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Abstract: For their emergent application in electric vehicles, the development of fast and accurate

algorithms to monitor the health status of batteries and aid decision-making in relation to maintenance

and replacement is now of paramount importance. Data-driven approaches are preferred due to the

difficulties associated with defining valid models for system and parameter identification. In recent

years, the use of features to enhance data-driven methods has become commonplace. Unless the

data sets are from multiple batteries, however, such approaches cannot be used to predict more than

one cycle ahead because the features are unavailable for future cycles, in the absence of different

embedding strategies. In this paper, we propose a novel approach in which features are predicted for

future cycles, enabling predictions of the state of health for an arbitrary number of cycles ahead, and,

therefore, predictions for the end-of-life. This is achieved by using a data-driven approach to predict

voltage and temperature curves for future cycles, from which important signatures of degradation

can be extracted and even used directly for degradation predictions. The use of features is shown to

enhance the state-of-health predictions. The approach we develop is capable of accurate predictions

using a data set specific to the battery under consideration. This avoids the need for large multi-

battery data sets, which are hampered by natural variations in the performance and degradation of

batteries even from the same batch, compromising the prediction accuracy of approaches based on

such data.

Keywords: Li-ion battery degradation; feature engineering; Gaussian process mode; voltage and

temperature curves; multi-step lookahead; end-of-life

1. Introduction

Lithium-ion batteries (LiBs) have a long history of use in the portable electronics sector,
and have become the de-facto technology for battery electric vehicles. During use, LiBs un-
dergo various electrochemical and mechanical degradation mechanisms [1]. Over repeated
cycles of charge and discharge, therefore, the batteries inevitably suffer an irreversible loss
in capacity. Not only does this incur costs in terms of maintenance and replacement, but
sudden catastrophic failures caused by degradation can also lead to much more severe
consequences. The development of accurate algorithms to facilitate battery management,
monitor their health status and aid decision-making in relation to replacement has therefore
become of paramount importance [1–3].

To quantify the gradual decay in the maximum available capacity, the state-of-health
(SOH), namely the ratio (or percentage) of available capacity for full discharge compared
to the rated capacity, is used. A criterion is then defined for when the battery is deemed
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unfit for its current application, normally when the battery SOH falls below a threshold
value. This criterion defines the so-called end-of-life (EOL), at which point it may be used
for a secondary (second-life) application [4]. A related concept is the remaining useful life
(RUL), which is the number of cycles remaining before EOL is reached.

Predicting the rate of degradation in LIBs is far from trivial since the processes that
lead to degradation are not entirely understood and are difficult to measure, which compro-
mises the accuracy and applicability of detailed physics-based models. An early popular
approach, which continues to be adopted, is based on semi-empirical or empirical mod-
els. Examples include equivalent electrical circuit models linking the circuit parameters
to the SOH [5], and models fitting data to various parameter-dependent functions [6,7].
Classical state-space models for time series can be used to enhance these methods, e.g., the
combination of an equivalent circuit model with a Kalman filter to account for drift in the
circuit parameters that are used to estimate the SOH [8], which can be further improved
upon with a Bayesian filter [9].

The difficulties associated with defining valid models for system and parameter iden-
tification have led to a growth in purely data-driven or machine-learning methods (see [10]
and [11] for recent reviews). The main methods are artificial neural networks (ANNs),
deep networks (DNNs) [12–14], Gaussian process (GP) models [15,16], and support vector
regression (SVR) [17,18]. Other methods, including Hidden Markov Models (HMM) [19]
and k-nearest neighbor (k-NN) regression [20], have also been employed.

In particular, DNNs, which are defined as ANNs with more than one hidden layer,
have emerged as a popular choice, with a plethora of different architectures, including
recurrent networks (RNNs), such as the Long Short Term Memory (LSTM) network [21,22],
convolutional networks (CNN) [23], and hybrid architectures such as a CNN-LSTM [24] or
gated recurrent unit-CNN (GRU-CNN) [25]. Another popular approach to predicting the
SOH or RUL is GP modelling [16]. GP models have some advantages over non-Bayesian
approaches such as ANNs and SVR; namely, a natural measure of predictive uncertainty
and the requirement in general of fewer training samples (due to the smaller number of
(hyper)parameters).

ML methods have almost exclusively been applied to the estimation of the SOH, RUL,
or EOL, with very few exceptions, such as the prediction of voltage-discharge capacity
curves in [26]. Data sets often contain information beyond voltage-current curves, such as
temperature measurements and impedance data. Various signatures of degradation can
be extracted from this data, such as the slope of the charge or discharge curve at selected
points in the cycle, or the maximum voltage on charge. It is tempting to incorporate such
features as inputs to improve predictions [27,28], and in recent years such an approach has
become commonplace. The features can be designed by hand or learned from the raw data
as part of the algorithm. It has been demonstrated that a number of physical features are
highly correlated to the degradation, e.g., the slope of the voltage curves at the beginning
or end of charge, or the maximum temperature reached during charge [27–29].

Qian et al. [23] used randomly selected segments of the charge voltage, differential
charge voltage, and charge current curves as inputs to a CNN, training on multiple battery
data sets. Their model was designed to predict the capacity for unseen batteries of the same
type, under the same cycling conditions. Similar approaches were adopted to predict the
EOL by Severson et al. using linear regression [30], by Hong et al. [31] using a CNN, and by
Hsu et al. [26] using a highly complex DNN that learns features from charge-discharge
data in the first layer to predict the EOL and RUL. Zhang et al. [32] used a GP model into
which electrochemical impedance measurements from the current cycle were fed as inputs
to predict the capacity.

The advantage of such models, based on multi-battery data sets, is the capability
to utilize existing information, possibly under different charge-discharge policies and
operating conditions, in order to make early predictions. In [26,31], only a small number of
charge-discharge input cycles are required for ballpark predictions. The disadvantages of
this approach are that it requires very large data sets and that natural variabilities in the
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performance and degradation across batteries from the same batch, even under the same
charge-discharge policies and operating conditions, can lead to inaccurate predictions for a
new battery. As Severson et al. state, such models are suitable for situations in which very
early predictions are required, but in which the accuracy is not critical, e.g., sorting/grading
and pack design applications [30].

The majority of machine learning models focus on predicting the SOH, RUL, or EOL
using data originating from the battery under consideration, which does not require a
large data set and is less prone to inaccuracies due to the aforementioned variabilities.
Yang et at. [27] used hand-crafted physical features such as the time for a constant current
charge and the slope of the voltage profile at the end of charge as inputs to a GP model.
A similar approach was adopted by Chen et al. [29] using an RNN with up to 20 phys-
ical features. Tagade et al. [33] used a deep GP with randomly extracted sequences of
time, voltage, and temperature (on either discharge or charge) as inputs. The nonlinear
autoregression with exogenous input (NARX) model of Khaleghi et al. [34] uses randomly
selected charge voltage sequences of specified lengths.

