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In this letter, we revisit the quantisation problem for a fundamental model of classical mechanics—

the Zhukovsky-Volterra top. We have discovered a four-parametric pencil of compatible Poisson 
brackets, comprising two quadratic and two linear Poisson brackets. Using the quantisation ideal 
method, we have identified two distinct quantisations of the Zhukovsky-Volterra top. The first 
type corresponds to the universal enveloping algebras of 𝑠𝑜(3), leading to Lie-Poisson brackets 
in the classical limit. The second type can be regarded as a quantisation of the four-parametric 
inhomogeneous quadratic Poisson pencil. We discuss the relationships between the quantisations 
obtained in our paper, Sklyanin’s quantisation of the Euler top, and Levin-Olshanetsky-Zotov’s 
quantisation of the Zhukovsky-Volterra top.

1. Introduction

The classical and quantum tops are fundamental models in physics. The anisotropic Zhukovsky-Volterra [1,2] and Euler tops [3]

stand out as the simplest yet non-trivial examples. In the classical case, they describe the motion of a free rigid body in the presence 
or absence of an external field. In the quantum domain, they characterise the dynamics of an isolated spinning particle, an atom 
or a nucleus subjected to a constant external field, and contribute to the description of phase transitions in atomic nuclei in the 
Lipkin-Meshkov-Glick model (see [4] and references therein). Their significance in classical and quantum mechanics motivates us to 
revisit the problem of quantisation using a novel approach.

The classical Zhukovsky-Volterra system [1,2] is a dynamical system in three-dimensional phase space with coordinates 𝑆𝛼, 𝛼 ∈
1,3 (representing rotational momenta or classical spin), described by the following system of three ordinary differential equations:

𝑑𝑆𝛼

𝑑𝑡
= 2(𝑗𝛽 − 𝑗𝛾 )𝑆𝛽𝑆𝛾 + 2(𝑘𝛽𝑆𝛾 − 𝑘𝛾𝑆𝛽 ), (1)

where 𝛼, 𝛽, 𝛾 represent a cyclic permutation of the indices 1, 2, 3, 𝑗𝛼 are parameters of anisotropy (reciprocals of the components of 
the inertia tensor), and 𝑘𝛼 are the constant components of the external field.

It is well-known that the Zhukovsky-Volterra (and Euler) top admits a pencil of compatible Lie–Poisson brackets. By extending 
the phase space with a new coordinate 𝑆0, which is a constant of motion of the dynamical system, one can also construct quadratic 
Poisson brackets on the resulting four-dimensional space. For the Euler top, the later coincides with the famous Sklyanin algebra 
[10]. In the case of the Zhukovsky-Volterra top, it represents a known modification of the Sklyanin algebra [6].
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In this paper, we demonstrate that Zhukovsky-Volterra and Euler tops admit a second inhomogeneous quadratic Poisson bracket. 
Furthermore, we establish that all four Poisson brackets are mutually compatible in the sense of Magri [9], and define a family of 
Poisson brackets:

{𝑆𝛼,𝑆𝛽}𝑎,𝑏,𝑐,𝑑 = 2
(
(𝑐 + 𝑑 𝑗𝛼)𝑆0𝑆𝛾 + (𝑎+ 𝑏 𝑗𝛾 )𝑆𝛾 + 𝑑 𝑘𝛾𝑆0 + 𝑏𝑘𝛾

)
,

{𝑆0, 𝑆𝛼}𝑎,𝑏,𝑐,𝑑 = 2𝑒 (𝑗𝛽 − 𝑗𝛾 )𝑆𝛽𝑆𝛾 + 2𝑒 (𝑘𝛽𝑆𝛾 − 𝑘𝛾𝑆𝛽 ),
(2)

where 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 are arbitrary parameters of the family (if 𝑒 ≠ 0, then by a rescaling of the bracket one can set 𝑒 = 1 without a 
loss of generality). The existence of the second quadratic structure in these models, along with the compatibility of all four Poisson 
brackets, seems to be a novel result to the best of our knowledge. If 𝑒 ≠ 0, the variable 𝑆0 plays the role of the Hamiltonian for the 
entire family of the brackets.

