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Abstract

What happens when a warp bubble has mass? This seemingly innocent question forces

one to carefully formalize exactly what one means by a warp bubble, exactly what one

means by having the warp bubble “move” with respect to the fixed stars, and forces

one to more carefully examine the notion of mass in warp-drive spacetimes. This is

the goal of the present article. In this process, we will see that often-made throw-away

comments regarding “payloads” are even simpler than commonly assumed, while there

are two further, distinct yet subtle ways in which a mass can appear in connection

with a warp drive space-time: One, that the warp bubble (not its payload) has the

mass; two, that the mass is a background feature in front of which the warp drive

moves. For simplicity, we consider generic Natário warp drives with zero-vorticity

flow field. The resulting spacetimes are sufficiently simple to allow an exact and

fully explicit computation of all of the stress-energy components, and verify that (as

expected) the null energy condition (NEC) is violated. Likewise the weak, strong, and

dominant energy conditions (WEC, SEC, DEC) are violated. Indeed, this confirms

the community’s folk wisdom, and recent (fully general, but implicit) results of the

present authors which closed previous gaps in the argument. However, folk wisdom

should be carefully and critically examined before being believed, and the present

examples for general results will greatly aid physical intuition.
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1 Introduction

Warp bubbles and warp drives by now have a quite extensive 27-year history in the

general relativity community. First formulated by Alcubierre in 1994 [1], two dis-

tinct modifications (zero-expansion and generic) were subsequently developed by

Natário [2] in 2001. Considerable work along these lines has continued [3–21], largely

focussing on the Alcubierre and Natário zero-expansion variants, culminating in a

recent focus on zero-vorticity warp drives [22–25], and the closely related, and very

recently introduced notions of tractor/pressor/stressor beams [26, 27].

A mainstay in warp drive research past and present has been the study of energy

conditions in such space-times, just as in many other reverse-engineered space-time

geometries such as wormholes, the Gödel universe, or Krasnikov hypertubes. Specif-

ically, this last year has seen multiple misguided claims [22–24, 28–33] as to the

asserted possible avoidance/amelioration of the known energy condition violations in

warp drive spacetimes; violations that were first established over 20 years ago, to vary-

ing degrees of generality. We have previously provided [25], for the first time, a full

proof of NEC violations in all generic Natário warp drive spacetimes (using implicit

arguments in the form of a proof by contradiction), thereby firmly establishing that

those claims of non-violation are irretrievably erroneous. In the current article we

will focus on the zero-vorticity case of Natário warp drives to provide a particularly

simple, straightforward and fully explicit calculation showing exactly where the key

difficulty lies. In counterpoint we should specifically mention that energy condition

violations are not the absolute prohibition that they have often been taken to be in

123



ADM mass in warp drive spacetimes Page 3 of 19 14

the past—energy condition violations are instead an invitation to think very carefully

about the underlying physics [25–27, 34–36].

Additionally, and possibly more importantly than yet-another demonstration of

violated energy conditions, this allows for the first time an explicit discussion of

the meaning of mass in warp drive space-times. We start by asking the innocent

sounding question “What happens when one puts a Schwarzschild black hole into

a warp bubble?”. Answering this question forces one to focus on several basic and

fundamental issues: What does one mean by a moving warp bubble? How does one

formalize the notion of mass for a warp bubble?

In order to answer these questions, we shall first set up the general framework

(making use of the asymptotic flatness of generic Natário warp drives), including

a discussion of three distinct notions of mass in a warp bubble context. (That the

notion of mass in any general relativistic context is a subtle one might be gleaned

from references [37–39], and the textbook discussions in [40, Chapter 19] and [41,

Chapter 11.2].) We then specialize to zero-vorticity warp bubbles, (which are closely

related to the Painlevé–Gullstrand version of Schwarzschild spacetime), and carefully

distinguish a moving zero-vorticity warp bubble from, for instance, the Painlevé–

Gullstrand version of Schwarzschild spacetime.

This allows us to define a precise notion of motion (of the warp bubble with

respect to the fixed stars), and explicitly calculate the stress-energy tensor. Within this

zero-vorticity framework we then first develop a Schwarzschild-based warp drive—

wherein a Schwarzschild black hole is embedded in a warp bubble, and then develop a

more specialized framework suitable for describing a finite-mass payload (spacecraft)

embedded in a warp bubble. The zero-vorticity case is sufficiently simple to allow fully

explicit computation of the stress-energy, and explicitly verify violations of the NEC.