The use of features in this way, training on a specific data set for online use with
information from a battery management system (BMS), cannot, however, be applied re-
cursively, in contrast to standard one-step autoregressive models in which features are
not included [35]. We note that the capacity model of Zhang et al. [32] suffers from the
same issue in the way that it is applied. The features become available to use as inputs one
cycle at a time, which means that to obtain multi-step lookahead predictions these models
must be used in a direct time series approach, which has massive additional computational
costs (m separate models for m steps ahead), or else modified into sequence-to-sequence
models, in which a sequence of future capacity values are predicted from a sequence
of inputs/features.

In this paper, we adopt a different and novel approach that overcomes this limitation.
We first predict the voltage, temperature, and time sequences on discharge or charge. Any
other quantities feasibly available from an onboard BMS can also be included. We consider
two data sets, with one containing voltage measurements, and the other containing, voltage,
temperature, and impedance measurements. The impedance results contained a significant
degree of noise and were therefore excluded. In general, impedance data would not be
available in-situ from a standard BMS, so we do not consider their inclusion to be practical.
We predict the voltage and (if available) temperature curves for future cycles, from which
we extract predicted features multiple cycles ahead. We use these features in a GP approach
to predict the SOH, demonstrating significant improvements over a standard GP approach
that uses only the cycle number as the input.

We compare the accuracy of our method with other methods in the literature that
employ the same data sets. We also investigate the effects of noise in the data sets, since
inevitably some level of noise will be present. Moreover, from the predicted voltage and
temperature curves, other signatures of degradation can be obtained directly. In contrast to
other feature engineering approaches based on a single battery data set, our method can be
used for a multi-step lookahead analysis to predict the EOL and RUL.

2. Methods

2.1. Data Sets

We employed the NASA data set of Saha et al. [36], in which batteries (labeled B0005,
B0006, B0007, and B0018) were repeatedly cycled at constant current. Impedance mea-
surements were taken at various (non-regular) cycles. All experiments were conducted at
room temperature.

The batteries were charged at a constant current of 1.5 A to a voltage of 4.2 V fol-
lowed by a constant voltage (CV) mode until the current reached 20mA. They were
then discharged at a constant current of 2 A until the battery voltage fell to 2.7 V, 2.5 V,
2.2 V, and 2.5 V for B0005, B0006, B0007, and B0018, respectively. Impedance measurements
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using electrochemical impedance spectroscopy (EIS) were taken at various cycles with a
frequency sweep from 0.1 Hz to 5 kHz.

The batteries were cycled as above until they reached end-of-life (EOL), defined as a
30% fade compared to the rated capacity (from 2 Ahr to 1.4 Ahr). The voltage, current, and
temperature were measured throughout cycling, with a non-constant number of sampling
times. For example, there were between 179 and 354 sampling times for battery B0005,
depending on the cycle number, and similarly for the other batteries. The capacity was
estimated at the end of discharge for each cycle. For certain cycles, the sense current, battery
current, current ratio, battery impedance, rectified impedance, calibrated and smoothed
battery impedance, estimated electrolyte resistance, and estimated charge transfer resistance
was recorded from EIS.

For B0005, B0006, and B0007 there were a total of 168 charge-discharge cycles, while
for B0018 there were 132 cycles. The impedance measurements contained a high level of
noise, and were not therefore used in this study. We focus on the discharge profiles for
B0006, B0007, and B0018; specifically, the voltage, temperature, time and capacity.

We also used the data set in [37], in which 130 different Li-ion batteries are repeatedly
cycled under different load patterns and temperatures. In contrast to the older data set
of [36], most of the cells exhibit a smoothly varying capacity. The batteries used were
LiNi0.86Co0.11Al0.03O2 positive electrode (NCA) batteries, LiNi0.83Co0.11Mn0.07O2 positive
electrode (NCM) batteries, and batteries with a blend of 42 wt.% Li(NiCoMn)O2 and
58 wt.% Li(NiCoAl)O2 for the positive electrodes. The rated capacities of the first 2 are
3.5 Ah and the rated capacity of the third is 2.5 Ah.

The batteries were cycled at 25, 35, or 45 C in a temperature-controlled chamber.
A constant charge current ranging from 0.875 A to 10 A was used, until the cell voltage
reached 4.2 V, followed by a constant voltage charge until the current reached 0.05 C
(1 C = 3.5 A or 2.5 A). The batteries were then discharged at a constant current between
0.875 A and 10 A to a voltage of 2.65 V for the NCA batteries and 2.5 V for the other
batteries. Repeated cycling was carried out until the capacities fell to 71% of the rated
values. The number of cycles, in this case, was typically much higher, reaching up to
1500 cycles. For each cycle, the charge and discharge voltage curves were recorded (there are
no temperature or EIS measurements), together with the capacity at the end of each cycle.

2.2. Data Preprocessing

The raw data was pre-processed via the following steps:

1. Cut off . In all discharge cycles, the voltage and (if available) temperature sequences
for each cycle were truncated at the time when the voltage reached the cut off value.

2. Interpolation. After cutting off, the data contained different numbers of measurements
at different times from cycle to cycle. In order to obtain data on a fixed grid with the
same number of values for each cycle n, we used interpolation to fit the voltage and
temperature (if it is available) to smooth curves on each cycle. Using the interpolating
polynomial, we then extracted 200 values for the voltage and temperature at equally
spaced points in time, for each discharge curve .
The method we used was cubic splines si(t), i = 1, . . . , Mt, where Mt + 1 is the
number of measurements in the cycle, at times ti, i = 0, . . . , Mt. The interpolat-
ing polynomial is s(t) = si(t), t ∈ [ti−1, ti], i = 1, . . . , Mt, with the condition that
s(ti) = y(ti), i = 0, . . . , Mt, where y(t) is the voltage or temperature. s(t) must be
twice continuously differentiable and natural boundary conditions s′′(t0) = s′′(tMt

) = 0
were imposed to complete the specification for the coefficients in the splines.
We vectorized the 200 values of voltage and temperature on each cycle to obtain
vectors yV(n), yT(n), n = 1, . . . , N, respectively, where N is the number of cycles for
the battery. The time sequence for cycle n is defined entirely by the time interval
(200 equally spaced times), δt(n), n = 1, . . . , N. The temperature and voltage after
interpolation for the B0006 NASA battery, together with the measured capacity for all
NASA batteries considered are shown in Figure 1.
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Figure 1. The temperature and voltage for B0006 after interpolation and the measured capacity for

all batteries considered.

