly from the priors on θ and γ and propose random

P vectors. We then calculate the negative log of the likeli-

hood marginalised over �, for each combination. We then

calculate T0 as

T0 =
p95 − p5

log (1 + τ)
, (37)

where τ = 0.01, a user defined tolerance to govern how high

a start temperature should be set and p95 and p5 the 95th

and 5th percentiles of the negative log of the marginalised

likelihood values. We then set the cooling rate to equal

tc = T
− fc/N
0 (38)

where fc = 2000 is the minimum number of iterations per-

formed at one temperature, and N is the original, user-defined

minimum number of tempered iterations of the algorithm.

We choose fc to ensure accurate calculation of acceptance

rates between temperature changes and enable the system

to equilibriate between each decrease in temperature. The

temperature is decreased as

T ′ = T tc, (39)

using an exponential multiplicative cooling regime as pro-

posed in Kirkpatrick et al. (1983).

The temperature is reduced every fc iterations until T =
1, where we then perform NT =1 samples at T = 1, the

assumed un-tempered posterior distribution. It is crucial that

the reduction of T is sufficiently slow, otherwise it is likely

that the chain will become trapped in some local minima of

the state space. We therefore impose the condition that T

is only decreased when the acceptance rate of proposals on

the model transformation parameters is 23.4±10% to ensure

that we are sampling efficiently at any given instance of the

tempered posterior, before progressing to a different temper-

ature.

The step-sizes of the random walks are also adjusted when

the temperature is reduced. β and βγ are reduced by a factor

(1 −
√

tc), to account for changes in the target distribution

density. To further improve the random walk the step-sizes

are initialised with values dependent on the number of param-

eters within the Gibbs module. β is initialised with a value
2.382

12+3n2
when the affine and deformation transformations are

included, if affine only, β is initiated as 2.382

12
. βγ is initiated

with a value of 2.382

n1
.
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Appendix E: Statistics of in silico tests with
non-corresponding cells

See Tables 5 and 6.

Table 5 Summary of the number of incorrect matches in the MLM, median and RMSE cell-to-match distances (�) for each chain, for test problems

in Sect. 6.2 and “Appendix F” when data selection was included

With data selection 1 2 3 4 5 6 7 8

33-cell #incorrect matches 0 0 0 0 0 0 0 0

nr = 3 med(�) 0.0314 0.0298 0.0283 0.0287 0.0288 0.0283 0.0288 0.0294

RMSE(�) 2.0356 2.0276 2.0414 2.0253 2.0240 2.0338 2.0371 2.0304

62-cell #incorrect matches 0 0 0 0 0 0 0 0

nr = 6 med(�) 0.0223 0.0212 0.0324 0.0212 0.0215 0.0213 0.0211 0.0222

RMSE(�) 1.8113 1.8176 1.8131 1.8135 1.8129 1.8138 1.8195 1.8178

33-cell #incorrect matches 0 0 21 0 0 0 0 21

nr = 6 med(�) 0.0433 0.0439 2.2258 0.0449 0.0463 0.0638 0.0498 2.2141

RMSE(�) 1.7779 1.7911 1.6508 1.7810 1.7803 1.8111 1.7767 1.6419

62-cell #incorrect matches 0 0 0 0 0 0 0 0

nr = 12 med(�) 0.0280 0.0288 0.0312 0.0320 0.0276 0.0284 0.0280 0.0375

RMSE(�) 1.7829 1.7933 1.7782 1.7711 1.7602 1.7873 1.7609 1.7890

Table 6 Summary of the number of incorrect matches in the MLM, median and RMSE cell-to-match distances (d) for each chain, for each test

