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Abstract
The East African “short rains” from October–December (OND) are crucial
for the region’s cultural and agricultural landscape. Traditional climate stud-
ies have often treated these rains as a single mode, representing the average
rainfall across the region. This approach, however, fails to capture the com-
plex geographical variations in seasonal rainfall. In our study, we analyse 4200
reforecasts from a seasonal prediction system spanning 1981–2022, identify-
ing distinct clusters that represent different geographical patterns of the short
rains. We explore the influence of tropical sea-surface temperature patterns,
upper-level tropospheric flow, and low-level moisture fluxes on these clusters.
A key revelation of our research is the limited predictability of certain geo-
graphical rainfall structures based on large-scale climatic drivers. This finding
highlights a gap in current forecasting methodologies, emphasising the necessity
for further research to understand and predict these intricate patterns. Our study
illuminates the complexities of regional rainfall variability in East Africa, under-
lining the importance of continued investigation to improve climate resilience
strategies in the region.
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1 INTRODUCTION

The rainy season that occurs at the end of the year in
East Africa, around October, November, and December
(OND), is known as the “short rains” (Nicholson, 2015).
In the northern part of the region, such as in Ethiopia
and Somalia, the season usually starts earlier than in the
southern part, including Kenya and northern Tanzania
(Dunning et al., 2016; Gudoshava et al., 2022). Evidence
of the cultural importance of this season is found in

its local names; the short rains are known as “deyr” in
Somalia, “bega” in Ethiopia, and “vuli” in Kenya. In light
of this cultural backdrop, which reflects the importance of
rain-dependent agriculture and pastoralism in the region,
the climatic understanding of these rains becomes crucial.

East Africa is characterised by significant annual
weather fluctuations, and the short rains stand out for
their extreme interannual variability (Nicholson, 2017),
often oscillating between contrasting conditions. For
instance, the year 1996 experienced notably dry conditions
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(Doi et al., 2022), whereas 1997 saw exceptionally wet
weather (Black et al., 2003). This pattern of sharp con-
trast in rainfall is exemplified by similar occurrences
in 2005/2006, 2010/2011, and 2018/2019, illustrating the
region’s highly variable climate.

In studies of the short rains, they are often repre-
sented as the geographical average of the precipitation
in a large area, typically from Tanzania in the south to
Ethiopia in the north, and between Uganda in the west
and the tip of the Horn of Africa in the east. One reason
for this simplification is that the regional average rainfall
is tightly linked to predictable oceanic states not only in
the nearby Indian Ocean, but much farther away in the
tropical Pacific Ocean. There is a strong positive corre-
lation between the geographical average of East African
rainfall during OND and both the El Niño–Southern Oscil-
lation, or ENSO (Indeje et al., 2000) and the Indian Ocean
Dipole, or IOD (Bahaga et al., 2015; Bahaga et al., 2019;
Hirons & Turner, 2018; Kebacho, 2021; Wenhaji Ndomeni
et al., 2018). These correlations are significant even when
ENSO and the IOD lead the rainfall by several months.
However, Kolstad and MacLeod (2022) showed using
mediation analysis (e.g., MacKinnon et al., 2007) that the
main effect of ENSO prior to the season (e.g., in August)
is that it exerts a lagged influence on the IOD, which then
influences the East African rainfall directly during the
OND season (this mechanism has also been suggested by
Black, 2005, and others).

The explanation for the strong relationship between
the IOD and East African rainfall is that anomalies in the
IOD are associated with anomalies in the Walker circu-
lation over the Indian Ocean, which is characterised by
subsidence over the western part and low-level westerlies
over the central part of the basin (e.g., Pohl & Camberlin,
2011). There is a strong anticorrelation between the
strength of this Walker circulation and East African rain-
fall during OND (Zhao & Cook, 2021). In other words,
high seasonal rainfall tends to coincide with a weakening
of this Walker circulation, which implies weakened sub-
sidence or enhanced convection over the western Indian
Ocean and East Africa.

Linear models can skilfully predict some aspects
of the short rains based on the ENSO and IOD states
before the start of the season. For instance, Kolstad and
MacLeod (2022) demonstrated that such a model has skill
in predicting the dominant mode of interannual variability
of East African rainfall during OND, specifically the lead-
ing empirical orthogonal function (EOF), which is equiv-
alent to the area-averaged rainfall anomalies across the
region (Kolstad & MacLeod, 2022). However, their study,
along with the subsequent study by MacLeod et al. (2024),
found evidence of a strong asymmetry between large pos-
itive and negative area-averaged rainfall anomalies. In

short, negative rainfall anomalies are bounded because
the rainfall cannot be lower than zero, while positive
anomalies increase nonlinearly with the strength of the
positive IOD. This implies that East African rainfall should
be investigated using methods that account for nonlinear
effects.

An additional concern is that linear models describing
the leading mode of variability (i.e., the regional average)
do not provide information about geographical differences
within the region. Recognising these regional contrasts
is vital, as they reflect more than just deviations from the
mean, but are key to understanding the true nature of
East African climate dynamics. Moreover, the lives of East
African citizens will be influenced by local rainfall anoma-
lies more than regional ones, so the regional mean rainfall
will not account for the experiences of every person or
every country.

In this study, we explore three core ideas relating
to the geographical rainfall distribution in East Africa
and the mechanisms that dictate this distribution. The
first of these ideas is that a high degree of geographical
variability within the region becomes apparent when
moving beyond the analysis of the regional average. We
believe that it is possible to understand this rainfall vari-
ability as the projection of large-scale climate drivers,
including circulation and moisture transport, on to the
regional, continental dynamics. These projections are
modulated by local topography, land cover (e.g., lakes),
and proximity to the ocean, which lead to geographical
differences in the response of the short rains. In particu-
lar, the Indian Ocean is the dominant source of moisture
for rainfall over large parts of East Africa. For instance,
Koppa et al. (2023) estimated that the Arabian Sea and
the southern Indian Ocean contribute around 70%–80%
of the rainfall over the Horn of Africa drylands during the
short rains.