2.3. Gaussian Process Models

We are provided with training data δt(n), yV(n) and yT(n), n = 1, . . . , N, in which n
denotes the cycle number, yV(n) ∈ R

d and yT(n) ∈ R
d represent sequences of d voltage

and temperature values, respectively, and δt(n) ∈ R is a uniform interval between times at
which the voltage/temperature values are recorded. We consider voltage and temperature
to be different tasks and for an arbitrary n, we define the 2-dimensional array Y(n) ∈ R

d×2

that places the values at different time instances along the first dimension and the tasks
along the second dimension. We can also organize the data points into a multi-dimensional
array Y ∈ R

d×2×N , in which the third dimension collects the values of Y(n) at the
n = 1, . . . , N, cycles.

Y(n) is treated as a random process that can be approximated with a GP model. To this
end, we place the following matrix prior over Y(n), which assumes a separable form:

vec(Y(n)) ∼ GP(vec(Y(n)) | 0, kY(n, n′|θY)⊗ Cd ⊗ C2 + δ(n, n′)τY ⊗ I) (1)

in which GP(· | ·, ·) denotes a GP over the first argument, with the second and third argu-
ments denoting the mean function and cross-covariance (kernel) function.
vec(Y(n)) = (yV(n)

TyT(n)
T)T ∈ R

2d is a stacking of the mode 1 fibers (a vectorization),
I is the identity matrix, C2 ∈ R

2×2 is an unknown variance-covariance matrix between
tasks, Cd ∈ R

d×d is an unknown variance-covariance matrix between the components of
yV(n) and yT(n), ⊗ is the Kronecker product and δ(n, n′) is the Kronecker-delta function.
The mean is taken to be identically zero by virtue of centering the data.

The matrix/tensor GP covariance structure is separable by definition, which makes it
a tractable and efficient model in terms of training and making predictions. Correlations
across the cycle number n are embodied in the covariance function kY(n, n′|θY). For any
finite number of cycles, the covariance matrix for Y takes the form KY ⊗ Cd ⊗ C2, in which
[KY]nn′ = kY(n, n′|θY), n, n′ = 1, . . . , N. The covariance function (kernel) kY(n, n′|θY) is
dependent on unknown hyperparameters θY, which must be inferred during training.
The noise term δ(n, n′)τY ⊗ I accounts for independent and identically distributed (i.i.d.)
noise, or, equivalently, acts as a regularization term to prevent ill-conditioning. The signal
variance τY is also an unknown hyperparameter. Formally, the model for the data point
Y(n) is:

Y(n) = Yl(n) + E(n), n = 1, . . . , N (2)
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in which Yl(n) is an underlying latent function (evaluated at cycle n) corrupted by noise
E(n) ∈ R

d×2, with prior distributions vec(Yl(n)) ∼ GP(vec(Yl(n)) | 0, kY(n, n′|θY) ⊗
Cd ⊗ C2) and vec(E(n)) ∼ GP(vec(E(n)) | 0, δ(n, n′)τY ⊗ I). That is, Yl(n) is the real
target of interest.

There are several main choices for the kernel function, and some of the most common
are the squared exponential (SE) kernel, the linear kernel, the Matérn class of kernels, and
the periodic kernel [38]:

k(n, n′|θ) = θ0 exp
(

−r2
)

, r =
√

θ1(n − n′)2 (3a)

k(n, n′) = θ0nn′ (3b)

k(n, n′; θθθ) = θ0 fν(r) exp
(

−
√

νr
)

(3c)

k(n, n′; θθθ) = θ0 exp

(

−2θ1 sin

(

θ2

2π
(n − n′)

))

(3d)

respectively, with θ = θ0 or θ = (θ0, θ1)
T or θ = (θ0, θ1, θ2)

T , ν ∈ {1, 3, 5}, f1(r) = 1,
f2(r) = 1 +

√
3r and f5(r) = 1 +

√
5r + 5r2/3. We can also form linear combinations of

these kernels, e.g.:

k(n, n′|θ) = θ0 exp
(

−r2
)

+ θ2nn′ (4)

in which θ = (θ0, θ1, θ2)
T .

With the given priors, the predictive posterior over Yl(n) for an n not in the training
set can be derived from standard Gaussian conditioning rules [39]:

vec(Yl(n)) ∼ N (Yl(n) | µY(n), VY(n)),

µY(n) = (kY(n)⊗ Cd ⊗ C2)
T(KY ⊗ Cd ⊗ C2 + τyI)−1vec(Y),

VY(ξ) = kY(n, n|θY)Cd ⊗ C2

− (kY(n)⊗ Cd ⊗ C2)
T(KY ⊗ Cd ⊗ C2 + τYI)−1(kY(n)⊗ Cd ⊗ C2),

(5)

in which kY(n) = (kY(n, 1|θY), . . . , kY(n, N|θY))
T is the vector of covariances between the

latent function values Yl(·) at n and the data points Y(1), . . . , Y(N). N (· | ·, ·) denotes a
normal distribution over the first argument, with the second and third arguments denoting
the mean vector and covariance matrix. The (mean) prediction of the voltage is given by
µY(n)1:d, while the temperature prediction is given by µY(n)d+1:2d, in which the subscript
denotes the restriction of the vector µY(n) to the indicated range of components.

The hyperparameters {Cd, C2, τY, θY}, can be estimated by maximizing the log-marginal
likelihood, minus any constant terms, defined as:

LY = −1

2
|KY ⊗ Cd ⊗ C2 + τY| −

1

2
vec(Y)T(KY ⊗ Cd ⊗ C2 + τY)

−1vec(Y) (6)

and the resulting estimate is inserted into the predictive posterior (5) to complete the model.
The time intervals δt(n) are estimated using a univariate GP model, which follows a

similar framework. The prior distribution over δt(n) conditioned on hyperparameters θθθt

contained in a covariance function kt(n, n′|θt) is:

δt(n) ∼ GP
(

δt(n) | m(n), kt(n, n′|θt) + δ(n, n′)τt

)

(7)

in which a non-zero mean function m(n) is permitted, and τt is a noise variance. Again,
we seek a latent function δtl(n) such that δt(n) = δtl(n) + ǫ, with ǫ ∼ GP(ǫ | 0, δ(n, n′)τt).
The mean function is expressed as a linear combination of M basis functions collected
in a vector h(n) = (h1(n), . . . , hM(n))T , that is m(n) = h(n)Tβββ, where βββ is a vector of
coefficients. We note that an equivalent model is δt(n) = h(n)Tβββ + f (n), where f (n) ∼
GP( f (n) | 0, kt(n, n′|θt) + δ(n, n′)τt). For the basis function we could, e.g., use monomials:
h(n) = (1, n, n2, . . . , nM−1). The coefficients are assumed to follow βββ ∼ N (β | b, B),
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with hyperparameters b and B (the prior mean and covariance matrix of βββ). It is possible
to integrate out βββ to obtain [40]:

