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Abstract

Alfvénic motions are ubiquitous in the solar atmosphere and their observed properties are closely linked to those of
photospheric p-modes. However, it is still unclear how a predominantly acoustic wave driver can produce these
transverse oscillations in the magnetically dominated solar corona. In this study we conduct a 3D ideal MHD
numerical simulation to model a straight, expanding coronal loop in a gravitationally stratified solar atmosphere
which includes a transition region and chromosphere. We implement a driver locally at one foot-point
corresponding to an acoustic–gravity wave which is inclined by θ= 15° with respect to the vertical axis of the
magnetic structure and is similar to a vertical driver incident on an inclined loop. We show that transverse motions
are produced in the magnetic loop, which displace the axis of the waveguide due to the breaking of azimuthal
symmetry, and study the resulting modes in the theoretical framework of a magnetic cylinder model. By
conducting an azimuthal Fourier analysis of the perturbed velocity signals, the contribution from different
cylindrical modes is obtained. Furthermore, the perturbed vorticity is computed to demonstrate how the transverse
motions manifest themselves throughout the whole non-uniform space. Finally we present some physical
properties of the Alfvénic perturbations and present transverse motions with velocity amplitudes in the range
0.2–0.75 km s−1 which exhibit two distinct oscillation regimes corresponding to 42 and 364 s, where the latter
value is close to the period of the p-mode driver in the simulation.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Solar atmosphere (1477); Solar
chromosphere (1479); Solar oscillations (1515); Solar coronal loops (1485); Solar coronal waves (1995);
Magnetohydrodynamical simulations (1966)

1. Introduction

Observations of the solar corona over the last few decades

have revealed that transverse oscillations are ubiquitous

throughout (Nakariakov et al. 1999; Tomczyk et al. 2007;

McIntosh et al. 2011; Morton et al. 2015, 2019). These motions

are commonly interpreted as magnetohydrodynamic (MHD)

kink waves, due to the displacement of the axis of the observed

magnetic waveguide (Erdélyi & Fedun 2007; Van Doorsselaere

et al. 2008a). However, some authors have favored the term

“Alfvénic” to classify the observed oscillations as coupled

MHD wave modes in an inhomogeneous environment (e.g.,

Goossens et al. 2009). It is widely believed that Alfvénic

waves, and their associated energy dissipation mechanisms,

may contribute to the problems of coronal heating and

acceleration of the solar wind (e.g., see the review by Van

Doorsselaere et al. 2020). Excellent recent reviews on Alfvénic

waves in a solar context can be found in Banerjee et al. (2021)

and Morton et al. (2023).
Solar p-modes are globally coherent standing resonant

acoustic waves, generated by turbulent convection within the

convection zone, with periods that possess peak power of

around five minutes. These waves are driven by broadband

acoustic noise as a result of photospheric granulation, hence

they possess wave periods corresponding to the rough lifetime

of a granule. Any typical location on the solar surface is
oscillating with an amplitude of a few hundred meters per
second (Ulrich 1970) which results in about 10 cm s−1 per
individual mode (Priest 2014). Solar p-modes have been shown
to leak power into the lower atmosphere, which may be
important to explain some observed dynamics through driving
jet phenomena (De Pontieu et al. 2004; Hansteen et al. 2006;
Heggland et al. 2007; Skirvin et al. 2023) and may be used as a
tool for seismology of the local plasma (Chaplin & Basu 2008).
Typical oscillation periods, in both open and closed magnetic

field configurations, measured in the corona possess peaks at
three to five minutes (De Moortel et al. 2002; Van Doorsselaere
et al. 2008b; Tomczyk & McIntosh 2009; Morton et al. 2016;
Uritsky et al. 2021; Gao et al. 2022), which suggests a connection
to photospheric p-modes with the same peak period. Recently,
Morton et al. (2019) have provided direct evidence of this, using
data from the Coronal Multi-channel Polarimeter (CoMP)

coronagraph, and suggest that the additional flux provided by
p-mode conversion in the solar atmosphere should be incorpo-
rated in wave heating models, where instead it is commonly
ignored. However, the waves excited by p-modes are predomi-
nantly acoustic in nature and face many challenges in their
propagation to the upper atmospheric layers, including the
acoustic cut-off and wave reflection resulting from gravitational
stratification. Whilst our understanding of acoustic wave
propagation has been developed through theories such as the
“ramp” effect (Bel & Leroy 1977; Jefferies et al. 2006), mode
conversion (Schunker & Cally 2006; Cally 2017; Riedl et al.
2019), and mode absorption (Cally 2000; Cally et al. 2003;
Hindman & Jain 2008), the relationship between coronal
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Alfvénic waves and their corresponding p-mode frequency
spectra is still unclear.

