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Abstract

Origami bellows are formed by folding flat sheets into closed cylindrical structures along predefined creases. As the bellows

unfold, the volume of the origami structure will change significantly, offering potential for use as inflatable deployable

structures. This paper presents a geometric study of the volume of multi-stable Miura-ori and Kresling bellows, focusing on

their application as deployable space habitats. Such habitats would be compactly stowed during launch, before expanding

once in orbit. The internal volume ratio between different deployed states is investigated across the geometric design space.

As a case study, the SpaceX Falcon 9 payload fairing is chosen for the transportation of space habitats. The stowed volume and

effective deployed volume of the origami space habitats are calculated to enable comparison with conventional habitat designs.

Optimal designs for the deployment of Miura-ori and Kresling patterned tubular space habitats are obtained using particle

swarm optimisation (PSO) techniques. Configurations with significant volume expansion can be found in both patterns, with

the Miura-ori patterns achieving higher volume expansion due to their additional radial deployment. A multi-objective PSO

(MOPSO) is adopted to identify trade-offs between volumetric deployment and radial expansion ratios for the Miura-ori

pattern.

Keywords Optimisation · Origami bellows · Space habitat · Origami volume

1 Introduction

Origami is a traditional Japanese paper art that forms flat

sheets into three-dimensional objects by folding along pre-

defined creases. Due to its stowability, deployability, and

programmable stiffness, origami has been applied in many

fields ranging from the micro-/nanometre scale to the metre

scale [1], such as nano-photonics [2] and inflatable shelters

[3].

Origami bellows [4] are created by folding planar origami

patterns into closed hollow cylindrical structures; these

include the Miura-ori [5], Kresling [6], and waterbomb [7]

patterns. Such bellows are shown to have rich mechanical

properties including multi-stability [5, 8, 9], self-locking

behaviour [10, 11], and tunable stiffness [12–14]. As such,

origami bellows have been applied in fields such as robotics

[15, 16], meta-materials [17, 18], binary switch [19], and
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self-folding structures [20–22]. Origami bellows are promis-

ing candidates for self-folding inflatable structures since

the structure itself serves as the inflatable chamber. Infla-

tion actuation utilises the pressure of compressed air or

fluid to trigger the deformation of origami. For instance,

Li et al. [23] introduced fluid-driven origami-inspired artifi-

cial muscles that can be programmed to achieve multi-axial

motions including contraction, bending, and torsion. Melan-

con et al. [3] designed several bistable origami units that can

be deployed through a single fluidic pressure input and com-

bined these units to build functional structures at the metre

scale. Melancon et al. [24] also used pressure to trigger a

snap-through transition of a multi-stable Kresling. The inflat-

able origami may experience a significant volume change

during the deployment process. Zhang et al. [25] approxi-

mated the volume of Kresling by assuming that the cross

section of the oblique polygonal prism is constant. However,

the actual volume change of inflatable origami has rarely

been studied.

Inflatable origami structures have been proposed for

aerospace applications due to their high deployment ratio,

low system complexity and simple deployment mechanism
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[26]. The structure can be manufactured on Earth, folded

into a compact configuration for launch and expanded to a

larger volume once in orbit. Of particular interest is the use of

origami concepts in deployable space habitats. Space habi-

tats are where humans live in outer space and thus, need

to withstand extreme space environments (e.g., radiation,

meteoroids, and orbital debris). Deployable structures could

significantly increase the amount of usable volume of space

station modules [27] or habitats on the lunar surface. For

example, the Bigelow Expandable Activity Module (BEAM)

[28] has been successfully launched and expanded once

docked to the International Space Station (ISS). Origami con-

cepts such as the Miura-ori [29], accordion [27], Kresling,

and Tachi-Miura polyhedron (TMP) fold patterns [30] have

been considered for deployable habitats. For instance, the

LUNARK habitat mission created a lunar habitat based on the

Miura-ori pattern with a rigid carbon fibre shell, which can

reach a volume expansion of 750% [29]. Morgan et al. [27]

introduced a habitat using a modified accordion fold pattern

accounting for material thickness, which has an 85% increase

in length and volume between the stowed and expanded con-

figurations. Yasuda et al. [30] designed volumetric origami

cells made of TMP that can exhibit in-situ transition between

flat-foldable and load-bearing states without modifying their

predefined crease patterns or hitting the kinematically singu-

lar configuration. However, it is difficult to fairly compare the

origami habitats to conventional habitat modules since they

are irregular-shaped. Moreover, optimal design of origami-

based space habitats has rarely been investigated.

In this work, we focus on two widely applied origami bel-

low patterns—Kresling and Miura-ori—and evaluate their

potential as deployable space habitats. The remainder of the

paper is organised as follows. Section 2 describes the crease

patterns and internal volume calculation for bistable Miura-

ori and tristable Kresling bellows. A study on the volume

ratio between different stable states is presented. To compare

the performance of origami habitats to conventional habitat

modules, the definition and calculation of effective volume of

origami space habitats are introduced in Sect. 3. Next, opti-

misation methods are used to find patterns with high volume

deployment ratio, whilst trading off against radial expansion.

The findings of this paper are concluded in Sect. 4.