In this regard the zero-vorticity warp bubble closely follows the fully explicit com-

putations that have previously been carried out for the Alcubierre and zero-expansion

warp bubbles.

The article is organized as follows: In Sect. 2, we introduce the notation used in

this paper, and the geometry and basic facts of the generic Natário warp drive. We

also explain the three distinct physical ways in which a warp drive spacetime can be

combined with relativistic notions of mass. Two of these are investigated subsequently.

Section 3 then gives the special zero-vorticity case of the generic Natário warp drive on

which we will build our analysis. In Sect. 4, we define a warped Schwarzschild space-

time, colloquially referred to as a “black-warp spacetime”, a Schwarzschild black hole

engineered to move through spacetime in a prescribed manner, and then investigate its

properties. Subsequently Sect. 5 replaces the central black hole by a regular finite-mass

payload inside the warp bubble. In Sect. 6, we conclude and discuss future directions.

2 Natário generic warp drives

Let us first discuss generic Natário class of warp drives [2]. This generic Natário class

is broad enough to cover almost all of the relevant literature.
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2.1 Metric, co-tetrad, and tetrad

The Natário generic warp bubbles all have line elements explicitly of the form [2]:

ds2 = −dt2 + δi j (dx i − vi (t, �x)dt) (dx j − v j (t, �x)dt). (2.1)

The spatial 3-slices are flat Euclidean space; the lapse function is unity; all of the

physics is encoded in the flow vector vi (t, �x), which is the negative of what is usually

called the shift vector in the ADM formalism [42, 43]. Furthermore, this space-time is

assumed to be asymptotically flat. Originally/Traditionally warp drives are subject to

the added assumption of global hyperbolicity, but we think this is a misleading property

to assume, as many of the more problematic features of warp drives space-times can

then not be properly discussed.1

Also note that this set-up certainly includes more than just warp drives:

Schwarzschild in Painlevé–Gullstrand coordinates is contained in this form. This will

play a role in what is to come in Sect. 4. Also, the static patch of the de Sitter uni-

verse can in suitable coordinates be cast in this form, as can all spatially flat FLRW

spacetimes [44]. Neither of these examples can or should be considered a warp drive.

Since—apart from warp drives themselves—it is clear that other space-times (or parts

of space-times) can fit into this general Painlevé–Gullstrand form, it is important to

raise the question: How can we safely tell apart a warp drive from a non-warp metric

in unusual coordinates? As a first step in order to answer this question, an additional

interpretative dance around the flow vector vi (t, �x) has to be undertaken.

Usually, this involves giving the flow vector a “Newtonian” interpretation, whatever

this means in general relativity, and wilfully ignoring the fact that the previous non-

warp-drive examples allow this interpretation just as well. Still (and sadly?) this is

needed to make the very important distinction between superluminal and subluminal

warp drives (vivi > 1 and vivi < 1, respectively). Below, in Sect. 3.1, we will employ

a co-moving perspective to make this pseudo-Newtonian picture of vi clearer. A good,

additional requirement is then to demand that this metric is not static. This gives a

better notion of movement, though it remains somewhat unclear if this asymptotic

flatness and non-staticity are enough to exclude non-warp space-times.

Back to our main line of inquiry: From this line element one can easily read off a

suitable orthonormal co-tetrad

et̂
a dxa = dt; eî

a dxa = dx i − vi dt; (2.2)

and the corresponding orthonormal tetrad

et̂
a ∂a = ∂t + vi ∂i ; e

î
a ∂a = ∂i . (2.3)

1 And we would like to caution the reader that this assumption might possibly invite proponents of faulty

logic, who then conclude the absence of causality issues in superluminal warp drives based on its assumed

global hyperbolicity. Much more serious physics issues than the energy condition can occur and need to be

addressed in warp drive space-times. A minimal definition ensures easy access to these discussions.
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Viewed as 4 × 4 matrices these are simply

eb̂
a =

[

1 0

−v j δ j
i

]

and e
b̂

a =
[

1 +vi

0 δ j
i

]

, (2.4)

which satisfy the orthogonality conditions

eb̂
a eĉ

a = δb̂
ĉ; and eb̂

a e
b̂

c = δa
c. (2.5)

It is then a straightforward if somewhat tedious exercise to use the ADM formalism

to calculate all of the orthonormal components of the Riemann, Ricci, and Einstein

tensors—see reference [25] for full details.