In reality, the lower solar atmosphere comprises of a partially
ionised plasma which introduces non-ideal MHD effects on the
conversion of acoustic to magnetic MHD waves. This occurs
either through direct interactions of charged particles with the
magnetic field or via collisional coupling between charged
particles and neutrals. While our aim in this study is to
investigate wave conversion and generation in ideal MHD, it is
worth briefly mentioning the non-ideal effects which are
expected to be present in the lower solar atmosphere. Firstly,
the Hall effect, which arises due to a drift between electrons
and ions, has been shown to introduce a new coupling
mechanism through the presence of the Hall current (Cally &
Khomenko 2015; González-Morales et al. 2019), which may be
responsible for coupling fast magnetoacoustic and Alfvén
waves in the case where there is no cross-field wave
propagation. Additionally, ambipolar diffusion can effectively
dissipate Alfvén wave energy (Khomenko & Cally 2019;
Ballester et al. 2020) when wave frequencies are sufficiently
high (on the order of > 0.1 Hz) (Cally & Khomenko 2019).
Recently, Soler et al. (2021) have demonstrated that these non-
ideal effects are able to sustain the chromospheric heating rate
in the foot-points of coronal loops.

In this study, our primary aim is to investigate whether
p-modes inclined to the vertical axis of a magnetic structure can
produce the observed Alfvénic perturbations in the corona,
within a stratified and structured solar atmosphere. In Section 2
we introduce the numerical model for the simulations. The
results on the excited modes in the simulation are presented in
Section 3, while the observational signatures of such waves are
provided in Section 4. Finally, we present a discussion and
conclusions of our results in Section 5.

2. Methods

2.1. Model

Following the initial setup for the simulations of Riedl et al.
(2021), we use the same coronal loop model of Reale et al.
(2016) featuring a straightened, evacuated loop spanning from
photosphere to photosphere in a cylindrical coordinate system.
In other studies it is common practice to model a coronal loop
as a density enhancement dictated by some smoothly varying
density profile. However, in our case, the loop is “evacuated” in
the sense that it is not defined by a density enhancement,
instead, the radial structuring is provided through an increase in
the magnetic field strength. The original thermodynamic model
is adapted from Serio et al. (1981) and the initial equilibrium is
obtained by numerically relaxing a hydrostatic model over
time, featuring a photosphere, transition region (TR), and
corona, with vertical and straight magnetic field, as done in
Guarrasi et al. (2014). However, as a result of increased plasma
and magnetic pressure at the center of the loop, the magnetic
field ultimately expands in the corona during the equilibration
process. At the foot-points, the magnetic field reaches a
maximum of 273 G which decreases to 13 G at the loop apex at
z= 0Mm, which is appropriate for quiet Sun conditions of the
network field. Furthermore, the total magnetic field decreases
with radial distance across the loop and its magnitude has a
profile which is approximately Gaussian-shaped. To avoid
repeating information on this process in this work, the full

description of how the equilibrium is obtained can be found in
Riedl et al. (2021).
Gravity is incorporated into the model in the form

⎛
⎝

⎞
⎠

( )
( )

( )
p

= -
-

g z g
z z

L
cos , 1

0

where ge= 274 m s−2 is the gravitational acceleration at the

solar surface, z0 is the z-coordinate of the photosphere located

at the base of our numerical domain, and L = 61.61Mm is the

total length of the loop. Taking a gravitational profile in this

form results in a gravitational acceleration acting in the

negative z-direction for z< 0 and in the positive z-direction

for z> 0 with g(0)= 0 m s−2 at the loop apex. Gravity across

the loop is neglected, as is the loop curvature.
The initial model is presented in Figure 1 which shows the

plasma-β= 1 contour along with the position of the TR which,

Figure 1. Full simulation domain taken from Riedl et al. (2021) (top) showing
the equilibrium density. Also shown is the location and strength of the driver (red
dashed line) and the strength of the magnetic field (blue dashed line), both in
arbitrary units. A zoomed-in region delineated by the black dashed box is
displayed in the bottom panel. This figure shows two azimuthal cuts: one taken at
j = 0 corresponding to x < 0, and another at j = π denoted by the region x > 0.
The color shading depicts the background plasma density and selected labeled
magnetic field lines are shown by the solid black lines. The location of the
transition region (gray curve) and the β = 1 layer (green curve) are also marked.
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for simplicity, is defined as the location where the plasma
temperature T = 40,000 K; however, as the TR has a finite
width, the TR contour should be regarded as an approximation.
We also indicate the labels of specific field lines, which are
chosen such that field line 1 is rooted inside the magnetic loop
at the foot-point, whereas field line 2 is rooted at the full-width-
half-maximum (FWHM) of the total magnetic field strength.
Therefore, field line 3 is rooted in a weaker region of magnetic
field and also positioned outside the local wave driver location
(see Section 2.4). These field lines will be used in subsequent
analyses to study how the radial structuring of the plasma
affects wave propagation.

