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A B S T R A C T

Pipe inspection robots with sensors significantly enhance the maintenance of water systems by enabling early
defect detection and reducing the risks of leaks and environmental damage. This paper introduces a sparse
representation acoustic beamformer designed to locate artefacts within pipes using a short linear microphone
array on a robot. The primary contributions include: (i) a new acoustic beamforming approach based on sparse
representation that accurately predicts pipe conditions with a localization error within 3 % of the sensing dis-
tance; (ii) an enhanced beamforming algorithm combining plane wave and first non-axisymmetric mode,
extending the frequency range from < 1300 Hz to < 2200 Hz in a 150 mm diameter pipe (an increase by 1.69
times), effectively managing unwanted acoustic reverberations and distinguishing blockages from lateral con-
nections; and (iii) a novel robust algorithm predicting pipe length with an error margin within 2 %. This research
advances acoustic sensing technologies for autonomous mobile robots inspecting buried pipes.

1. Introduction

Underground infrastructure such as buried pipes is important to
urban life for transporting fluids, e.g. water, oil and gases. In the UK
alone there are over 393,000 km of sewer pipes and 416,000 km of clean
water mains [1]. In the EU countries the length of the drinking water
pipes is more than 4.3 million km, and the wastewater pipes are longer
than 3 million km [1]. There is little information on the condition of
these pipes. Proactive rehabilitation of buried pipes requires reliable
techniques for their condition monitoring and fault detection continu-
ously and on a massive scale to meet the challenges due to their rapid
aging, heavy usage, population growth, increasing demand for water,
energy and climate change.

Autonomous robotic sensing systems [2] working in buried pipes for
condition monitoring and fault detection offer the opportunity to capi-
talise on recent advances in acoustic and ultrasonic sensing techniques
to increase the speed and coverage of pipe inspection surveys. Acoustic
methods have been investigated for blockage detection and condition
assessment in sewers in the past decades [3,4] due to their much further
detection range, less power consumption and less computation cost
compared with the Closed-Circuit Television (CCTV). Acoustically
reflective artefacts including blockages and wall damage can be

localized remotely with respect to the robot position using the time
delay in their acoustic echoes measured with a microphone [5].
Recently, a circular microphone array on a robotic platform was used to
extend the acoustic frequency range to detect, localize and classify more
reliably blockages and lateral connections in sewers using the sparse
representation and support vector machine methods [6,7]. In order to
determine the direction of the echo arrival, acoustic measurements were
implemented sequentially at several discrete robot positions with a 0.2
m separation [6]. This approach is accurate but relatively complex
requiring the robot to move in controlled steps along the pipe. It also
requires the accurate knowledge of the robot’s velocity. Some parts of
the pipe network, e.g. manholes create a relatively reverberant envi-
ronment that makes the identification of the pipe condition with
acoustic waves difficult because of the multiple echoes generated in a
manhole. These echoes mask the reflections from other artefacts that are
further afar from the robot. Our paper proposes an array beamforming
technique to determine the sound direction and to compensate for un-
wanted reverberation effects in a broad frequency range while the robot
remains stationary. To the best of our knowledge this idea has not been
tested in a pipe environment where the acoustic field is strongly
multimodal.

Acoustic beamforming has been rigorously explored within the field
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of audio processing, encompassing signal enhancement, dereverbera-
tion, and source localization [8]. Its application extends to the detection
of defects in pipeline systems, such as identifying leaks in pressurized
water pipes [9,10]. These applications are mainly focused on the passive
sensing with beamforming algorithm for the identification of defects in
pipes. Despite its widespread use, the potential of acoustic beamforming
for active sensing and defect detection, such as blockage identification in
sewage pipes treated as waveguides, has not been systematically
explored. Active acoustic sensing by the robot can also enhance its ca-
pabilities in localization and mapping [11,7,6] as well as potential long-
range acoustic communication between the robots in the pipe network
[12,13,14]. This paper introduces a frequency domain beamformer
designed to enable a robot to ascertain the direction of conditions within
a pipe, utilizing a linear acoustic array positioned axially. This approach
contrasts with time domain algorithms that apply deconvolution to es-
timate the impulse response for robotic localization [6]. Instead, the
proposed frequency domain sparse representation method leverages
phase delay across the microphone array to enhance the accuracy of
directional defect localization relative to the robot in the presence of
unwanted reverberation.

The structure of this paper is organised as follows. Section 2 discusses
the theoretical framework of the sparse representation method to esti-
mate the location of the artefacts in a pipe with a robot equipped with a
speaker and linear microphone array. The experimental validation setup
that includes a robotic sensing system and section of a typical drainage
pipe is presented in Section 3. The results obtained with the beam-
forming technique and sparse representation method are compared in
Sections 4.1 and 4.2 for plane wave regime and first non-axisymmetric
mode regime, respectively. Section 4.3 discusses the proposed algo-
rithm for the identification of the length of the pipe sections.

2. Theory

2.1. Multi-modal wave in a pipe

In the frequency domain the acoustic field in a rigid cylindrical pipe
(see Fig. 1) can be expressed as the superposition of modes as suggested
by Morse and Ingard [15]:
p(r, θ, z,ω) =

∑
Amnφmn(r, θ)eiγmnz, (1)

where i = ̅̅̅̅̅̅̅
−1√ , ω is the angular frequency, m and n are the mode

indices, φmn is the mode shape function in the pipe, Amn is the mode
amplitude. For an empty cylindrical pipe (filled with air) with acousti-
cally rigid and smooth walls (without considering the effects from wall

roughness [16]) the mode shape function is given by [15]:
φmn(r, θ) = cos(mθ)Jm(kmnr), (2)

where Jm( • ) denotes the mth Bessel function. For a pipe partially filled
with water, the non-axisymmetric acoustic modes may split and intro-
duce complexity for the post-processing of acoustic data [17]. If the pipe
is dry, then the eigen-number kmn in Eq. (2) can be obtained from the
zero-velocity condition imposed on the rigid wall of the pipe [15]:
Jʹm(kmnr)|r=R = 0, (3)

where R is the pipe radius. In the above equation ʹ denotes partial de-
rivative with respect to r. z-axis wavenumber γmn in Eq. (1) is given by
[15]:

γmn =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k20 − k2mn

√
, (4)

where k0 is the wavenumber in a free space (k0 = ω/c0, c0 is sound speed
in air).