However, the Congo Basin can also be a significant
moisture source for the western parts of East Africa (Diem
et al., 2019; Dyer et al., 2017). A recent article by Finney
et al. (2019) studied the effect of low-level westerly wind
anomalies on equatorial East Africa. A key finding was
that, for all months, days with stronger westerly anoma-
lies experienced more rainfall in the region surrounding
Lake Victoria (described by Finney et al. as an “expanded
Lake Victoria Basin region”) and depressed rainfall along
the Kenya/Tanzania coastline, which is in a rain shadow
in such cases. Conversely, days with strong easterlies
experienced lower rainfall rates across the Lake Victoria
Basin than days with weak easterlies (Finney et al., 2019).
The main driver of enhanced rainfall in westerly regimes
is an increase in moisture advection from the Congo
Basin. Figure 7a in Finney et al. (2019) provides a useful
visualisation of these conditions.
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The second core idea explored herein is that the
patterns of moisture import into East Africa from the
Indian Ocean and the Congo Basin are influenced, at least
in part, by sea-surface temperature (SST) anomalies in
the western Indian Ocean. In equatorial regions, strong
oceanic heat anomalies lead to deep convective warming
in the atmosphere and induce a Matsuno–Gill response
(Gill, 1980; Matsuno, 1966), with anticyclonic gyres at
upper levels both north and south of the Equator to the
west of the area of enhanced convection and above-normal
divergence aloft. A reversed pattern is then seen in the flow
at lower levels; however, these lower levels are also more
prone to influences from coastlines, mountains, and other
surface features. In East Africa, the result is that positive
IOD conditions lead to a Gill-type response that causes
low-level westerly wind anomalies over equatorial Africa,
moving the moisture-flux convergence zone from central
equatorial Africa towards and over the East African region
(Bahaga et al., 2015; Liu et al., 2020; Maybee et al., 2023;
Ummenhofer et al., 2009; Wenhaji Ndomeni et al., 2018).
This Matsuno–Gill response will be examined for its influ-
ence on regional circulation and rainfall patterns to deepen
our understanding of how it impacts rainfall in the area.

The third core idea motivating this study is that the
location of SST anomalies in the western Indian Ocean
is as crucial as their existence in influencing rainfall in
East Africa. For instance, warm SST anomalies along the
southern coast of East Africa may induce inland westerly
anomalies south of the Equator, directed from the Congo
Basin into Tanzania, whilst cold SST anomalies in the
same location are likely to contribute to dry anomalies
over land. When the SST anomalies are more widespread,
such as during strongly negative or positive phases of the
IOD, they are likely to be linked to regional scale rainfall
anomalies inland.

To contribute to a more thorough understanding of the
mechanisms that drive spatial rainfall differences within
the East African region during the short rains, we present
an analysis of various climatic variables and relate them
to different rainfall distributions. Whilst most studies in
this vein rely on observational or reanalysis data, the lim-
ited sample size of about 40 seasons since the start of the
satellite era poses a challenge. One problem with data with
a limited sample size is that the results may be unduly
influenced by single data points or events. For the short
rains, the exceptionally wet season in 2019 (Wainwright
et al., 2021) is an example of an event with such potential.
Even with the extension of the ERA5 reanalysis (Hersbach
et al., 2020) back to 1940, the small sample size remains
problematic (and compounded by the scarcity of reliable
observational and satellite data before 1980).

To circumvent the limitations of small sample
sizes in observational data, a string of recent studies

have turned to analysing extensive collections of
retroactive forecasts, known as reforecasts or hindcasts.
These reforecasts, which include an ensemble of multiple
simulations for each season, expand the sample size
dramatically compared with traditional observational
datasets. Similar approaches have been used effectively
in other rainfall studies (Kelder et al., 2020; Thompson
et al., 2017), including those focusing on East Africa
(MacLeod et al., 2024). We utilised reforecasts from the
European Centre for Medium-Range Weather Forecasts’
(ECMWF) seasonal prediction system SEAS5 (Johnson
et al., 2019), comprising 4200 simulations: 100 times the
number of seasons in the study period.

To address the core ideas underpinning this study,
we pursued three key objectives that aim to provide new
insights into short-rains variability. Firstly, we evaluated
whether SEAS5 captures the spatial variability of rainfall
in East Africa accurately. This was achieved by comparing
SEAS5 outputs with a dataset derived from observations
and satellite imagery. Secondly, we explored the possibility
of categorising SEAS5 samples into distinct, representative
rainfall patterns. This involved contrasting a traditional
EOF analysis with a clustering method, which accounts
better for asymmetries between large positive and negative
rainfall anomalies, as well as spatial gradients within East
Africa. Finally, we examined the extent to which these pat-
terns correlate with large-scale climatic drivers and local
circulation anomalies. To this end, we analysed compos-
ite average anomalies in various diagnostic variables: SSTs,
wind patterns, divergence, and moisture fluxes.

The article is organised as follows. The subsequent
section details the datasets, clustering technique, and
other methodologies employed in this study. Section 3
presents the results of our analyses, and a comprehensive
discussion of these results follows in Section 4. Finally,
the article is wrapped up with some concluding remarks
in Section 5.

2 DATA AND METHODS

2.1 Data

Our study is based on reforecasts and forecasts from
SEAS5, covering the period from 1981–2022. With an ini-
tial date at the beginning of each month in this period, a
set of ensemble members was integrated for seven months.
For the reforecast period (1981–2016), 25 ensemble mem-
bers were produced each month, and for the forecast
period (2017–2022) 51 members were produced. To ensure
an equal contribution from each period, we only used the
first 25 members from the forecast period. The strategy
behind the ensemble generation is explained in Johnson
et al. (2019).

 1477870x, 2024, 764, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4829 by U
niversity O

f L
eeds T

he B
rotherton L

ibrary, W
iley O

nline L
ibrary on [04/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



KOLSTAD et al. 4553

We used monthly mean data and extracted the sub-
set of data that covered the period between October and
December. Following the convention that a lead time of
one month corresponds to the month of model initiali-
sation, we could use data from the June simulations for
lead times of 5, 6, and 7 months. From the July simula-
tions, we could use lead times from 4–6 months, and so
on up to the October initialisations, from which we could
use lead times of 1–3 months. However, we opted not to
include the October-initialised runs. The background for
this decision was the close relationship between the ocean
surface and the mechanisms that drive rainfall in East
Africa. Therefore, because the spread between the slowly
varying oceanic fields is narrow at the start of each model
run, the atmospheric fields in the model runs initialised in
October are likely also to have a narrow spread. We desired
a wide ensemble spread to gain as complete a picture as
possible of plausible atmospheric behaviour.

Another potential issue relates to the model runs
initialised several months before the OND season.
Model drift over extended lead times has been observed
in some seasonal forecast systems (Manzanas, 2020).
Specifically, a report on SEAS5 highlighted notable
biases during the 1981–2016 reforecast period (Stockdale
et al., 2018). To account for this drift issue, we calcu-
lated lead-time-dependent climatologies for each variable.
When we refer to “anomalies” henceforth, we mean
deviations relative to these climatologies.