We address the quantisation problem through a novel approach based on the concept of quantisation ideal, initially introduced 
in [12] and further developed in [13–16]. This approach is tailored for dynamical systems defined on free associative algebras. As a 
preliminary step, we lift the Zhukovsky-Volterra system to the free algebra  = ℂ⟨𝑆̂0, 𝑆̂1, 𝑆̂2, 𝑆̂3⟩ using the same Lax representation 
as applied to the matrix-valued system [17]. The resulting system defines a derivation 𝑑

𝑑𝑡
∶  → of the algebra. Subsequently, we 

seek a quantisation ideal  ⊂, which is an ideal satisfying two conditions:

(i) the ideal  is 𝑑
𝑑𝑡

–stable: 𝑑
𝑑𝑡
 ⊂  ;

(ii) the quotient algebra ∕ admits a basis of normally ordered monomials.

The quotient algebra ∕ is then said to be a quantum algebra for the system. The first condition implies that 𝑑
𝑑𝑡

descends to a 
derivation of the quantum algebra, defining the quantum Zhukovsky-Volterra system with commutation relations determined by the 
generators of the quantisation ideal.

As a candidate for a quantisation ideal, we consider the ideal  generated by the set of polynomials:

 = ⟨𝑆̂𝛼𝑆̂𝛽 − 𝑆̂𝛽 𝑆̂𝛼 +𝐴𝛾 (𝑆̂0𝑆̂𝛾 + 𝑆̂𝛾 𝑆̂0) +𝐾𝛾𝑆̂0 +𝑀𝛾𝑆̂𝛾 +𝑁𝛾,

𝑆̂𝛾 𝑆̂0 − 𝑆̂0𝑆̂𝛾 +𝐵𝛾 (𝑆̂𝛼𝑆̂𝛽 + 𝑆̂𝛽 𝑆̂𝛼) + (𝑙𝛼𝑆̂𝛽 − 𝑙𝛽 𝑆̂𝛼) |𝛼, 𝛽, 𝛾 ∈ 1,3⟩.
These polynomials generalise the commutation relations in the Sklyanin algebra [10] and the algebra obtained in [6]. The ideal  is 
parametrised by the set of 18 constants 𝐴𝛼, 𝐵𝛼, 𝐾𝛼, 𝑀𝛼, 𝑁𝛼 and 𝑙𝛼, 𝛼 ∈ 1,3. The fulfillment of conditions (i) and (ii) leads to a system 
of algebraic equations on these parameters, which we have solved in the paper to derive the most general quantisation ideal of the 
form .

In the simplest case 𝐴𝛾 =𝐵𝛾 = 0 condition (ii) is satisfied due to the Poincare-Birkchoff-Witt Theorem. Ideals satisfying condition 
(i) almost immediately give rise to a quantum algebra isomorphic to the universal enveloping algebra given by (2) with 𝑐 = 𝑑 = 𝑒 = 0, 
and with the central element 𝑆̂0.

We treat the generic case 𝐴𝛾 ≠ 0, 𝐵𝛾 ≠ 0 separately. Firstly, we identify and solve equations for the coefficients of the ideal to 
fulfill condition (ii) for quadratic and cubic monomials (Theorem 3.1). Condition (i) imposes further constraints on the coefficients 
of the ideal (Propositions 3.2 and 3.3). Finally we propose a reparametrisation of the coefficients that resolve all the constraints and 
is convenient for a classical limit.

Ultimately, we obtain a general quantisation ideal that leads to commutation relations:

[𝑆̂𝛼, 𝑆̂𝛽 ] = − ℎ

1+ℎ2𝑗𝛾
(
𝐶+(𝑗𝛽+𝑗𝛼 )𝐷

)((𝐶 +𝐷𝑗𝛾 )(𝑆̂0𝑆̂𝛾 + 𝑆̂𝛾 𝑆̂0) + 2(𝐴+𝐵𝑗𝛾 )𝑆̂𝛾 + 2𝐷𝑘𝛾𝑆̂0 + 2𝐵𝑘𝛾
)
,

[𝑆̂𝛾 , 𝑆̂0] = −ℎ
(
(𝑗𝛼 − 𝑗𝛽 )(𝑆̂𝛼𝑆̂𝛽 + 𝑆̂𝛽 𝑆̂𝛼) + 2(𝑘𝛼𝑆̂𝛽 − 𝑘𝛽𝑆̂𝛼)

)
.