δt(n) ∼ GP
(

δt(n) | h(n)Tb, kt(n, n′|θt) + h(n)TBh(n) + δ(n, n′)τt

)

(8)

Setting ∆∆∆ = (δt(1), . . . , δt(N))T , the predictive posterior for a future n is:

δtl(n) ∼ N
(

δtl(n) | µt(n), σ2
t (n)

)

{

µt(n) = kt(n)T(Kt + τtI)−1∆∆∆ + RTβ̄ββ

σ2
t (n) = kt(n, n|θt)− kt(n)T(Kt + τtI)−1kt(n)

R = h(n)− H(Kt + τtI)−1kt(n)

β̄ββ = (B−1 + H(Kt + τtI)−1HT)−1(H(Kt + τtI)−1∆∆∆ + B−1b)

(9)

in which kt(n) = (kt(n, 1|θt), . . . , kt(n, N|θt))T , H = [h(1) . . . h(N)] and
[Kt]nn′ = kt(n, n′|θt), n, n′ = 1, . . . , N. The hyperparameters {θθθt, b, B, τt} can be obtained
by maximizing the log of the likelihood (discarding any constant terms):

Lt = −1

2
ln |Kt + τtI + HTBH| − 1

2

(

HTb −∆∆∆
)T(

Kt + τtI + HTBH
)−1(

HTb −∆∆∆
)

(10)

The same model is used for the SOH (denoted s below), but with a vector of features
x(n) relating to cycle n:

s(x(n)) ∼ GP
(

s(x(n)) | ms(x(n)), ks(x(n), x(n′)|θs) + δ(x(n), x(n′))τs

)

(11)

with kernel ks(x(n), x(n′)|θs) conditioned on hyperparameters θθθs, a mean function
ms(x(n)) = hs(n)Tβββs and a noise variance τs. The equivalent of (9) and (10) is derived
as above.

3. Results and Discussion

3.1. Prediction of the Time Interval

Errors between individual predictions yp and test points y (the ‘truth’) can be mea-
sured using the square error ‖y − yp‖2, in which ‖·‖ is the standard Euclidean norm.
y can be a vector or a scalar. For a set of test points yn and corresponding predictions yp,n,
i = 1, . . . , NT , the root mean square error (RMSE) can be employed:

RMSE =

√

√

√

√

1

NT

NT

∑
n=1

‖yn − yp,n‖2 (12)

together with the mean absolute error (MAE) for a scalar quantity:

MAE =
1

NT

NT

∑
n=1

|yn − yp,n| (13)

We start with the prediction of the time interval δt(n) for the NASA data set, which pro-
vides the estimate of the time taken on discharge to reach the threshold voltage. The scalar
GP model (9), (10) with kernel (4) and a linear mean function m(n) = β0 + β1n, as outlined
Section 2.3, was applied to the data set δt(n), n − 1, . . . , N for different numbers of training
points. A linear mean function gave the best results over a zero and quadratic. The remain-
ing data points were used for testing. Figure 2 shows boxplots of the square errors on the
test points for different percentages of the data points used for training. Results for all three
NASA data sets are shown. As can be seen, there is a general trend of declining median
error as the percentage of data used for training is increased, except for B0018, for which it
remains roughly constant. The important thing to note is that the ranges of error decline
for all three data sets.
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Figure 2. Boxplots of the square errors in the prediction of the time interval δt(n) for the B0006, B0007,

and B0018 data sets.

3.2. Voltage and Temperatures Prediction

Given the interpolated data yn, tn, n = 1, . . . , N, where yn is the temperature or
voltage and tn is the corresponding time sequence, we employed the GP model (5), (6).
The latter is given by the prediction for δt(n), namely tn = (0, δt(n), . . . , 199δt(n))T , using
the data {δt(n)} corresponding to the same cycle numbers used for training the voltage
and temperature model. Again, different kernels were tested and it was found that a
mixed SE and linear kernel yielded the best performance overall, with a mixed Matérn
and linear kernel also exhibiting good performance. A SE or Matérn kernel alone did not
perform well.

The means of the voltage predictions for the NASA data sets B0006 and B0018 for
different numbers of training points are shown in Figures 3 and 4 (the results for B0007
were similar and are omitted to conserve space). In each of these figures it is apparent that
the predictions improve with increasing numbers of training points. At low numbers of
training points, the initial predictions are accurate but, for increasing cycle numbers, the
discrepancy between the prediction and test (truth) grows.

In the case of 20% of the data used for training, the square error (on the prediction
of yV not taking into account the time sequence prediction δt(n)) on cycle 35 is 0.0317,
while the corresponding square error on cycle 167 is 4.859. The RMSE is 1.687 V, which is
0.008435 V per component (out of 200 components). At 50% the results are very accurate,
thereafter improving only marginally. The square errors in the case of B0006 are 0.17854,
0.286166 and 0.0780 for 50%, 70%, and 90% on cycle 167, while the RMSE values are 0.2918 V,
0.2438 V, and 0.1145 V for 50%, 70%, and 90%. A similar pattern was found with the other
data sets, B0007 and B00018.

The means of the temperature predictions are shown in Figures 5 and 6 for B0006
and B0007, respectively, exhibiting a similar level of accuracy as the voltage predictions.
Again, B0007 was similar and is omitted to conserve space. As with the voltage, the con-
fidence intervals are not shown (only the mean of the posterior GP) since they depend
additionally on the variation in the prediction of δt(n). Essentially, the voltage and tem-
perature are GP functions of a GP with a particular structure, so capturing the variance
in the predictions is not possible. It is noticeable that below 50% of the data for training,
the voltage and temperature profiles are not well captured, but the overall trends are
predicted well for training point numbers equal to and above 50%.
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Figure 3. Voltage results for the data set B0006 for different numbers of training points. From the top

row to the bottom row, 20%, 50% and 70% of the data is used.
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Figure 4. Voltage results for the data set B0018 for different numbers of training points. From the top

row to the bottom row, 20%, 50% and 70% of the data is used.