A useful feature of these co-tetrads and tetrads is to note that the (space)–(space)

portion is just the ordinary Kronecker delta, an observation which can be used to

simplify the (space)–(space) portion of many calculations. For instance for any T 0
2

tensor Xab we have

X
î ĵ

= e
î
a e

ĵ
b Xab = e

î
j e

ĵ
k X jk = δi

j δ j
k X jk = X i j . (2.6)

So for covariant spatial indices, within the Natario generic class of spacetimes, one

need not bother distinguishing orthonormal form Cartesian components.

2.2 Three specific simplified sub-classes

There are three major specific simplified sub-classes of the generic Natário class of

warp drives that are of particular interest.

Alcubierre: For the Alcubierre warp bubble the flow field �v(t, �x) is auto-parallel.

That is

�v(t, �x) = v(t, �x) v̂; v̂ = (constant). (2.7)

In this situation explicit computation shows that the NEC, and so the SEC, WEC

and DEC, are all explicitly violated. See specifically the original discussion in [1],

and the subsequent follow-up discussions in [12–17], and [20, 21].

Zero-expansion: For the zero-expansion warp bubble the flow field �v(t, �x) is taken to

be solenoidal (divergence free). That is

∇ · �v(t, �x) = 0. (2.8)

In this situation explicit computation shows that the NEC, and so the SEC, WEC

and DEC, are all explicitly violated. See specifically the original discussion in [2],

and subsequent follow-up discussions in [14–17], and [20].

Zero-vorticity: For the zero-vorticity warp bubble the flow field �v(�t, x) is potential.

That is [22–24],

�v(t, �x) = ∇�(t, �x). (2.9)

In this situation the NEC, and so the SEC, WEC and DEC, energy conditions are

still violated.
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Many of the early discussions of energy condition violations in warp drive space-

times often relied on either approximations or specific choices for the flow field to

facilitate easy calculation. As said in the introduction, in previous work [25], the present

authors provided a first, general proof of NEC violations of the generic Natário warp

drive. While the proof of NEC violations is fully general, it proceeds indirectly (a

proof by contradiction) and hence implicitly—the proof cannot tell explicitly where

energy condition violations happen; just that they must occur.

It is the zero-vorticity warp bubble that we shall focus on in the current article.

Specifically, this is the form most appropriate to make the appearance of notions of

mass in a warp drive explicit, as it can be easily compared to Schwarzschild in Painlevé–

Gullstrand form. Additionally, we shall make use of its simplicity to highlight where

violations of the NEC occur, independent of mass. This should provide the added

benefit of yielding better intuition for the general proof of [25].

2.3 ADMmass in warp drive spacetimes

Ever since their inception, a common side remark concerning warp-drive spacetimes

was how the presence of a finite-mass space-ship (the payload) inside the warp bubble

might or might not change the technical details. In this section we shall briefly explain

why this particular concern is not really all that troublesome, and how non-zero masses

actually can play a role in warp drive metrics. At a minimum, there are three distinct

ways in which mass can appear in a warp drive metric:

A As a mass (a payload, presumably a space-ship) inside the warp bubble.

B As the mass of the warp bubble itself (for sufficiently high mass this could be

called a “black warp”).

C As an external mass the warp drive is passing by.

First of all, case A: Warp drives are a prime example of metric engineering, specifi-

cally reverse engineering. As a reverse-engineered metric, it need not concern itself

with possible interaction between its constituent parts: The metric is already fixed,

essentially it is given by fiat. To illustrate this, take any massive space-time metric gM

and any warp metric gwarp. Suppose that the interior of the warp bubble has roughly

radius R, and write the geodesic distance from the warp bubble’s centre as r . Now, let

fR(r) ≥ 0 be a smooth bump function centred on the middle of the warp bubble, such

that fR(r) = 0 for any r ≥ R, and fR(r) = 1 for some inner radius R0 < R. Any

sufficiently advanced civilization interested in reverse-engineering spacetime metrics,

(not just in the sense of the purely mathematical, technical meaning of “metric engi-

neering” as it is used in this article!), could now easily engineer a new metric

g ≡ (1 − fR(r)) gwarp + fR(r) gM . (2.10)

Inside the warp bubble, within the radius R0, this will just be the metric of the mass

inside. After a distance R from the centre is reached, only the warp drive metric

contributes. In between R0 and R, the technology (indistinguishable from magic) of

the arbitrarily advanced civilization will enforce a smooth transition between these

two parts. Most importantly, the mass of the whole space-time will only depend on
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the warp bubble itself, as the new metric gwarp effectively screens and possibly can-

cels completely the interior mass. In spirit, this may remind some readers of various

proposals for regular black holes. Variations on this will be discussed in Sect. 5.