To check whether the model drift influenced our
results despite this precaution, we performed parts of the
analysis using only June and July initialisations and com-
pared these with a separate analysis based on August
and September initialisations. The results were so similar
that we decided it was acceptable to perform the analy-
sis using the pooled set of forecasts and reforecasts ini-
tialised from June to September. Hence, the total number
of samples available from the model runs initialised in
June–September was 4200 OND seasons from 1981–2022
(4 start dates × 25 members × 42 years). These seasons
were pooled and treated equally in the analysis.

From each of the model simulations, we used monthly
means of total precipitation, divergence and wind compo-
nents at 200 and 700 hPa, specific humidity at 700 hPa, and
SST. The precipitation data were downloaded with a grid
spacing of 0.5◦, and the other data with a spacing of 1◦.

Using the wind vector (v) and the specific humidity (q)
at 700 hPa, we computed the moisture-flux convergence
(MFC) as −∇ ⋅ (qv). We also split the MFC into an advec-
tion term (−v ⋅ ∇q) and a convergence term (−q∇ ⋅ v).

To validate the SEAS5 precipitation data, we used Cli-
mate Hazards group Infrared Precipitation with Stations
(CHIRPS) data (Funk et al., 2015) from 1981 to 2022.
The grid spacing of the CHIRPS data is 0.05◦ (5–6 km

at the Equator), and the dataset only provides data over
land.

As a further validation, we compared the climatolo-
gies of the seasonal mean atmospheric circulation over
East Africa and the Indian Ocean with data from the
ERA5 reanalysis, downloaded with the same horizontal
grid spacing as the SEAS5 data.

Although several of the variables, such as SST and rain-
fall, have significant trends over the course of the study
period, some of these trends differ widely from one loca-
tion to the next. This makes it a complicated exercise to
detrend the data, as one has to make a choice between
detrending for each grid point individually or subtracting
or adding a common trend, such as the global averaged
SSTs. To avoid these complications, we present results
obtained with non-detrended data.

2.2 Methods

Two SST-based indices are used, the Niño 3.4 index (here-
after N34), which was calculated as the area-averaged
SST anomalies between 5◦S and 5◦N and from 170◦W
to 120◦W (Trenberth, 1997), and the Dipole Mode Index
(DMI hereafter; Saji et al., 1999), which is the standard
metric for the IOD. The DMI was calculated as the dif-
ference between the area-averaged SST anomalies in the
western (10◦S–10◦N, 50◦E–70◦E) and eastern (10◦S–0◦N,
90◦E–110◦E) Indian Ocean. Both SST indices were stan-
dardised.

The area between 11◦S and 12◦N and from 31◦E to 51◦E
is our East African reference region (outlined in Figure 1a).
This region was selected to encompass areas where the
rainfall during the OND season exceeds the average rain-
fall during the rest of the year, and to avoid the influence
of rainfall over the Congo Basin (see Figure 1b,c). We used
the seasonal means of rainfall inside this region to com-
pute the rainfall EOFs, as well as to carry out a cluster
analysis across all pooled reforecast members.

The principal components for seasonal rainfall
anomalies were computed using the eofs Python package
(Dawson, 2016). This package enables the application of
specific weights to each grid point. Oceanic grid points
were assigned a zero weight, whilst land and lake points
were weighted based on their area. We present the first
four EOFs, each characterised by its principal compo-
nent (PC). The PCs are series matching the length of the
original dataset: 42 for the CHIRPS data and 4200 for the
SEAS5 data.

One of the main objectives of our study is to illustrate
the nonlinearity and diversity of geographical rainfall
patterns. Whilst it would have been possible to represent
the geographical distribution of each rainfall season as a
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4554 KOLSTAD et al.

F I G U R E 1 (a) Terrain height in SEAS5 on the same 0.5◦ grid spacing as the precipitation data, shown in metres. Key geographical
features are indicated. The remaining panels show the mean total precipitation during OND in millimetres for (b) SEAS5 and (c) CHIRPS,
and the ratio of average monthly rainfall during OND to the average monthly rainfall throughout the year for (d) SEAS5 and (e) CHIRPS. In
each panel the East African reference region is indicated with a rectangle.

linear combination of the EOFs, we wished to divide the
actual data into a specified number of clusters that are rep-
resentative of recurring geographical patterns. A unique
best approach for clustering three-dimensional data does
not exist. Techniques such as self-organising maps (SOM)
have been used successfully on climate data (Hewitson &
Crane, 2002), but we chose to use a k-means algorithm on
seasonal rainfall anomalies, a machine-learning approach
designed to create groups that are as different as possible
from each other (e.g., Steinley, 2006).

Whilst the k-means algorithm traditionally operates
on Euclidean distances between two-dimensional points,
it also proves effective for partitioning three-dimensional
climate data into distinct clusters. Before applying the
algorithm, we organised the data in a two-dimensional
structure where the first dimension was time (4200
samples) and the samples along the second dimension
consisted of spatial information collapsed into a sin-
gle dimension (which was then reconstituted following
the clustering). As a weighting strategy, we multiplied
each sample for each grid point by the cosine of the lat-
itude of land grid points and by zero for oceanic grid
points. Because the k-means algorithm requires large data
samples, we only applied it to the SEAS5 data and not
to CHIRPS.

Method selection typically involves subjective deci-
sions. In our usage of the k-means implementation in
the SciKit-Learn Python library (Pedregosa et al., 2011),
we predetermined only the random state initialisation
(the random_state parameter) for consistent results, and
the number of clusters (n_clusters). Various n_init values,
determining the iteration count, were also tested. Whilst
this parameter significantly impacts small datasets, its
influence was minimal on the large SEAS5 dataset. Iden-
tifying the optimal cluster number often involves multiple
strategies, but in this case we relied on trial and error, seek-
ing clusters that in our subjective judgement captured the
variability among the model runs aptly. The results of this
testing are discussed in Section 3.3.

Two methods of estimating statistical significance were
used. For Pearson correlation calculations for time series,
we used standard software, which estimates p-values
based on two-sided t-tests. Choosing a significance level
of 5% throughout, correlations were deemed significant if
p < 0.05. We also used bootstrapping to estimate signifi-
cance when working with the ensemble members. This
was done by creating N synthetic time series by drawing
random ensemble members from the pool of 4200 mem-
bers (with replacement) and then calculating the metric
under investigation for all the N elements of the synthetic
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set. When the actual metric value fell outside the inter-
val spanned by the 2.5th and 97.5th percentiles of the
synthetic set, we defined it to be significant at the 5% level.