problem in Sect. 6.2 and “Appendix F” when data selection was not included

Without data selection 1 2 3 4 5 6 7 8

33-cell #incorrect matches 2 2 2 2 2 2 2 2

nr = 3 med(�) 0.7378 0.8285 0.6726 0.6259 0.7219 0.7204 0.7360 0.7259

RMSE(�) 1.7607 1.6752 1.7475 1.7951 1.7261 1.7388 1.7113 1.7423

62-cell #incorrect matches 50 14 14 14 12 46 14 12

nr = 6 med(�) 1.3297 0.9606 0.6886 0.6921 0.6911 1.3469 0.6976 0.6920

RMSE(�) 0.6229 0.7364 0.6579 0.6553 0.6619 0.7115 0.6506 0.6581

33-cell #incorrect matches 21 3 3 7 20 21 3 3

nr = 6 med(�) 2.5220 1.2837 1.3139 2.0546 2.7350 2.6653 1.2934 1.3004

RMSE(�) 1.6092 1.2693 1.2561 1.0362 1.5336 1.5711 1.2525 1.2526

62-cell #incorrect matches 8 36 37 36 32 8 21 8

nr = 12 med(�) 0.8661 1.5664 1.5490 1.5998 1.2298 0.7847 1.4936 0.8803

RMSE(�) 0.8373 0.8746 0.6831 0.9686 0.7209 0.9603 0.8074 0.8390
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Appendix F: Fidelity parameter test with
higher nr

To further investigate the effect of the fidelity parameters (in

addition to tests in Sect. 6.2), we designed a more challenging

test. We instead removed nr = 6 and 12 cells from Y1 and

Y2 for the 33- and 62-cell examples respectively.

When data selection was included for the 33-cell test, 6 out

of 8 chains sampled from distributions highly concentrated

about the correct permutation vector for the first (n1 − nr )

cells. The two chains that did not converge to the correct per-

mutation vector converged to a permutation vector that had

21 incorrect matches. All chains in the 62-cell test converged

to the correct permutation vector and the final nr cells had

reduced posterior means of the fidelity parameters and exhib-

ited non-committal matching in the permutation probability

heatmap, Fig. 12a, b.

When we attempted to identify the matching of the points

without data selection, matching success was reduced with

increased numbers of incorrect matches in the MLMs, see

Fig. 12c, d, and increased median cell-to-match distances,

see Appendix E.

Fig. 12 Example of permutation heatmaps for the test-problems

included in Sect. 6.2, where nr = 6, 12 cells were removed from

the 33-cell and 62-cell datasets respectively. a, b Example permuta-

tion heatmaps for the 32 and 62-cell problems when data selection is

included. c, d Example permutation heatmaps when data selection is

not included for the two tests, MLMs found to have 21 and 37 incorrect

matches for these particular examples
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Appendix G: Statistics of synthetic tests with
non-linear deformation included in Sect. 6.3

See Table 7.

Table 7 Summary statistics for all chains from the non-linear deformation testing in Sect. 6.3

Test 1 2 3 4 5 6 7 8

(a) #incorrect matches 2 2 2 2 2 2 2 2

− log(π(θ |Y1, Y2, PMLM)) 192.7914 192.7914 192.7914 192.7914 192.7914 192.7914 192.7914 192.7914

med(�a) 1.3154 1.3082 1.3127 1.3113 1.2940 1.2963 1.2985 1.3259

RMSE(�a) 1.0657 1.0854 1.0791 1.0677 1.0626 1.0712 1.0815 1.0870

med(�u) 0.5429 0.5383 0.5426 0.5265 0.5282 0.5251 0.5295 0.5458

RMSE(�u) 1.3569 1.3778 1.3729 1.3643 1.3584 1.3693 1.3791 1.3792

(b) #incorrect matches 2 9 8 7 0 9 3 8

− log(π(θ |Y1, Y2, PMLM)) −91.6742 −6.9709 −20.8281 −100.3504 −131.1962 2.4066 −110.4714 −85.8735