We now use these predictions for multi-step lookahead predictions of the SOH. In order
to achieve this, we extract certain features from the predicted voltage and temperature
curves. The features we extract are as follows:

1. Feature 1. Temperature at the midpoint of the n-th discharge cycle f1(n) = Tm(n).
2. Feature 2. Voltage at the midpoint of the n-th discharge cycle f2(n) = Vm(n).
3. Feature 3. Integral of the n-th voltage discharge curve with respect to time,

f3(n) = A(n) =
∫

t V(n)dt. This is proportional to the total energy delivered by
the battery. A trapezoidal rule was used to estimate the integral.
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Figure 5. Temperature results for the data set B0006 for different numbers of training points. From the

top row to the bottom row, 20%, 50% and 70% of the data is used.
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Figure 6. Temperature results for the data set B0018 for different numbers of training points. From the

top row to the bottom row, 20%, 50% and 70% of the data is used.

These features are available from the data set (for training and testing) and can be
predicted from the predictive voltage and temperature curves yV(n), yT(n) together with
the corresponding δt(n) for future cycles. Inspection of Figure 1 shows that features 1 and
2 are clearly correlated with SOH. Likewise, the total energy delivered by the battery will
decrease as the SOH decreases. We can then use another GP model to learn the mapping
from the input x(n) = ( f1(n), f2(n), f3(n))

T to the SOH, defined as SOH(n) = C(n)/C(1),
where C(n) is the capacity at cycle n (available for training and testing from the data set).
A schematic of the modeling process is provided in Figure 7.
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Figure 7. Schematic of the model for estimating the SOH using predicted features obtained from

predicted voltage and temperature curves.

3.3. SOH Prediction with Predicted Features

The SOH for the NASA data sets is now predicted using the GP model with prior (11)
and the equivalent of (9) and (10), with inputs given by the features x(n), and with outputs
SOH(n). Different numbers of training points were employed, including 33%, 50%, and
70% of the total data (168 for B0006/7 and 132 for B0018), with the remainder used for
testing. As we would expect, the errors decrease as the number of training points increases.
Different mean and kernel functions for the GP model were tested, as discussed below. The
RMSE and mean absolute error (MAE) values of the predicted SOH against the test points
for all battery datasets are shown in Table 1. The results are shown for the GP method
with features x(n) and for a GP with input n (no features), as well as for support vector
regression (SVR) with input n. All codes were executed 10 times and the lowest errors are
used in Table 1.

Table 1. RMSE and MAE for the prediction of the SOH for different training point numbers, % Train

(percentage of the total). The results are also shown for a GP model without using the predicted

features and for SVR.

B0006

% Train covariance mean RMSE MAE GP RMSE SVR RMSE

33
Matern 3 +

5
linear 0.0260 0.0191 0.0380 0.0420

50
Matern 3 +

5
linear 0.0138 0.0086 0.0229 0.0290

70
Matern 3 +

5
linear 0.0092 0.0067 0.0096 0.0112

B0007

33
2 SE +
linear

linear 0.0251 0.0235 0.0621 0.0753

50
2 SE +
linear

linear 0.0076 0.0049 0.0156 0.0148

70
2 SE +
linear

linear 0.0054 0.0037 0.0084 0.0136

B0018

33
Matern 3 +

5
linear 0.0201 0.0189 0.0409 0.0435

50
Matern 3 +

5
linear 0.0149 0.0126 0.0252 0.0307

70
Matern 3 +

5
linear 0.0151 0.0127 0.0173 0.0221

SVR was implemented with both Gaussian and polynomial kernels, including a box
search to optimize the hyperparameters. The best performing kernel for SVR was a first-
order polynomial, which, nevertheless, yielded the worst performance of all methods
overall. We note that Ni et al. [18] also used SVR with a swarm intelligence algorithm



Processes 2023, 11, 678 12 of 18

to optimize the kernel hyperparameters (similar to the box search). They found a small
improvement over a GP method and a large improvement over an LSTM. Given that they
used a different data set it is not possible to directly compare their RMSE values with ours.
No details were provided for the GP method, so it is not clear how valid is the comparison
the authors make, since, as we discuss below, the choice of the kernel and mean function is
extremely important.

To visualize the quality of the results, in Figure 8 we show the estimated SOH for
B0006 and B0007 using the best performing kernel and mean function, for 33%, 50% and
70% of the data used for training. The GP method also provides 95% confidence intervals
(shaded regions in the plots), defined as:

µt(n)− 1.96σt(n) ≤ δt(n) ≤ µt(n) + 1.96σt(n) (14)

in which µt(n) and σt(n) are given by (9). We note, however, that these are not precise confi-
dence intervals since the features x(n) are also predicted means with a predictive variance.
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Figure 8. Predictions of the SOH based on a GP model with features x(n) for B0006 and B0007,

at different training point numbers. The results for a GP model with input n (no features) are shown

for comparison.

The most important factor was the selection of the covariance function. It was found
in this case that the mixed Matérn 3 and 5 of Richardson et al. [16] gave the best results on
B0006 and B0018, with the Matérn 1 + linear kernel also performing well. In contrast, a mix
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of 2 SE kernels of different hyperparameters combined with a linear kernel gave the best
performance on B0007; that is:

k(n, n′|θ) = θ0 exp

(

−
3

∑
i=1

θi( fi(n)− fi(n
′))2

)

+ θ′0 exp

(

−
3

∑
i=1

θ′i( fi(n)− fi(n
′))2

)

+ θlx(n)
Tx(n′)

(15)

with θ = (θ0, . . . , θ3, θ′0, . . . , θ′3, θl)
T . Most of the other kernels led to a complete failure of

the model.
As also discovered in the pioneering work of Liu et al. [15] and Richardson et al. [16],

the mean function ms(x(n)) plays an important role. A zero or non-zero constant mean
function generally provided poor results. In almost all cases, a linear mean function
ms(x(n)) = β0 + β1 f1(n) + β2 f2(n) + β3 f3(n) performed the best, and results are shown
only for this mean function in Figure 8 and Table 1.

3.4. Comparison to Recent Methods in the Literature

We compare our results to recently obtained results using the same data set.
Yang et al. [27] and Chen et al. [29] discarded some of the data points as outliers.
We did not discard any values, although such an approach would certainly have improved
the accuracy of our results to an extent, depending upon how many values were discarded.

For the case of 84 and 118 training points from B0006, we were able to obtain mean ab-
solute errors of 0.0086 and 0.0067. The deep GP approach of Tagade et al. [33] using features
as inputs (Figure 3 of their paper) obtained MAE values of ca. 0.009 and 0.008 (divided by
the nominal capacity of 2 Ah) for 100 and 120 training points. A deep GP is significantly
more expensive than a standard GP, since the posterior is not tractable and therefore re-
quires sampling, while training is via expensive approximate Baye’s (e.g., variational) or
Markov Chain Monte-Carlo sampling methods.