Eq. (4) predicts the wavenumber of the mode (m, n) at different
frequencies propagating in the pipe. It is clear that γmn is frequency
dependent, i.e., acoustic propagation of these modes (except in the case
of plane wave when k00= 0) is dispersive. If the free field wavenumber
k0 is larger than the eigen-number, kmn, or the frequency is above the
corresponding eigen-frequency, fmn = kmnc0/(2π), then a particular
acoustic mode can propagate along the pipe with relatively little
attenuation at a phase velocity that is dispersive. Fig. 2 shows sche-
matically the angular and radial dependence of the first four mode
shapes in the cylindrical pipe. In this figure the plus or minus correspond
to the sign the mode shape function, φmn, takes for a given values of θ

and r in Eq. (1).

2.2. Beamformer for plane wave and higher modes

For an acoustic sensing system with a fixed source and several
receiver points collocated in the pipe (see Fig. 3), the acoustic response
for the plane wave mode (γmn = k0 in Eq. (1)) received by the jth
microphone can be expressed as:

pj(ω) =
∑Q

q=−Q
A00(ω)e−ik0[2|zq|−sgn(zq)(jd−ds) ]s(0)

(zq
)
+ n(ω), j = 0, 1, ⋯ , J

(5)

where z0 is the coordinate of the robot (more specifically the speaker’s
position) is assumed as zero, i.e. z0 = 0, and sgn

(zq
) denotes the sign of

zq. In Eq. (5) zq is the discrete axial coordinates and Q is the maximum
number of axial coordinates. The spatial resolution of this method, zq, is
dependent on the time step,Δt = 1/fs, i.e. how fast the reflected acoustic
signal is sampled because zq = c0tq, where tq = qΔt is the qth time
sampling interval and fs is the sampling frequency used for data acqui-
sition. The other variables in Eq. (5) are the spacing in the microphone
array, d, distance between the first microphone and the speaker, ds,
index of the microphone in the array, j, (see Fig. 3) and the total number
of the microphones, J. s(0)(zq

) is the amplitude of the reflection from the
artefact located at the position zq, which can be understood as the
reflection coefficient but modulated by the frequency response of the
speaker. The superscript index denotes the wave mode order: e.g. (0)

denotes the plane wave mode whereas (1) in the following equations
denotes the first non-axisymmetric mode. The amplitude of the source
related to the reflected plane wave mode is accounted for with s(0)(zq

).
When there are no artefacts at zq, s(0)

(zq
) is equal to zero. Therefore, an

artefact can be described with an amplitude vector s(0) = {s1,⋯, sQ} that
is a sparse vector with many zeroes due to the sparse nature of the ar-
tefacts in a pipe [6,7], e.g. the pipe with four artefacts shown in Fig. 3
contains the following artefacts: (i) manhole; (ii) lateral connection; (iii)Fig. 1. The system of coordinates in a cylindrical pipe.
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blockage; and (iv) rigid termination. In Eq. (5) n(ω) denotes the noise
signal present in the pipe and A00(ω) is the spectrum of the excitation
signal in the plane wave mode (usually a chirp [6,7]). The work by Yu et
al [6,7] used a speaker placed at the centre of the cross-section. With this
arrangement below the cut-off frequency of the first axisymmetric mode
only the plane wave can be excited by the speaker. In this way the
complexity of the acoustic field in the pipe is reduced. The phase lag
term in the exponent e−ik0[2|zq|−sgn(zq)(jd−ds) ] uses twice the distance be-
tween the robot and the artefacts because the wave propagates from the
robot to the artefact and back. The phase lag due to the axially posi-
tioned microphone array is also accounted for by this term.

In order to estimate the location of the artefacts in the pipe, Eq. (5)
can be solved as an acoustic inverse problem, which can be written as
matrices in the discrete frequency domain:

pj = H(0)
j s(0) + n→

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pj,0
pj,1
⋮

pj,L

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(0)
j,1,−Q H(0)

j,1,1−Q

H(0)
j,2,−Q H(0)

j,2,1−Q

⋯ H(0)
j,1,Q

⋯ H(0)
j,2,Q

⋮ ⋮

H(0)
j,L,−Q H(0)

j,L,1−Q

⋱ ⋮

⋯ H(0)
j,L,Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s(0)−Q
s(0)1−Q

⋮

s(0)Q

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n1
n2

⋮

nL

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6)

where H(0)
j,l,q = A00(lΔf)e−ik0(lΔf)[2|qc0Δt|−sgn(q)(jd−ds) ]. Δf is the frequency

domain resolution of the discrete Fourier transform used to calculate the
acoustic response spectrum in Eq. (5), l and q are the indices of the
frequency and distance points, respectively, L and 2Q are the total
numbers of the frequency and distance points, respectively. When L is
larger than 2Q, the inverse problem of Eq. (6) is over-determined and
can be solved using the Least Square (LS) method, e.g. LSQR algorithm
[18].