2.3 Colour maps

Standard colour maps tend to accentuate extreme values
disproportionately and are sometimes difficult to inter-
pret for people with colour-vision deficiencies (Crameri
et al., 2020). To mitigate these issues, we use scientifically
derived colour maps by Crameri (2021).

3 RESULTS

3.1 Mean rainfall

To provide context for interpreting the mean OND rainfall
in East Africa, the terrain height in the SEAS5 model is
shown in Figure 1a. The remaining maps in Figure 1 com-
pare the mean OND rainfall in SEAS5 and CHIRPS, where
the latter dataset is based on observations and satellite
imagery.

The mean SEAS5 rainfall map in Figure 1b indicates
that the rainfall over the Congo Basin is higher than in
most of the East African reference region, except over
Lake Victoria. A number of well-known features are also
seen on the map, such as the low rainfall in the Rift Val-
ley depression that crosses Lake Turkana (also known as
the Turkana Channel; Munday et al., 2023), the low rain-
fall in northern Somalia and northern Ethiopia, the high
rainfall in the highlands of western Ethiopia and western
Kenya, and the relatively high rainfall along the coastal
regions of the Indian Ocean. The observed shift from high
seasonal-mean rainfall in the Congo Basin to lower rain-
fall east of and around the Lake Victoria Basin is marked
and abrupt, aligning with the mountainous terrain of the
Albertine Rift. This pattern is consistently reflected in both
SEAS5 and CHIRPS, underscoring the significant impact
of topography on regional rainfall distribution.

When comparing SEAS5 rainfall with CHIRPS
(Figure 1c), a few discrepancies are evident. One notable
difference is that SEAS5 simulates more rainfall over
the Congo Basin compared with CHIRPS. It is difficult
to assess whether this reflects an error in SEAS5. Funk
et al. (2015) acknowledged that some areas, “like the
Democratic Republic of Congo (DRC), report virtually
no rain gauge information.” In an evaluation of sev-
eral satellite-based precipitation products, Camberlin
et al. (2019) found low correlations between daily CHIRPS
rainfall and rain-gauge observations in both the central
and eastern parts of the DRC. We mention this not to cast
doubt on the CHIRPS data, but to emphasise that we do
not know for certain which dataset is more correct.

A discrepancy is also observed over Lake Victoria,
with higher rainfall over the lake in SEAS5 compared
with CHIRPS. As with the Congo Basin, it is not
immediately clear if this constitutes a model bias.
Nicholson et al. (2021) compared rainfall over the lake
across several datasets, including CHIRPS, and concluded
that, whilst CHIRPS represents the spatial rainfall pat-
tern well, it “clearly underestimate[s] overlake rainfall.” If
the high rainfall in SEAS5 is indeed a bias, it is probably
linked to too strong convection over Lake Victoria in the
model (see discussion in Section 3.3).

Aside from the discrepancies over the Congo Basin and
Lake Victoria, there appears to be a good correspondence
between the two datasets.

For each dataset, Figure 1d,e shows the ratio of
the average monthly rainfall during the OND period to
the average monthly rainfall throughout the year. Any
instance where this ratio exceeds 100% indicates that the
rainfall during OND is higher than the average for the year.
Whilst there are some differences between the datasets,
such as the lower CHIRPS ratios in southern Tanzania
and higher ratios in western Kenya, both compared with
SEAS5, the geographical structures are quite similar in the
two datasets. This indicates that SEAS5 produces a realis-
tic seasonal footprint for the OND rainfall compared with
the rainfall during the rest of the year.

3.2 EOF analysis

Our analysis of the patterns of interannual rainfall variabil-
ity starts with a comparison of the leading rainfall EOFs
in SEAS5 and CHIRPS. The EOF analysis serves a dual
purpose. Firstly, it demonstrates that, despite the domi-
nance of the leading EOF, important geographical patterns
not encapsulated by EOF1 exist. Secondly, it diagnoses
the consistency in the representation of rainfall variability
between the datasets.

The patterns associated with the first four EOFs are
shown for both SEAS5 and CHIRPS in Figure 2. In visual
terms, it is clear that the first EOF is representative of
the geographically averaged rainfall in the study region.
This is in agreement with previous studies (e.g., Kolstad
& MacLeod, 2022). EOF1 explains 47% of the variance in
SEAS5 (Figure 2a) and 63% in CHIRPS (Figure 2e). The
dominance of the leading EOF is consistent with other
studies (e.g., Schreck & Semazzi, 2004; Wenhaji Ndomeni
et al., 2018). Although the large-scale spatial pattern of
EOF1 is broadly similar across the datasets, some differ-
ences stand out. For instance, there is a much sharper
drop-off in power west of the Albertine Rift in CHIRPS
than in SEAS5. This gradient even leads to a change in sign
over the Congo basin in CHIRPS. The extension of posi-
tive EOF1 correlations into the Congo Basin in SEAS5 is
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4556 KOLSTAD et al.

F I G U R E 2 Correlations between OND precipitation and the first four PCs of East African rainfall, for (a–d) SEAS5 and (e–h) CHIRPS.
The rectangle in each panel shows the region used to compute the EOFs, and the percentages in the captions indicate the fraction of total
variance explained by each EOF. Note that, even though the oceanic grid points were masked when computing the EOFs for SEAS5, we show
the rainfall over the ocean in panels (a)–(d).

probably linked to the higher average rainfall in this region
compared with CHIRPS (Figure 1b vs. Figure 1c).

The dominance of EOF1 is influenced by a factor not
seen in Figure 2, namely that the magnitude of the East
African area-averaged rainfall is asymmetric for wet and
dry anomalies. This imbalance arises because the rainfall
has a hard lower threshold (as it cannot be lower than
zero), whilst there is no such clearly defined upper thresh-
old. This has important consequences for the flood risk due
to extreme rainfall, which lacks a hard upper boundary
(MacLeod et al., 2024). In Section 3.3 on rainfall clusters
below, it will be shown that this asymmetry gives rise to
an inflated difference in the variance explained by EOF1
compared with the lower-order EOFs.

Arguably, the EOF2 structure is quite similar across the
two datasets, as shown in Figure 2b,f. It mainly describes
a gradient between Tanzania in the south and the areas
to the north and northeast of Lake Victoria. In SEAS5,
EOF2, which explains 13% of the variance, is distinctly sep-
arated from EOF3 (Figure 2c), which only explains 7%.
A similar separation is observed in CHIRPS, where EOFs
2 and 3 (Figure 2f,g) explain 9% and 4% of the variance,
respectively. In SEAS5, EOF3 describes a distinctive east-
/west gradient, and its spatial pattern is well separated
from EOF4 (Figure 2d). This is not the case in CHIRPS,
although EOFs 3 and 4 (Figure 2g,h) both share similarities

with their SEAS5 counterparts. Hence it is only in SEAS5
that a distinctive east/west gradient is seen.