2.2. Numerical Setup and Boundary Conditions

Taking advantage of the azimuthal symmetry of our setup to
reduce computing time, only one half of the loop cylinder is
simulated. This differs from the simulations of Riedl et al.
(2021), where only one quarter of the loop due to the symmetry
of both the equilibrium and of the driver. Our simulation domain
ranges from 0.73Mm to 41.01Mm in the radial direction, from 0
to π in the j-direction, and from −31.31Mm to 31.31Mm in the
z-direction, with 192 × 256 × 768 data points, respectively. The
loop axis is actually located at r= 0; however, we do not
simulate close to this region due to the regular singularity at the
origin of the domain. The numerical mesh is stretched, in the
radial and vertical directions, in certain regimes of the domain to
ensure that increased resolution is obtained closer to the
enhanced region of magnetic field, whereas decreased resolution
is utilized in regions of low stratification such as the upper
corona and at large radial distances away from the center of the
magnetic loop. An exact description of the numerical grid and
resolution in different regimes can be found in Riedl et al.
(2021). The mesh and resulting resolution are uniform in the
azimuthal direction.

The simulations are performed using the PLUTO code
(Mignone et al. 2007, 2012, 2018), where the ideal MHD
equations are solved in 3D cylindrical coordinates using the
Harten–Lax–Van Leer (HLL) approximate Riemann solver,
with a piece-wise total variation diminishing (TVD) linear
reconstruction method for the spatial integration. We utilize
reflective boundary conditions for both boundaries in the r-
direction and anti-symmetric boundary conditions in the j-
direction, where the signs for the tangential components of the
magnetic field and velocity field are reversed. Additionally, we
incorporate anti-symmetric boundaries for the upper-z bound-
ary. At the lower-z boundary, the same boundary conditions are
set; however, the velocity, pressure, and density are perturbed
according to an analytical solution for a gravity–acoustic wave,
given by the description in Section 2.4.

2.3. Vector Component Decomposition

As previously mentioned, a cylindrical coordinate system is
used for the simulation employed in this work. However, due to
the expansion of the magnetic field in the chromosphere and
corona, we do not have a purely vertical magnetic field and it
would be useful to decompose vector components respective to
the background magnetic field vector.

In full 3D simulations, where the magnetic field is not
confined to a 2D geometry, the isolation of MHD waves
becomes non-trivial as there are an infinite number of vectors
normal to the magnetic field vector (Yadav et al. 2022). To help

distinguish between the different types of waves in our
simulation, we adopt a similar decomposition method to that
used in Riedl et al. (2019). The conversion of components from
a cylindrical geometry (r, j, z) to those parallel, perpendicular,
and azimuthal to magnetic flux surfaces is given by

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) ( ) ( )
( )

j j j
=

+ + +
e

B

B B

B

B B

B

B B

cos
,

sin
, , 2

r

r z

r

r z

z

r z
2 2 2 2 2 2

[ ( ) ( ) ] ( )j j= -je sin , cos , 0 , 3

( )= ´jê e e , 4

where e denotes a unit vector in each direction, respectively.

Equations (2)–(4) set up a Cartesian basis describing the vector

decomposition with respect to magnetic field lines for an

equilibrium magnetic field which is structured in the r- and z-

directions in a cylindrical geometry. The component of magnetic

field azimuthal to magnetic surfaces is ignored in the decom-

position due to the field lines being circularly symmetric around

the axis of the loop and no magnetic twist is considered in the

initial model. This decomposition of components parallel,

perpendicular, and azimuthal to the magnetic field lines will be

important in the context of understanding the wave modes which

are present in the simulation.

2.4. Driver

The gravity–acoustic wave driver implemented in this work
perturbs all components of the velocity vector as well as the
plasma pressure and density, taking the form (Mihalas &
Mihalas 1984; Khomenko & Cally 2012; Santamaria et al.
2015)
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Here, A= 300 m s−1 is the driver amplitude, which agrees with

photospheric Doppler oscillations from the contribution of

p-modes (McClure et al. 2019). The relative amplitudes for the

velocity, pressure, and density perturbations are denoted as |v|,
|P|, and |ρ|, respectively; H is the pressure scale height; kz is the

vertical wavenumber, which only has a real part in our case;

ω= 2π/T is the driver frequency, with period T= 370 s, which

is within the typical range of p-mode periods. The variables fv,

fP and fρ are the velocity, pressure, and density phase shifts

compared to the vertical velocity perturbation, v̂z. The acoustic

cut-off and thermally modified acoustic cut-off frequencies are

denoted as ωc and ωg, respectively, where θB is the angle

between the magnetic field and direction of gravitational

acceleration. It is worth noting that the perpendicular

wavenumber k⊥ of the driven waves in this simulation is

constant for all azimuthal angles and all times. This is because

of the sinusoidal dependence on the azimuthal angle j for kj
and the cosine dependence on the azimuthal angle for kr,

resulting in a constant upon adding the square of these values.