(3)

Here ℎ = −𝑖ℏ can be regarded as a quantisation (Planck) constant.

The five parameters ℎ, 𝐴, 𝐵, 𝐶, 𝐷 define the quantum algebra. The classical limit corresponds to ℎ = 0, in which the algebra 
becomes commutative. We may assume that the parameters 𝐴 = 𝐴(ℎ), 𝐵 = 𝐵(ℎ), 𝐶 = 𝐶(ℎ), 𝐷 = 𝐷(ℎ) are analytic functions of the 
variable ℎ at ℎ = 0. They represent a trajectory to the classical boundary in the space of parameters. Evaluating the standard classical 
limit of the commutation relations (3) results in the Poisson brackets family (2), where 𝑎 = 𝐴(0), 𝑏 =𝐵(0), 𝑐 = 𝐶(0), 𝑑 =𝐷(0), 𝑒 = 1.

The quantum Sklyanin algebra [10] corresponds to the case of the Euler top (𝑘𝛼 = 0), with homogeneous quadratic commutation 
relations having 𝐴 = 𝐵 = 0, 𝑒 = 1 and certain choices of functions 𝐶(ℎ) and 𝐷(ℎ) (see Section 3.6.1). In the quantisation of the 
Zhukovsky-Volterra by Levin-Olshanetsky-Zotov [6], the commutation relations do not have the form (3), and they do not satisfy 
condition (i) for the lifted equation on , but satisfy condition (ii). Their quantum system is a deformation of the classical one, i.e. 
they deform both the commutative algebra and the equation of motion.

The structure of the present paper is as follows: in Section 2, we explore the classical Zhukovsky-Volterra (and Euler) top, its 
integrals and four compatible Poisson structures. In Section 3, we apply the quantization ideal method and identify a five-dimensional 
2

variety of quantizations. Finally, in Section 4, we provide a brief summary and discuss the open problems.
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2. Classical Zhukovsky-Volterra and Euler tops

2.1. Equation of motion and its first integrals

Motion of a rigid body in a constant external field, known as the classical Zhukovsky-Volterra top, can be characterised by the 
vector of angular momenta (𝑆1, 𝑆2, 𝑆3) ∈ℝ3, whose components satisfy the following system of ordinary differential equations

𝑑𝑆𝛼

𝑑𝑡
= 2(𝑗𝛽 − 𝑗𝛾 )𝑆𝛽𝑆𝛾 + 2(𝑘𝛽𝑆𝛾 − 𝑘𝛾𝑆𝛽 ). (4)

Here (𝑘1, 𝑘2, 𝑘3) denotes a vector of a constant external field and 𝑗1, 𝑗2, 𝑗3 are reciprocals of inertia momentum of the diagonal inertia 
tensor. In system (4) and thereafter we assume that indices (𝛼, 𝛽, 𝛾) represent a cyclic permutation of the table (1, 2, 3).

The classical Zhukovsky-Volterra top (4) admits two first integrals

𝐶 = 1
2

3∑
𝛼=1

𝑆2
𝛼
, 𝐻 = 1

2

3∑
𝛼=1

𝑗𝛼𝑆
2
𝛼
+

3∑
𝛼=1

𝑘𝛼𝑆𝛼. (5)

When the external field vanishes (𝑘𝛼 = 0), system (4) reduces to the classical Euler top.

2.2. Linear Poisson pencil

It is well known that system (4) is Hamiltonian

𝑑𝑆𝛼

𝑑𝑡
= {𝑆𝛼,𝐻}1,

with respect to the standard linear Poisson structure on 𝑠𝑜∗(3):

{𝑆𝛼,𝑆𝛽}1 = 2𝑆𝛾 , (6)

and the Hamiltonian 𝐻 . It is also Hamiltonian

𝑑𝑆𝛼

𝑑𝑡
= {𝐶,𝑆𝛼}′1,

with respect to the linear inhomogeneous Poisson structure

{𝑆𝛼,𝑆𝛽}′1 = 2(𝑗𝛾𝑆𝛾 + 𝑘𝛾 ), (7)

and the Hamiltonian 𝐶 .