Despite some minor discrepancies between SEAS5 and
CHIRPS, especially for higher order EOFs, the EOF anal-
ysis gives us confidence that SEAS5 represents the geo-
graphical characteristics of OND rainfall in East Africa
adequately. In the remainder of the article, we present
results using the SEAS5 data to understand relationships
with climatic drivers, leveraging the larger sample size
compared with CHIRPS.

3.3 Cluster analysis

We now present the results of a k-means algorithm to
divide the 4200 simulated OND seasons in SEAS5 into n
clusters based on the geographical distribution of seasonal
rainfall anomalies inside the reference region. Our assess-
ment is that n = 5 maintains a suitable balance between
preserving spatial detail and keeping the number of clus-
ters low for ease of analysis. The results for this choice
are shown in Figure 3. For comparison, Figure A1 in the
Appendix illustrates the rainfall clusters for n = 6 and
n = 7.

A consistent feature across these varying n values is
that the clustering algorithm collects cases with extremely
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KOLSTAD et al. 4557

F I G U R E 3 Mean standardised precipitation anomalies in each of the rainfall clusters (n = 5), sorted by cluster size. The captions
include the name of each cluster, the frequency as a percentage in parentheses, as well as the mean PC value in brackets, for PCs 1, 2, and 3.
Oceanic grid points are shown, although they were ignored when computing the clusters. Non-significant anomalies according to a
bootstrapping test are masked, and the unit is standard deviation (SD). Because the colours saturate, white contours show isolines for
anomalies of ± 1, 2, and 3 SD (negative contours dashed, positive contours solid).

high seasonal rainfall in the smallest cluster. When n is
6 or 7, this cluster contains 5%–7% of the model runs,
and the corresponding C5 cluster contains 7% when n =
5 (Figure 3e). For n > 5, there is an additional relatively
small cluster that also has high rainfall amounts, but these
are less extreme than the smallest cluster. In our chosen
configuration with n = 5, the cases in these wet clusters
appear to be merged into C4 (Figure 3d).

The presence of one extremely wet cluster aligns
well with the previously discussed asymmetry between
extremely wet and dry cases. None of the cluster groups
has an extremely dry cluster (in the sense that its mean
negative PC1 value is close in magnitude to the posi-
tive PC1 value of C5). To assess the consequences of this
asymmetry, we computed new EOFs for SEAS5 when
leaving out the cases in cluster C5. This yielded almost
identical spatial signatures for the EOFs (not shown). The
recalculated EOFs excluding C5 cases only explained 37%
of the variance for EOF1 (compared with 47% when all
model runs were included). The second and third recal-
culated EOFs excluding C5 cases were found to explain
more variance, 15% and 8%, respectively (compared with
13% and 7%, respectively, when all model runs were
included).

The dichotomy between wet and dry extremes high-
lights one of the key reasons for adopting a cluster-based
approach over EOFs. By isolating the most extreme rainfall
cases in a distinct cluster, it becomes possible to investigate
the mechanisms driving such cases separately. In contrast,
an EOF-based analysis might have led to the erroneous
inference that opposite mechanisms could lead to a similar
group of extremely dry cases.

However, this does not mean that dry conditions are
not captured by the clustering method. The C2 cluster

shown in Figure 3b contains 24% of the model runs, has a
mean PC1 value of −1.1, and is drier than normal within
the entire reference region. Its anomalies are roughly
mirrored by the wet cluster C4, which has a mean PC1
value of 0.8.

A consistent result for n between 5 and 7 is that the
k-means algorithm selects a cluster that is dominated by
EOF2 as the largest among the clusters. The mean PC2
value of C1 (Figure 3a), which contains 24% of the cases,
is 0.8. This cluster has a counterpart in C3 (Figure 3c), for
which the mean PC2 value is −0.6.

The cluster analysis confirms that, whilst EOF1 is the
primary EOF and represents the average rainfall in East
Africa effectively, it fails to capture the region’s diverse
rainfall geography on its own. EOF2 plays a crucial role in
identifying the north–south distribution of rainfall anoma-
lies, whereas EOF3 delineates the differences between the
east and west. The mean PC values for the first three
leading EOFs are significant across all clusters, highlight-
ing their importance in representing the full variability of
rainfall patterns within East Africa.

In essence, the five clusters shown in Figure 3 provide
a useful representation of the diversity in the geograph-
ical variance across OND rainy seasons. To understand
the potential drivers of the rainfall distribution in these
five clusters better, we examine the large-scale climate
anomalies associated with each. This starts with a com-
posite analysis of seasonal mean tropical SST anomalies,
followed by composite patterns of atmospheric humidity,
winds at low levels and aloft, as well as divergence and
convergence.

The composite mean SST anomalies for each cluster
are illustrated in Figure 4. It is anticipated that clusters
closely aligned with EOF1 would be associated with the
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4558 KOLSTAD et al.

F I G U R E 4 Mean standardised SST anomalies for each of the rainfall clusters, sorted by cluster population size as in Figure 3. The
captions include the mean DMI and N34 for the members in each cluster, with the standard deviation of these indices in brackets.
Non-significant (at the 5% level) anomalies according to a bootstrapping test are masked, and the unit is standard deviation (SD). Because the
colours saturate, solid white contours show isolines for anomalies of 1 SD. Dashed white contours show isolines for anomalies of 1 and 2 SD.
The rectangles show the reference region for ENSO and the western and eastern IOD regions.

phase of the IOD, and indeed, the mean DMI and N34
values in the extremely wet C5 cluster are higher than
+1 SD and higher than or equal to the standard deviation
across the cluster members (Figure 4e). However, C5 is the
only cluster where any of the oceanic indices exceeds this
standard deviation. In both the dry C2 cluster (Figure 4b)
and the wet C4 cluster (Figure 4d), the mean DMI and N34
values are well below the standard deviation.

There is clearly a need to look beyond the IOD and
ENSO to map the relationship between SSTs and the
geographical diversity of the short rains. A simple and
consistent pattern in Figure 4 is that the location of the
strongest SST anomalies off the East African coast appears
to correspond geographically with localised inland
rainfall anomalies. For example, in C1, cold SST

anomalies off the northern coast align with dry anomalies
inland, whilst warm SST anomalies further south corre-
spond to wet anomalies inland (Figure 4a). The C3 cluster,
characterised mainly by dry conditions in the southern
part of the region, has below-normal SST anomalies off
the coast in this area (Figure 4c).