The angle of the driver with respect to the vertical axis is

represented by θ and is taken to be θ= 15° in this work; note

that this is similar to a vertical driver incident on a coronal loop

which itself is inclined to the vertical axis. Since we consider

the field-aligned component of gravity, an inclined coronal

loop would result in an appropriate reduction of the gravity

near the loop foot-points. For the inclination angle considered in

this study, this results in roughly a 3% correction to the field-

aligned gravity, which is a very limited modification to the

inclined driver modeled herein. It is evident from Equations (13)

and (14) that when the inclination of the driver, or the loop axis,

is removed (θ= 0), then only waves with a vertical wavenumber

are excited; this specific case study was discussed in detail by

Riedl et al. (2021).
The driver is applied locally at only one foot-point at the

base of the domain, and located inside the loop. This is
achieved by multiplying Equations (5)–(9) by the function

⎜ ⎟⎛
⎝

⎞
⎠

( ) ( )
s

= -D r
r

exp , 22
2

2

where σ is the standard deviation of the Gaussian describing

the width of the driver, which in this study is taken to be σ= 2

Mm. At the photospheric base of the domain, the FWHM of the

Gaussian magnetic field strength is located at r = 2.58Mm,

therefore the driver can be considered to be applied within the

foot-point loop radius.
It is important to note that the initial equilibrium contains

background velocities of up to 18 km s−1 (Reale et al. 2016;
Riedl et al. 2021); therefore, two simulations are run, one
without the implementation of the wave driver and one with the
driver. As a result, the perturbed quantities can be recovered by
subtracting the simulation without a driver from that with the
effects of the driver.

3. Results

3.1. Wave Modes Excited

We wish to investigate if an inclined gravity–acoustic wave
driver can excite higher-order modes of a magnetic cylinder.
Riedl et al. (2021) have shown that a purely vertical driver
excites tube waves which are axisymmetric, when the back-
ground is also axisymmetric, corresponding to the m= 0
sausage mode of a magnetic cylinder. This result is not entirely
unexpected and may explain the axisymmetric perturbations of
structures observed in the lower solar atmosphere (Morton et al.
2012; Moreels et al. 2015; Gao et al. 2021; Grant et al. 2022).
However, with an inclined driver, we expect that tube waves
which are non-axisymmetric in nature, i.e., kink waves, should
also be excited within the magnetic structure. Determining
whether these modes are present in the simulation is important
as kink/Alfvénic motions with peak power associated with
p-modes are readily seen in observations (Tomczyk et al. 2007;
Morton et al. 2019; Gao et al. 2022) and they may carry
significant energy to the corona.

3.1.1. Non-axisymmetric Motions

One of the main distinguishing properties between the m= 0
and |m|= 1 modes of a magnetic cylinder is the perturbation of
the axis of the waveguide. The |m|= 1 mode is the only mode
(in a uniform magnetic flux tube model) that perturbs the
central axis of the magnetic flux tube (Edwin & Roberts 1983),
whereas the m= 0 and |m|> 2 modes do not perturb the axis of
the structure. As our simulation domain does not start at r= 0
(due to the regular singularity at this location), we instead
choose to convert the vectors to a Cartesian geometry and
look at the v̂x component. We adopt a “hat” notation to refer to
perturbed quantities representing those taken from the simula-
tion with the driver minus the simulation without a driver. After
converting to the Cartesian grid, we interpolate the v̂x signal
and take a slice which corresponds to the position of the axis at

4
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x= 0. Shown in Figure 2 are the resulting v̂x amplitudes at two
different heights in the simulations corresponding to photo-
spheric and coronal heights, respectively. For both heights,
there is a clear periodic oscillation of the v̂x amplitude at the
loop axis, denoting the movement of the axis of the structure,
indicating the presence of non-axisymmetric waves. The
photospheric signal displays a smooth sinusoidal signal with
a period corresponding to that of the driver, with the amplitude
of the axis displacement growing in time. On the other hand,
while the coronal signal still displays a periodic behavior, the
signal is more distorted, which may be a result of nonlinear
interactions with the TR. The asymmetry present in the
amplitude of the coronal signal between positive and negative
values is a result of the asymmetry of the inclined driver in a
preferred azimuthal angle, resulting in a v̂x signal which is also
asymmetric; this behavior is more pronounced in the corona,
which can be attributed to the density stratification. None-
theless, there is clear evidence that an inclined acoustic–gravity
wave driver, mimicking that of a p-mode, can indeed displace
the axis of a magnetic structure in the solar atmosphere;
however, we should investigate in more detail the exact
dominance of the wave modes excited.

Additionally, non-axisymmetric motions of a magnetic
cylinder can also be determined by analyzing the radial and
azimuthal velocity perturbations. For example, modes of a
magnetic cylinder with |m|� 1 produce azimuthal velocity
perturbations ( ĵv ), whereas the m= 0 mode does not produce
any azimuthal perturbations to either the velocity or magnetic
field. Figure 3 shows the resulting signals for the radial,
azimuthal, and vertical perturbations of the velocity at a
specific time snapshot in the simulation. The signals are
produced at a radial distance which corresponds to a point lying
on field line 1 in both the photosphere and the corona (see
Figure 1). The signals in both the photosphere and the corona
display similar characteristics, with the only noticeable
difference being that the amplitude of the perturbations is
larger in the corona, which is expected as a result of the vertical
density stratification. The similarity of the signals in the
azimuthal direction can be attributed to the uniformity of the