Eqs. (5)-(6) are only defined for the plane wave regime (f < f10).
Above the first cut-off frequency (f10) of the first non-axisymmetric
mode, multiple modes propagate in the pipe shown in Fig. 3 even for
the case of speaker placed at the center of the pipe cross-section, causing

wave dispersion and presenting a challenge for signal processing with
traditional beamforming methods [8]. In the frequency range f10 < f <
f20 and in the case of an incident plane wave only, both the plane wave
and the first non-axisymmetric mode can be excited in the reflected
acoustic field. Therefore, using Eq. (1) and superposing the plane wave
and the first non-axisymmetric mode one can express the acoustic
response as:

pj(ω) =
∑Q

q=−Q
A00(ω)e−ik0[2|zq|−sgn(zq)(jd−ds) ]s(0)

(zq
)

+
∑Q

q=−Q
A00(ω)e−ik0|zq|−iγ10[|zq|−sgn(zq)(jd−ds) ]s(1)

(zq
)
+ n(ω)

(7)

where γ10 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k20 − k210

√
(k10 = 1.841

R and introduced in Eq. (4)), is the
wavenumber of the first non-axisymmetric mode. The first sum in Eq. (7)
defines solution for the plane wave propagating from the robot to an
artefact and reflecting back to the robot as a plane wave mode. The
second sum defines the solution for the plane wave propagating from the
robot to an artefact and reflecting back to the robot as the first non-
axisymmetric mode. As before, s(0)(zq

) and s(1)(zq
) denote the reflec-

tion amplitude of the plane wave and the first non-axisymmetric mode,
respectively. Remaining components of the scattered wave field in the
frequency range f10 < f < f20, i.e. first-mode propagation and plane/
first-mode reflection, are assumed to be of order much smaller than
those in Eq. (7) since the speaker is placed in the center of the pipe cross-
section (nodal position of mode (1,0) as shown in Fig. 2). There are
multiple transmission/reflection paths supported by pipe geometry, e.g.
sound wave emitted from the robot, transmitted through a lateral
connection or joints, reflected from a further placed blockage, then
received and scattered by the robot. In this case, it is assumed that the
plane wave propagation from the robot to the artefact, and the plane
wave and the first-mode reflections are dominant contributors to the
overall acoustic field received by the microphone array. To the best of
our knowledge this idea has not ever been tested in a pipe environment
where the acoustic field is strongly multimodal.

Similarly to Eq. (6), Eq. (7) can also be written in a vectorized form:

pj = Hjs+ nj→pj =
[
H(0)
j H(1)

j
][ s(0)

s(1)
]
+ nj (8)

where pj =
[ pj,1 ⋯ pj,L

]T,

Fig. 2. An illustration of the behavior of the first 4 modal shapes in the cylindrical pipe. Dashed lines are nodal lines for each mode.

Fig. 3. An illustration of an inspection robot with a linear 4-microphone array arranged axially in a pipe with various artefacts.
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Hj =
[
H(0)
j H(1)

j
]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(0)
j,1,−Q H(0)

j,1,1−Q

H(0)
j,2,−Q H(0)

j,2,1−Q

⋯ H(0)
j,1,Q

⋯ H(0)
j,2,Q

⋮ ⋮

H(0)
j,L,−Q H(0)

j,L,1−Q

⋱ ⋮

⋯ H(0)
j,L,Q

H(1)
j,1,−Q H(1)

j,1,1−Q

H(1)
j,2,−Q H(1)

j,2,1−Q

⋯ H(1)
j,1,Q

⋯ H(1)
j,2,Q

⋮ ⋮

H(1)
j,L,−Q H(1)

j,L,1−Q

⋱ ⋮

⋯ H(1)
j,L,Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s =
[
s(0)
s(1)

]
=

[
s(0)−Q s(0)1−Q ⋯ s(0)Q s(1)−Q s(1)1−Q ⋯ s(1)Q

]T

nj =
[
n j,1 n j,2 ⋯ n j,L

]T

with H(0)
j, l, q = A00(lΔf)e−ik0(lΔf)[2|qc0Δt|−sgn(zq)(jd−ds) ],

H(1)
j,l,q = A00(lΔf)e−ik0 |qc0Δt|−iγ10[|qc0Δt|−sgn(zq)(jd−ds) ]

For a linear microphone array with J elements, the acoustic data
from these sensors can be fused by combining Eqs. (6) and (8) in the
following form:

p = Hs+ n→

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p0
p1
⋮

pJ

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

H0

H1
⋮

HJ

⎤
⎥⎥⎥⎥⎥⎦
s+ n (9)

It is assumed that the acoustic artefacts have limited extent spatially,
so that the vector s has sufficient sparsity. The sparse nature of the ar-
tefacts (e.g. blockages/junctions/pipe ends) is common in drainage and
wastewater pipes. It has been illustrated in Ref. [11,6,7] that the sparsity
of impulse response in the pipe can be observed in the time domain and
wavelet domain. As discussed in Ref. [6], the sparse representation using
wavelet basis functions can reduce the background noise and some
higher-order modal components in the impulse response without
cancelling the acoustic features from artefacts. Similarly, this paper
makes uses of the frequency domain sparsity of the artefact’s amplitude
s in Eq. (9).

The sparsest solution ŝ satisfies the following optimization problem
[19]:
ŝ = argmin

s
‖s‖0 subject toHs− p = 0 (10)

where ‖.‖0 denotes the ℓ0 pseudo-norm, which is the number of the non-
zero components of the vector. This is also referred to as the cardinality
of s [19]. The optimization problem in Eq. (10) is non-convex and its
solution is usually found by using a brute-force search [19] which can be
computationally expensive. Fortunately, it is possible to relax the opti-
mization in Eq. (10) to a convex ℓ1-minimization [19]:
ŝ = argmin

s
‖s‖1subject toHs−p = 0 (11)

where ‖.‖1 denotes the l1-norm, which describes the sum of absolute
values of the vector s.