In the upcoming analysis, we explore these relation-
ships by examining the Matsuno–Gill response to anoma-
lous heating over the ocean. Our exploration of the
atmospheric driving mechanisms in each cluster involves
studying composite averages in various diagnostic vari-
ables. Specifically, we focus on the specific humidity and
zonal and meridional wind components at 700 hPa, the
divergence and wind components at 200 hPa, and the MFC
and moisture transport (qv) at 700 hPa.
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KOLSTAD et al. 4559

Examining the ERA5 climatology and SEAS5 bias for
diagnostic variables during the OND season (Figure 5),
we note specific patterns. At 200 hPa, there is anticyclonic
circulation in both hemispheres over land, shifted slightly
eastward in the north, leading to an “S-like” shape in the
mean cross-equatorial flow (Figure 5a). Notably, the east-
erly wind direction aloft over the Congo Basin is consistent
with the wind direction at 700 hPa (Figure 5b), whereas
the upper-level subtropical jets to the north and south of
the East African reference region are distinctly westerly, in
contrast to the low-level winds. Over the areas with weak
vertical wind shear in the western part of the map, there
is strong average 200-hPa divergence, indicating frequent
deep convection. The Congo Basin divergence is espe-
cially pronounced over the boundary between the Basin
and the Albertine Rift mountains. Highly divergent mean
conditions also occur over Lake Victoria, but, apart from
this area, the average conditions over the reference region

are characterised by convergence aloft. This indicates sub-
sidence in the air column below.

At 700 hPa (Figure 5b), mean flows from the north-
east, east, and southeast are observed north, around, and
south of the Equator, respectively. Upstream of northeast-
ern East Africa, drier air masses prevail offshore to the
northeast and over the Arabian peninsula, indicating dry
advection in the region’s climatology. This is illustrated
by the mean ERA5 moisture advection, which is shown
in Figure A2a in the Appendix. Similar dry advection is
seen in the southern part of East Africa, with upstream air
masses offshore being drier than over land. In Figure 5b,
we note especially the relatively dry air masses off the
coast of Tanzania and Mozambique downstream from
Madagascar. These patterns of dry advection are consis-
tent with a mainly negative MFC climatology over the
East African reference region (Figure 5c). Figure A2b in
the Appendix shows that the climatology of the conver-

F I G U R E 5 Top row: ERA5 climatology during OND of (a) 200-hPa divergence, (b) specific humidity at 700 hPa, and (c) moisture-flux
convergence at 700 hPa. The units are specified in the captions. In (a,b), the vectors show the climatological wind components, with the scale
and unit indicated below each panel. Bottom row: SEAS5−ERA5 climatologal differences for the same variables.
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4560 KOLSTAD et al.

gence term of the MFC is almost identical to the total
MFC, signifying that the convergence term dominates the
MFC over the advection term.

Returning to Figure 5b, it is evident that the most
moisture-laden air masses are concentrated over inland
areas, particularly the western part of the reference region,
which is part of a larger moist region extending into the
Congo Basin. However, it is noteworthy that only over the
Congo Basin does the MFC exhibit a consistently positive
value over a large, contiguous area (Figure 5c). In contrast,
over the highlands surrounding Lake Victoria, the MFC
is predominantly negative. This spatial pattern, charac-
terised by positive MFC over the Basin and negative MFC
over western East Africa, aligns well with the east–west
gradients in rainfall seen earlier in Figure 1a,b.

We now investigate the biases in SEAS5 relative to
ERA5 in the bottom row of Figure 5. Figure 5d shows
a mean positive bias in the divergence. While there is
still convergence on average over the reference region in
SEAS5, its magnitude is reduced by about a third. Figure 5e
demonstrates that SEAS5 generally reproduces the wind
and moisture patterns depicted in Figure 5b with reason-
able accuracy, although there is a slight dry bias in the
north and a comparable wet bias in the south. Moreover,
a systematic bias is observed in the winds, where the aver-
age easterlies over the southern part of the Congo Basin
and the East African region are slightly weaker in SEAS5
compared with ERA5. This discrepancy contributes to a
positive MFC bias to the south and east of Lake Victoria
(Figure 5f). This bias may stem from several factors,
including the possibility of too frequent episodes of mois-
ture import from the Congo Basin, or insufficient moisture
transport into the Basin from East Africa. Similar positive
MFC biases are seen in some areas north of the Equator,
such as over parts of Ethiopia and along the southern
Sudanese borders. Over the reference region, the average
MFC bias is positive. The average negative MFC found
in ERA5 remains negative in SEAS5, but is about 10%
smaller in the mean.

Having explored the climatology and biases of the diag-
nostic variables, we now turn to Figure 6, which shows
the mean standardised anomalies in these variables across
the members of each cluster. It is illustrative to start
by analysing C5, which is extremely wet in East Africa
(Figure 3e). Its upper-level pattern is dominated by intense
divergence anomalies over the western Indian Ocean, indi-
cating deep convection (Figure 6e). Over land there is also
widespread anomalous divergence and deep convection,
with a notable exception over the eastern branch of the
Rift Valley. This branch extends from east of Lake Victoria
towards the northeast into Ethiopia via Lake Turkana.
Anomalous convergence is also observed over the south-
ern part of the East African region.

At 700 hPa, the air over the entire reference region
is considerably more humid than usual, attributed to
onshore winds transporting moist air masses from the
ocean (Figure 6j). The distinct geographical differences in
rainfall in C5, as observed in Figure 3e, are closely tied to
local MFC anomalies depicted in Figure 6o. These anoma-
lies seem to be influenced by interactions with topography
and land–sea contrasts. For instance, the notable conver-
gence in the western part of East Africa (Figure 6o) results
from the convergence between the easterly wind anoma-
lies over the region and the abrupt shift to southerly wind
anomalies along the Albertine Rift Mountains (the bound-
ary between the highlands and the eastern Congo Basin;
Figure 6j). Moreover, the areas previously identified with
convergence aloft display weaker or neutral MFC anoma-
lies at 700 hPa. These interactions between air masses
and underlying surfaces create a mosaic of predominantly
positive mean MFC anomalies. The overarching pattern
suggests a robust moisture inflow from the Indian Ocean,
serving as the primary moisture source in C5.