Yang et al. [27] achieved RMSE values of 0.0149 and 0.0078 for B0006 and B0007 at
80 training points (the only case considered), which is roughly 50% of the data (Table 4 in
their paper), again using features as inputs. This compares with 0.0138 and 0.0076 in Table 1,
respectively, despite the fact that we did not remove any data points. Chen et al. [29]
discarded 60 of the 168 data points for B0006 and 36 of the 132 data points for B0018,
without specifying which were removed. Using their LSTM model with 4 features they
were, therefore, able to obtain much lower RMSE values between 0.0025 and 0.0012 for
B0006 and B0018, depending on the proportion of data used for training.

The aforementioned methods, as well as the capacity models in [32,34], however,
can only predict one cycle, since the features pertaining to future cycles are unavailable.
This means that any errors calculated on a test set of more than one point (including all
of those quoted above) are misleading; the calculation of such an error could never be
realized in practice. We note that Zhao et al. [41] used features extracted from a capacity
sequence based on a random vector functional-link neural network. These features were
fed as inputs into an LSTM for predicting the capacity (or SOH). This method is therefore
capable of recursive application because the features are not exogenous inputs as in the
other cases. The RMSE value for B0006 was 0.0087 for 25% of the training data. However,
40 unspecified data points were discarded, which again makes the comparison invalid. It is
always possible to lower the RMSE considerably by selectively choosing points to discard,
e.g., those exhibiting the highest errors.

Incorporating features that are not predicted (as in our model) for K-step lookahead
could be possible with a direct time series strategy, in which K different models fk are
developed based on different embeddings, with fk predicting the SOH k cycles ahead.
All models are required for the full sequence of n + 1, . . . , n + K predictions.
Alternatively, a sequence to sequence approach can be used in which specified sequences of
inputs/features are used to predict sequences of future capacity values with some specified
length. How such strategies compare to approaches that do not use features or to recursive
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methods is not known. There is a plethora of choices, in terms of the features used, em-
beddings, and machine learning methods. These are the subject of a forthcoming paper on
linear and nonlinear autoregressive approaches, including deep learning, GP models, and
classical state-space approaches.

3.5. Assessing the Effect of Noise

It can be seen in Figure 1 that the capacity does not change in a monotonic fashion,
with small fluctuations about an overall decreasing trend (Figure 1). This is possibly due
in part to a so-called regeneration phenomenon, in which the capacity rises temporarily,
before returning within a few cycles to the overall trajectory. It is clear, however, that the
fluctuations have a random component, with at least some part due to measurement and
possibly human error.

For experimental time series, u(1), . . . , u(N), there are several empirical measures of
irregularity or randomness, such as the approximate entropy and the sample entropy [42].
They essentially measure the probability that patterns of observations arranged as vec-
tors w(i) = (u(i), u(i + 1), . . . , u(i + E − 1)) are proceeded by similar patterns of ob-
servations. Here, E is the embedding size. In the case of the approximate entropy,
the metric for measuring the distance between two patterns is given by the max norm
d(w(i), w(j)) = ‖w(i)− w(j)‖∞ = maxk=1,...,E |u(i + k − 1)− u(j + k − 1)|. The number
of patterns that are similar to a given pattern w(i) is then counted as follows:

CE
i (r) =

number of j ≤ N − E + 1 such that d(w(i), w(j)) ≤ r

N − E + 1
(16)

by defining similarity as falling within a ball of the radius or filter size r. Defining:

ψE(r) =
1

N − E + 1

N−E+1

∑
i=1

log CE
i (r) (17)

the approximate entropy is calculated as AE(E, r, N) = ψE(r)− ψE+1(r). Sample entropy
is calculated in a different but related manner. Low values of approximate and sample
entropy (close to zero) suggest that a system has a persistent, repetitive, and predictive
pattern, while high values suggest a degree of independence between data points, inferring
randomness and few repeated patterns.

For each battery, the approximate and sample entropies are shown in Figure 9. The val-
ues are shown for E = 2 and E = 3 (those usually recommended) and varying radius
r. The radius is normally chosen as r = cσ2, in which σ2 is the sample variance of the
time series and c is a constant, usually in the range c ∈ (0.1, 0.25). In Figure 9, we show
values of the entropies for c ∈ (0.01, 0.25) using the largest variance across the data sets.
All three batteries, especially B0018, exhibit large values, suggesting a high degree of
randomness (noise).

To assess the performance of our method in cases with less noise, we used the data set
in [37]. We show results for 2 NCA batteries cycled at 45C and 35C, with a charge current
of 1.75A and a discharge current of 3.5A. They are labeled CY45 and CY35, respectively.
Several batteries were cycled, and we show the results for those labeled #1. The results for
the other batteries were similar. Both the sample and approximate entropies of these data
sets are less than 0.04 for c = 0.25, and peak at around c = 0.005, with values below 0.18.
This indicates that the level of noise in both data sets is low.

The prediction of the SOH using 50% of the data (366 cycles and 278 cycles, respec-
tively) is shown in Figure 10, for our method and for a GP using the cycle number as
input. For the GP with input n, a SE kernel with a zero mean function gave the best results.
In this case, only features 2 and 3 are used, since temperature data was not available.
When features were used as inputs, the best performance was with the mixed kernel (15),
with a linear mean function. The experimental SOH curves exhibit oscillations, indicative
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of regeneration. In this case, however, the fluctuations occur at regularly spaced intervals
in time and have a small amplitude.
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Figure 9. Approximate and sample entropies for the B0006, B0007 and B0018 data sets for different

embedding lengths and radii.
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Figure 10. Predictions of the SOH based on a GP model with features x(n) for CY45 and CY35 with

50% of the data used for training. The results for a GP model with input n are shown.

The RMSE and MAE values are shown in this figure for both cases. It can be seen that
the inclusion of features again enhances the predictions. What is also noticeable (as with the
NASA data sets) is that the confidence intervals are less broad compared to the standard GP
approach, which predicts with low confidence. However, the confidence intervals for the
case with features are less precise, as previously mentioned. These results show that noise
is an important factor. With only 50% of the training data, a GP model without features
can predict with an error one order of magnitude lower than on the NASA data set. With
predictive features, the error can be further lowered to provide highly accurate predictions.
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3.6. Computational Times

The execution of the codes is extremely rapid. We quote the times for the battery B0007
data set, averaged over 5 runs. All calculations were performed on a Macbook Pro 2.3 GHz,
8-Core i9 with 64 GB DDR4 RAM. The codes were implemented in Python for the voltage
and temperature predictions and in MATLAB for the predictions of the time interval and
SOH, as well as the feature extraction.