This brings us to the second possibility, that of case B, that the warp bubble itself has

a non-zero mass. This is most easily described in the Natário framework for generic

warp bubbles (2.1), wherein the warp drive metric is not just locally in ADM form,

but actually is also globally hyperbolic. In this framework the ADM mass is defined

by the large-distance asymptotic falloff in the flow vector

vi (t, �x) = vi
0(t) +

√

2M

r
r̂ i + O(r−3/2). (2.11)

Then this case B simply means that this warp metric has a finite ADM mass. For this

reason, we will call this a “Schwarzschild-based warp drive” in Sect. 4 below. There

are one quirky, and two important things to notice here. Starting with the important,

moving to the quirky:

• One, most extant warp drive metrics have ADM mass that is identically zero, as it

keeps the headaches for interpreting the metric to a minimum. Specifically, both

the Alcubierre and zero-expansion warp drives have identically zero ADM mass;

whereas the zero-vorticity warp drive can, but need not, have a non-zero ADM

mass. One does however want the ADM mass to be both non-negative and finite.

A negative ADM mass is observationally disfavoured, astronomers have looked

for such objects and not seen them [45], and is also theoretically disfavoured [46,

47]—causing problems for both chronology protection and gravitational lensing;

one would expect unusual caustics which do not seem to correspond to anything

astronomers have ever seen [48, 49]. Infinite ADM masses are perhaps worse; com-

pletely undermining the notion of asymptotic flatness. Put differently, finiteness of

the ADM mass places mild constraints on the fall-off of the metric components, for

them not to be picked up by the integral in the equivalent formulation M =
∫

ρ dV

of the ADM mass [25].

• Two, as this discussion only depends on the asymptotic fall-off region of the

warp bubble, this ADM mass is—according to the previous paragraph—entirely

independent of whatever masses might be hidden inside the warp bubble.

• Three, speaking about hiding: If the warp bubble’s mass is significant enough to be

hidden behind a horizon, one could properly call this a “black-warp” space-time.

Here, it would be some kind of compact horizon buzzing (or crawling…) through

space-time, reminiscent of the interpretation of the C-metric as an accelerated

black hole—albeit with no strings attached [50, 51].

Implementing option C can be significantly harder: Here, the idea is to let the warp

drive move through another space-time that possibly has a finite mass M of its own.

The simplest example to imagine is a warp bubble moving outside of, and manoeuvring

around, a Schwarzschild black hole. (Especially a superluminal warp drive might have

interesting, geometric things to say about how the compact black hole horizon and the

non-compact warp drive horizon entwine; but that is another story and shall be told

another time).
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The most common examples, (albeit without a mass), are attempts (usually unsuc-

cessful or otherwise doubtful for various reasons) to implement a warp bubble together

with a cosmological constant. If we now focus on the mass aspects of this situation, it is

easiest to interpret if the warp bubble by itself generates no mass contributions. Essen-

tially, this means that in this situation the warp drive metric is to be engineered as a zero

ADM mass example of the second option, and then added to the “background” metric

gM of ADM mass M in a comparable but inverted way to the previously discussed

option (2.10):

g ≡ (1 − fR(r)) gM + fR(r) gwarp. (2.12)

This would, however, be by far not the only possibility. Any less obvious change to

the metric gM would require very careful thought as to whether or not other features,

that should not change, might have changed.

If the warp drive part has a non-vanishing mass by itself, this will likely lead to subtle

issues of disentangling the masses—a common issue with notions of mass in non-

static situations. (Remember that the warp drive itself should be moving; the metric

hence cannot be static!) This is not unique to this (rather unphysical) context. General

relativity simply eschews straightforward implementations of notions of (total) mass

and quasi-local mass based on the more familiar Newtonian gravity. (See for instance

references [37–39], and the textbook discussions in [40, Chapter 19] and [41, Chapter

11.2]). In particular, this should make us very worried if a “metric-engineered” warp

drive (by itself or with a “background” metric) has an undefined (vulgo: infinite) ADM

mass.

Lastly, it is obviously possible to combine the cases A to C in varied ways. As this

only obfuscates otherwise easily discussed physics, we will opt not to indulge in this

needless complication.

3 Zero-vorticity warp drives

Let us now adapt and extend some of the discussion above, to refine the definition of

a zero-vorticity warp bubble.