The C4 cluster, which like C5 is anomalously wet
in most of East Africa but particularly in the south
(Figure 3d), has a flow pattern that shares many similari-
ties with C5. Aloft, the same pattern of onshore divergent
winds is seen, with the same contrasting convergence over
the eastern branch of the Rift Valley (Figure 6d) as in
C5. At 700 hPa, however, distinct differences between the
two clusters are seen in the wind anomalies. Where C5
was found to exhibit very strong onshore wind anoma-
lies from over the Indian Ocean, there is no such clear
pattern of anomalous onshore flow in C4 (Figure 6i).
Another difference is that C4 exhibits a distinct signa-
ture of westerly wind anomalies from the Congo Basin
along the western boundary of the East African refer-
ence region not seen in C5 (Figure 6j). These westerly
wind anomalies along the Equator align better with the
expected Matsuno–Gill response to the warm SST anoma-
lies outside the southern part of the region (Figure 4d)
compared with the wind anomalies in C5. This suggests
that moisture from the Congo Basin, relative to moisture
originating over the Indian Ocean, contributes more to the
East African rainfall in C4 than in C5. However, in terms of
MFC, the spatial structures in C4 and C5 are quite similar
(Figure 6n,o).

The behaviour of the dry cluster C2 can mainly be
understood as the reverse of its wet counterpart C4. C2,
consistent with an inverse of C4, has upper-level cyclonic
flow on each side of the Equator (Figure 6b) and nega-
tive anomalous low-level MFC over East Africa (Figure 6l),
which is due to anomalous outflow mainly towards the
Congo Basin in the west (Figure 6g). This structure
corresponds well with a Matsuno–Gill response to the cool
SST anomalies off the southern coast (Figure 4b).
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KOLSTAD et al. 4561

F I G U R E 6 Colours: mean standardised anomalies of specific humidity at 700 hPa (top row), divergence at 200 hPa (middle row), and
moisture-flux convergence at 700 hPa (bottom row) in the rainfall clusters. Non-significant anomalies (at the 5% level) according to a
bootstrapping test are masked. The vectors in (a–j) show the mean standardised anomalies in the wind components at the same levels, with
the scale indicated below each panel (note the varying scale). The unit for all variables is standard deviation (SD).

As seen in Figure 3, the remaining two clusters, C1
and C3, involve rainfall contrasts between the northern
and southern parts of East Africa. Considering the wet
southern region in C1 first, warm SST anomalies off-
shore (Figure 4a) are consistent with 200-hPa divergence,
indicating deep convection (Figure 6a). This is coupled
with anomalous flow from the west and northwest towards
the warm SST anomalies north of Madagascar at 700 hPa
(Figure 6f), in almost direct opposition to the mean flow
(Figure 5b). The westerly direction of the anomalous flow
is consistent with a Matsuno–Gill response, shifted off the
Equator, and the convergent anomalous wind field yields
positive low-level MFC anomalies over the anomalously
wet areas (Figure 6k). Off the coast of the anomalously

dry northern part of the region in C1, there is anomalous
convergence at 200 hPa (Figure 6a), which is indicative
of a strengthening of the climatological subsidence over
this region seen in Figure 5a. It is noteworthy that the
anomalous flow at 700 hPa over the northern part of the
region (Figure 6f) is not directed away from this region of
anomalous subsidence. Instead, the direction of the wind
anomalies is northwesterly, leading towards the sinking air
masses. Considering that the typical flow over the north-
ern part of East Africa, as shown in Figure 5a, originates
from the northeast, the resultant actual flow in cluster
C1 is approximately from the north. This northerly flow
brings air from an area of lower moisture, as seen in
Figure 6f. The divergent nature of this anomalous flow at
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4562 KOLSTAD et al.

700 hPa leads to negative MFC anomalies over northern
East Africa, illustrated in Figure 6k. This anomaly aligns
with the observed below-normal rainfall in the north in the
C1 cases, as shown in Figure 3a.

Over the southern part of the region, the behaviour
of the diagnostic variables in C3 is the opposite of their
behaviour in C1. The dryness over the southern region
in C3 is likely influenced by the cold SST anomalies off
the southern coast, as indicated in Figure 4c. These SST
anomalies are associated with convergence aloft, as shown
in Figure 6c. Additionally, there is an anomalously dry
southeasterly flow over the southern region at 700 hPa
(Figure 6h), which strengthens the climatological flow
from the same direction (Figure 5b). The resulting negative
MFC anomalies (Figure 6m) over this region are consistent
with the dryness on the ground. Recalling from Figure 3c
that the northern part of the region is weakly wetter than
normal in C3, we see that this appears to be linked to
above-normal MFC at 700 hPa (Figure 6m). This enhanced
MFC seems to arise from the convergent nature of the
anomalous flow (Figure 6h).

4 SUMMARY AND DISCUSSION

In our investigation of East Africa’s short rains, our
research was steered by three core ideas. First, we inves-
tigated whether looking beyond the dominant regional
average would reveal a high degree of geographical rainfall
variability. Second, we explored the idea that SST anoma-
lies in the western Indian Ocean influence the rainfall vari-
ability significantly, potentially triggering a Matsuno–Gill
response in the overland circulation, with associated feed-
backs through the moisture budget. We indicated how this
response differs for positive and negative rainfall anoma-
lies, through the changing geographic pattern of thermo-
dynamic heating when the positive anomalies extend over
land. Third, we examined the notion that the precise loca-
tion of the SST anomalies plays a critical role in shaping
the rainfall patterns across East Africa, and how these
detailed patterns can again be interpreted in terms of the
Matsuno–Gill response.

To examine these ideas, we initially evaluated the
SEAS5 model to assess its accuracy in depicting the
region’s rainfall diversity. We then applied a clustering
method to represent the complex regional rainfall patterns
better. Finally, we investigated the relationship between
these patterns and various large-scale climatic and local
factors, including SSTs, wind patterns, and moisture
fluxes. This section aims to summarise our approach to
these issues and the key insights we have gained.

A comparative analysis of SEAS5 and CHIRPS rain-
fall data revealed that average OND rainfall quantities

are broadly similar across both datasets, though certain
biases emerged. Notably, the model tends to produce more
rainfall in the Congo Basin and around Lake Victoria
than what is found in CHIRPS. The ratio of average OND
rainfall to annual rainfall exhibited reassuringly similar
patterns in both datasets, with higher ratios in Somalia and
south of Lake Victoria and lower ratios in the southern and
northern extremities of the region. A notable success of the
model is its ability to replicate the low rainfall ratio around
Lake Turkana accurately, underlining its effectiveness in
local-scale rainfall representation.