The interpolation procedure during preprocessing took, on average, 0.118 s. The esti-
mation of the time intervals using (5), (6) for B0007 took an average of 0.767 s using 50% of
the training data, while for 70% of the data the average time was 0.865s. For the estimation
of the voltage and temperature curves for B0007 using the GP model (5), (6), the time taken
was 0.499 s for 50% of the data, while the corresponding time for 70% of the data was
0.577 s. Extracting the predictive features for B0007 in the case of 50% of the training data
took 0.112s, and 0.130 s in the case of 70%. SOH predictions using the GP prior (11) and
the equivalent of (9) and (10) then took 1.092 for 50% of the data and 1.222 s for 70% of
the data. Thus, for 70% of the data, the total time is ca. 2.92 s, which can be lowered by
running the predictions for the time interval and voltage/temperature curves in parallel.
These times are much shorter than would be required for typical deep learning architectures.
We present such a comparison in a future paper.

4. Summary and Conclusions

The development of algorithms for predicting the state of health of batteries is critical
for electric vehicle applications. Data-driven approaches often use features to enhance
predictions. These features are extracted from various data available from a BMS, including
voltage, current, and temperature measurements. However, they cannot be used directly
to develop recursive or direct supervised machine learning algorithms that are capable of
early predictions of the EOL.

To overcome this limitation, we developed a novel approach in which features are
predicted for future cycles, enabling predictions of the SOH for an arbitrary number of
cycles ahead, and, therefore, predictions for the EOL. We showed that these predicted
features enhance the accuracy of the SOH predictions. We also investigated the effects
of noise and showed that with low-noise data, very accurate predictions can be realized.
The approach we develop is not specific to a Gaussian process model, although such models
are known to be very accurate and can provide uncertainty bounds. In future work, we
intend to investigate the use of joint learning of the voltage, temperature, time interval, and
SOH, which could further enhance predictions.

Author Contributions: Conceptualization, A.A.S. and W.W.X.; methodology, A.A.S., W.W.X. and

Y.W.; software, A.A.S., W.W.X., Y.W. and N.S.; validation, A.A.S., W.W.X., Y.W. and N.S.; formal

analysis, A.A.S., W.W.X., Q.X., P.L., A.R., X.Z. and Q.L.; investigation, A.A.S., W.W.X., Q.X., N.S.,

Y.W., A.R., P.L., X.Z. and Q.L.; resources, A.A.S., X.Z. and Q.L.; writing—original draft preparation,

A.A.S. and W.W.X.; writing—review and editing, A.A.S., W.W.X., Q.X., N.S., Y.W., A.R., P.L., X.Z. and

Q.L.; supervision, A.A.S., W.W.X., X.Z. and Q.L.; project administration, A.A.S., W.W.X., X.Z. and

Q.L.; funding acquisition, X.Z. and Q.L. All authors have read and agreed to the published version of

the manuscript.

Funding: This work was supported by the Creative Research Groups of the National Natural Science

Foundation of China (No. 52021004).

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: There are no conflicts of interest.

References

1. Li, A.G.; West, A.C.; Preindl, M. Towards unified machine learning characterization of lithium-ion battery degradation across

multiple levels: A critical review. Appl. Energy 2022, 316, 119030. [CrossRef]

2. Xiong, R.; Pan, Y.; Shen, W.; Li, H.; Sun, F. Lithium-ion battery aging mechanisms and diagnosis method for automotive

applications: Recent advances and perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110048. [CrossRef]



Processes 2023, 11, 678 17 of 18

3. Tian, H.; Qin, P.; Li, K.; Zhao, Z. A review of the state of health for lithium-ion batteries: Research status and suggestions. J. Clean.

Prod. 2020, 261, 120813. [CrossRef]

4. Song, Z.; Feng, S.; Zhang, L.; Hu, Z.; Hu, X.; Yao, R. Economy analysis of second-life battery in wind power systems considering

battery degradation in dynamic processes: Real case scenarios. Appl. Energy 2019, 251, 113411. [CrossRef]

5. Zhang, D.; Dey, S.; Perez, H.E.; Moura, S.J. Real-time capacity estimation of lithium-ion batteries utilizing thermal dynamics.

IEEE Trans. Control. Syst. Technol. 2019, 28, 992–1000. [CrossRef]

6. He, W.; Williard, N.; Osterman, M.; Pecht, M. Prognostics of lithium-ion batteries based on dempster–shafer theory and the

bayesian monte carlo method. J. Power Sources 2011, 196, 10314–10321. [CrossRef]

7. Sarasketa-Zabala, E.; Martinez-Laserna, E.; Berecibar, M.; Gandiaga, I.; Rodriguez-Martinez, L.M.; Villarreal, I. Realistic lifetime

prediction approach for li-ion batteries. Appl. Energy 2016, 162, 839–852. [CrossRef]

8. Bhangu, B.S.; Bentley, P.; Stone, D.A.; Bingham, C.M. Nonlinear observers for predicting state-of-charge and state-of-health of

lead-acid batteries for hybrid-electric vehicles. IEEE Trans. Veh. Technol. 2005, 54, 783–794. [CrossRef]

9. Hu, C.; Jain, G.; Tamirisa, P.; Gorka, T. Method for estimating capacity and predicting remaining useful life of lithium-ion battery.

Appl. Energy 2014, 126, 182–189. [CrossRef]

10. Wang, S.; Jin, S.; Bai, D.; Fan, Y.; Shi, H.; Fernandez, C. A critical review of improved deep learning methods for the remaining

useful life prediction of lithium-ion batteries. Energy Rep. 2021, 7, 5562–5574. [CrossRef]

11. Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation

and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [CrossRef]

12. Ma, R.; Yang, T.; Breaz, E.; Li, Z.; Briois, P.; Gao, F. Data-driven proton exchange membrane fuel cell degradation predication

through deep learning method. Appl. Energy 2018, 231, 102–115. [CrossRef]

13. Wang, F.K.; Cheng, X.B.; Hsiao, K.C. Stacked long short-term memory model for proton exchange membrane fuel cell systems

degradation. J. Power Sources 2020, 448, 227591. [CrossRef]

14. Li, W.; Sengupta, N.; Dechent, P.; Howey, D.; Annaswamy, A.; Sauer, D.U. One-shot battery degradation trajectory prediction

with deep learning. J. Power Sources 2021, 506, 230024. [CrossRef]

15. Liu, D.; Pang, J.; Zhou, J.; Peng, Y.; Pecht, M. Prognostics for state of health estimation of lithium-ion batteries based on

combination gaussian process functional regression. Microelectron. Reliab. 2013, 53, 832–839. [CrossRef]

16. Richardson, R.; Osborne, M.; Howey, D. Gaussian process regression for forecasting battery state of health. J. Power Sources 2017,