3.1 Metric: the notion of motion

For zero vorticity we can explicitly write the metric (line element) in the form:

ds2 = −dt2 + δi j (dx i − ∇ i�(t, �x) dt) (dx j − ∇ j�(t, �x) dt), (3.1)

Let us now extend the previous discussion, to make it more precise and manageable.

Specifically, we will aim to divide the spacetime geometry into a “base geometry” and

a “warp field”.

To make the warp bubble interesting, you want it to “move”. The easiest way to

do this is (we shall soon note at least one alternative) to ensure that �(t, �x) really is
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time-dependent, and the easiest way to ensure that is to enforce

�(t, �x) → �(�x − �x∗(t)) . (3.2)

That is, the zero-vorticity warp drive line element is taken to be

ds2 = −dt2+δi j

(

dx i − ∇ i�(�x − �x∗(t)) dt
) (

dx j − ∇ j�(�x − �x∗(t)) dt
)

. (3.3)

This is to be interpreted as follows: Start with some static asymptotically flat “base”

spacetime geometry, described by the line element

(ds0)
2 = −dt2 + δi j

(

dx i − ∇ i�(�x) dt
) (

dx j − ∇ j�(�x) dt
)

, (3.4)

where we choose �v(�x) = ∇�(�x) → 0 at spatial infinity. We then subject this “base”

spacetime to a time-dependent spatial translation �x∗(t), the “warp field”. This is man-

ifestly a specific example of a zero-vorticity warp drive, and it is important to note that

the instances of vorticity-free warp drives given in [22–24] explicitly fall under this

classification. This particular version of the warp bubble has been carefully chosen

to make the flow vector asymptote to zero at large distances—so in this coordinate

system the “fixed stars” are at rest, while the “warp bubble” is moving.

ds2 → (ds∞)2 = −dt̄2 + δi j dx̄ i dx̄ j . (3.5)

Alternatively, one could choose coordinates x̄a comoving with the warp bubble:

t = t; x̄ i = x i − x i
∗(t); (3.6)

so that

dt = dt; dx̄ i = dx i − ẋ i
∗(t) dt = dx i − vi

∗(t) dt . (3.7)

In these comoving coordinates the spacetime metric is

ds̄2 = −dt2 + δi j

(

dx̄ i − [∇ i�(x̄k) + vi
∗(t)] dt

) (

dx̄ j − [∇ j�(x̄k) + v
j
∗(t)] dt

)

.

(3.8)

At spatial infinity, where vi (x̄k) = ∇ i�(x̄k) → 0, we see that

ds̄2 → (ds̄∞)2 = −dt̄2 + δi j

(

dx̄ i − vi
∗(t) dt

) (

dx̄ j − v
j
∗(t) dt

)

. (3.9)

So in these coordinates it is the “warp bubble” that is “at rest”, while the “fixed stars”

are moving.
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Either one of these two coordinate equivalent spacetime line elements,

ds2 = −dt2 + δi j

(

dx i − ∇ i�(�x − �x∗(t)) dt
) (

dx j − ∇ j�(�x − �x∗(t)) dt
)

,

(3.10)

ds̄2 = −dt2 + δi j

(

dx̄ i − [∇ i�(x̄k) + vi
∗(t)] dt

) (

dx̄ j − [∇ j�(x̄k) + v
j
∗(t)] dt

)

,

(3.11)

represents exactly the same spacetime physics, and they are equally valid ways of

representing the warp bubble—which one you use is a matter of choice—but however

one does it, one needs either the explicit spatial shift x i
∗(t) or the warp flow vi

∗(t) =
ẋ i
∗(t) to encode the “notion of motion” of the warp bubble with respect to the fixed

stars.

In either situation, either by setting the spatial shift x i
∗(t) → 0, or by setting the

flow vi
∗(t) → 0, one recovers the same “base” spacetime geometry

(ds0)
2 = dt2 + δi j

(

dx i − ∇ i�(�x) dt
) (

dx j − ∇ j�(�x) dt
)

. (3.12)

(For the base geometry, since one has switched off the warp bubble, one does not need

to distinguish x i from x̄ i ).

Now that we have refined the zero-vorticity notion of warp drive by introducing

these notions of “base” and “warp”, we can ask more precisely targeted question such

as this: “How precisely does the stress-energy tensor change when you switch the

warp field on or off?”. Fortunately all of the relevant tools have been developed in

earlier work [25].