The functions 𝐶 and 𝐻 are Casimir functions of the brackets { , }1 and { , }′1, respectively, i.e.,

{𝐶,𝑆𝛼}1 = {𝐻,𝑆𝛼}′1 = 0, 𝛼 ∈ 1,3.

The brackets { , }1 and { , }′1 are compatible in the sense of Magri [9], meaning that a linear combination of the brackets

{𝑆𝛼,𝑆𝛽}𝑎,𝑏 = 2(𝑎+ 𝑗𝛾𝑏)𝑆𝛾 + 2𝑘𝛾𝑏, (8)

with arbitrary constant parameters 𝑎 and 𝑏 is a Poisson bracket. The Casimir function of this bracket is the following function

𝐶𝑎,𝑏 = 𝑎𝐶 + 𝑏𝐻.

2.3. Extension of the phase space and quadratic Poisson structures

Let us now consider quadratic Poisson structure for the Zhukovsky-Volterra top. For this purpose we need to extend the phase 
space of the model with a new variable 𝑆0, which is a constant of motion ( 𝑑𝑆0

𝑑𝑡
= 0) and a central element of two linear brackets:

{𝑆0, 𝑆𝛼}1 = 0, {𝑆0, 𝑆𝛼}′1 = 0, 𝛼 ∈ 1,3.

In the extended phase space we are looking for an inhomogeneous quadratic Poisson structure of the form:

{𝑆𝛼,𝑆𝛽} = 2𝑎𝛾𝑆0𝑆𝛾 + 2𝐾𝛾𝑆0, (9a)

{𝑆0, 𝑆𝛼} = 𝑒
(
2(𝑗𝛽 − 𝑗𝛾 )𝑆𝛽𝑆𝛾 + 2(𝑘𝛽𝑆𝛾 − 𝑘𝛾𝑆𝛽 )

)
, (9b)

where 𝑎𝛼 , 𝐾𝛾 are some constants.

Proposition 2.1. (i) The brackets (9) satisfy the Jacobi identity iff
3

𝑎𝛼 = 𝑐 + 𝑗𝛼𝑑, 𝐾𝛼 = 𝑘𝛼𝑑, 𝛼 ∈ 1,3. (10)
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(ii) The Poisson brackets given by (9) with the structure constants defined by (10) are compatible with the pencil of linear-constant Poisson 
brackets { , }𝑎,𝑏 defined by (8) for any values of 𝑐, 𝑑, 𝑎, 𝑏, 𝑒.

Furthermore, in order for the equation (9b) to coincide exactly with the equation of motion we will further impose the normal-

ization condition 𝑒 = 1. This can be always achieved if 𝑒 ≠ 0. The case 𝑒 = 0 can be effectively reduced to the previously considered 
linear case. Thus we obtained the Poisson brackets:

{𝑆𝛼,𝑆𝛽}𝑎,𝑏,𝑐,𝑑 = 2
(
(𝑐 + 𝑗𝛼𝑑)𝑆0𝑆𝛾 + (𝑎+ 𝑗𝛾𝑏)𝑆𝛾 + 𝑘𝛾𝑑𝑆0 + 𝑘𝛾𝑏

)
, (11a)

{𝑆0, 𝑆𝛼}𝑎,𝑏,𝑐,𝑑 = 2(𝑗𝛽 − 𝑗𝛾 )𝑆𝛽𝑆𝛾 + 2(𝑘𝛽𝑆𝛾 − 𝑘𝛾𝑆𝛽 ), (11b)

which depend on four arbitrary parameters 𝑎, 𝑏, 𝑐, 𝑑.

The above Proposition can be proven by solving equations on the coefficients 𝑎𝛾 , 𝐾𝛾 that are obtained from the Jacobi identity. 
We derive the brackets (11) as a classical limit of the general commutation relations (44) outlined in Proposition 3.5. Consequently, 
the fulfillment of the Jacobi identity is guaranteed for any choice of 𝑎, 𝑏, 𝑐, 𝑑.

