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Abstract

Surface freshwater is a vital resource that is declining globally, predominantly due to climate

and land use changes. Cambodia is no exception and the loss threatens many species,

such as the giant ibis a Critically Endangered waterbird. We aimed to quantify the spatial

and temporal (2000–2020) change of surface water availability across northern and eastern

Cambodia and to assess the impact of this on the giant ibis. We used a Random Forest

Classifier to determine the changes and we tested the impact of land use and geographical

covariates using spatially explicit regression models. We found an overall reduction of sur-

face water availability of 4.16%. This was predominantly driven by the presence of Eco-

nomic Land Concessions and roads which increased the probability of extreme drying and

flooding events. The presence of protected areas reduced these probabilities. We found

changes in precipitation patterns over the wider landscape did not correlate with changes in

surface water availability, supporting the overriding influence of land use change. 98% of

giant ibis nests recorded during the time period were found within 25m of surface water dur-

ing the dry season, highlighting their dependency on surface water. The overall surface

water decline resulted in a 25% reduction in dry season suitable habitat for the giant ibis.

Although absolute changes in surface water over the whole area were relatively small, the

impact on the highest quality habitat for ibis is disproportionate and therefore threatens its

populations. Defining the threats to such an endangered species is crucial for effective

management.

Introduction

Freshwater availability is increasingly affected by climate change and human activities [1].

Land use changes such as deforestation, mining and hydroelectric dams negatively impact sur-

face water availability [1, 2]. Climate change is an increasing threat to the provision of surface

water and the predicted changes rainfall patterns and increasing temperatures will lead to
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increased droughts, loss of water sources as well as extreme flooding in other areas [3, 4].

These change are having a profound effect on species dependent on freshwater, particularly

those within tropical regions that experience extreme seasonal water scarcity [5, 6]. Animals

rely on surface water for drinking, food resources and thermoregulation so access is vital and

influences species behaviour and distribution [7]. For example, water within the Serengeti

plains drives the mass migration of ungulates [8], and waterholes are important congregation

points for peccaries in Guatemala during the dry months [9]. Humans also rely on surface

water using it for drinking, agriculture, livestock, provision of energy and transport [10]. Lack

of freshwater is a serious problem, with ~4 billion people already living in water scarce regions,

which is likely to increase alongside affluence and water consumption [11]. As global affluence

increases, so too will water consumption, making the continued provision of sufficient water a

serious challenge [12].

Globally, freshwater systems are under studied and underrepresented within policy despite

their importance for people and biodiversity [13]. For example, over half the world’s wetlands

occur in the tropics, with a large number of people and animals relying on these resources, yet

there is little literature about changes to surface water in these systems [14]. This is particularly

true for Cambodia which is lacking data on surface water changes, especially at a large spatial

scale with those that are available focussing mainly on the Tonle Sap lake system [14–16].

Cambodia is located within the Lower Mekong Basin meaning it has extensive seasonal surface

water which is vital for its biodiversity and people [17]. Surface water here forms numerous

rivers and the Tonle Sap, the largest lake in southeast Asia, creating important habitats for spe-

cies [18]. There is a mosaic of floodplain, wetland, swamp and lagoon habitats which fluctuate

dramatically with the seasonal rains, transforming the landscape in the wet season [19]. Seasonal

waterholes are also important, providing refuge for many threatened species during the dry sea-

son when freshwater is scarce [20]. Surface water is also valued by people, providing freshwater

and fishing resources, with 80% of the population relying on agriculture and thus freshwater

[16, 21]. Surface water forms a vital part of Cambodia’s landscape, for both humans and ani-

mals, therefore it is vital to understand how climate and land use changes are affecting it.

In light of land use and future climate change threats to this system we aim to quantify how

surface water has changed in northern Cambodia using remote sensing which allows us to

explore changes at a large spatial scale [1]. Advances in satellite imagery and remote sensing

methods have begun to enable detailed assessments of land use and surface water changes on a

large scale [22, 23]. However, how changes in surface water impact habitat availability for spe-

cific species is rarely evaluated. We therefore couple our assessment of surface water change

with an evaluation of how the changes impact habitat availability for a critically endangered

bird, the giant ibis Thaumatibis gigantea. We chose the Cambodian national bird as an exem-

plar species due to its reliance on surface water in order to highlight the need to understand

how hydrological systems are changing. We formed three hypotheses; 1) the availability of sur-

face water within northern and eastern Cambodia has reduced since 2000, 2) the drivers of the

changes in surface water availability would be human land use changes, such as large-scale

agriculture and roads and 3) the reduction in availability of surface water will have a negative

impact on the availability of suitable nesting habitat for the giant ibis.