3.2 Einstein tensor and stress-energy tensor

For the generic Nararió warp drive, and so also for the zero-vorticity warp drive, we

have previously determined the full stress-energy tensor in [25]. Let us now split the

zero-vorticity warp bubble into “base” and “warp” and adopt comoving coordinates,

dropping the over-bar on the x̄ i for brevity, so that

ds2 = −dt2 + δi j

(

dx i − [vi (xk) + vi
∗(t)] dt

) (

dx j − [v j (xk) + v
j
∗(t)] dt

)

.

(3.13)

(ds0)
2 = −dt2 + δi j

(

dx i − vi (�x) dt
) (

dx j − v j (�x) dt
)

. (3.14)

For the extrinsic curvature Ki j = v(i, j), using the fact that the warp field vk
∗(t) is

spatially constant, ∂iv
k
∗(t) = 0, we have the particularly simple result that

Ki j = (K0)i j . (3.15)
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In these comoving coordinates, the extrinsic curvature does not change as you switch

on the warp field. In contrast, for the Eulerian 4-velocity we have

na =
(

1; vi (xk) + vi
∗(t)

)

= (n0)
a +

(

0; vi
∗(t)

)

. (3.16)

This is a simple linear sum of the base spacetime contribution and the warp field con-

tribution. This in turn affects the Lie derivatives of the extrinsic curvature. Specifically

Ln K = Ln0 K + vi
∗(t) ∂i K , (3.17)

and

Ln Ki j = Ln0 Ki j + vk
∗(t) ∂k Ki j . (3.18)

Feeding this into the Einstein tensor, for the tetrad components we find

Gnn = (G0)nn; Gni = (G0)ni ; Gi j = (G0)i j +vk
∗(t) ∂k[Ki j −K δi j ]. (3.19)

Applying the Einstein equations, for the tetrad components one has

ρ = ρ0; fi = ( f0)i ; Ti j = (T0)i j + 1

8π
vk
∗(t) ∂k[Ki j − K δi j ]. (3.20)

So we see that it is only the spatial parts of the stress-energy that are affected by

switching on the warp field—and even then the effect is rather simple—a contribution

linear in the warp field vk
∗(t).

If we explicitly make use of the zero-vorticity condition then one sees

ρ = ρ0; fi = 0; Ti j = (T0)i j + 1

8π
vk
∗(t) ∂k[�,i j − ∇2�δi j ]. (3.21)

Now consider the average pressure p̄ = 1
3
δ î ĵ T

î ĵ
= 1

3
δi j Ti j . From the above we

have

p̄ = p̄0 − 1

12π
vk
∗(t) ∂k∇2�. (3.22)

We can rewrite this as

p̄ = p̄0 − 1

12π
�v∗ · ∇(∇2�) (3.23)

Furthermore for the quantity (ρ + p̄) that is of direct relevance to testing the NEC

(ρ + p̄) = (ρ0 + p̄0) − 1

12π
�v∗ · ∇(∇2�) (3.24)

Note the effect of switching on the warp bubble is linear in the warp field vk
∗(t).
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4 Schwarzschild-based warp drive

Now, using the framework developed above, let us develop the notion of a

Schwarzschild-based warp drive—the above option B that might at times be called a

black-warp space-time.

4.1 Schwarzschild spacetime in Painlevé–Gullstrand form

It is well-known that Schwarzschild spacetime can be represented in Painlevé–

Gullstand form as follows:

ds2 = −dt2 + δi j

(

dx i −
√

2m/r r̂ i dt
) (

dx j −
√

2m/r r̂ j dt
)

, (4.1)

Here r = |�x | =
√

x2 + y2 + z2, and r̂ i is the radial unit vector: r̂ i = x i

r
= x i

|�x | .
This is fully equivalent to writing

ds2 = −dt2 + δi j

(

dx i −
√

2m
x i

|�x |3/2
dt

) (

dx j −
√

2m
x j

|�x |3/2
dt

)

. (4.2)

When written in this manner the Schwarzschild spacetime has a number of interesting

features, including the fact that these coordinates are horizon-penetrating, and that

the so-called “drip” geodesics (corresponding to radially infalling geodesics that start

from spatial infinity with zero 3-velocity) are particularly simple. (See for instance

references [52–54]). The relevant potential � is easily seen to be

�(�x) = 2
√

2mr = 2
√

2m ||�x ||. (4.3)

(This is not the usual Newtonian potential).