background model in this direction. The existence of a ĵv
component suggests the presence of higher-order (|m|� 1)
modes present in the simulation. We can see that the ĵv signals
display a sinusoidal behavior with respect to the azimuthal
angle of the magnetic loop, whereas the v̂r signals are cosine in
appearance. This is the expected behavior of the classical kink
motion of a cylindrical flux tube undergoing a transverse
motion, which is a result of the asymmetric inclined p-mode
driver. On the other hand, the v̂r signal also provides
information on the m= 0 sausage motions present in the
magnetic structure. If we were to expect a pure sausage mode
perturbation, then the signal of v̂r would be constant as a
function of j, oscillating in amplitude over time, whereas the ĵv
signal would be zero. It can be clearly seen that the v̂r signal in
the azimuthal direction is not constant, hinting at the existence
of higher-order modes in the loop.
It should be noted here that the amplitudes of the radial and

azimuthal velocity perturbations are still significantly smaller
than the vertical component, v̂z, within which the perturbation
from the driver dominates. Also evident in Figure 3 is the effect
of the inclined driver on the v̂z component in favor of the
azimuthal angle j= 0. For an angle of j= 0, this component
possesses an absolute maximum, which decreases as the
azimuthal angle approaches j= π.

3.1.2. Fourier Analysis of Azimuthal Wavenumbers

To further investigate the excitation of different azimuthal
wavenumbers as a result of the nature of the inclined driver, we
can apply a local Fourier decomposition to quantify the
contribution of different azimuthal wavenumbers as a function
of time at varying heights in our simulation. As the coronal
loop in our setup does not have a defined boundary, denoted by
some discontinuity in density or magnetic field, we instead
choose to take azimuthal Fourier transforms at radial locations
given by the flux surfaces of field lines 1 and 2. As the
magnetic field expands with height to maintain total pressure
balance, the radial position at which we conduct the azimuthal
Fourier decomposition occurs also varies with height. In other
words, the radial location of the Fourier analysis on an

Figure 2. Component of v̂x , after interpolation, taken at a slice corresponding to the center of the loop axis ([x, y] = [0, 0]) as a function of time over the simulation in
(a) the photosphere and (b) above the transition region in the corona.
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individual field line is different in the corona than in the
photosphere. Following the analysis conducted in Terradas
et al. (2018) and Magyar et al. (2022), we adopt a discrete
Fourier transform to analyze the contribution of the different
azimuthal wavenumbers using the obtained profiles of v̂r and

ĵv , for example those shown in Figure 3. We use the notation p
rather than m in order to distinguish between the excited
azimuthal wavenumbers (p) in the simulation as opposed to the
eigenmode solutions (m). It is then possible to write the discrete
Fourier transform, namely the function g, on each flux surface
as

( ) ( ) ( )å=
=

-
- p

G p
N

g k e
1

, 23
k

N
i pk

0

1

N
2

for a discrete set of N samples (p= 0,...,N− 1). In our case, the

analysis is in the azimuthal direction, ranging from 0 to 2π,

where the signals have been extended to cover a full azimuthal

period as they only cover the range of j= [0, π] in the

simulations. This means that instead of k it is more convenient

to introduce the parameter θk= 2πk/N. The contribution of

each excited wave mode p to the total signal can be expressed,

using the inverse Fourier transform, as

( ) ( ) ( )åq = q

=

-

g G p e . 24k

p

N
ip

0

1

k

We note that, similar to Terradas et al. (2018) and Magyar et al.

(2022), the spectrum of excited azimuthal modes is symmetric

about N/2 and the Fourier transform of the signals v̂r and ĵv are

purely real and imaginary corresponding to cosine and sine

components, respectively.
The resulting Fourier analysis is displayed in Figure 4 for the

azimuthal Fourier coefficients on field lines 1 and 2 at
both photospheric (z=−28.3 Mm) and coronal heights (z=
−23.0 Mm). Furthermore, the Fourier coefficients associated
with the driver are also computed at the footpoints of the
respective field lines and shown in Figure 4. Firstly, we observe
that, further away from the axis of the loop, there is increasing

power in the sausage mode compared to the kink mode. This
effect can also be seen in the contribution of the two modes at
the location of the driver where, at larger radii, the amplitude of
the driver is weaker as a result of the Gaussian profile with
σ= 2 Mm, see Equation (22). This behavior is expected as the
amplitude of the inclined driver is reduced at larger radii.
Therefore, the velocity amplitude of the driven waves decreases
with increasing r, which results in a weaker contribution of
magnetic tension (and magnetic pressure) to the restoring force
of the waves. As a result of the amplitude of wave perturbation
decreasing with radial distance from the loop, the driven
transverse waves possess smaller velocity amplitudes further
away from the locally applied driver.
The photospheric signals in Figure 4 suggest that the driven