2 Crease Patterns and Volume Calculations

2.1 Miura-ori

The crease pattern and three-dimensional model of two-layer

Miura-ori bellows are illustrated in Fig. 1. The pattern can

be described by sector angles φ1 and φ2, vertex spacing d1

and d2, radius R, layer height H , number of unit cells around

the circumference n and number of layers along the length

of the bellows m. A single unit cell consists of two adjacent

facets, as highlighted in Fig. 1a. For Miura-ori bellows, φ1

and φ2 satisfy:

0 < φ2 < φ1 <
π

2
(1)

and

d1 + d2 �
2πR

n
(2)

Following Reid et al. [5], to form closed bellows, a cylin-

drical closure condition is introduced:

θ2 � π −
2π

n
− θ1 (3)

with

tan
θ1

2
�

1

2 tan π

n

[

1 −
tan φ2

tan φ1

−

√

(

tan φ2

tan φ1
− 1

)2

− 4
tan φ2

tan φ1
tan2

π

n

⎤

⎦ (4)

where θ1 and θ2 are angles defined in Fig. 1b. Next, the angle

ψ can be calculated as follows:

ψ �
π

2
− arcsin

(

tan θ1
2

tan φ2

)

(5)

which represents the folded state of the bellows, with ψ � 0

representing a flat-folded configuration. The parameter d2

and the layer height H are geometrically restricted to [5]:

0 < H ≤
2πR/n − d2

cot φ2 − cot φ1
(6)

Thus, the geometric design parameters are given by φ1,

φ2, R, d1, H , m, and n, whilst the remaining parameters

can be calculated. The 3D geometry such as the positions

of the vertices can be calculated using the SO(3) rotation

matrices method proposed by Reid et al. [5]. Moreover, when

the vertex spacing d2 � 0, the Miura-ori pattern reduces to

the Kresling pattern.

2.1.1 Bistability

To satisfy Eqs. (4) and (5), φ1 and φ2 (or φ
′

1 and φ
′

2) should

be in the region bounded by [5]:

g1(φ1, n) � φ1 −
π

n
(flat − foldable line) (7)
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Fig. 1 Geometry of Miura-ori

bellows and geometric design

space. a Crease pattern of

two-layer Miura-ori bellows,

with sector angles φ1 and φ2,

crease lengths d1 and d2, bellow

radius R, facet height H , number

of unit cells around the

circumference n, and number of

layers along the length of the

bellows m (here n � 5, m � 2);

for d2 � 0, the Kresling pattern

is recovered. The solid lines

represent mountain folds, while

the dashed lines represent valley

folds. b Assembled Miura-ori

bellows, where θ1 and θ2 are

angles between two adjacent

folds along the circumference.

c Two adjacent unit cells in

folded state, where 2ψ is the

dihedral angle between adjacent

facets. d The geometric design

space (modified from [5])

indicating the invalid,

monostable and bistable regions,

where φ
′

1 and φ
′

2 are sector

angles of Kresling at the third

stable state S3, which will be

introduced in Sect. 2.2.1

f (φ1, n) � arctan

(

tan(φ1)
1 − sin

(

π

n

)

1 + sin
(

π

n

)

)

(8)

g2

(

φ
′

1, n
)

� φ
′

1 − π +
π

n
(9)

The design space of the bellows can therefore be divided

into three regions [5]: (i) invalid parameters, (ii) monostable

region, and (iii) bistable region (including the flat-foldable

line), as illustrated in Fig. 1d. Note that this definition of

multi-stability does not depend on strain energy considera-

tions, but rather geometric compatibility. Crucially, for the

deployment between stable states, the origami structure must

deform through bending and stretching of the facets—this is

not modelled in this work. Here, we exploit the multi-stability

of the origami bellows to provide compatible configurations

for both the stowed and deployed configurations.

2.1.2 Volume Calculation

The volume of Miura-ori bellows can be calculated using

the Cartesian coordinate positions of the vertices of a single

unit in 3D space (as shown in Fig. 2) and then, multiplying

by mn. Each single unit can be divided into six tetrahedra,

namely B0 B1 B2 A1, B0 B2 B3 A3, B0 B3 A2 A3, B0 B2 A1 A2,

B0 A0 A2 A3, and B2 A0 A1 A2, as shown in Fig. 2. Sharing

the same height and base area, VB0 B1 B2 A1 � VB0 A0 A2 A3 ,

and VB0 B2 B3 A3 � VB2 A0 A1 A2 . Thus, the total volume can be

expressed as follows:
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Fig. 2 Geometry and volume

calculation of Miura-ori bellows.

a 3D view of the geometry of a

single unit cell in one-layer

Miura-ori bellows, where A0 B0

is the cylinder axis of the bellows

parallel to the z-axis. b The

volume of a unit cell represented

by the combination of six

tetrahedra (B0 B1 B2 A1,

B0 B2 B3 A3, B0 B3 A2 A3,

B0 B2 A1 A2, B0 A0 A2 A3, and

B2 A0 A1 A2) displayed by shaded

areas, where the vectors used to

calculate the volume using

Eq. (10) are highlighted

VM � mn

(

1

3
(B0 B1 × B0 B2) · B0 A1

+
1

3
(B0 B2 × B0 B3) · B0 A3 . . .

+
1

6
(B0 B3 × B0 A2) · B0 A3+

1

6
(B0 B2 × B0 A1) · B0 A2

)

(10)

where B i B j is the vector from Bi to B j , and B i A j is the

vector from Bi to A j , as highlighted in Fig. 2.

2.2 Kresling

The Kresling pattern can be derived straightforwardly from

the Miura-ori pattern by setting the vertex spacing d2 equal to

zero. The prediction of multi-stability only depends on sector

angles φ1 and φ2, and thus, the design space is the same

for normal Kresling and Miura-ori patterns (the left-hand

region of Fig. 1d). Moreover, inspired by the tristable conical

Kresling [31] and inflatable multi-stable Kresling [24], here,

we extend the concept of tristable Kresling bellows.

2.2.1 Tristability

A normal Kresling pattern folds along the long diagonals

(crease pattern 1, see Fig. 3a) of each unit cell. If the

geometric parameters are within the bistable region [5], it

will therefore have two stable states (see Fig. 3b). Here-

after, we denote the more compressed state as S1 and the

more deployed state as S2, with corresponding fold angles

ψ1 < ψ2. Melancon et al. [24] introduced an additional

crease along the short diagonal of a panel of a normal Kres-

ling; during deployment, the panels initially remain planar

until they suddenly snap radially outward, folding along

the short diagonals, and the structure assumes a new stable

state. Inspired by this idea, we introduce additional creases

along the short diagonals for all panels (crease pattern 2, see

Fig. 3a). If the structure can fulfil the geometric compatibility

(Eqs. 3–5) when folding along crease pattern 2, the Kresling

bellows will enter the third stable state (S3), as shown in

Fig. 3c. The third stable state involves an additional relative

rotation of the cross sections and axial extension compared

to the second stable state (S2).