4.2 Line element for Schwarzschild-based warp drive

Elevating the Painlevé–Gullstrand form of Schwarzschild to a Schwarzschild-based

warp drive (black-warp spacetime) merely amounts to the replacement �x → �x − �x∗(t)
so that the spacetime metric becomes:

ds2 =−dt2+δi j

(

dx i −
√

2m
x i − x i

∗(t)
|�x − �x∗(t)|3/2

dt

) (

dx j −
√

2m
x j − x i

∗(t)
|�x − �x∗(t)|3/2

dt

)

.

(4.4)

In this coordinate system the “fixed stars” are “at rest” and the warp bubble is “moving”.

At large distances

ds2 = −dt2 + δi j dx i dx j . (4.5)
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If we change to comoving coordinates x̄ i = x i − x i
∗(t) then by our previous

arguments the black-warp line element becomes

ds̄2 =−dt2+δi j

(

dx̄ i −
[√

2m
x̄ i

|�̄x |3/2
+vi

∗(t)
]

dt

) (

dx̄ j −
[√

2m
x̄ j

|�̄x |3/2
+v

j
∗(t)

]

dt

)

.

(4.6)

In this coordinate system the “fixed stars” are “moving” and the warp bubble is “at

rest”. At large distances one now has

(ds̄∞)2 = −dt2 + δi j

(

dx̄ i − vi
∗(t) dt

) (

dx̄ j − v
j
∗(t) dt

)

. (4.7)

4.3 Energy conditions for Schwarzschild-based warp drive

In view of the fact that the “base” stress-energy is zero for Schwarzschild spacetime, in

coordinates moving with the Schwarzschild-based warp drive we have the very simple

results

ρ = 0; fi = 0; Ti j = 1

8π
vk
∗(t) ∂k[�,i j −∇2�δi j ]; � = 2

√
2mr . (4.8)

Without any calculation, since ρ = 0, while Ti j 
= 0, we immediately deduce DEC

violations.

Furthermore taking the spatial trace

p̄ = 1

3
δ î ĵ T

î ĵ
= 1

3
δi j Ti j = − 1

12π
vk
∗(t) ∂k∇2�. (4.9)

Note that

∇2
√

r = ∇ ·
(

1

2
r−1/2 r̂

)

= ∇ ·
(

1

2
r−3/2 �r

)

= 3

4
r−3/2, (4.10)

and consequently

∂k∇2� = −9

4

√
2m r−5/2 (r̂)k (4.11)

Thence

p̄ = 3

16π

√
2mr

r3

{

�v∗(t) · r̂
}

. (4.12)

But the key observation here is that the inner product
{

�v∗(t) · r̂
}

changes sign as

one moves from front to back of the warp bubble; therefore there are regions (an

entire hemisphere in fact) where p̄ is negative. Since ρ = 0 by construction, there

is consequently an entire hemisphere where ρ + p̄ < 0 and the NEC is explicitly

violated. (So, since DEC �⇒ WEC �⇒ NEC, and SEC �⇒ NEC, the explicit

violation of the NEC implies that all of the SEC, WEC, and DEC are also violated).
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5 Regular warp bubble containing amassive payload

Let us now modify the Schwarzschild-based warp drive (black-warp spacetime), to

bring it more into line with what we would expect a warp bubble containing a payload

(spacecraft) to look like. As discussed in Sect. 2.2, we can expect this to have sur-

prisingly little impact on the physical situation based on general arguments. However,

there is nothing like practice to understand something, so let us re-examine the NEC in

this context once more. Having done so, we can then also slightly modify and further

generalize the argument.

5.1 Localized regular base spacetime

To avoid horizons and singularities, and more closely envisage the notion of a spaceship

embedded in a warp bubble, one can modify the base spacetime by making it regular at

short distances and Schwarzschild at large distances. Specifically choose some finite

radius a > 2m and set:

�(r) =

⎧

⎨

⎩

O(r2) r < a;
differentiable r = a;
2
√

2mr r > a.

. (5.1)

The �(r) = O(r2) condition keeps the curvature and stress-energy finite at the ori-

gin. (The location of the spacecraft). The differentiability condition at r = a keeps

∇� continuous, and so keeps the metric continuous. (Hence the Christoffel symbols

are at worst discontinuous and the Riemann tensor at worst contains thin-shell delta

functions). For r > a one has a vacuum Schwarzschild exterior.

The argument presented above for the Schwarzschild-based warp drive (black-

warp spacetime) then guarantees (once one switches on a non-zero warp velocity �v∗)

violation of the NEC in the exterior region r > a over the entire hemisphere where
{

�v∗ · r̂
}

< 0.