waves convert into sausage modes in the magnetic loop, as is
clearly seen in the Fourier coefficients of the v̂r component,
although there is also clearly some power in the kink modes, as
anticipated from the previous section. It should also be noted
here that there is no power in the p= 0 axisymmetric modes
from the analysis of the ĵv component, as expected because this
mode does not produce azimuthal perturbations. Some power is
present in higher-order fluting modes (p� 2); however, the
power in these modes is negligible when compared to those
corresponding to p= 0 and p= 1.
Turning the attention now to the coronal signals, we see an

interesting feature of the v̂r Fourier coefficients. Along field line
1, where the magnetic field is stronger compared to field lines
at larger radii, the signals become very steep, resembling a
“saw-tooth” pattern, as a function of time, for all the modes
shown in Figure 4. However, this feature is not seen at larger
radii, for example in the signals displayed on field line 2. A
possible explanation for the steep v̂r Fourier signals in
Figure 4(e) could be an example of shock formation similar
to that of umbral flashes (Yuan et al. 2014; Houston et al. 2018;
Anan et al. 2019). Along field line 1, the magnetic field is
stronger and possesses a greater vertical component than along
field line 2. Although the field is less inclined closer to the
center of the waveguide, and also due to the nature of the
driver, a v̂r component is still present. However, as the field is

Figure 3. Signals of v̂r , ĵv and v̂z over the flux surface corresponding to a point on field line 1 in (a) the photosphere and (b) the corona as a function of azimuthal angle

j for a given point in time (t = 1017 s) in the simulation. The signals have been extended to cover a full period ranging from 0 to 2π in the azimuthal direction.
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Figure 4. Fourier coefficients of v̂r and ĵv in the photosphere (z = −28.3 Mm) and corona (z = −23.0 Mm) around flux surfaces at both field lines 1 (left) and 2

(right). Only the real component of the Fourier coefficient for v̂r and the imaginary component for ĵv are shown corresponding to the cosine and sine contributions,

respectively. The different azimuthal wavenumbers excited are represented by different colors, highlighted in the legend.
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less inclined, there is a stronger Alfvén speed gradient along
field line 1. This gradient is reduced along field line 2 due to the
greater magnetic field inclination. As a result, the wave
steepens along field line 1 (see, e.g., De Pontieu et al. 2004;
Centeno et al. 2006; Yurchyshyn et al. 2014; Grant et al. 2018).
These signatures are not seen in the azimuthal signals as there
is no stratification or magnetic field inclination/variation in this
direction. Additionally, the acoustic cut-off region may play a
role here as the inclined field lines reduce the cut-off frequency
of waves propagating into the upper atmosphere (Felipe et al.
2018; Felipe & Sangeetha 2020), which may also be related to
the cut-off frequency of specific tube waves (e.g., Spruit 1981;
Lopin & Nagorny 2017; Pelouze et al. 2023), although
quantifying the contribution of the modified cut-off frequency
is not within the scope of this study. Furthermore, the steep
saw-tooth behavior could also be an indication of a nonlinear
interaction between the TR and the upward-propagating wave.
The flux of the initial wave front is not transmitted into the
corona; instead it is reflected and causes an oscillating wake of
the TR. The interaction with the moving TR with the next wave
front causes significant flux to be ejected into the corona at
times t= 611 s, t= 916 s, and t= 1267 s; for example see
Figure 5 of Riedl et al. (2021), which corresponds to the times
of the peak amplitudes in the saw-tooth signals along field line
1. The dynamics of the TR is not significantly affected by the
wave fronts at larger radii, as the amplitude of the oscillating
TR has decreased, so this interaction between the TR and the
wave front is not as strong and, as a result, the displayed
Fourier coefficients are smoother in time.

3.2. Vorticity

For the case of a one-dimensional uniform straight cylinder
with constant magnetic field (e.g., Edwin & Roberts 1983),
parallel vorticity, namely the component of vorticity which is
aligned with the magnetic field, is present as a delta function at
the cylinder boundary. However, when the discontinuity in
density is replaced with a continuous variation of density,
Goossens et al. (2012) have demonstrated that vorticity is
spread out over the whole interval with non-uniform density as
a result of non-axisymmetric motions. Furthermore, recently,
Goossens et al. (2019) have shown that in non-uniform plasmas
MHD waves propagate both compression and parallel vorticity.
Additionally, they have shown that the parallel, perpendicular,
and radial components of displacement and vorticity are all
non-zero.

Given the inhomogeneous nature of the atmosphere

considered in our model, we would expect that the non-

axisymmetric motions to produce non-zero vorticity compo-

nents that fill the whole non-uniform space. Figure 5 provides

evidence of this by displaying the vertical component of

vorticity at a given snapshot in time. The vertical vorticity is

shown at three different heights corresponding to the apex of

the structure (at z≈ 0 Mm), a coronal height slightly above the

TR and an additional height located below the TR in the

chromosphere. It is evident that the vertical vorticity occupies a

greater portion of the domain at greater heights, where the

magnetic field lines expand, compared to lower down in the

atmosphere, where the plasma non-uniformity is provided

through the magnetic field and density structuring. The vertical

component of the vorticity is solely present as a result of the

azimuthal motions, provided by the Alfvénic nature of the

Figure 5. Vertical component of the perturbed vorticity ( ˆ ´ v)z at three different heights in the numerical domain including the loop apex (left), corona (middle),
and chromosphere (right).