Materials andmethods

Study area

The study was conducted within the estimated range of the giant ibis, across the northern and

eastern plains of Cambodia (13.62˚, 105.68˚) within the Indo-Burma biodiversity hotspot (Fig

1). The climate within this region is governed by distinct wet (Dec-May) and dry (Apr-Nov)
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Cambodia https://data.opendevelopmentcambodia.

net/map-explorer. We have also included the

Google Earth Engine code for creating the surface

water classifier: https://code.earthengine.google.

com/3befd45f9aa16ceba3ad4fb6783ef765We

have included the code for the creation of the

surface water transition maps: https://code.

earthengine.google.com/

aee70dbbf330de45410ecb54aaffa687We have

also included the code for computing the distance

to surface water of the giant ibis nests and the non-

nest points: https://code.earthengine.google.com/

a23b2bbe5b027f106fa859dbbb55fef5 The code for

computing and summarising the distance to

surface water from giant ibis nest points and non-

nest points is included here: https://colab.research.

google.com/drive/1DV54sr475YpnIV7lTMM6-

cGnINm56rZg. All data and scripts used for the the

analysis within this research can be found at the

following github repository; https://github.com/

LouMamalis/Quantifying-availability-of-surface-

water-change-within-tropical-forests-in-Cambodia

However, the data regarding the locations of the

giant ibis nests will not be shared as that is of

sensitive nature and needs to remain confidential

so as not to harm the persistence of the species.
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seasons driven by the tropical monsoons [24]. The mean annual rainfall across the central low-

land regions is 1400mm, with average temperatures of 28˚C and the highest temperatures of

38˚C degrees recorded in April [24, 25]. This landscape is made up of a mosaic of deciduous

dipterocarp forest, semi-evergreen forest, evergreen forest, areas of seasonally-flooded grass-

lands, bamboo forests, seasonally-flooded riparian habitats and a network of temporary and

permanent forest pools and streams [26, 27]. Deciduous dipterocarp forest is the predominant

habitat type and it is an endemic community of south and southeast Asia, characterised by

sparse tree cover and a dense understory of grasses studded with waterholes [21, 28]. It is dis-

appearing rapidly due to conversion for large-scale areas of cash crops such as rubber and cas-

sava as well as expansion of small holdings, settlements, roads, mining and logging [28–31].

These large-scale areas of cash crops, also known as Economic Land Concessions (ELCs), are

prevalent, covering nearly 8000 km2 across the study site (S1 Fig).

We used giant ibis nest records as part of this study which were from Kulen Promtep Wild-

life Sanctuary, Prey Preah Roka Wildlife Sanctuary and ChhaebWildlife Sanctuary (as of 2023

combined to form Chhaeb-Preah Roka Wildlife Sanctuary [32]), protected areas found within

this region are jointly managed by the Forestry Administration of the Ministry of Agriculture,

Forestry and Fisheries and the Wildlife Conservation Society [33]. These protected areas create

a continuous corridor of landscape (10,796km2) across the Northern Plains forming one of the

largest remaining areas of deciduous dipterocarp forest [33]. These protected areas are very

important for biodiversity supporting populations of at least 15 threatened species such as

gaur Bos gaurus, banteng Bos javanicus, sarus crane Antigone antigone, and giant ibis Thauma-

tibis gigantea, making this an extremely important region for biodiversity [27].