By comparing rainfall EOF patterns across SEAS5
and CHIRPS, we identified a strong dominance by the
primary EOF in explaining the rainfall variability, with
a slightly greater dominance in CHIRPS compared with
SEAS5. This first EOF was found to be characterised by
large rainfall anomalies spanning the entire study area.
The subsequent EOFs describe gradients between differ-
ent parts of the region, offering nuance to the picture of
nearly uniform anomalies across the region represented
by EOF1. A critical, implicit assumption in EOF analysis
(because it is a linear method) is a symmetry between
the positive and negative phases, which our clustering
analysis of SEAS5 data challenged. For all the specified
number of clusters, a small cluster with extremely high
rainfall emerged, highlighting an important asymmetry
in the data. In light of these findings, we shifted our focus
to examining the oceanic and atmospheric conditions
associated with the clusters.

A key feature shared by the clusters is the dominant
influence of a Matsuno–Gill response on rainfall anoma-
lies, which effectively extends these anomalies from the
ocean westward across the land (Bahaga et al., 2015). This
phenomenon is largely driven by westerly wind anoma-
lies that favour increased inland rainfall (Camberlin &
Wairoto, 1997; Finney et al., 2019), a response triggered by
offshore heating (also strongly correlated with strength-
ened easterlies in the central equatorial Indian Ocean;
Hastenrath et al., 2011). Conversely, dry offshore anoma-
lies often lead to easterly anomalies over land, resulting in
reduced rainfall. However, in scenarios with a pronounced
positive rainfall anomaly over land, the atmospheric latent
heating transcends the usual SST patterns and extends
inland. Under these circumstances, the enhanced rainfall
over land is sustained by deep easterly moisture flux from
the Indian Ocean.

The SST patterns related to the rainfall clusters indi-
cate a connection between the north–south SST gradient
over the western Indian Ocean and the spatial distribution
of anomalously wet and dry areas on land. This associa-
tion has previously been established for the March–May
(MAM) season (Vellinga & Milton, 2018), but to the best
of our knowledge not for the OND period. In the MAM
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KOLSTAD et al. 4563

season, warm SST anomalies in the northern part of
the western Indian Ocean correlate with increased rain-
fall over the Horn of Africa. Conversely, SST anomalies
towards the southern end of the basin are associated with
rainfall anomalies concentrated in northern Tanzania
and southern Kenya (Seregina et al., 2021). Our findings
for the OND season reveal a similar pattern, where the
location of cold SST anomalies aligns with dry areas over
land. A recommended future study could delve into the
relationship between the geographical variations of SST
anomalies in the Indian Ocean and East African rain-
fall’s spatial variability, extending beyond the east/west
gradient linked with the IOD.

Our findings reinforced the core ideas underpinning
this study. The first key finding was that the largest of the
rainfall clusters was consistently dominated by the sec-
ond EOF pattern, rather than the first. This observation
affirmed our initial idea that it is important to look at
more nuanced spatial patterns to understand the region’s
rainfall variability. Secondly, we largely confirmed that
rainfall clusters can be understood within a framework
linked to anomalous flows consistent with a Matsuno–Gill
response to SST anomalies in the western Indian Ocean.
However, in extremely wet seasons this pattern is con-
founded, with rainfall over land being supported by strong
easterly moisture fluxes from the Indian Ocean. Thirdly,
our analysis suggested that the specific locations of SST
anomalies critically influence the anomalous flow and,
by extension, the distribution of rainfall over land. It is
important to note that these interpretations stem from
condensing 4200 individual seasons into only five rainfall
clusters. Inevitably, there will be numerous exceptions to
these generalised patterns.

An attempt was made to link the rainfall clusters
to drivers that may be predictable. The first driver is
the ocean surface, represented by SSTs. Only the most
extremely wet cluster was convincingly linked to the IOD
and ENSO, an association that is well-known from pre-
vious studies (e.g., Black, 2005; Hirons & Turner, 2018;
MacLeod et al., 2024). However, clusters exhibiting moder-
ate anomalies, whether wet or dry, or those presenting geo-
graphical gradients across East Africa, did not demonstrate
a consistent association with either the IOD or ENSO.

Although we did not mention this in the previous
section, we also attempted to link the clusters to the MJO,
using standard real-time multivariate (RMM; Wheeler &
Hendon, 2004) MJO data calculated from daily SEAS5
reforecasts (kindly provided by Frédéric Vitart). The MJO’s
spatial influence in East Africa is closely aligned with the
pattern associated with EOF1, likely due to its character-
istic of eastward-propagating waves. As a result, the RMM
index seems to offer limited insight into the north–south
rainfall gradients within East Africa. Consequently,

the clusters most closely related to EOF1 also exhibit the
strongest associations with MJO phases. In summary, the
MJO’s predictable influence seems to be primarily limited
to indicating whether the OND season will be wetter or
drier than average. On the seasonal time-scale, variations
in geographical rainfall within East Africa do not appear
to be influenced significantly by the MJO.

5 CONCLUDING REMARKS

In this study, we challenge the conventional approach that
simplifies East Africa’s short rains to a regional mean,
thereby uncovering significant geographical variations.
Our findings demonstrate that the regional average fails to
represent the complex rainfall patterns experienced across
different areas. Whilst large-scale factors like SST patterns
and the MJO are effective in predicting the regional mean
rainfall, they are inadequate for forecasting the nuanced
geographical rainfall variations within the region. These
variations appear to be influenced by regional climatic fac-
tors, including north–south SST gradients in the western
Indian Ocean, air-mass interactions with topography, and
the spectrum of easterly to westerly wind flows, which
influence moisture dynamics from the Congo Basin. It
remains uncertain whether these features are currently
predictable. Research into their predictability is crucial,
as more accurate localised forecasts have the potential
to bolster the resilience to rainfall anomalies in a region
deeply dependent on rain-fed agriculture and vulnerable
to droughts and floods.
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F I G U R E A1 Mean standardised precipitation anomalies in each of the rainfall clusters, for n = 6 (top row) and n = 7 (bottom row),
sorted by cluster size. The captions include the name of each cluster, the frequency as a percentage in parentheses, and the mean PC value in
brackets, for PCs 1, 2, 3, and 4 (the letter “X” indicates that the mean anomalies are non-significant). Oceanic grid points are shown, although
they were ignored when computing the clusters. Non-significant anomalies according to a bootstrapping test are masked, and the unit is
standard deviation (SD). Because the colours saturate, white contours show isolines for anomalies of ± 1, 2, and 3 SD (negative contours
dashed, positive contours solid).

F I G U R E A2 ERA5
climatology during OND of the
two terms of the MFC at
700 hPa: (a) the advection term
−v ⋅ ∇q and (b) the
convergence term −q∇ ⋅ v. The
unit is specified in the captions.
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