Remark 1. Note that (11) represents a linear combination of two quadratic brackets if we set 𝑐 + 𝑑 = 1.

Remark 2. Observe that in the case 𝑑𝑎 − 𝑏𝑐 = 0, 𝑐 ≠ 0, 𝑑 ≠ 0, the linear term in the equation (11a) can be obtained simply by shift 
of the element 𝑆0: 𝑆0 → 𝑆0 + 𝜈, where 𝜈 = 𝑎𝑐−1 = 𝑏𝑑−1.

Applying the method of indeterminate coefficients, we have identified two Casimir functions of the brackets (11):

𝐶1 =
3∑
𝛼=1

(𝑐 + 𝑗𝛼𝑑)𝑆2
𝛼
+ 2𝑑

3∑
𝛼=1

𝑘𝛼𝑆𝛼 − 2(𝑑𝑎− 𝑏𝑐)𝑆0, (12a)

𝐶2 =
3∑
𝛼=1

𝑆2
𝛼
+ 𝑑𝑆2

0 + 2𝑏𝑆0. (12b)

3. Quantum Zhukovsky-Volterra top and quantisation ideals

In order to apply the quantisation ideal approach we lift equations of the classical commutative Zhukovsky–Volterra top to a free 
associative algebra  = ℂ⟨𝑆̂0, … , 𝑆̂3⟩ using a Lax representation, which is similar to the commutative case.

In the simplest case of Lie type ideals the existence of a basis of normally ordered monomials  = ⟨𝑆𝑛00 𝑆𝑛11 𝑆𝑛22 𝑆𝑛33 | 𝑛𝑘 ∈ℕ⟩ in the 
quotient algebra ∕, or a PBW basis, is following from the Poincaré–Birkhoff–Witt Theorem. The stability condition (i) leads to a 
quantisation that in the classical limit results in the pencil of compatible linear Poisson brackets (8).

For a quadratic ideal  ⊂ , we examine the conditions emerging from the requirement of existence of a PBW basis in the 
quotient algebra ∕ (condition (ii)) in order to find equations on the parameters of the ideal. We focus on the subspaces spanned 
by monomials 𝑁 = ⟨𝑆̂𝑛00 𝑆̂𝑛11 𝑆̂𝑛22 𝑆̂𝑛33 | 𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 ⩽𝑁, 𝑛𝑘 ∈ ℕ⟩ with 𝑁 = 2 and 𝑁 = 3.

Subsequently, we consider the stability condition (i). The quantisation obtained in this way depends on five parameters, and in 
the commutative classical limit results in a four parametric family of compatible Poisson brackets (11). Finally we compare the results 
obtained with Sklyanin’s quantisation of the Euler top and Levin–Olshanetsky–Zotov quantisation of the Zhukovsky–Volterra top.

3.1. Equation of motion on free associative algebra

In the classical commutative case the Lax representation for the Zhukovsky-Volterra model was discovered in [5] and studied in 
[6], [7] and [8]. The Lax pair with matrix valued entries 𝑆𝛼 was discussed in [17]. Here, we employ the same Lax pair, replacing 
matrices 𝑆𝛼 by elements 𝑆̂𝛼 from the free algebra :

𝐿̂ = 𝑖
3∑
𝛼=1

(𝑢𝛼𝑆̂𝛼 +
𝑘𝛼

𝑢𝛼
)𝜎𝛼, 𝑀̂ = 𝑖

3∑
𝛼=1

𝑢𝛽𝑢𝛾 𝑆̂𝛼𝜎𝛼, (13)

where 𝑢𝛼 , 𝛼 ∈ 1,3 are coordinates of a point on the elliptic spectral curve

𝑢21 − 𝑢
2
2 = 𝑗1 − 𝑗2, 𝑢22 − 𝑢

2
3 = 𝑗2 − 𝑗3,

and 𝜎𝛼 are standard Pauli matrices. The Lax equation

𝑑𝐿̂

𝑑𝑡
= [𝐿̂, 𝑀̂], (14)
4

leads to the dynamical system
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𝑑𝑆̂𝛼

𝑑𝑡
= (𝑗𝛽 − 𝑗𝛾 )(𝑆̂𝛽 𝑆̂𝛾 + 𝑆̂𝛾 𝑆̂𝛽 ) + 2(𝑘𝛽𝑆̂𝛾 − 𝑘𝛾 𝑆̂𝛽 ), 𝛼 ∈ 1,3, (15)

that together with the equations

𝑑𝑆̂0
𝑑𝑡

= 0, (16)

represent a lift of the classical commutative Zhukovsky-Volterra top (4) to the free algebra .