Fig 1. Map to show the study site. This map shows the study site which is the estimated giant ibis distribution across the north east of Cambodia (yellow
envelope) [34]. The grey polygons show all the protected areas across Cambodia and the protected areas we have giant ibis nest data are highlighted in dark
green; A) Kulen PromtepWildlife Sanctuary, B) Prey Preah RokaWildlife Sanctuary and C) ChhaebWildlife Sanctuary. The country boundary data is
reprinted from geoBoundaries under a Creative Commons Attribution 4.0 International licence. Protected areas and water bodies data included in this figure
has been published by Open Development Cambodia herein are licensed under a CC BY-SA 4.0. The giant ibis distribution data included in this figure has
been reprinted from [34] under a CC BY licence, with permission from BirdLife International, original copyright [2019].

https://doi.org/10.1371/journal.pone.0307964.g001
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Giant ibis, Thaumatibis gigantea

For this study we applied remote sensing techniques directly to the conservation of the giant

ibis, a Critically Endangered waterbird. Historically present across Thailand, Cambodia, Laos

PDR and Vietnam they are now confined predominantly to Cambodia, with potentially tran-

sient individuals recorded in Vietnam and Laos PDR [35]. Its populations are small and

declining, with ~200 individuals remaining across a small number of protected areas [36]. The

giant ibis relies on deciduous dipterocarp forests and waterholes for forage in the shallow

water and saturated mud [37]. The birds breed during the wet season, pairing and nesting

between June and September [35]. The giant ibis is predominantly threatened by habitat loss;

in particular of waterholes and large nesting trees, incidental poisoning at waterholes, human

disturbance, natural predation of chicks in the nest and to a lesser degree hunting [38, 39].

This species has been the focus of conservation work by the Ministry of Environment, local

and international conservation organisations but the populations are not increasing, creating

the need for further study [40].

Data analysis

Temporal surface water change. To evaluate changes in surface water over time, we cre-

ated a surface water classifier using Landsat 7 satellite images and a water index in Google

Earth Engine (GEE) [41]. We chose to use Landsat 7 images because the images have a 30m

resolution and have been taken every 16 days for the last 30 years which provides extensive

detailed and long-term spatial data for monitoring changes [1, 42]. This resolution was suitable

for our study as waterholes within the landscape are rarely smaller than 30m, reducing the

chances that they would be missed in analysis. Before we began the final analysis with Landsat

7 images we completed some pre-processing. We applied a cloud mask function in GEE to

mask out any clouds and their shadows present in the images. The presence of clouds and

cloud shadows can affect the analysis process so we created a cloud mask in GEE to remove

this bias [42]. This cloud mask first uses the Pixel Quality Assurance band of the images to

determine whether each pixel is affected by cloud or not [43]. We masked areas of the image

identified as cloud shadow (3), cloud (5) and cloud confidence (7) and that pixels affected by

cloud in any bands were masked from the analysis [42, 43]. Since 2003 a scanline error has

been present in the Landsat 7 data. To correct this error, we filled in the affected pixels using a

morphological mean that we calculated and applied to the empty pixels. To do this we by cal-

culated the average value of pixel values within a 2-pixel radius square neighbourhood per

empty pixel to get an approximate value for these [42].

Following methods by Fisher et al. [22] we computed a water index based on high reflec-

tance of water in the selected bands; ‘blue’, ‘green’, ‘red’, ‘nir’, ‘swir1’ and ‘swir2’ which classi-

fied pixels as water or not. We created training data for the classifier by manually identifying

187 paired water and non-water points in a transect across the study area from a 2019 Google

Earth image. 30% of this data was used for validating accuracy of the classifier [44]. We input

the data into a Smile Random Forest Classifier with 25 iterations and grouped the water index

images into quarterly images to reflect the seasonality within Cambodia [41]. We summarised

the processed images to compute the quarterly estimates of surface water, scoring a pixel as

water if at least one image within the quarter was classified as water between 2000 and 2020

[22]. To evaluate the classifier performance, we computed the sensitivity and specificity of clas-

sification in the 30% of data held out during model training.

To examine long-term trends across a spread of data, we consolidated the quarterly surface

water data into two five-year periods, 2000–2004 and 2016–2020. To quantify the change in

surface water we defined four surface water states based on the number of quarters where
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water was present per pixel. These states were: 1) permanently flooded; 2) irregularly flooded;

3) rarely flooded; and 4) never flooded (Table 1). We analysed the changes between the time

periods which resulted in 16 possible surface water transition categories (S1 Table).

Drivers of change analysis. We analysed the relationship between the annual precipita-

tion and the area of surface water using a linear regression. We completed a trend analysis of

the surface water change over time to determine any general patterns of precipitation change.