According to geometric constraints:

2H

tan(φ1)
+

H

tan
(

π − φ
′

1

) �
H

tan(φ2)
(11)

and thus, sector angles φ
′

1 and φ
′

2 of crease pattern 2 can be

expressed as follows:

φ
′

1 � arctan

(

tan(φ1) tan(φ2)

2 tan(φ2) − tan(φ1)

)

(12)

φ
′

2 � φ1 (13)

where φ
′

1 ∈
(

π

2
,π

)

. For a compatible solution, φ
′

1 and φ
′

2

should satisfy the geometric constraints indicated in the right-

hand region of Fig. 1d [5]. When φ
′

1 ∈

(

π

2
,

(n−1)π
n

]

, the

structures will always find solutions for state S3; when φ
′

1 ∈
(

(n−1)π
n

,π

)

, sector angles should satisfy:

φ
′

2 > g2

(

φ
′

1, n
)

� φ
′

1 − π +
π

n
(14)

For all Kresling patterns within the bistable region, it is

found that a third compatible configuration S3 exists.

2.2.2 Volume Calculation

In its folded configuration (see Fig. 4a), the geometry of the

Kresling pattern can be described by height h0, radius r , and
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Fig. 3 Geometry of tristable

Kresling bellows. a Illustration of

the two Kresling crease patterns.

The red dashed lines along the

long diagonals indicate the

primary pattern (pattern 1); the

blue dashed lines along the short

diagonals form the secondary

crease (pattern 2) for the third

stable state; φ1 and φ2 are sector

angles of crease pattern 1, whilst

φ
′

1 and φ
′

2 are sector angles of

crease pattern 2. b 3D geometry

for stable states S1 and S2 when

folding along crease pattern 1

(n � 4, φ1 � 77◦, φ2 � 35◦).

The thick red line is the active

crease whilst the thin blue line

represents an inactive crease (i.e.,

no folding). c Corresponding 3D

geometry at stable state S3 when

folding along crease pattern 2

(φ
′

1 � 134◦, φ
′

2 � 77◦). The

thick blue line is the active crease

whilst the thin red line represents

an inactive crease

Fig. 4 3D Geometry of Kresling

bellows and volume calculation

of typical tristable Kresling

bellows (n � 5, m � 1,

φ1 � 74◦,φ2 � 41◦). A0 B0 is the

cylinder axis which is parallel to

the z-axis, and O0 is the midpoint

of A0 and B0. The vectors used

to calculate the volumes of the

shaded tetrahedra (Eq. (24) and

Eqs. (26)-(27)) are highlighted.

Note that the viewing perspective

is adjusted for each stable state.

a 3D geometry of Kresling

bellows in a stable state; the

geometry can be described by

initial height h0, radius r , and

initial rotation angle θ0. b Seven

constituent tetrahedra of a unit

cell when O1 penetrates

tetrahedron B1 B2 A0 A1 when

folding along crease pattern 1

(state S1). c Combination of

three tetrahedra when O1 does

not penetrate tetrahedron

B1 B2 A0 A1 when folding along

crease pattern 1 (state S2).

d Combination of three

tetrahedra when folding along

crease pattern 2 (state S3)
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initial rotation angle θ0:

h0 � H cos
(

π

2
− ψ

)

(15)

r �
d1

2 sin
(

π

n

) (16)

θ0 � arccos

(

2r2
− A

′

1 B2
1

2r2

)

(17)

Thus, the vertex coordinates can be expressed as follows:

A0 � (0, 0, 0) (18)

Ai �

(

r cos

(

2π(i − 1)

n

)

, r sin

(

2π(i − 1)

n

)

, 0

)

(19)

B0 � (0, 0, h0) (20)

Bi �

(

r cos

(

θ0 +
2π(i − 1)

n

)

,

r sin

(

θ0 +
2π(i − 1)

n

)

, h0

)

(21)

where i � 1, 2, · · · , n. The midpoint O0 of axis A0 and B0

is given as follows:

O0 �

(

0, 0,
h0

2

)

(22)

And the intersection point Oi of crease pattern 1 and crease

pattern 2 when folding along crease pattern 1 is calculated

as follows:

Oi �

⎛

⎝

r cos
(

2π(i−1)
n

+ r cos
(

θ0 + 2πi
n

)

)

2
,

r sin
(

2π(i−1)
n

+ r sin
(

θ0 + 2πi
n

)

)

2
,

h0

2

⎞

⎠ (23)

for i � 1, 2, · · · , n.

Since the Kresling pattern can be folded along either

crease pattern 1 or crease pattern 2, it can be either a concave

(Fig. 3b) or convex (Fig. 3c) when folded; therefore, the vol-

ume calculation method for S3 is different from that for S1 and

S2. What is more, if the structure is highly compressed at S1

or S2, it will lead to another volume calculation method. Tak-

ing a typical tristable Kresling (n � 5, φ1 � 74◦,φ2 � 41◦)

as an example: at S1, it is highly compressed (Fig. 4b), and

the smallest repetitive unit (B0 B1 Bn O0 O1 On A1 A0 A2) can

be regarded as a combination of seven tetrahedra; at S2, it

deploys, and each unit can be partitioned into three tetrahe-

dra (Fig. 4c); at S3, the short diagonals (e.g., B1 A2) pop out

radially (Fig. 4d), the structure becomes convex, and the unit

cell is composed of three tetrahedra. The volume of the Kres-

ling bellows at different stable states can then be calculated

as follows:

First, consider the two different possibilities for the vol-

ume calculation when folding along crease pattern 1 to form

states S1 and S2:

(i) If O1 penetrates tetrahedron B1 B2 A0 A1, the smallest

repetitive unit can be divided into the seven tetrahedra

(A0 A1 A2 On , A0 A2 O1 On , A0 O0 O1 On , B0 B1 Bn On ,

B0 B1 O1 On , B0 O0 O1 On , and B1 A1 O1 On) shown

in Fig. 4b. Noting that VA0 A1 A2 On � VB0 B1 Bn On ,

VA0 A2 O1 On � VB0 B1 O1 On , and VA0 O0 O1 On �

VB0 O0 O1 On , the total volume can be calculated as fol-

lows:

VK � mn

(

1

3
(A0 A1 × A0 A2) · A0 O0

+
1

3
(A0 A2 × A0 O1) · A0 On

+
1

3
(A0 O0 × A0 O1) · A0 On

+
1

6
(B1 A1 × B1 O1) · B1 On

)

(24)

Substituting Eq. (18) into the above expression:

VK � mnr2h0

{

1

6
sin

(

2π

n

)

+
1

12

[

sin

(

θ0 −
2π

n

)

− sin(θ0)

+ sin

(

2π(n − 2)

n

)

+ sin

(

2π

n

)]

+
1

16

[

sin(θ0) − sin

(

4π

n
− 2π + θ0

)

+ sin

(

2π(n − 1)

n

)

+ sin

(

2π

n

)]}

(25)

(ii) If O1 does not penetrate tetrahedron B1 B2 A0 A1, every

single unit can be divided into the three tetrahedra

(B0 B1 B2 A0, B1 B2 A0 A1 and B2 A0 A1 A2) shown in

Fig. 4c. Similarly, the total volume can be expressed

as follows:

VK � mn

(

1

6
(B0 B1 × B0 B2) · B0 A0

+
1

6
(B1 B2 × B1 A0) · B1 A1

+
1

6
(B2 A0 × B2 A1) · B2 A2

)

� mnr2h0

(

2

3
sin

(

π

n

)

cos
(

π

n

)

+
1

6

∣

∣

∣

∣

sin(θ0) − sin

(

θ0 +
2π

n

)
∣

∣

∣

∣

)

(26)
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Fig. 5 Volume ratios of Kresling

bellows (n � 5, m � 1,

φ1 ∈ [0◦, 89◦], φ2 ∈ [0◦, 89◦])

and Miura-ori bellows

(H/R � 2/3) at different stable

states in the design space, with

minimum stowed angle

ψmin � 10◦, 20◦, and 30◦

indicated. V1, V2, V3 represent

the internal volumes at stable

states S1, S2, and S3,

respectively. All volume ratios

are greater than one, indicating

the volume increases for different

stable states during the

deployment. With the increase in

ψmin, the feasible design space

becomes smaller at boundary 1.

a Kresling V2/V1, the ratio

increases near boundary 1 with

the increase in φ1. b Kresling

V3/V1, the ratio in the region

above boundary 1 is much greater

than the region below it; the ratio

increases along boundary 1 with

increasing φ1. c Kresling V3/V2,

the ratio is relatively large at

boundary 2. d Miura-ori V2/V1,

the ratio is largest along

boundary 1 and for φ1 � π/2

Next, to calculate the volume at stable state S3, each

unit can be divided into the three tetrahedra (B0 B1 B2 A0,

B1 A0 A1 A2, and B1 B2 A0 A2) shown in Fig. 4d. Thus, the

total volume is calculated as follows:

VK � mn

(

1

6
(B0 B1 × B0 B2) · B0 A0

+
1

6
(B1 A0 × B1 A1) · B1 A2

+
1

6
(B1 B2 × B1 A0) · B1 A2

)

� mnr2h0

(

2

3
sin

(

π

n

)

cos
(

π

n

)

+
1

6

∣

∣

∣

∣

sin(θ0) − sin

(

−θ0 +
2π

n

)
∣

∣

∣

∣

)

(27)

Equations (26) and (27) have the same first item since

they both contain two tetrahedra whose base is A0 A1 A2 or

B0 B1 B2 and has a height of h0.

2.3 Volume Change of Multi-stable Origami Bellows

Figure 5 shows the volume change of Kresling and Miura-

ori bellows between different stable states across the feasible

geometric design space [5]. In practical applications, the

bellows cannot be folded flat due to the thickness of the

material; therefore, we set a minimum stowed angle ψmin

as a simple way to account for the panel thickness. Setting

a minimum stowed angle will slightly reduce the feasible

design space.

For the Kresling pattern, Fig. 5a and b indicates that both

V2/V1 and V3/V1 increase near boundary 1 (g1(φ1, n) when

ψ > ψmin) with increasing φ1. Figure 5b also shows that

V3/V1 is comparatively small in the region below boundary

1. Moreover, the volume change between state S3 and state

S2 (V3/V2) is overall not significant (Fig. 5c), but the ratio

is relatively large at boundary 2 ( f (φ1, n) when ψ > ψmin).

Similar to Kresling, for Miura-ori, V2/V1 is the largest along

boundary 1 and φ1 � π/2, as depicted in Fig. 5d. It is worth

noting that increasing ψmin reduces the feasible design space

at boundary 1.

It can be observed from Fig. 5 that all volume ratios

(V2/V1, V3/V1 and V3/V2) are greater than one, suggesting

that the bellows’ internal volume increases monotonically

during the deployment. This finding makes Kresling and

Miura-ori bellows suitable for inflatable structures and space

habitats deployed through pressurisation. In the next section,

we shall explore the application of these origami bellows

for deployable space habitats, which will require additional

calculations to determine the effective internal volume as

well as the volume required to transport the stowed bel-

lows.
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3 Optimisation of Inflatable Origami Bellows
for Space Habitats

Cylindrical origami such as Kresling and Miura-ori is suit-

able candidates for self-folding inflatable structures since the

structure itself serves as the inflatable chamber. A potential

application of such inflatable cylindrical origami structures

is as deployable space habitats, which are stowed compactly

during launch before expanding in orbit to offer additional

working and living space.