5.2 Asymptotically Schwarzschild base spacetime

One can also extend the argument to a base spacetime that is only asymptotically

Schwarzschild. Specifically let us set

�(r) =

⎧

⎨

⎩

O(r2), r → 0;
differentiable, all r;

2
√

2mr [1 + O(r−n)], r → ∞, n > 0.
.

(5.2)

The �(r) = O(r2) condition keeps the curvature and stress-energy finite at the origin.

The differentiability condition at all r keeps ∇� continuous, and so keeps the metric

continuous. For r → ∞ one asymptotically approaches a vacuum Schwarzschild

exterior with Misner–Sharp quasi-local mass m(r) = m
[

1 + O(r−n)
]

while the
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ADM mass is simply m. Then it is easy to check that

∂k∇2� = −9

4

√
2m r−5/2 (r̂)k

[

1 + O(r−n)
]

, (5.3)

and consequently

p̄ = 3

16π

√
2mr

r3
[1 + O(r−n)]

{

�v∗(t) · r̂
}

. (5.4)

Thence at sufficiently large distances there is again an entire hemisphere, (defined by
{

�v∗(t) · r̂
}

< 0 ), where p̄ < 0. So the NEC, (and consequently all of the SEC, WEC,

and DEC), are again violated at asymptotically large distances.

6 Conclusions

As we have seen, mass in warp drives is more than just a question of a “payload”—there

are two more cases to consider: The possibilities of a “background” with mass or the

possibility the “warp bubble” itself being massive. Our guide for this discussion was

that the assumed asymptotic flatness of a warp drive allows invoking the concept of an

ADM mass, and hence, to studying how the ADM mass influences and is influenced

by the presence of a warp drive.

Additionally, we re-investigated the status of energy conditions in these space-times.

Certainly, the status of the energy conditions in all of these classes has already been

covered in the fully general arguments presented in the authors’ previous study [25].

Still, the present article can explicitly show where violations of the NEC (and hence

all other common energy conditions) occur. This was possible by specializing to the

case of zero-vorticity Natário warp drive with sufficient emphasis on how the mass can

enter. Given that proofs of energy condition violations often involve implicit or indirect

arguments (like the proofs by contradiction), this provides additional, helpful intuition

about their location and these decades-old results and convictions concerning warp

drives. And as the discussion in the literature amply shows, in the case of warp drives

(particularly those of the superluminal variety) their violations of energy conditions

are a sign of “bad physics”—though these violations themselves by themselves are at

best a warning sign [34, 35].

For the future one could try to develop further generalizations of the notion of warp

bubble, outside of the Natário generic class. This could be done either by relaxing the

unit-lapse condition, or by allowing the spatial 3-slices to deviate from being geomet-

rically flat. (Perhaps conformally 3-flat.) The “massive background” case discussed

here can certainly be considered as first step in this direction. However, there is a cru-

cial and unavoidable trade-off between tractability and generality. If the construction is

too general then not only are stress-energy computations increasingly infeasible [25],

but it also becomes much trickier to even define what one means by the “warp bub-

ble”, and how to disentangle the “warp field” from the “payload” from the “rest of

the universe”. We hope to further explore such issues in future work. Future work will
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also study how the (non-compact) horizon of a superluminal warp drive might interact

with the compact horizon of a black hole either moving as a warp drive, inside a warp

drive as payload, or present as an external immovable background geometry.

Lastly, a word on the most glaring, open problem: A self-consistent formulation of

warp drives. Simply calculating the stress-energy tensor by reverse-engineering the

Einstein equations is telling us little about the actual matter sourcing the warp drive.

We know that a more realistic scenario would entail reverse-engineering at the very

least something like Einstein–Klein–Gordon or Einstein–Maxwell. With a proverbial

“here be dragons”, one could go a step further and look at quantized fields on a fixed

background. However, the background being fixed, this is unlikely to answer how the

quantized field is actually sourcing anything if it is not yet a source term of the Einstein

equation determining the warp drive metric. An added difficulty is that a superluminal

warp drive comfortably overstays its welcome in the well-established field of curved

space-time quantum field theory, as it cannot be globally hyperbolic [18]. While there

is movement beyond global hyperbolicity (see, for example, [55]), one could still opt

for the full glory: Dealing with the full semi-classical Einstein equations involving a

quantized field on a (backreacting) background space-time [56, 57]. While this would

certainly (finally) address and answer the begged question of the usual invocation of

arbitrarily advanced civilizations/magic by nebulous statements such as “the negative

energy densities would have to be provided by quantum matter”—here be dragons,

indeed.
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