A related convex optimization problem is the following:
ŝ = argmin

s

{
‖Hs− p‖22+ λ‖s‖1

} (12)

where λ > 0 is a regularisation parameter that weights the importance of
sparsity. In this paper the ℓ1-norm regularization is solved using the
Sparse Reconstruction by Separable Approximation (SpaRSA) algorithm
[20] (see details in the Appendix A). After estimating the amplitude
vector ŝ, the location of the artefacts can be obtained directly by
searching for the non-zero components sq at the corresponding axial

coordinates zq.

2.3. LCMV beamformer

For comparison, a time-domain broad-band Linearly Constraint
MinimumVariance (LCMV) beamformer [21] was used in this work. The
LCMV beamformer represents a sophisticated approach in the field of
acoustic signal processing, aimed at enhancing signal reception from a
specific direction while simultaneously suppressing interference and
noise from other directions [21,8]. This technique is particularly effec-
tive in applications requiring spatial filtering, such as sonar, radar and
telecommunications, to improve signal clarity and quality [8]. Conse-
quently, acoustic beamforming proves to be instrumental in the context
of acoustic sensing in pipes to discriminate echoes originating either
from the front or behind the robotic sensor. This capability significantly
enhances the precision and accuracy in localizing features within the
pipe, thereby improving the effectiveness of diagnostic and navigational
tasks conducted within such environments.

The core principle of the LCMV beamformer is to minimize the
output power of the beamformer under certain linear constraints. These
constraints ensure that the signal from the desired direction is passed
through without attenuation, while signals from other directions are
attenuated. The optimization problem can be formulated as follows
[21]:
J(w) = minw wHRpw subject toK linear constraints CHw = f (13)

where J(w) is the cost function representing the output power of the
beamformer, < •>H denoting Hermitian (conjugate transpose), w is the
estimated weights applied to the array inputs, i.e. microphone signals, C
is the constraint matrix which contains K steering vectors directing the
beamformer to preserve the signal from the desired direction, f is the
constraint vector, specifying the response of the beamformer in the di-
rection of interest, Rp = E[ppH] is the correlation matrix of the received
signals.

The solution of the beamformer is given by [21]:

wLCMV = R−1
p C

(
CHR−1

p C
)−1f (14)

This results in a directional beam pattern that can adaptively focus
on the signal of interest while nullifying unwanted signals, thus
enhancing the overall signal-to-noise ratio (SNR) and improving the
quality of signal reception. In this paper, the solution of broadband
LCMV beamformer was obtained by using the function in Matlab: @
phased.TimeDelayLCMVBeamformer [22,23,24].

It should be noted that the LCMV beamformer is derived for plane
wave fields, a characteristic which inherently constrains its applicability
in waveguides (i.e. pipes), where the acoustic waves regularly exhibit
dispersive properties. Consequently, the methodology introduced in
Section 2.2 (Eqs. (7) and (8)) is tailored to pipe environments accom-
modating the dispersive nature of acoustic waves in such settings.

3. Experimental setup

The experimental setup used two cases of PVC pipe network (see
Fig. 4): (i) a straight section of a 21.5 m long 150 mm diameter pipe with
a manhole at one end; (ii) a straight section of a 20.83 m long 150 mm
diameter main pipe with a manhole at one end, a 100 mm diameter 1.91
m long lateral connection attached at 90◦ 9.41 m away from the
manhole, and a blockage at 6.39 m from the lateral connection. This
blockage was made from concrete, which provided a 40 % blockage
ratio (blockage hight divided by the pipe diameter) and was 150 mm
long. The blockage was placed in the pipe network case (ii) as shown in
Fig. 4(b) to validate the performance of the proposed algorithm for
separating overlapped acoustic echoes from blockage lateral or man-
holes. The straight section was terminated with a heavy wooden board

Y. Yu et al.
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at one end and manhole at the other end (see Fig. 4 (a)). The density of
PVC pipes is around 1300 kg/m3, i.e. two orders of magnitude greater
than that of air. Therefore, the pipe wall was assumed to be acoustically
rigid.

The acoustic sensing system was mounted on a remotely controlled
robot (iRobot Looj 330 by iRobot [22], around 400 mm long and 73 mm
wide) that was moved at a velocity of around 0.1 m/s (see Fig. 4(c) and
(d)). Acoustic sensors used in this work consisted of a loudspeaker and
four-microphone linear array. The acoustic and data acquisition setup
included an array, speaker, Raspberry Pi 4 serving as the processor,
power amplifier for the speaker, ADC (Analog-to-Digital Converter) and
DAC (Digital-to-Analog Converter) components. The data acquisition
was implemented on Raspberry Pi with a Linux OS which simulta-
neously played and recorded sound. The sampling rate was fs = 16 kHz.
A 100 – 3000 Hz sweep sine with duration 10 s was used as the exci-
tation signal.

Signal was pre-processed by the deconvolution method to obtain the
impulse response for each microphone:

P̃j(t) = F
−1
{

F
[Pj(t)

]

F [e(t) ] + β

}
, j = 0, 1, ⋯ , J, (15)

where F and F
−1 denote the forward and inverse Fourier transform

operator and β is the parameter of regularization (β = 0.1 in this work).
A 4th order Butterworth band-pass filter was used to extract the signal in
the frequency range of interest, e.g. 200–1300 Hz for plane wave and
1500–2000 Hz for the first non-axisymmetric mode regime.