357, 209–219. [CrossRef]

17. Zhao, Q.; Qin, X.; Zhao, H.; Feng, W. A novel prediction method based on the support vecto. regression for the remaining useful

life of lithium-ion batteries. Microelectron. Reliab. 2018, 85, 99–108. [CrossRef]

18. Ni, Y.; Xu, J.; Zhu, C.; Pei, L. Accurate residual capacity estimation of retired lifepo4 batteries based on mechanism and data-driven

model. Appl. Energy 2022, 305, 117922. [CrossRef]

19. Eleftheroglou, N.; Mansouri, S.S.; Loutas, T.; Karvelis, P.; Georgoulas, G.; Nikolakopoulos, G.; Zarouchas, D. Intelligent

data-driven prognostic methodologies for the real-time remaining useful life until the end-of-discharge estimation of the

lithium-polymer batteries of unmanned aerial vehicles with uncertainty quantification. Appl. Energy 2019, 254, 113677. [CrossRef]

20. Zhou, Y.; Huang, M.; Pecht, M. Remaining useful life estimation of lithium-ion cells based on k-nearest neighbor regression with

differential evolution optimization. J. Clean. Prod. 2020, 249, 119409. [CrossRef]

21. Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long short-term memory recurrent neural network for remaining useful life prediction

of lithium-ion batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [CrossRef]

22. Lu, J.; Xiong, R.; Tian, J.; Wang, C.; Hsu, C.W.; Tsou, N.T.; Sun, F.; Li, J. Battery degradation prediction against uncertain future

conditions with recurrent neural network enabled deep learning . Energy Storage Mater. 2022. 50, 139-151. [CrossRef]

23. Qian, C.; Xu, B.; Chang, L.; Sun, B.; Feng, Q.; Yang, D.; Ren, Y.; Wang, Z. Convolutional neural network based capacity estimation

using random segments of the charging curves for lithium-ion batteries. Energy 2021, 227, 120333. [CrossRef]

24. Zraibi, B.; Okar, C.; Chaoui, H.; Mansouri, M. Remaining useful life assessment for lithium-ion batteries using cnn-lstm-dnn

hybrid method. IEEE Trans. Veh. Technol. 2021, 70, 4252–4261. [CrossRef]

25. Fan, Y.; Xiao, F.; Li, C.; Yang, G.; Tang, X. A novel deep learning framework for state of health estimation of lithium-ion battery. J.

Energy Storage 2020, 32, 101741. [CrossRef]

26. Hsu, C.W.; Xiong, R.; Chen, N.Y.; Li, J.; Tsou, N.T. Deep neural network battery life and voltage prediction by using data of one

cycle only. Appl. Energy 2022, 306, 118134. [CrossRef]

27. Yang, D.; Zhang, X.; Pan, R.; Wang, Y.; Chen, Z A novel gaussian process regression model for state-of-health estimation of

lithium-ion battery using charging curve. J. Power Sources 2018, 384 387–395. [CrossRef]

28. Wang, Z.; Song, C.; Zhang, L.; Zhao, Y.; Liu, P.; Dorrell, D.G. A data-driven method for battery charging capacity abnormality

diagnosis in electric vehicle applications. IEEE Trans. Transp. Electrif. 2021, 8, 990–999. [CrossRef]

29. Chen, J.C.; Chen, T.L.; Liu, W.J.; Cheng, C.C.; Li, M.G Combining empirical mode decomposition and deep recurrent neural

networks for predictive maintenance of lithium-ion battery. Adv. Eng. Inform. 2021, 50, 101405. [CrossRef]

30. Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al.

Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [CrossRef]

31. Hong, J.; Lee, D.; Jeong, E.-R.; Yi, Y. Towards the swift prediction of the remaining useful life of lithium-ion batteries with

end-to-end deep learning. Appl. Energy 2020, 278, 115646. [CrossRef]



Processes 2023, 11, 678 18 of 18

32. Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A. Identifying degradation patterns of lithium ion batteries from

impedance spectroscopy using machine learning. Nat. Commun. 2020, 11, 1706. [CrossRef] [PubMed]

33. Tagade, P.; Hariharan, K.; Ramachandran, S.; Khandelwal, A.; Naha, A.; Kolake, S.; Han, S. Deep gaussian process regression for

lithium-ion battery health prognosis and degradation mode diagnosis. J. Power Sources 2020, 445, 227281. [CrossRef]

34. Khaleghi, S.; Karimi, D.; Beheshti, S.H.; Hosen, M.S.; Behi, H.; Berecibar, M.; Van Mierlo, J. Online health diagnosis of lithium-ion

batteries based on nonlinear autoregressive neural network. Appl. Energy 2021, 282, 116159. [CrossRef]

35. Duong, P.L.T.; Raghavan, N. Heuristic kalman optimized particle filter for remaining useful life prediction of lithium-ion battery.

Microelectron. Reliab. 2018, 81, 232–243. [CrossRef]

36. Saha, B.; Goebel, K. NASA Battery data set, NASA AMES Prognostics Data Repository, NASA Ames Research Center, Moffett

Field, CA. 2007. Available online: https://phm-datasets.s3.amazonaws.com/NASA/5.+Battery+Data+Set.zip (accessed on).

37. Zhu, J.; Wang, Y.; Huang, Y.; Bhushan Gopaluni, R.; Cao, Y.; Heere, M.; Mühlbauer, M.J.; Mereacre, L.; Dai, H.; Liu, X.; et al.

Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. Nat. Commun. 2022, 13, 2261.

[CrossRef]

38. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006.

39. Conti, S.; O’Hagan, A. Bayesian emulation of complex multi-output and dynamic computer models. J. Stat. Plan. Inference 2010,

140, 640–651. [CrossRef]

40. O’Hagan, A., Curve fitting and optimal design for prediction. J. R. Stat. Soc. Ser. 1978, 40, 1–42. [CrossRef]

41. Zhao, S.; Zhang, C.; Wang, Y. Lithium-ion battery capacity and remaining useful life prediction using board learning system and

long short-term memory neural network J. Energy Storage 2022, 52, 104901. [CrossRef]

42. Delgado-Bonal, A.; Marshak, A. Approximate entropy and sample entropy: A comprehensive tutorial. Entropy 2019, 21, 541.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Methods
	Data Sets
	Data Preprocessing
	Gaussian Process Models

	Results and Discussion
	Prediction of the Time Interval
	Voltage and Temperatures Prediction
	SOH Prediction with Predicted Features
	Comparison to Recent Methods in the Literature
	Assessing the Effect of Noise
	Computational Times

	Summary and Conclusions
	References