In this section, we study and optimise the deployment

ratio (expanded/stowed volume) and radial expansion ratio

for cylindrical origami structures. First, we briefly intro-

duce the background and design constraints for the proposed

origami space habitats. Next, we outline the concepts of

stowed volume and effective deployed volume of the origami

bellows, which enable fair comparison with conventional

habitat designs. Finally, crease patterns are sought to max-

imise the deployment ratio of origami space habitats using

particle swarm optimisation (PSO). Lastly, multi-objective

PSO (MOPSO) is adopted to balance the trade-off between

deployment ratio and radial expansion ratio for bellows based

on the Miura-ori pattern.

3.1 Design Background

The dimensions of the rocket fairing used to transport the

habitat to space are an important factor in the selection of an

origami pattern and geometry; specifically, the aspect ratio

determines the number of layers m that can be stacked. Here,

we take the SpaceX Falcon 9 [32] as an illustrative example;

its payload fairing measures approximately 4.5 m in diameter

and 6.7 m in height [33]. Allowing for some margin, we take

radius Rfairing � 2.2 m and height Hfairing � 6.5 m as upper

limits for our stowed module dimensions, which defines the

available volume V f of the fairing. Note that the aspect ratio

Hfairing/Rfairing rather than the actual dimensions matters,

since the geometry of the origami bellows can be simply

scaled. Moreover, this preliminary study is based purely on

geometric considerations; the thickness of the module walls

is considered by setting a minimum stowed angle ψmin. Other

considerations such as materials selection, specific design of

the bulkhead, the connection between the bulkhead, and the

rest of the module as well as the internal support structure of

the module are not involved here.

3.2 Effective Volume Calculation

The internal and external geometry of origami bellows are

irregular-shaped (as depicted in Figs. 2 and 4) compared to

conventional habitat modules. To account for this and enable

fair comparisons, we define a stowed volume Vs and an effec-

tive deployed volume Vd for the origami bellows.

Stowed volume V s: the volume of the smallest cylinder

that completely encloses the bellows in the stowed configu-

ration S1. For both Kresling and Miura-ori bellows (Fig. 6a–i

and b–i), Vs can be calculated as follows:

Vs � mπR2
s Hs (28)

where Hs is the stowed height of a single layer, Rs is the

radius of the circumscribed circle, which can be calculated

by measuring the distance between A0 and the projection of

A1 on the xy plane.

Effective deployed volume V d : the volume of an unob-

structed prism contained by the innermost fold lines of the

bellows at deployed configurations S2 or S3 (see the blue

shaded areas in Fig. 6).

For Kresling at S2, as shown in Fig. 6a–ii:

Vd � nm A0C2
1 sin

(

π

n

)

cos
(

π

n

)

Hd (29)

where Hd is the deployed height of a single layer, C1 is the

intersection point of the projections of line A1 B2 and line

A2 B3 on the xy plane.

For Kresling at S3, as shown in Fig. 6a–iii:

Vd � nm
√

PK (PK − A0C1)(PK − A0 D1)(PK − C1 D1)Hd (30)

where C1 is the intersection point of the projections of line

A1 A2 and line B1 B2 on the xy plane, D1 is the intersection

point of the projections of line A2 A3 and line B1 B2 on the

xy plane, and PK �
1
2
(A0C1 + A0 D1 + C1 D1).

For Miura-ori, when the projections of line A2 B2 and

line A4 B4 have no intersection point on the xy plane (cross

section type 1, see Fig. 6b–ii):

Vd � nm
(

√

PM1(PM1 − A0 A2)(PM1 − A0 B2)(PM1 − A2 B2)

+2
√

PM2(PM2 − A0 B2)(PM2 − A0C1)(PM2 − B2C1)

)

(31)

where C1 is the intersection point of the projections of A3 A4

and B2 B3 on the xy plane, PM1 �
1
2
(A0 A2 + A0 B2 + A2 B2),

and PM2 �
1
2
(A0 B2 + A0C1 + B2C1). For Miura-ori, when

the projections of line A2 B2 and line A4 B4 have an inter-

section point on the xy plane (cross section type 2, see

Fig. 6b–iii):

Vd � nm A0C2
1 sin

(

π

n

)

cos
(

π

n

)

Hd (32)

where C1 is the intersection point of the projections of A2 B2

and A4 B4 on the xy plane.
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Fig. 6 Cross sections of Kresling and Miura-ori patterned bellows at

different stable states. The facets are depicted in grey; the dashed blue

circles are the circumscribed circles that completely enclose the bel-

lows’ cross section at S1 with radius Rs ; the blue shaded area is the

cross section of the unobstructed prism contained by the innermost fold

lines of the bellows at S2 and S3. a-i Kresling, cross section at S1. a-ii

Kresling, cross section at S2. The dashed grey lines are projections of

Ai B j ; C1 is the intersection point of the projections of line A1 B2 and

line A2 B3. a-iii Kresling, cross section at S3. The dashed grey lines are

projections of Ai A j ; C1 is the intersection point of the projections of

line A1 A2 and line B1 B2; D1 is the intersection point of the projec-

tions of line A2 A3 and line B1 B2. b-i Miura-ori, cross section at S1.

b-ii Miura-ori, cross section at S2 when the projections of A2 B2 and

A4 B4 have an intersection point (Type 1); C1 is the intersection point of

the projections of A3 A4 and B2 B3. b-iii Miura-ori, cross section at S2

when A2 B2 and A4 B4 have no intersection point (Type 2). The dashed

grey lines are projections of Ai A j ; C1 is the intersection point of the

projections of A2 B2 and A4 B4

3.3 Definition of Optimisation Problem

The aim of the optimisation is to maximise the effective

deployed volume of the structure that can be stowed in the

payload fairing. Therefore, the ratio of the effective deployed

volume (Vd ) over the fairing volume (V f ),Vd/V f , is cho-

sen as the objective function. For Miura-ori patterns, the

deployed volume is calculated at state S2, whereas for the

Kresling bellows, we utilise the volume at state S3. This is

motivated by the fact that V3 is always greater than V2 (see

Fig. 5c), and that the axial stiffness at state S3 was found to

be up to several order of magnitude greater than at state S2

and state S1 for conical Kresling bellows [31].

Geometric parameters φ1, φ2, m, and n are selected as

design variables, along with d1/R for the Miura-ori pattern.