The speaker was located at the centre of the pipe within a 5 mm
positional mean error initially, although this could have varied slightly
due to the robot movement inside the pipe. The microphone array,
consisted of 4 omni-directional microphones (J=4 in Eq. (5)-(9)) with
50 mm spacing, was set up close to the top of the pipe. This arrangement
was to avoid any contact with the water when the robot would be used to
inspect a partially filled drainage pipe. The microphone type used in this
experiment was MSM321A3729H9CP by MEMSensing Microsystems
Co. Ltd. The microphone size was 3.76 mm× 2.95 mm× 1.1 mm. It had
–32 dB sensitivity at 1 kHz (ref. 1 V/Pa) providing an estimated 65 dB
signal to noise ratio in the frequency range of interest. The Visaton 2242
speaker with the diaphragm of 32mm in diameter was driven with a 3W
power supply. Its frequency range was 150–2000 Hz.

The number of frequency points in the spectral analysis significantly
affects the computation efficiency of the processing. In this paper, the
sensing distance was limited within 50m (i.e. zQ = 25m, z−Q = − 25m).
The number of distance points defined as Q = zQ/c0fs was around 2048
points for fs = 16 kHz.

The localization error (distance between the robot and the pipe
feature) was calculated as:

ε =
⃒⃒zp − zr

⃒⃒

zr (16)

where zp and zr are the predicted and real locations of the pipe feature,
respectively.

4. Experimental results

This section presents a set of experimental results of beamforming
algorithm proposed in this paper for the localization of robot and
blockage in a pipe network. For underground sewage pipe inspection a
robot can be initially placed into the pipe through a manhole access. In
the experiment a typical manhole was recreated as shown in Fig. 5(a).
Manhole is acoustically reflective and reverberant environment that
produces a prolonged impulse response detectable by the robot over
long distances in the pipe. As shown schematically in Fig. 5(a), a robot
used in the experiment was initially 5.3 m away from the manhole,
which was indicated accurately by the acoustic impulse response of the
pipe network (see echo from manhole indicated in Fig. 5(b)). However,
the reverberant sound wave due to the manhole extends to around 8 m
(5–13 m range in the impulse response in Fig. 5(b)) causing a “blind”

detection zone. A spatial filtering based on the beamforming technique
from Section 2 was used here to separate the echoes from the front or
back of the robot, so that the “blind zone” caused by the manhole or any
other features at the rear of the robot can be removed or significantly
reduced.

As shown in Fig. 5(b), the phase delay from the linear microphone
array explicitly indicates the direction of the echoes from themanhole or
the pipe end. The multiple reflection has two paths: (i) robot→ pipe-end
→ robot→manhole→ robot, and (ii) robot→manhole→ robot→ pipe-
end → robot. It should be noted that both paths can be combined in the
analysis and used to reconstruct the length of the whole pipe. The path
(i) can be regarded as the echo coming from left of the robot, whereas
the path (ii) can be regarded as the echo coming from the right.

Fig. 6(c) illustrates the impact of the first non-axisymmetric mode on
the sound reflected by the blockage in the pipe and propagating in the
frequency range that includes the first non-axisymmetric mode. This can
be compared with the case illustrated in Fig. 6(c) where the incident
sound is generated below the cut-off frequency. This mode demonstrates
a lower group velocity compared to that of a plane wave, resulting in a
phase delay observed in the signal received by the microphone array [7].
The phenomenon of wave dispersion complicates the localization and

Fig. 4. (a) The pipe network layout with a manhole and a lateral connection; (b) the 40 % concrete blockage in the pipe; (c) the Looj iRobot in a pipe; (d) the
complete robotic sensing platform with a 4-microphone array and speaker.
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Fig. 5. (a) An impression of the robot with a linear microphone array in the straight pipe with a manhole; (b) the impulse response (frequency range 200–2000 Hz)
plotted against the distance propagated by the sound wave (d = c0t/2) along the coordinate z.

Fig. 6. (a) A robot with a linear microphone array in the straight pipe with a manhole and blockage; (b) the impulse response plotted against the distance propagated
by the sound wave (d = c0t/2) along the coordinate z in the plane wave regime (frequency range 200–1300 Hz); (c) the impulse response beyond the plane wave
regime (frequency range 200–2000 Hz).
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detection of pipe conditions, especially when multiple artefacts are
positioned in a close proximity (less than 3 m). The overlapping of
echoes attributable to wave dispersion and their direction relative to the
robotic sensor (either front or rear) presents a significant challenge.
Distinguishing and identifying these overlapping echoes represents the
principal novelty of this paper.

4.1. Plane wave regime beamformer

Fig. 7 shows the acoustic reflections from both negative (left from the
robot) and positive (right from the robot) directions calculated with the
proposed beamformer using the experimental setup shown in Fig. 5(a).
Contrary to that shown in Fig. 5(b), the reflections depicted in Fig. 7
were arranged along the coordinate axis with the help of the beam-
forming algorithm (LCMV and the sparse representation) to demonstrate
the positive and negative directions and to estimate more accurately the
position of the artefact with respect to the robot. In the plane wave
regime (f < f10), the time-delay LCMV beamformer [21] can be used to
enhance the reconstruction of reflected acoustic waves originating from
the left while supressing those from the right through the specification of
the leftward beamforming direction. For example, while the robot was at
4.07 m, the amplitude of the manhole reflected signal at negative co-
ordinates from −7 m to −4 m was significantly higher than its coun-
terpart at positive coordinates from 4 m to 7 m. Similar results can be
observed when the robot was at other locations as shown in Fig. 7. This
indicates the functionality of the LCMV beamformer, although the LCMV
beamforming does not fully cancel the echoes from the manhole.