To examine the drivers of change in surface water, we collated data on Economic Land Con-

cessions (ELCs), protected areas (PAs), elevation and distance to roads (S1 Text). To test the

influence of the covariates on surface water we used a spatial regression approach using Inte-

grated Nested Laplace Approximation (INLA) modelling in RStudio [45]. Integrated Nested

Laplace modelling (INLA) enables efficient analysis of complex spatial data within a Bayesian

context [46]. It enables fitting of linear mixed models through use of an extremely efficient

approximation of the Bayesian posterior based on Laplace approximations and fitting of the

spatial model using Stochastic Partial Differential Equations (SPDE) [47, 48]. It allows model-

ling of spatial autocorrelation, which we estimated across a ~6km triangulated mesh covering

the whole study site. This approach enabled the assessment of the influence of space and

potentially interacting neighbours to explain variation in data that the selected covariates may

not explain [46, 48]. To fit Bayesian models, we need to provide priors that make assumptions

about model structure. For the fixed effects of covariates, we chose vague priors with a slight

bias towards zero (a normal distribution, mean zero and precision 0.001), for the spatial ran-

dom effect we tested a range of prior values before choosing a value where further adjustments

up or down made negligible difference to the posterior estimates. While there aren’t currently

any specific goodness of fit tests specific to INLA models, we tested standard assumptions of

regression type models using diagnostic plots.

We created three separate INLA models, the first model tested the effect of the covariates

on any change in surface water extreme flooding and drying. For this we assumed a gaussian

data distribution, a reasonable approximation for the true pattern. The data was close to a con-

tinuous distribution, using a scale of flooding or drying. For the second and third models we

used subsets of the data and a binomial model to predict patterns of ‘extreme drying’ and

‘extreme flooding’, in relation to the covariates between the two five-year time periods. A sig-

nificant drying event was defined as land that became drier by two or more transition catego-

ries, for example a pixel that transitioned from irregularly to never flooded. A significant

flooding event was defined as land that became wetter by two or more transition categories,

for example from rarely to permanently flooded.

Implications for the giant ibis. Next, we assessed the implications of the change in avail-

ability of surface water on the survival of the giant ibis by examining the location of giant ibis

nests and the distance to surface water. We used 438 nest locations from between 2003 and

2020 within Kulen Promtep, Prey Preah Roka and Chhaeb Wildlife Sanctuaries (S2 Fig). The

Table 1. Table to outline the definition of each surface water state.

Surface water state Number of quarters flooded

Permanently flooded A pixel that flooded for 16 or more quarters over the five-year period

Irregularly flooded A pixel that was flooded for five to 15 quarters over the five-year period

Rarely flooded A pixel flooded for less than five quarters over the five-year period

Never flooded A pixel that was not flooded during any of the quarters over the five-year period

This table summarises the defined surface water states which are based on the number of quarters that each pixel was

flooded for during the five-year time periods.

https://doi.org/10.1371/journal.pone.0307964.t001
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nest records were collected by biodiversity teams from the Wildlife Conservation Society dur-

ing annual Bird Nest Protection Programme searching and monitoring (S2 Text). To deter-

mine whether the distance from giant ibis nests and surface water was less than expected by

chance we generated 876 random points for comparison. For accurate comparison the random

points were generated in direct proportion to the number of real nests recorded that year. We

calculated the distance to surface water for the nest and non-nest points during the wet and

dry season and analysed the difference between the two groups using a Mann-Whitney U. To

calculate the loss of suitable giant ibis habitat we computed the distance to the nearest surface

water for each nest, then calculated the 75th percentile of this distance during both seasons.

We calculated the sum of the area of suitable nesting habitat and completed a sensitivity test

before selecting the 75th percentile distances to compare the changes annually and on a lon-

ger-term basis (S2 Table).