The upper limit for φ1 and φ2 is set to be 85◦ to preclude

structures that are too close to normal cylinders. The pay-

load fairing height determines the integer number of layers

m in the stowed configuration. Manufacturing considerations

place limits on the maximum number of layers (m � 8) and

circumferential unit cells (4 ≤ n ≤ 8). Larger values for

m and n result in an increased number of panels, folds, and

vertices, which will increase the manufacturing and assem-

bly complexity of the origami bellows. The radius of the

circumscribed cylinder Rs in the stowed configuration is set

equal to the fairing radius Rfairing. A minimum dihedral angle

ψmin � 20◦ is used to account for the thickness of the pan-

els in the stowed configuration, which is a constraint for the

optimisation problem. Moreover, the fold pattern geometry

should also lie in the feasible design region bounded by Eqs.

(7)-(9). The constraints are handled using the static penalty

function method [34], with the static penalty factor p selected

as 105 here.

The optimisation design problem can thus be formulated

as follows:

maximise Vd/V f

s.t .

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0
◦

≤ φ1 ≤ 85
◦

0
◦

≤ φ2 ≤ 85
◦

1 ≤ m � Hfairing/Hs ≤ 8

4 ≤ n ≤ 8

0 < d1/R < 2π/n (forMiura − oripattern)

ψ ≥ ψmin � 20
◦

(33)

For the Miura-ori pattern, the structure will experience

radial expansion during the deployment, which will bring

challenges for the design of the bulkhead section at the ends
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Table 1 Parameter settings for PSO and MOPSO

Parameters Value (PSO) Value

(MOPSO)

Population size 3000 3000

Number of generations for Kresling 1500 –

Number of generations for

Miura-ori

500 500

Inertia weight ω 1.0 1.0

Inertia weight damping ratio

ωdamping

0.99 0.99

Personal learning factor C1 1.5 1.5

Global learning factor C2 2.0 2.0

Mutation rate – 0.1

Repository size – 100

of the structure (e.g., maintaining air tightness and ensur-

ing smooth deployment). Therefore, the radial expansion

(Rd/Rs) should also be considered, leading to a multi-

objective optimisation problem:

minimise (−Vd/V f , Rd/Rs )

s.t .

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0
◦

≤ φ1 ≤ 85
◦

0
◦

≤ φ2 ≤ 85
◦

1 ≤ m � Hfairing/Hs ≤ 8

4 ≤ n ≤ 8

0 < d1/R < 2π/n

ψ ≥ ψmin � 20
◦

(34)

Note that for multi-objective optimisation, the deployed

volume is necessarily calculated at state S2, even if the design

parameters approach those of a Kresling pattern.

3.4 Optimisation Algorithm

The PSO [35] and MOPSO [36] algorithms are utilised for

single-objective and multi-objective optimisation, respec-

tively. Details of the algorithms are provided in Appendix

A. The algorithm parameters are selected according to [35,

36] and adjusted for the optimisation problem listed in Table

1.

3.5 Results and Discussion

3.5.1 Single-Objective Optimisation

The geometric parameters of the optimal designs are listed in

Table 2, and the corresponding stowed and deployed config-

urations are presented in Fig. 7. The Convergence histories

are illustrated in Appendix B. For the Kresling pattern, the

achieved volume ratio Vd/V f � 2.56, whilst maintaining

a constant cross sectional area. The increase in volume is

therefore due to the change in height from 0.81 m per layer

in the stowed state to 2.37 m in the deployed configura-

tion. In the case of the Miura-ori pattern, in addition to

the increase in height, the structure also shows a signif-

icant radial expansion during the deployment (Rd/Rs �

1.84). Thus, the Miura-ori pattern can achieve much more

significant volumetric expansion (Vd/V f � 8.31). It is

interesting to observe that the optimal designs of these two

patterns have the same number of layers, and the same

stowed and deployed heights. Furthermore, both patterns

utilise the maximum number of unit cells n � 8. This

can be explained by the exploration of the influence of n,

which shows a trend of increasing volume with increasing

n (see Appendix C). Lastly, the values for φ1 and φ2 are

close to the flat-foldable region (g1(φ1, n) � φ1 − π/n),

minimising the height of the stowed configuration. Relax-

ing constraints on the panel thickness and number of unit

cells could further increase the effective volume. Appendix

D shows the optimal results for different values of n and

ψmin.

3.5.2 Multi-Objective Optimisation

The Pareto front for the multi-objective optimisation is shown

in Fig. 8a. It is not continuous since the design parameters

m and n are integers, and the objective function is highly

nonlinear. Evidently, the two objectives −Vd/V f and Rd/Rs

are in strong competition with each other. The optimal design

is normally chosen from the Pareto-optimal set according to

the designers’ requirements, such as assigning weights for

objectives.

The results of the corresponding single-objective optimi-

sation (SOO) should lie at the extremes of the Pareto-optimal

set. The top-left solution (pointed out in Fig. 8a) on the Pareto

front is also the optimal result for Miura-ori obtained in

Sect. 3.5.1. The bottom-right solution should be the optimal

result for Miura-ori with the objective of minimising Rd/Rs .