The same procedure was implemented for the rightward reflections
from the pipe end, where the residue of the leftward echoes from the
manhole can be also observed (see Fig. 7). Whereas the sparse repre-
sentation beamformer (Eqs. (6) and (9)) presents a better spatial filtering
results with almost ideally cancelled manhole echoes in the signals
arriving from the right (see Fig. 7). This enables us to distinctly separate
the acoustic reflections with respect to the rear or front side of the robot
into negative and positive coordinates. Such differentiation can be used
for the precise localization and mapping of the conditions in the pipe
and for the robot’s navigation.

The reverberant signal due to the presence of the manhole on the left
was also significantly cancelled. As shown in Fig. 7, the echo signal from
the manhole only lasted for 2.5 m compared to 8 m range in the impulse
response recorded without beamforming algorithm SRB (see Fig. 5(b),
manhole reflections).

Fig. 8(a) shows schematically a more complicated pipe network with
a manhole, lateral connection (at the right side of the robot as shown in
Fig. 4(a)) and a blockage used in the experiment with the beamforming
algorithms. The results of this experiment are presented in Fig. 8(b).
Again, the proposed sparse representation algorithm strongly cancels
the rightward echoes with leftward focusing beamforming and results in
a significantly better spatial filtering compared to the time-delay LCMV
beamformer. The same phenomenon can be observed for rightward
echoes.

As shown in Fig. 8(b), the spatial extend of the echo signal from the
manhole is around 2.5 m. This is significantly reduced in comparison
with the 8 m interval in the impulse response without beamforming (see
Fig. 5(b)). Additionally, the reflection from the manhole can be identi-
fied at the back direction (negative distance in Fig. 5(b)), so that the
acoustic feature from the front of the robot can be separated.

Fig. 8(b) also shows that the proposed algorithm can separate the
reflections from left and right when the robot is positioned between two
pipe conditions, e.g. when it is between the manhole and lateral (e.g.
robot at 4.88 m), or manhole and blockage (e.g. robot at 7.77 m). The
proposed beamformer can be used to detect the reflection from the two
directions. This cannot be achieved by using a mono receiver [11] or
circular sensor array placed in the same cross-section on a static robot
[6]. The proposed beamforming algorithms enables us to localize the
pipe features within 3 % of the true distance to a reflecting feature in the
pipe.

4.2. First non-axisymmetric mode regime beamformer

Beyond the first cut-off frequency (f > f10) it is possible to use the
acoustic scattering properties of the blockage and lateral connection to
discriminate between them and to extract the reflections from a
particular artefact. Within the frequency range f10 < f < f20, there are
two different acoustic wave modes that can propagate in the pipe: plane
wave and the first-non-axisymmetric mode. The reflection coefficient of
the plane wave scattered by the lateral connection beyond the first cut-
off frequency f10 is well below 0.1 which is significantly smaller than
that for the 40 % blockage (>0.2) as discussed in Ref. [6].

According to [7], the first non-axisymmetric wave mode reflected
from the left/right branch lateral connection due to a plane wave exci-
tation has a vertical nodal line, whereas its reflection from the blockage
at the bottom of the pipe has a horizontal nodal line (see Fig. 2(b)). In
Ref. [7], a circular array was used to analyze the first non-axisymmetric

Fig. 7. Spatially filtered impulse responses in the plane wave regime (frequency range 200–1300 Hz) using time-delay LCMV beamformer (blue curves) and the
absolute value of the sparse amplitude vector for plane wave components ⃒⃒ŝ(0) ⃒⃒ of Eq. (6) (black curves). Each set of data shown corresponds to the z-axis coordinate
of the robot between 2.53 m and 17.96 m.
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Fig. 8. (a) A robot with a linear microphone array in a pipe with a manhole, lateral connection, and a blockage; (b) spatially filtered impulse response (frequency
range 200–1300 Hz) using time-delay LCMV beamformer (blue curves) and the absolute value of the sparse amplitude vector for plane wave components ⃒⃒ŝ(0) ⃒⃒ of Eq.
(6) (black curves). Each set of data shown corresponds to the z-axis coordinate of the robot between 0.56 m to 12.09 m.

Fig. 9. Spatially filtered impulse responses (frequency range 1500–2000 Hz) using time-delay LCMV beamformer (blue curves). The absolute value of the sparse
amplitude vector for plane wave components ⃒⃒ŝ(0) ⃒⃒ of Eq. (8) (black curves); the absolute value of the sparse amplitude vector for the first non-axisymmetric mode
wave components ⃒⃒ŝ(1) ⃒⃒ of Eq. (8) (red curves).
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mode for the circumferential localization of the pipe defects. This paper
extends the previous work using a linear array to focus on the locali-
zation of blockage. In this work, the microphone array is positioned at
the top of the cross-section of the pipe, as shown in Fig. 4(d), which is the
nodal line of the first non-axisymmetric mode of the reflection from the
lateral connection. Therefore, the effect of the first non-axisymmetric
mode caused by the lateral reflection is minimised, while the reflec-
tion from the blockage can be effectively measured.

Hence, the acoustic signature of a more concerning feature, i.e.
blockage, can be extracted for detection and localization. This non-
axisymmetric mode method was tested with the robotic sensing setup
in the pipe network as shown in Fig. 8(a) and Fig. 4(a). Fig. 9 shows that
in the frequency range f10 < f < f20 the reflection from the lateral
connection is minimized and the blockage signature is enhanced with
the time-delay LCMV beamformer technique and proposed sparse rep-
resentation algorithm. By solving Eqs. (8), (9) and (12), the algorithm
shows an improved spatial filtering performance compared to the time-
delay LCMV beamformer technique, particularly at the positive co-
ordinates where the reflections from the manhole have been cancelled.
With the modal decomposition, the reflection amplitude of both the
plane and the first non-axisymmetric mode are clustered at almost the
same coordinate indicating the location of the blockage. It is also noted
that the amplitude of the first non-axisymmetric mode increases
significantly when the robot is approaching the blockage.