Results

Changes in availability of surface water

To test our first hypothesis, we used the water index classifier to compute the availability of

surface water. The accuracy of our classifier over the training partition was 97% and in the test

partition accuracy was 75%. We found inter-annual variation in the total area of surface water

and an overall reduction (Fig 2). We found stronger variability and more frequent extreme

changes in surface water availability during the dry season and this made up a small percentage

(4–13%) of the total annual surface water. The total surface water area declined from

33,9761km2 (2000–2004) to 29,0825 km2 (2016–2020), which equates to a 14% decline. Our

trend analysis identified a slight found an overall decline in mean annual precipitation (S3 Fig)

but this was not a significant decline (F1,19 = 1.87, p> 0.05) (S3 Table). Precipitation patterns

did not seem to be the driving forces for this change as we found no correlation between

annual precipitation and surface water availability annually (r = -0.16, df = 19, p> 0.05) or

during the dry season (r = -0.38, df = 19, p> 0.05) (S4 Table).

The majority of the land area between 2000–2004 consisted of irregularly and rarely flooded

pixels (Fig 3A). These two surface water states accounted for 85% (2000–2004) of the total area

and 81% (2016–2020). Pixels that were never flooded made up the next highest category, 14%

of the total surface area (2000–2004) and 18% (2016–2020). Permanently flooded pixels made

up the smallest percentages of both the first and last periods, 1.1% and 1.3% respectively.

Generally, we found a decline in surface water availability over time, highlighted by an

increase in the drying transition categories (Fig 3B). We found that 28% of pixel transitions

were from ‘irregularly flooded’ to ‘rarely flooded’, driving the decline in surface water. 9% of

the pixel transitions were from ‘rarely flooded’ to ‘never flooded’, supporting the overall sur-

face water decline. Many pixels remained ‘irregularly flooded’ and ‘rarely flooded’, 15% and

30% respectively and 6% remained ‘never flooded’. Pixels classed as permanently, rarely or

never flooded, showed an increase of 0.2%, 11% and 4% respectively. This resulted in

7,779km2 gain of rarely and never flooded pixels driving the overall decline in surface water.

Effect of land use change on surface water availability

The first spatially explicit regression model tested for both flooding and drying and we found

that change in surface water was significantly correlated with all covariates. However, these

correlations were weak and no covariate had a strong effect on change (S5A Table). Drying

was slightly more common on land further from roads and on land at higher elevations. The

probability of more extreme flooding events was marginally higher in ELCs and protected

areas.
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Our second model tested associations of extreme drying events and the covariates. We found

that change in surface water was significantly correlated with all covariates, with slightly larger

effects than model one (S5B Table). We found that extreme drying events were more frequent

at higher elevation and closer to roads (Fig 4A). We found that pixels within ELCs were more

likely to experience extreme drying and the opposite for those within protected areas (Fig 4C).

Our third model assessed the probability of extreme flooding. Extreme flooding was signifi-

cantly correlated with the presence of protected areas, which were less likely to experience

extreme flooding, while ELCs had a higher probability of extreme flooding (Fig 4D and S5C

Table). There was no significant correlation with the presence of roads on the probability of

land flooding (Fig 4B).

Fig 2. Temporal plot of changes in surface water area. This plot shows the total annual surface water area (blue bars)
and during the dry season (orange bars) compared with the annual precipitation (line plot). Error lines show the 95%
confidence level interval for predictions from a linear model.

https://doi.org/10.1371/journal.pone.0307964.g002
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Implications of surface water loss on giant ibis populations

Giant ibis nests were generally found closer to areas of surface water than random points dur-

ing the wet (MannWhitney U, W = 221225, N = 1314, P< 0.05) and dry season (MannWhit-

ney U, W = 237358, N = 1314, P< 0.05) (S6 Table). We found that 97% of the giant ibis nest

points and 91% of the non-nest points were located within 25m of surface water during the

wet season (Fig 5A and 5B). During the dry season both nest and non-nest points were found

further from surface water, but still 42% of the nest points were found within 25m of surface

water, compared with 28% of the non-nest points.