Figure 6. Perpendicular and vertical component of the perturbed vorticity at the
apex of the magnetic structure for two different times in the simulation: a time
snapshot inside the initial wave front (t < 370 s) and at a later time (t = 934 s).
The color-bar is scaled for all plots to make a comparison between the panels
clearer.
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excited waves and the breaking of azimuthal symmetry due to
the inclined wave driver.

At the apex of the structure, the magnetic field lines are
almost vertical, and the magnetic field inclination is negligible.
As a result, the vertical vorticity can be approximated as the
parallel vorticity and the vorticity perpendicular to the magnetic

field can be approximated by w w w= + j^ r
2 2 . Figure 6

displays the perpendicular and vertical vorticity at two times
during the simulation. During the time period corresponding to
the first wave front from the driver, it is evident that the parallel
vorticity is dominant over the perpendicular vorticity, which is
the expected behavior of a transverse wave and may be related
to resonant absorption of a standing kink mode (Goossens et al.
2011). This is due to the coupling of transverse and azimuthal
motions resulting in the amplitude of azimuthal motions
increasing throughout the region of the non-uniform plasma
(Skirvin et al. 2022). However, at a later time, the values of
perpendicular vorticity significantly exceed those of the parallel
vorticity, hinting that the longitudinal waves dominate the
dynamics of the system. It is interesting to note that the initial
wave front of the driver produces transverse oscillations in the
corona but there is no sign of parallel motions for t< 370 s; this
can also be seen in the coronal signatures of Figure 4. The
absence of signatures corresponding to parallel motions
associated with slow modes in the corona during the first
driven wave period agrees with the study of Riedl et al. (2021)
and also the azimuthal wavenumber analysis presented in
Section 3.1.2.

4. Observational Signatures of Transverse Motions

So far we have provided evidence that a driver at the base of
a magnetic waveguide in a stratified solar atmosphere, such as a
coronal loop, mimicking that of an inclined p-mode incident
from below, can excite tube waves in the magnetic structure
exhibiting similar properties to those associated with kink/
Alfvénic waves. It would be instructive to quantify these waves
in terms of their observational characteristics, such that direct

comparisons between observations and the numerical simula-
tion presented here can be made.
Figure 7 highlights the differences between the parallel and

perpendicular components of the perturbed velocity at the apex
of the loop on field line 1 at an azimuthal slice of j= 0. There
is clearly an absence of parallel motions during the initial wave
front of the driven waves, whereas there are motions
perpendicular to the magnetic field present, attributed to the
presence of Alfvénic waves. The magnitude of the transverse
motions has a peak amplitude of 0.75 km s−1 which is smaller
than some observational results in long coronal loops
(Anfinogentov et al. 2015; Nakariakov et al. 2016), but lies
within the range of the velocity amplitudes (0.6–3.6 km s−1) of
decayless oscillations detected in coronal bright points (Gao
et al. 2022). Furthermore, the velocity amplitude in the
simulation also roughly agrees with some results of previous
spectroscopic observations (Tian et al. 2012).
However, during the second, third, and fourth driving

periods, the amplitude of the transverse velocity reduces to
around 0.2 km s−1, which is both smaller than the initial
velocity and also the values reported in observations. However,
this amplitude is sensitive to the strength of the driver and the
strength of the magnetic field. The transverse oscillations also
propagate in the corona with a phase speed comparable to the
local Alfvén speed which is compatible with Alfvénic
observations made using CoMP (Tomczyk & McIntosh 2009).
As expected, at later times, the motions parallel to the magnetic
field dominate due to the presence of slow modes propagating
at the local sound speed. However, the amplitude of these
motions in the corona could potentially be damped by non-
ideal processes, such as thermal conduction, which is expected
to be important at greater heights where the temperature
increases significantly (Van Doorsselaere et al. 2011; Krishna
Prasad et al. 2018; Duckenfield et al. 2021), although this
aspect is not considered in our current model.
Additionally, we can investigate the periods of the transverse

oscillations present in the simulation. We repeat the time series
of the velocity perturbation perpendicular to the loop axis at
loop apex (z= 0) on field line 1, shown in Figure 8(a). The case
for field line 2 is similar; however, the amplitude of the
perturbed motions is decreased. It can be seen that there is
initially a short-period oscillation, followed by a long-period
oscillation. To further investigate the property of these two
oscillation regimes, we can conduct a wavelet analysis, which
is presented in Figures 8(b) and (c). The wavelet power peaks
at two regions in the spectrum, corresponding to the short-
period oscillation in the beginning and the long-period
oscillation throughout the whole simulation time, respectively.
We can obtain the peak periods from the global wavelet
spectrum, which are 42 and 364 s. The latter value is close to
the period of our p-mode driver (370 s), which suggests that the
long-period oscillation is directly driven by p-modes. As for the
oscillation with a period of 42 s, we believe that this may
correspond to the eigenmode of the loop. The presence of these
two distinct oscillation regimes is interesting; however, a
detailed analysis of this is not the aim of the present study and
will be addressed in future work.