The ratio Rd/Rs will reach its minimum (Rd/Rs � 1)

when the Miura-ori reduces to the Kresling pattern. Thus,

the bottom-right solution should be the SOO result for min-

imising −Vd/V f for the Kresling pattern that sets S2 as

the deployed state (solid purple square, −Vd/V f � −2.14,

Rd/Rs � 1.00). However, the optimiser fails to precisely

find that SOO result. This can be explained by the fact

that the optimiser will easily fall into local minima when

it approaches any configuration that is close to the Kresling

pattern (d1/R � 2π/n, d2 � 0), since for every Kresling

pattern, Rd/Rs � 1. Nonetheless, the optimiser has nomi-

nally found the single-objective solutions for both ends of the

design space and provided a Pareto front to enable the selec-

tion of designs that balance the objectives. Here, to limit the

radial expansion ratio and ensure a reliable result, we select

an optimal design with a radial expansion ratio Rd/Rs ≤ 1.5,
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Table 2 Design variables of optimal designs

Algorithm Pattern φ1(◦) φ2(◦) m n d1/R Hs (m) Hd (m) Rd/Rs Vd/V f

PSO Kresling 60.36 38.02 8 8 – 0.81 2.37 1 2.56

Miura-ori 85 63.63 8 8 0.52 0.81 2.37 1.84 8.31

MOPSO Miura-ori 85 60.69 6 7 0.67 1.08 2.97 1.50 4.90

Fig. 7 Stowed and deployed

configurations of optimal designs

obtained by PSO; only active

creases are shown. The stowed

Kresling and Miura

configurations conform to the

same fairing dimensions.

a Kresling pattern (n � 8,

m � 8, φ1 � 60.36◦,

φ2 � 38.02◦, R � 2.14 m,

Vd/V f � 2.56). The cross

sectional area remains unchanged

during deployment, and the

increase in volume is thus due to

the change in height. b Miura-ori

pattern (n � 8, m � 8, φ1 � 85◦,

φ2 � 63.63◦, d1/R � 0.52,

R � 3.96 m, Vd/V f � 8.31,

Rd/Rs � 1.84). In addition to

the increase in height, the

structure also shows significant

radial expansion (Rd/Rs � 1.84)

during deployment, resulting in

improved volume expansion

marked with an asterisk in Fig. 8a. The geometric parameters

of the optimal design are listed in Table 2, and the stowed and

deployed configurations of the optimal design are depicted

in Fig. 8b.

4 Conclusions

In this paper, we investigate the volume of multi-stable

origami bellows in their compatible configurations. The full

geometric design space of bistable Miura-ori and tristable

Kresling bellows is explored. The internal volume of the

structures is shown to increase between different stable states

during the deployment procedure, meaning that these bellows

can be utilised as inflatable self-folding structures.

The application as a deployable space habitat is explored;

the cylindrical origami structure would be stowed during

launch in one stable configuration before expanding to an

extended configuration in orbit. In order to enable fair com-

parison with conventional habitats, we define the stowed

volume and effective deployed volume of the origami habi-

tat. The dimensions of the SpaceX Falcon 9 payload fairing

are used as a case study. Using a particle swarm optimi-

sation (PSO) method, patterns are found that maximise the

volume deployment ratio (effective deployed volume over

stowed volume) of the origami habitat. The results show that

the Kresling pattern can achieve a volume expansion ratio of

2.56, whilst the Miura-ori pattern can reach a ratio of 8.31,

offering significant volume increases compared to a conven-

tional cylindrical habitat. However, the radial expansion of
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Fig. 8 Optimal result of MOPSO for Miura-ori pattern bellows, trad-

ing off the change in deployed volume against the change in deployed

radius. a Pareto-optimal front. The two objectives strongly compete with

each other. The top-left solution on the Pareto front is also the result of

the single-objective optimisation (SOO) for the Miura-ori pattern; the

solid purple square represents the SOO result for minimising −Vd/V f

for the Kresling pattern, setting S2 as the deployed state. An optimal

design is selected by setting the radial expansion ratio Rd/Rs ≤ 1.5, as

represented by a red dashed line and marked by an asterisk. b The

stowed and deployed configurations of the selected optimal design

(n � 8, m � 5, φ1 � 85◦, φ2 � 63.66◦, d1/R � 0.60, R � 3.23

m, −Vd/V f � −4.79, Rd/Rs � 1.50)

the Miura-ori bellows will bring significant challenges for

the design of the bulkhead section at the ends of the struc-

ture. Multi-Objective PSO is therefore used to balance the

volume and radial expansion, allowing a final design to be

selected from the Pareto front.

The current study is a strictly geometric analysis of

origami bellows for space habitats. Panel thickness (for ther-

mal insulation, radiation protection, debris shielding, etc.)

has not been considered, and practical designs would require

careful consideration of the folds and vertices to enable com-

pact stowage whilst maintaining air tightness. Furthermore,

the structural mechanics has not yet been considered either

for modelling the deployment (which requires panel bend-

ing and stretching) or the performance of the final deployed

structure. Considering the various complexities in design

and fabrication, it is at present difficult to assess whether

origami-inspired space habitats are a worthwhile pursuit.

Nonetheless, the present study shows that such deployable

origami structures could offer a significant increase in habi-

tat volume compared to conventional habitats for the same

fairing dimensions. Moreover, the proposed multi-objective

optimisation framework can be extended to include addi-

tional considerations for the design of optimal patterns for

origami space habitats and other engineering origami appli-

cations.
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Appendix A: Optimisation Algorithms

PSO is a bio-inspired method purposed by Kennedy and

Eberhart [35] to simulate the social behaviours in a bird flock

or fish school. It has been successfully used in the optimal

design of non-trivial flat-foldable origami patterns [37]. The

optimisation toolbox used in this paper is from Heris [38].

Particles are firstly initialised to be randomly distributed in

the design space with velocity Vi (t) and position Pi (t). Next,

the velocity vector and position of each particle are updated

based on its own experience Ppbest and its neighbours’ expe-

rience Pgbest according to the following equations [35, 38]:

Vi (t + 1) � ω(t + 1) · Vi (t) + C1 · rand()

·
(

Ppbest − Pi (t)
)

+ C2 · rand() ·
(

Pgbest − Pi (t)
)

(A.1)

Pi (t + 1) � Pi (t) + Vi (t + 1) (A.2)

where Vi (t) and Pi (t) represent the velocity and position of

the particle at iteration t, C1 and C2 are the personal and

global learning parameters, rand() is a random value in the

interval [0,1], Ppbest is the best solution thus far, Pgbest is the

best particle in the entire swarm, and ω(t + 1) is the inertia

weight which controls the trade-off between global and local

experience, which is calculated as follows:

ω(t + 1) � ω(t)ωdamping (A.3)

where ωdamping is the inertia weight damping ratio.