We calculated the loss of suitable habitat for the giant ibis over time. During the wet season,

75% of nest points were found over surface water, while 75% of non-nest points were found

within 14.5m of surface water (Fig 5A). During the dry season 75% of nest points were found

within 92.7m from surface water and 152.7m for non-nest points (Fig 5B). We found a decline

in the median areas of suitable habitat of 1791km2, equivalent to a 25% loss of suitable area

Fig 3. Maps to show the changes in surface water availability across the study site. A)Map of pixel surface water states between 2000 and 2004; B) Map of
changes in availability of surface water between the two time periods, 2000–2004 and 2016–2020. Country boundary data is reprinted from geoBoundaries
under a Creative Commons Attribution 4.0 International licence. Water bodies data included in this figure has been published by Open Development
Cambodia herein are licensed under a CC BY-SA 4.0. The giant ibis distribution data included in this figure has copyright to BirdLife International and
permission has been granted to the authors and PLOS ONE to publish it in this paper.

https://doi.org/10.1371/journal.pone.0307964.g003
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during the dry season (Fig 6). We also found a decline in the median area of surface water dur-

ing the wet season of 1718km2 which equates to a 21% reduction (Fig 6).

Discussion

Our study uses remote sensing to determine the change in availability of surface water, joining

a growing body of work [22, 49]. We highlight the value of these methods not only to quantify

changes in surface water, but also to help identify drivers meaning our results have direct

application for the conservation of species within this region. Our results confirmed our first

hypothesis and showed a loss in surface water availability over time, which is in line with global

Fig 4. Effect plots for binary INLAmodels showing the logit probability. Plots to show the logit probability of extreme land drying (A) and extreme flooding
(B) in relation to distance of pixels to roads. Plotted is the mean (0.5) with 95% credible intervals. The marginal rug plots display the distribution of the data for
pixels experiencing (top) or not experiencing (bottom) large changes in surface water over time. Forest plots show the median (point) and the 25th and 75th
percentiles of the logit probability of extreme land drying (C) and flooding (D) within other land uses, Economic Land Concessions (ELCs) and protected areas
(PAs).

https://doi.org/10.1371/journal.pone.0307964.g004
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trends [15]. We found the driving force of this was the extensive change to land use, specifi-

cally the presence of Economic Land Concessions and roads which is also supported by other

studies [50–52]. ELCs are extensive areas of monoculture cash crops that cause removal of nat-

ural habitats and have been shown to affect local hydrological processes such as runoff [52,

53]. For example, in a 2011 survey of waterholes in in protected areas of the Northern Plains of

Cambodia 40% of waterholes has been lost due to land clearance for ELCs [54]. Cash crops

such as rubber and sugarcane, are also very water intensive which puts a lot of strain on water

resources [11]. ELCs are extensive in Cambodia, covering 2.3 million hectares and the damage

is long-term as the land is leased from 70 up to 99 years [51, 55]. Cambodia has one of the

highest rates of deforestation globally, and the main driver is agricultural expansion (much of

this for ELCs), which has increased from 1% (1997) to 61% (2016) [56]. Roads, as this study

found, have a negative impact on surface water, and as other studies have shown, they facilitate

the removal and fragmentation of habitats and destruction or deviation of water courses [57,

58]. They can disrupt floodplains, impacting water flow, sediments, nutrients and aquatic life,

having a negative impact on hydrology [50]. Land use is causing huge changes in surface water

availability and while we have not considered HEP dams directly, which is a limitation to this

study, other research has found that it has had significant impacts within the Mekong basin

[14, 15, 59]. There are 28 large dams in the Mekong basin itself and plans to develop a further

Fig 5. Density plots comparing the distance to water of nest and non-nest points. Plots to show the distance of nest and non-nest points to surface water
during the month when the nest was recorded (A) and the distance to surface water, of the same points, during the dry season only. Vertical lines indicate the
75th percentile of distances used to define suitable giant ibis habitat.

https://doi.org/10.1371/journal.pone.0307964.g005

PLOS ONE Changes to seasonal surface water in tropical forests in Cambodia

PLOSONE | https://doi.org/10.1371/journal.pone.0307964 July 29, 2024 10 / 18

https://doi.org/10.1371/journal.pone.0307964.g005
https://doi.org/10.1371/journal.pone.0307964


11 in the mainstream of the Mekong in Laos and Cambodia, meaning impacts on flow are

wide reaching and likely to increase in the future [60]. Dams can have varied effects on river

flow, such as increases recorded for upstream flow causing bank erosion, permanent inunda-

tion of habitats and reduction in maximum downstream flow [15]. Dams also impact local

communities, water levels, sediment transport, fish migration and reduce water quality, affect-

ing the habitats, species and the 65 million people living within the Mekong Basin [15, 61].