med(�a) 0.2176 0.7528 0.5666 0.2636 0.1367 0.8000 0.1567 0.2313

RMSE(�a) 0.3129 0.6583 0.5152 0.3503 0.1582 0.9116 0.2157 0.2696

med(�u) 0.2043 0.6366 0.3809 0.2964 0.1374 0.6998 0.1524 0.2103

RMSE(�u) 0.3136 0.6767 0.5465 0.3528 0.1582 0.9352 0.2163 0.2725

(c) #incorrect matches 2 9 2 2 4 0 0 0

− log(π(θ , γ |Y1, Y2, PMLM)) 20.6750 66.8734 42.9228 7.0250 28.5452 9.7749 3.7520 −7.0193

med(�a) 0.2407 0.5089 0.2632 0.2393 0.2984 0.2364 0.2435 0.1901

RMSE(�a) 0.5141 1.1322 0.3283 0.3334 0.9295 0.3022 0.4375 0.1741

med(�u) 0.2344 0.4220 0.2478 0.2315 0.2642 0.2309 0.2338 0.1812

RMSE(�u) 0.5197 1.1743 0.3292 0.3348 0.9546 0.3033 0.4432 0.1748

(d) #incorrect matches 6 5 5 6 5 5 5 5

− log(π(θ , γ |Y1, Y2, PMLM)) 130.2310 129.2545 129.2545 130.2310 129.2628 129.2545 129.2628 129.2546

med(�a) 1.2564 1.2867 1.2372 1.2315 1.2144 1.2136 1.2238 1.2632

RMSE(�a) 1.4676 1.4629 1.4674 1.4531 1.4651 1.4715 1.4754 1.4796

med(�u) 0.1463 0.1456 0.1344 0.1528 0.1534 0.1522 0.1423 0.1436

RMSE(�u) 1.8572 1.8507 1.8574 1.8385 1.8501 1.8585 1.8613 1.8705

Here − log(π(·|Y1, Y2, P M L M )) is the negative log of the (un-normalised) posterior distribution post optimisation (conditioned on MLM), the

number of incorrect matches is determined using the MLM, and �a , �u correspond to the cell-to-match distances of all cells and the un-deformed

cells respectively

123



Statistics and Computing (2023) 33 :100 Page 25 of 25 100

References

Abe, T., Fujimori, T.: Reporter mouse lines for fluorescence imaging.

Dev. Growth Differ. 55, 390 (2013)

Aggarwal, C.C.: An Introduction to Outlier Analysis, pp. 1–34.

Springer, Cham (2017)

Al-Anbaki, A.H.: The roles of sox2 and klf4 transcription factors in

the formation and specification of epiblast lineage in mammalian

embryo, PhD thesis, University of Manchester (2017)

Alvarez, I., et al.: Bayesian inference for a covariance matrix. In: Con-

ference on Applied Statistics in Agriculture (2014)

Ando, T.: Bayesian Model Selection and Statistical Modeling. CRC

Press, Boca Raton (2010)

Berens, P.: CircStat: a MATLAB toolbox for circular statistics. J. Stat.

Softw. 31, 1–21 (2009)

Besl, P., McKay, N.D.: A method for registration of 3-D shapes. IEEE

Trans. Pattern Anal. Mach. Intell. 14, 239 (1992)

Bock, A., Cotter, C.J.: Learning landmark geodesics using the ensemble

Kalman filter. Found. Data Sci. 3, 701 (2021)

Challis, C.J., Schmidler, S.C.: A stochastic evolutionary model for pro-

tein structure alignment and phylogeny. Mol. Biol. Evol. 29, 3575

(2012)

Cotter, S.: Bayesian Data Selection. In: preparation (2022)

Cotter, C.J., et al.: Bayesian data assimilation in shape registration.

Inverse Prob. 29, 045011 (2013)

Dryden, I.L., et al.: Statistical analysis of unlabeled point sets: compar-

ing molecules in chemoinformatics. Biometrics 63, 237 (2007)

Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis: With Applica-

tions in R, vol. 995. John Wiley & Sons, Hoboken (2016)

Duff, I.S., Koster, J.: On algorithms for permuting large entries to the

diagonal of a sparse matrix. SIAM J. Matrix Anal. Appl. 22, 973

(2001)

Fallaize, C.J., et al.: Bayesian protein sequence and structure alignment.