3.2. Quantisation ideals of Lie type

Let us at first consider a Lie type ideal  , generated by polynomials:

 = ⟨𝑓𝛾 = 𝑆̂𝛼𝑆̂𝛽 − 𝑆̂𝛽 𝑆̂𝛼 − 𝑎𝛾 𝑆̂𝛾 − 𝑏𝛾 , 𝑔𝛾 = 𝑆̂0𝑆̂𝛾 − 𝑆̂𝛾 𝑆̂0 |𝛼, 𝛽, 𝛾 ∈ 1,3⟩, (17)

where 𝑎𝛾 , 𝑏𝛾 are six arbitrary constants and 𝑆̂0 is a central element of the algebra . It follows from the Poincare-Birkchoff-Witt 
theorem that the quotient algebra ∕ admits a basis of normally ordered monomials  = ⟨𝑆𝑛00 𝑆𝑛11 𝑆𝑛22 𝑆𝑛33 | 𝑛𝑘 ∈ℕ⟩, which is referred

as a PBW basis.

The ideal (17) is a quantisation ideal for system (15), (16) if  it is stable with respect to the dynamics.

Proposition 3.1. The ideal  is 𝑑
𝑑𝑡

–stable, i.e. 𝑑
𝑑𝑡
⊂  if and only if

𝑎𝛾 = 2(𝑎+ 𝑗𝛾𝑏), 𝑏𝛾 = 2𝑘𝛾𝑏, (18)

where 𝑎, 𝑏 are arbitrary constants.

Sketch of the proof. The stability conditions can be obtained from the requirement that the time derivatives of the ideal generators 
belong to the ideal. The conditions of stability of the generators 𝑔𝛾 do not impose any constraints on the constants 𝑎𝛾 , 𝑏𝛾 . It follows 
from the conditions 𝑑𝑓𝛾

𝑑𝑡
⊂  , 𝛾 ∈ 1,3 that

(𝑗1 − 𝑗2)𝑎3 + (𝑗2 − 𝑗3)𝑎1 + (𝑗3 − 𝑗1)𝑎2 = 0, 𝑏𝛾 (𝑗𝛼 − 𝑗𝛽 ) = 𝑘𝛾 (𝑎𝛼 − 𝑎𝛽 ), 𝛼, 𝛽, 𝛾 ∈ 1,3.

The above implies (18). □

The statement of the Proposition means that the quantisation ideal of the Lie type effectively depends on two parameters

(𝑎,𝑏) = ⟨𝑆̂𝛼𝑆̂𝛽 − 𝑆̂𝛽 𝑆̂𝛼 − 2(𝑎+ 𝑗𝛾𝑏)𝑆̂𝛾 − 2𝑘𝛾𝑏, 𝑆̂0𝑆̂𝛾 − 𝑆̂𝛾 𝑆̂0 |𝛼, 𝛽, 𝛾 ∈ 1,3⟩,
that in the classical limit reduces to the Poisson pencil (8). The center of the quantum algebra ∕(𝑎,𝑏) is generated by 𝑆̂0 and 
𝑎𝐶̂ + 𝑏𝐻̂ , where

𝐶̂ = 1
2

3∑
𝛼=1

𝑆̂2
𝛼
, 𝐻̂ = 1

2

3∑
𝛼=1

𝑗𝛼𝑆̂
2
𝛼
+

3∑
𝛼=1

𝑘𝛼𝑆̂𝛼. (19)