Coello et al. [36] adapted PSO for a multi-objective opti-

misation problem by introducing a repository that stores the

positions of the non-dominated particles. For multi-objective

particle swarm optimisation (MOPSO), Ppbest and Pgbest are

chosen from the repository.

Appendix B: Iteration Histories
of Optimisation Algorithms

Figure 9 illustrates the convergence histories and correspond-

ing geometry at typical iterations, demonstrating the increase

in the function value and change of geometry towards the

optimal design. The Miura-ori pattern converges earlier than

the Kresling since it only seeks solutions with φ1 � 85◦ as

this results in the greatest expansion ratio (see Fig. 5).

Fig. 9 Iteration histories and corresponding geometry at typical itera-

tions, demonstrating the increase in the function value and change of

geometry towards the optimal design. a Kresling pattern. b Miura-ori

pattern. The optimiser only seeks solutions with φ1 � 85◦

Appendix C: Influence of n on Effective
Volume

Here, we explore the influence of the number of circumferen-

tial unit cells n on the effective volume of tristable Kresling

bellows and bistable Miura-ori bellows. Figure 10 presents

the effective volume at the most compressed stable state

(V1/Vs) and the most deployed stable state (Vd/V3 or Vd/V2)

when n increases from 5 to 7 in the geometrically multi-stable

design space. For both crease patterns, the effective volume

shows an overall increase with increasing n. It is intuitive that
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Fig. 10 Influence of n (n � 5, 6

and 7) on the effective volume of

Kresling bellows (m � 1,

φ1 ∈ (0◦, 89◦), φ2 ∈ (0◦, 89◦),

R � 40 mm, ψ > ψmin � 10◦),

and Miura-ori bellows (m � 1,

φ1 ∈ (0◦, 89◦), φ2 ∈ (0◦, 89◦),

R � 60 mm, H � 60 mm,

ψ > ψmin � 10◦) at different

stable states, showing an overall

increase in the effective volume

with the increase in n. Note that

the colour bars indicate that

base-10 logarithms of the volume

ratios to effectively show a larger

range. a Kresling, V1/Vs .

b Kresling, Vd/V3. c Miura-ori,

V1/Vs . d Miura-ori, Vd/V2

with the increase in n, the bellows more closely approximate

smooth cylinders, leading to the increase in effective volume.

It can be observed from Fig. 10a and c that for both Kres-

ling and Miura-ori bellows, V1/Vs increases along the line

closest to the flat-foldable line (g1(φ1, n) � φ1 − π/n), and

when φ2 hits the upper bound, V1/Vs reaches the maximum

value.

For Kresling, Vd/V3 shows a distinct overall increase

when n ranges from 5 to 7. However, the range of Vd/V3

is narrow (from 0.83 to 0.95), indicating that Kres-

ling has an overall ideal effective volume at the most

deployed state (S3). The ratio is relatively large around

the upper boundary of the bistable region f (φ1, n) �

arctan((tanφ1(1 − sin(π/n)))/ (1 + sin(π/n))). In this

region, the angle ψ (here ψ > π/2) is relatively small,

resulting in structures that are close to the corresponding

right prism, and eventually leading to a big effective volume.

Similarly, for Miura-ori, when φ2 increases, ψ will be closer

to π/2 and thus, has a big effective volume.

Appendix D: Sensitivity to Design Variables’
Constraints

The influence of the domain of design variables on optimal

results is briefly studied in this section. In the main paper,

manufacturing considerations set the minimum stowed angle

at ψmin � 20◦ and the number of circumferential unit cells at

nmax � 8. Here, we explore the influence of ψmin and nmax

on optimal designs. Table 3 shows the optimal results when

ψmin � 10◦, 20◦ and 30◦, whilst maintaining nmax � 8. With

the increase in ψmin, the objective function value decreases

since the feasible design space becomes smaller, as shown in

Fig. 5. The Kresling pattern is more sensitive to the change

of ψmin than the Miura-ori pattern. Table 4 shows the optimal

results when nmax � 8, 9, and 10, while keeping ψmin � 20◦.

The table suggests that increasing nmax is an efficient method

to obtain a large deployment ratio, especially for the Miura-

ori pattern.
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Table 3 Optimal designs with

different ψmin
Pattern ψmin(◦) φ1(°) φ2(°) m n d1/R Vd/V f

Kresling 10 85 62.89 8 8 – 4.28

20 60.36 38.02 8 8 – 2.56

30 83.02 62.93 3 8 – 1.74

Miura-ori 10 85 63.44 8 8 0.53 8.40

20 85 63.63 8 8 0.52 8.31

30 85 65.03 7 8 0.46 6.70

Table 4 Optimal designs with

different nmax
Pattern ψmin(◦) φ1(◦) φ2(◦) m n d1/R Vd/V f

Kresling 8 60.36 38.02 8 8 – 2.56

9 62.59 42.88 7 9 – 2.65

10 67.04 49.50 6 10 – 2.72

Miura-ori 8 85 63.63 8 8 0.52 8.31

9 85 66.04 8 9 0.45 10.21

10 85 67.95 8 10 0.39 12.20

Appendix E: Software for Geometry
and Volume Calculation for Miura-ori
and Kresling Bellows

We have developed a MATLAB code [39] to generate the

geometry and calculate the volume for multi-stable Miura-

ori and Kresling bellows. The interface of the software is

shown in Fig. 11. Users choose a crease pattern (Kresling or

Miura-ori) and then, input design parameters (n, φ1, φ2, R, m

and d1/R for the Miura-ori pattern). The software will output

the geometry at each feasible stable state and calculate the

ratio of height change (Hd S2/Hs , Hd S3/Hs), radial expan-

sion (Rd S2/Rs , Rd S3/Rs), internal volume change (V2/V1,

V3/V1), and effective volume change (Vd S2/Vs , Vd S3/Vs).

The geometry of the bellows in the stable states can be

exported into the fold format.
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Fig. 11 Interface of the MATLAB code to generate the geometry and calculate the volume for multi-stable Miura-ori and Kresling bellows
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