5. Conclusions

In this study, we have shown that an acoustic–gravity wave
driver implemented at the photosphere, mimicking that of solar
p-modes, can produce Alfvénic perturbations in the corona

Figure 7. Perturbed velocities parallel (top panel) and perpendicular (bottom
panel) to the magnetic field at the apex of the loop on field line 1 at an
azimuthal slice corresponding to j = 0. A zoom-in plot is shown for the ˆv

component such that a comparison with the perpendicular velocity can be made
for earlier times in the simulation.
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when waves are driven at an angle to the vertical axis of a
magnetic structure, such as a coronal loop. This setup is also
identical to a scenario where a coronal loop may be inclined
with respect to a vertical driver (Riedl et al. 2019). The
inclination of the driver in this study was taken to be θ= 15°,
which generates predominantly vertical waves, however, it
breaks the azimuthal symmetry of the system. By extending
previous studies we have performed a numerical simulation
using the PLUTO code and analyzed the perturbations of the
resulting modes in the framework of a cylindrical flux tube
model. We have demonstrated that the axis of the waveguide is
perturbed as a result of the wave propagation, which can be
explained through the presence of the m= 1 kink mode;
however, due to the non-uniformity of the plasma in our model,
it may be more appropriate to refer to these resulting motions as
“Alfvénic.” Furthermore, by performing a Fourier analysis in
the azimuthal direction of the domain, we have quantified the
contribution of different modes to the perturbed velocity
signals. We have shown that the cylindrical sausage mode is
the dominant mode in the flux tube (due to the nature of the
driver); however, a clear contribution of the kink mode to the
perturbed signals can be seen, in addition to small contributions
from higher-order fluting modes. The strength of the kink mode
decreases with distance from the central driver as the restoring
force of magnetic tension becomes weaker. We have shown
that the coronal signals display a behavior which is commonly
associated with shock formation, by the development of a saw-
tooth pattern in their velocity signals pattern as a function of
time. This behavior is seen in the radial component of the
perturbed velocity, however, not in the azimuthal component.
This is associated with the inclination of the magnetic field
lines in the gravitationally stratified model. We also computed
the perturbed vorticity to demonstrate that the Alfvénic
fluctuations produce field-aligned vorticity, which occupies
the whole non-uniform space, as predicted from theory.
Additionally, the vorticity analysis identified two separate
vorticity regimes, where the ratio of the parallel to the

perpendicular vorticities change, due to the difference in
propagation speeds between the longitudinal and transverse
waves. Finally, we have shown that the Alfvénic waves with
velocity amplitudes in the range of 0.2–0.75 km s−1 display
two different regimes of wave period corresponding to 42 and
364 s. We attribute these periods to correspond with the
eigenmode of the magnetic loop and the waves related directly
to the driver, respectively. The presence of oscillations with
concurrent wave periods will be the focus of a future study.
We have presented a model of an inclined acoustic driver

incident on a vertical magnetic structure, which, for small
values of inclination, is similar to a model of a purely vertical
driver incident on an inclined loop. In the specific scenario
where the model would not include gravitational stratification,
this setup would be identical to a vertical driver incident on an
inclined magnetic loop. Although, as a result of gravitational
stratification, field-guided MHD waves, such as Alfvén waves
and magnetoacoustic waves in specific plasma-β regimes,
travel further distances through the vertically stratified lower
atmosphere as opposed to those waves travelling along a purely
vertical field and experience a modified effective gravity along
the field. Therefore, care should be taken when modeling
inclination angles that are sufficiently large (i.e. > 30°), as the
correction to the field-aligned gravity may produce a non-
negligible influence on the results. It would be an interesting
future study, with relevance to observations of the solar
atmosphere, to model such acoustic waves incident on an
inclined magnetic structure in a stratified solar atmosphere.
Additional avenues of future studies include a detailed analysis
of mode conversion occurring in the lower atmosphere of the
simulation, as the initial wave driver is predominantly acoustic
in nature; however, the driven waves clearly convert to tube
waves and develop magnetic properties, which is expected to
occur around the equipartition layer (Khomenko & Cally 2012).
Furthermore there is evidence of phase mixing developing in
the simulation, due to the cross-field structuring, which may
display observable signatures (Kaneko et al. 2015). A more

Figure 8. (a) Time series of the perpendicular velocity perturbation at loop apex (z = 0) on field line 1. (b) Wavelet spectrum of the time series, with darker colors
representing stronger powers. (c) Global wavelet spectrum of the time series. The dashed lines in (b) and (c) represent a significance level of 95%.
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detailed discussion regarding the energetics of the excited
waves should be undertaken in order to quantify their role in
the energy budget of the solar atmosphere and how they may
contribute to the coupling of various atmospheric layers.
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