The specification 𝑎 = 𝑖ℏ and 𝑏 = 0 leads to the standard commutation relations

[𝑆̂𝛼, 𝑆̂𝛽 ] = 2𝑖ℏ𝑆̂𝛾 , [𝑆̂0, 𝑆̂𝛼] = 0

for 𝑠𝑜(3) quantum systems. On the algebra ∕(𝑖ℏ,0) the quantum Zhukovsky-Volterra system (15), (16) can be presented in the 
Heisenberg from

𝑖ℏ
𝑑𝑆̂𝛼

𝑑𝑡
= [𝑆̂𝛼, 𝐻̂]. (20)

The center of the quantum algebra ∕(𝑖ℏ,0) is generated by the elements 𝑆̂0 and 𝐶̂ . The classical limit in this case results in the 
Poisson brackets (6), Hamiltonian 𝐻 and Casimir element 𝐶 (5).

The second choice of specification 𝑎 = 0 and 𝑏 = 𝑖ℏ leads to commutation relations

[𝑆̂𝛼, 𝑆̂𝛽 ]′ = 2𝑖ℏ(𝑗𝛾 𝑆̂𝛾 + 𝑘𝛾 ), [𝑆̂0, 𝑆̂𝛼]′ = 0

on the algebra ∕(0,𝑖ℏ). Here we use “prime” in [⋅, ⋅]′ to emphasize that the multiplication rules the algebras ∕(𝑖ℏ,0) and ∕(0,𝑖ℏ)
are different.

In the algebra ∕(0,𝑖ℏ) the center is generated by the elements 𝑆̂0, 𝐻̂ (19), and the element 𝐶̂ becomes the Hamiltonian for the 
quantum Zhukovsky-Volterra system

𝑑𝑆̂
5

𝑖ℏ
𝛼

𝑑𝑡
= [𝐶̂, 𝑆̂𝛼]′ . (21)
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The classical limit in the case of algebra ∕(0,𝑖ℏ) results in the Poisson brackets (7), Hamiltonian 𝐶 and Casimir element 𝐻 (5).

3.3. Quadratic ideals: the PBW condition

We start with consideration of a quite general ideal  ⊂ generated by quadratic polynomials:

 = ⟨𝐹𝛾 = 𝑆̂𝛼𝑆̂𝛽 − 𝑆̂𝛽 𝑆̂𝛼 +𝐴𝛾 (𝑆̂0𝑆̂𝛾 + 𝑆̂𝛾 𝑆̂0) +𝐾𝛾𝑆̂0 +𝑀𝛾𝑆̂𝛾 +𝑁𝛾,

𝐺𝛾 = 𝑆̂𝛾 𝑆̂0 − 𝑆̂0𝑆̂𝛾 +𝐵𝛾 (𝑆̂𝛼𝑆̂𝛽 + 𝑆̂𝛽 𝑆̂𝛼) + (𝑙𝛼𝑆̂𝛽 − 𝑙𝛽 𝑆̂𝛼) |𝛼, 𝛽, 𝛾 ∈ 1,3⟩. (22)

These polynomials generalise the commutation relations in the Sklyanin algebra [10] and the algebra obtained in [6].

The first problem is to find conditions on 18 parameters 𝐴𝛼, 𝐵𝛼, 𝐾𝛼, 𝑀𝛼, 𝑁𝛼 and 𝑙𝛼, 𝛼 ∈ 1,3 which guarantee the existence of the 
normally ordered monomial basis in the subspaces of quadratic and cubic polynomials in the quotient algebra ∕.

Theorem 3.1.

1. Quadratic polynomials in variables 𝑆̂𝛼, 𝛼 ∈ {0, 1, 2, 3} admit normal ordering, modulo the ideal , i.e. a unique representation in the 
monomial basis 2, iff

𝐴1𝐵1 ≠ −1, 𝐴2𝐵2 ≠ 1, 𝐴3𝐵3 ≠ −1. (23)

2. Cubic polynomials admit normal ordering, modulo the ideal , if conditions (23) satisfied and

3∑
𝛾=1

𝐴𝛾𝐵𝛾 +
3∏
𝛾=1

𝐴𝛾𝐵𝛾 = 0, (24)

𝐵1 +𝐵2 +𝐵3 = 0, (25)