Our study found no correlation between the availability of surface water and precipitation,

despite declines in mean annual precipitation over time. This has also been shown by other

authors, who found a -0.184% change in rainfall across Cambodia per year between 1951–

2002 [25]. However, despite the lack of correlation found within this study, climate change is

predicted to have significant impacts on the Mekong Basin [25, 62]. By 2100 there is expected

to be a 1–8% increase in precipitation meaning that flooding and discharge during the wet

Fig 6. Boxplot to show the availability of giant ibis habitat. The median (line) and the 25th and 75th percentiles of
available area of suitable giant ibis habitat are plotted (pixels within 75% of recorded distances to water for real nest
locations) to compare the availability between the first (2000–2004) and second (2016–2020) time periods.

https://doi.org/10.1371/journal.pone.0307964.g006
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season will increase causing inundation of key ecological habitats and the loss of 75% of cur-

rent floodplains [17]. Extended drought during the dry season is also expected leading to

increased risks of water shortages, land degradation and desertification affecting all life within

the basin [16]. Our study suggests that local land use conversion is driving the changes to a

higher degree than the wider-scale precipitation patterns, but climate change will undoubtedly

amplify the impacts of this in the future. Such a pattern has also been evidenced in other litera-

ture, highlighting the influence of land use change on surface water availability. Before the con-

struction of the first major Mekong dam, climate change was linked to 82% of the flow change

(1991–2009) [15]. In contrast, post major dam construction (2010–2014) 62% of changes to

flow were linked to HEP which shows the overwhelming influence of changing land use on

surface water [15].

Land use change is one of the main threats to natural habitats globally and one way to pre-

vent this is the managing land in a way that supports biodiversity. This is particularly pertinent

as inland freshwater tends to be underrepresented in protected areas globally [63]. We found

that protected areas within Cambodia had a lower likelihood of extreme flooding or drying

events, surface water conditions appeared to be more stable over time. This likely reflects more

stable land use within protected areas, perhaps due to lower levels of land clearance due to law

enforcement. Protected areas cover 6.3million ha (2021) across Cambodia and as one study

has shown can have a positive impact on forest habitat protection [64]. Despite this, protected

areas continue to be under threat and are still targeted for exploitation, especially those border-

ing or overlapping ELCs [64–66]. 70% of ELCs designated in Cambodia by 2012 were within

protected areas providing an ongoing existential threat to apparently protected areas [55]. The

full implementation of the 2012 moratorium placed on the creation of new ELCs in Cambodia

should also help to control future widespread habitat clearance for ELCs [67].

Our results show how the loss of surface water will affect the Critically Endangered giant

ibis. We found that while small in absolute terms, the overall decline in surface water availabil-

ity translates to a disproportionately large loss in suitable habitat for the giant ibis. This decline

has negative implications for a species inextricably linked to surface water for its forage and

already confined to protected areas in small and declining populations [35, 68]. The dispropor-

tionate impact of reduction in availability of surface water has widespread impacts, likely

affecting many other species such as banteng Bos javanicus, Eld’s deer Rucervus eldii and

white-shouldered ibis Pseudibis davisoni that also rely on availability of surface water within

this region [20]. During the dry season these species struggle to find reliable water sources,

limiting their distribution and foraging opportunities [27], which makes understanding the

changes in surface water even more vital.

Conclusions and recommendations

To conclude, we found a decline in surface water across our study site, predominantly driven

by land use change. While small overall, the impact of this loss is amplified for species such as

the giant ibis that rely on sites near water. Therefore, our main recommendation is to promote

better protection of this vital resource. For this we need to understand hydrology of seasonal

wetlands more specifically, and we recommend pairing remote sensing with on the ground

water source monitoring to also understand the fine scale nuance to apply the most effective

management. Practical management, such as restoration of temporary water sources, can be

informed by increased understanding of local threats, physical characteristics and life cycles of

individual sources such as waterholes. Waterhole restoration would be an effective practical

step to tackling the declines found within this study and to support wider conservation goals

in Cambodia. This understanding is particularly vital due to the implications for people living
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within these systems. Their reliance on this diminishing resource needs to be highlighted and

steps taken towards management of surface water and prevention of further declines to ensure

human wellbeing.
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