J. R. Stat. Soc. Ser. C (Applied Statistics) 69, 301 (2020)

Fischer, S.C., et al.: The transition from local to global patterns governs

the differentiation of mouse blastocysts. PLoS ONE 15, e0233030

(2020)

Forsyth, J.E., et al.: IVEN: A quantitative tool to describe 3D cell posi-

tion and neighbourhood reveals architectural changes in FGF4-

treated preimplantation embryos. PLoS Biol. 19, e3001345 (2021)

Gelman, A., et al.: Weak convergence and optimal scaling of random

walk Metropolis algorithms. Ann. Appl. Probab. 7, 110 (1997)

Ghosh, S., Henderson, S.G.: Behavior of the NORTA method for corre-

lated random vector generation as the dimension increases. ACM

Trans. Model. Comput. Simul. (TOMACS) 13, 276 (2003)

Glassner, A.S.: Graphics Gems. Elsevier, Amsterdam (2013)

Gold, S., et al.: New algorithms for 2D and 3D point matching: pose

estimation and correspondence. Pattern Recogn. 31, 1019 (1998)

Gower, J.C.: Generalized procrustes analysis. Psychometrika 40, 33

(1975)

Grabarek, J.B., Plusa, B.: Live imaging of primitive endoderm pre-

cursors in the mouse blastocyst. Progenit. Cells, . 916, 275–285

(2012)

Green, P.J., Mardia, K.V.: Bayesian alignment using hierarchical mod-

els, with applications in protein bioinformatics. Biometrika 93,

235 (2006)

Green, P.J., Mardia, K.V.: Bayesian alignment using hierarchical mod-

els, with applications in protein bioinformatics. Biometrika 93,

235 (2006)

Gutierrez-Becker, B., et al.: Guiding multimodal registration with

learned optimization updates. Med. Image Anal. 41, 2 (2017)

Habeck, M.: Generation of three-dimensional random rotations in fitting

and matching problems. Comput. Stat. 24, 719 (2009)

Hadjantonakis, A.-K., Papaioannou, V.E.: Dynamic in vivo imaging and

cell tracking using a histone fluorescent protein fusion in mice.

BMC Biotechnol. 4, 1 (2004)

Hu, X., et al.: A Hierarchical Bayesian model for matching unlabeled

point sets. In: Proceedings of the 12th EAI International Confer-

ence on Mobile Multimedia Communications, EAI (2019)

Hurley, J.R., Cattell, R.B.: The Procrustes program: Producing direct

rotation to test a hypothesized factor structure. Behav. Sci. 7, 258

(1962)

Joe, H.: Generating random correlation matrices based on partial cor-

relations. J. Multivar. Anal. 97, 2177 (2006)

Joshi, S., Miller, M.: Landmark matching via large deformation diffeo-

morphisms. IEEE Trans. Image Process. 9, 1357 (2000)

Kent, J.T., et al.: Matching problems for unlabelled configurations.

Bioinform. Images Wavel. pp. 33–36 (2004)

Kirkpatrick, S., et al.: Optimization by simulated annealing. Science

220, 671 (1983)

Lewandowski, D., et al.: Generating random correlation matrices based

on vines and extended onion method. J. Multivar. Anal. 100, 1989

(2009)

Liu, H., et al.: Comparison of inverse Wishart and separation-strategy

priors for Bayesian estimation of covariance parameter matrix in

growth curve analysis. Struct. Equ. Model. 23, 354 (2016)

Marinari, E., Parisi, G.: Simulated tempering: a new Monte Carlo

scheme. EPL (Europhysics Letters) 19, 451 (1992)

Myronenko, A., et al.: Non-rigid point set registration: coherent point

drift. In: Advances in Neural Information Processing Systems, vol.