4.3. Length of the pipe section

Estimation of the length of the pipe is important for the localization
and mapping of pipe network. As shown in Fig. 7 and Fig. 8, the multiple
reflections measured at various robot locations in the plane wave regime
consistently indicate the pipe length. Therefore, the multiple reflections
in the plane wave regime can be used to estimate the length of the pipe
[11]. However, this method requires the sequential measurements from
the robot as it moves which increases the complexity of the algorithm of
robotic autonomous control and increases unnecessarily the time
required for robot to traverse the inspected length of the pipe [11].

With the proposed beamformer algorithm the length of the pipe can
be estimated with a single measurement. As shown in Fig. 7(b) and Fig. 8
(b), multiple reflections in the positive and negative directions appear in
the same spatial interval with respect to the robot’s position at z= 0. The
measure of the pipe length can then be expressed as:
Lp1 =

⃒⃒ŝ(z−q
) ⃒⃒◦ ⃒⃒ŝ(zq

) ⃒⃒
= | ŝ0 ŝ−1 ⋯ ŝ−Q|◦| ŝ0 ŝ1 ⋯ ŝQ| (17)

where ◦ denotes the Hadamard product (elementwise multiplication) of
two arrays ⃒⃒ŝ(z−q

) ⃒⃒ (the reflection amplitudes associated with the
negative coordinates) and ⃒⃒ŝ(zq

) ⃒⃒ (the reflection amplitudes associated
with the positive coordinates). Since both ⃒⃒ŝ(z−q

) ⃒⃒ and ⃒⃒ŝ(zq
) ⃒⃒ are

sparse vectors, reflection pulses from different positive/negative dis-
tances should be cancelled and only reflections having the same positive
and negative coordinates give non-zero elements in measure Lp1 from
Eq. (17).

It should be noted that in case when both echoes appear at the same
positive and negative coordinate, they may fail to classify as multiple
reflections needed to estimate the true pipe length. For example, when
the robot is located at the centre between two features (e.g. when the
robot was at 10.24 m in Fig. 7 that corresponds to the middle between
the manhole and pipe end), the left and right reflected pulses appear at
almost the same distance from the robot, which is about half of the pipe
length. Hence, another measure is proposed in this paper.

Since the direction of the echoes has been estimated using the
beamforming, the length of the pipe section between the left and right
pipe features can be estimated directly by the summation of the dis-
tances between two neighbouring echoes. In this paper, a convolution
between vectors ŝ(z−q

) and ŝ(zq
) is used as a method to add distances

together resulting in a new measure given by:
Lp2 =

⃒⃒ŝ(z−q
) ⃒⃒*⃒⃒ŝ(zq

) ⃒⃒
= | ŝ0 ŝ−1 ⋯ ŝ−Q|*| ŝ0 ŝ−1 ⋯ ŝ−Q|, (18)

where * denotes the convolution of two vectors. Since the convolution
resulting vector has a length (2Q+1), it is proposed to truncate Lp2
vector to Q+1 elements so that Lp2 has the same length as Lp1. Using the
product of Lp1 and Lp2, we propose the measure Lp = Lp1◦Lp2 to estimate
the length of the pipe. Note that ŝ(z−q

) and ŝ(zq
) are sparse and

reflection pulses may not be continuous as shown in Fig. 7 and Fig. 8. A
moving average with a sliding windowing length K=6 (refer to 0.06 m
distance windowing) is suggested in this work to smooth the vectors
ŝ(z−q

) and ŝ(zq
) maintaining relatively narrow width of the pulses.

Fig. 10 shows the result of the sparse amplitude vector before and after
the moving average process over the frequency range of 200–1300 Hz. It
is worth noting that when the sliding windowing length of the moving
average is too small (e.g. less than 5), the smoothness of the sparse
amplitude vector may not be sufficient for post-processing. When the
sliding windowing length is too large (e.g. greater than 10), the peak
identifying the distance the pipe section may become too wide, resulting
in the false identification of the pipe length. It is found that the sliding
windowing length can be chosen between 6–10 points (refer to 0.06–0.1
m distance windowing) in this paper. The proposed algorithm Lp for the
prediction of the pipe length combining the two measures Lp1 and Lp2 is
shown in Table 1.

Fig. 11 and Fig. 12 shows the estimations of the length of the pipe, Lp,
Lp1 and Lp2, obtained using the algorithm detailed in Table 1 over the
frequency range 200–1300 Hz when the robot was located in the pipe
section between themanhole and lateral connection (see Fig. 11(a)). The
proposed algorithm can be used to estimate the lengths of the following
four pipe sections: (d1) manhole-lateral; (d2) manhole-lateral end (see
Fig. 11(a)); (d3) manhole-blockage; and (d4) manhole-pipe end. As
shown in Fig. 11(b) the measure Lp that combines both Lp1 and Lp2 can
accurately estimate the lengths of the pipe sections with (d1) 9.52m, (d2)
11.43 m, (d3) 15.8 m, and (d4) 20.82 m. The results are within 2 % of the
true length. The Lp1 measure only uses the information of the multiple
reflections and, as a result, wrongly classifies distances when the robot is
located in the middle of manhole-lateral (d1) and manhole-lateral end
(d2) sections.

The coordinates of the peaks within the measure Lp2 signify the
length of the pipe, aligning with the measurement results obtained from
Lp. Additionally, there are peaks of relatively lower amplitude, which
can be ascribed to the reverberation effects of the manhole convoluted
with reflections from other reflections of the pipe features. To diminish
the cases of wrongly predicted pipe’s length and to enhance the pre-
diction’s resilience against interferences from noise and manhole
reverberation, a threshold for Lp was established at 10−3.