19 (2006)

Myronenko, A., Song, X.: Point set registration: coherent point drift.

IEEE Trans. Pattern Anal. Mach. Intell. 32, 2262 (2010)

Plusa, B., et al.: Downregulation of Par3 and aPKC function directs

cells towards the ICM in the preimplantation mouse embryo. J.

Cell Sci. 118, 505 (2005)

Plusa, B., et al.: Distinct sequential cell behaviours direct primitive

endoderm formation in the mouse blastocyst. Development 135,

3081 (2008)

Płusa, B., Piliszek, A.: Common principles of early mammalian embryo

self-organisation. Development 147, Dev183079 (2020)

Rahm, E., Do, H.: Data cleaning: problems and current approaches.

IEEE Data Eng. Bull. 23, 3 (2000)

Ramalhinho, J., et al.: Registration of untracked 2D laparoscopic ultra-

sound to CT images of the liver using multi-labelled content-based

image retrieval. IEEE Trans. Med. Imaging 40, 1042 (2021)

Rodriguez, A., Schmidler, S.C.: Bayesian protein structure alignment.

Ann. Appl. Stats 8, 2068 (2014)

Schuurman, N., et al.: A comparison of inverse-wishart prior specifica-

tions for covariance matrices in multilevel autoregressive models.

Multivar. Behav. Res. 51, 185 (2016)

Stanfill, B.: Statistical methods for random rotations, Ph.D. thesis, Ph.

D. dissertation, Iowa State University, Ames, IA, 2014. Online ...

(2014)

Tierney, L.: Markov chains for exploring posterior distributions. Ann.

Stat. 22, 1701–1728 (1994)

Wang, Y., et al.: Robust probabilistic modeling with Bayesian data

reweighting. In: Proceedings of the 34th international conference

on machine learning - Volume 70, ICML’17 (JMLR.org, 2017),

pp. 3646–3655

Younes, L., et al.: Evolutions equations in computational anatomy. Neu-

roimage 45, S40 (2009)

Younes, L.: Shapes and Diffeomorphisms, Shapes and Diffeomor-

phisms. Springer, Berlin, Germany (2019)

Zanella, G.: Informed proposals for local MCMC in discrete spaces. J.

Am. Stat. Assoc. 115, 852 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123


	Unlabelled landmark matching via Bayesian data selection,   and application to cell matching across imaging modalities
	Abstract
	1 Introduction
	2 Landmark matching
	2.1 Non-linear deformations via geodesic motion
	2.2 Affine transformation
	2.3 Permutation of labels
	2.4 The observation operator

	3 Hierarchical Bayesian data selection
	3.1 Data fidelity

	4 Bayesian cell matching
	4.1 The likelihood
	4.2 Priors
	4.3 Hierarchical Bayes posterior
	4.4 Introducing data selection into the posterior

	5 MCMC methodology
	5.1 Proposals on periodic continuous random variables
	5.2 Proposals on bounded continuous random variables
	5.3 Proposals on the permutation vector
	5.4 Multimodality and tempering
	5.5 Interpretation of results

	6 Results
	6.1 In silico cell matching
	6.2 Data selection in presence of non-corresponding cells
	6.3 Non-linear deformations
	6.4 Validation of cell matching for fixed embryos using reference markers
	6.5 Matching of cells and embryos across imaging modalities

	7 Discussion
	Acknowledgements
	Appendix A: Description of the non-linear geodesic deformation
	Appendix B: Affine transformation in three dimensions
	Appendix C: Calculating the γ-dependent normalisation to the posterior density
	Appendix D: Selection of the start temperature and cooling rate
	Appendix E: Statistics of in silico tests with non-corresponding cells
	Appendix F: Fidelity parameter test with higher nr
	Appendix G: Statistics of synthetic tests with non-linear deformation included in Sect.6.3
	References