When the robot was located between the lateral and blockage the
section lengths corresponded to: lateral-blockage (d1); manhole-
blockage (d2); and manhole-pipe end (d3). Using the measure Lp these
section lengths were estimated as d1 = 6.5 m, d2 = 15.78 m and d3 =
20.79 m within less than 2 % of the true lengths. Note that when the
robot was between the lateral and the blockage, the robot body reduced
the amplitude of the reflection from the left of the pipe since the sensors
were facing in the right direction. Therefore, multiple reflection be-
tween the lateral connection end and the blockage were identified with
small amplitude of Lp.

5. Conclusions

This study has proposed and successfully validated a novel beam-
forming technique for the localization of artefacts in a pipe and for the
estimation of the length of the pipe sections. The proposed technique is
based on sparse representation of the acoustic signals recorded on a
compact linear microphone array mounted on a static robotic platform.
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The work also makes use of the modal decomposition to include in the
analysis the plane wave and the first non-axisymmetric mode to extend
the usable frequency range. The axial alignment of the linear micro-
phone array facilitates the accurate determination of an artefact’s di-
rection relative to the robot’s position, marking it very useful for
condition localization, classification and for robot navigation. It also
enables us to compensate for unwanted reverberation effects from a
manhole.

The proposed technique has been tested successfully against exper-
imental data obtained in a realistic drainage pipe with a blockage,
manhole, lateral connection and rigid termination. The results demon-
strate the capability to determine the direction to an artefact and its
location with an accuracy of better than 3 % with respect to the true
distance. This accuracy has been achieved through the analysis of the

acoustic signals corresponding to the plane wave (f < f10) and first non-
axisymmetric mode (f < f02) frequency regimes. It has been also
possible to use the acoustic signatures recorded with this technique to
distinguish between blockages and lateral connections because of sig-
nificant differences in the cross-section pattern in the acoustic pressure
waves reflected from these artefacts and their spectral composition.
Additionally, the paper has introduced the formulation of a robust al-
gorithm that accurately estimates the length of the pipe sections within
2 % of the actual length.

The proposed technique offers a potential for significantly enhancing
diagnostic precision in the assessment of pipeline integrity and config-
uration with audible acoustic waves and relatively inexpensive acoustic
and data acquisition equipment. The work lays a foundational frame-
work for advanced acoustic methodologies to inspect buried pipes with
autonomous mobile robots, heralding a new era in the maintenance and
monitoring of underground infrastructure. This work also suggests that
that uncertainties caused by the presence of sensing platform need a

Fig. 10. An example of the absolute value of a sparse amplitude vector |ŝ| before moving average (black curve) and after moving average (red curve) is applied.

Table 1
Algorithm 2 – Pipe length estimation.
Task: To estimate the length of the pipe
Input: Reflection amplitude results from Eq. (9): ⃒⃒ŝ(z−q

) ⃒⃒ and ⃒⃒ŝ(zq
) ⃒⃒

Steps:
1. Moving average of ŝ(z−q

) and ŝ(zq
) with a sliding length K (K = 5 in this paper) gives ŝMA

(z−q
) and ŝMA

(zq
).

2. Calculate the first measure:Lp1 = ŝMA
(z−q

)◦ ŝMA
(zq

)

3. Calculate the second measure:Lp2 = ŝMA
(z−q

)*ŝMA
(zq

)

4. Calculate the final measure:Lp = Lp1◦Lp2
Output: Lp.

Fig. 11. The estimations of the pipe section length: (a) a sketch of the setup
when the robot is between the manhole and the lateral; (b) estimation results
for setup (a). The blue stars in (b) indicate the true lengths of the four pipe
sections shown in (a).

Fig. 12. The estimations of the pipe section lengths: (a) a sketch of the setup
when the robot is between the lateral and the blockage; (b) estimation results
for setup (a). The blue stars in (b) indicate the true lengths of the four pipe
sections shown in (a).
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further investigation to minimise its effect on the recorded acoustic
signal.
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Appendix A

Table A1
Algorithm 1 – Frequency domain Sparse Representation estimation with ℓ1-norm regularization with SpaRSA
[20] to localize artefacts in a pipe.
Task: To estimate the location of artefacts in the pipe ŝ
Input: Excitation chirp signal A00(t), response signal from 4 microphonesPj(t)j = 0:3
Plane wave reconstruction: P (t) = ∑3

j=0Pj(t)
Fast Fourier transform (FFT): p(ω) = F {P(t) }, A00(ω) = F {A00(t) }.
Transfer matrix: H(

ω, zq
), given by Eqs. (6)(9) for plane wave regime, Eqs. (8)(9) for first non-axisymmetric mode regime

Initialization: k = 1, A = H, x1 = p, τ1I = ATA, tolerance ε = 10−5 [20], parameter λ = 0.001 [20]
Iteration:

1. λk = max
{0.1‖ATxk‖∞, λ

} [20].
2. Use [20]: sk+1 = shrink

(sk −AT(Ask − x)/τk, λk/τk
) referred to as soft shrinkage, where shrink(si, λ) =

sgn(si)max{|si| − λ, 0 }
3. Update the step size [20]: τk = (sk+1 − sk)T(∇ϑ(sk+1) − ∇ϑ(sk) )

(sk+1 − sk)T(sk+1 − sk)
, where ∇ϑ(sk) = AT(Ask −x)

4. If ‖sk+1 − sk‖
sk ≤ ε, go to step 5. Otherwise, return to step 2 [20]

5.xk+1 = xk −Ask+1
6. If λk ≤ λ, stop; Otherwise k = k + 1, and return to step 1.

Output: ŝ = sk.
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