𝐾𝛼 =
(𝐴𝛽 −𝐴𝛾 +𝐵𝛼𝐴𝛽𝐴𝛾 )
𝐵𝛼(1 +𝐴𝛽𝐵𝛽𝐴𝛾𝐵𝛾 )

𝑙𝛼, (26)

𝑀𝛼 = 2𝜈𝐴𝛼 + 𝜇
(3 +𝐴𝛽𝐵𝛽 −𝐴𝛾𝐵𝛾 +𝐴𝛽𝐵𝛽𝐴𝛾𝐵𝛾

1 +𝐴𝛽𝐵𝛽𝐴𝛾𝐵𝛾

)
, (27)

𝑁𝛼 = 𝜈𝐾𝛼, 𝛼 ∈ 1,3, (28)

𝐵𝛼 ≠ 0, 𝐴2
𝛼
𝐵2
𝛼
≠ 1, 𝛼 ∈ 1,3, (29)(

1 +𝐴1𝐵1 −𝐴2𝐵2 −𝐴1𝐴2𝐵2𝐵1
)2 + 16𝐴1𝐴2𝐵1𝐵2 ≠ 0, (30)

where 𝜇, 𝜈 are arbitrary parameters, and indices 𝛼, 𝛽, 𝛾 are cyclic permutation of the set 1, 2, 3.

Sketch of the Proof. (1.) We regard 𝐹𝛾 = 0, 𝐺𝛾 = 0, 𝛾 ∈ {1, 2, 3} as a system of six linear equations with respect to the quadratic 
monomials 𝑆̂𝑖𝑆̂𝑗 , 𝑖 > 𝑗 which are not normally ordered. This system admits a unique solution if and only if the conditions (23)

are satisfied. Its solution enables us to span any polynomial of degree less or equal to two in the basis 2 of the normally ordered 
monomials, modulo the ideal  .

(2) The set of possible 64 cubic monomials contains 20 normally ordered monomials. The rest 44 unordered monomials can be 
expressed in the basis 3 solving the system of 48 polynomial equations

𝑆̂𝛽𝐹𝛼 = 0, 𝐹𝛼𝑆̂𝛽 = 0, 𝑆̂𝛽𝐺𝛼 = 0, 𝐺𝛼𝑆̂𝛽 = 0, 𝛼 ∈ {1,2,3}, 𝛽 ∈ {0,1,2,3}.

The solution of the above system enables one to represent any cubic polynomial in  in the basis 3 uniquely, modulo the ideal . 
The resolvability conditions for this overdetermined system of linear equations lead to (24)-(30). □

Remark 3. The quantum ideals and PBW conditions for the quadratic structures of the quantum Euler top are obtained by putting 
𝑙𝛼 = 0, 𝐾𝛼 = 0, 𝑁𝛼 = 0, 𝛼 ∈ 1,3 in the formulae above.

3.4. Stability of the quadratic ideal

3.4.1. Dynamical stability of the ideal and projective parametrisation

We will denote  the ideal  (22), whose parameters satisfy conditions (23)-(30) (Theorem 3.1). The stability of the ideal with 
respect to the dynamics (15), (16) impose further constraints.

Proposition 3.2. The ideal  is 𝑑
𝑑𝑡

–stable iff

𝐵𝛼 = ℎ(𝑗𝛽 − 𝑗𝛾 ), 𝑙𝛼 = 2ℎ𝑘𝛼, (31)
6

where ℎ is an arbitrary constant.
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There is a convenient parametrisation of parameters 𝐴𝛼 , satisfying (24) with 𝐵𝛼 satisfying (31).

Proposition 3.3. The coefficients 𝐴𝛼 satisfying condition (24) with the constants 𝐵𝛼 defined by (31) can be parametrized as follows:

𝐴𝛼 =
1
ℎ𝐽𝛼

𝐽𝛽 − 𝐽𝛾
𝑗𝛽 − 𝑗𝛾

, 𝛼 ∈ 1,3, (32)

where 𝐽𝛼 satisfy the following inequalities:

𝐽𝛼 ≠ 0, 𝐽𝛼 ≠ 𝐽𝛽 + 𝐽𝛾 , 𝛼 ∈ 1,3, (33)(
𝐽1 + 𝐽2 − 𝐽3

) 4 + 16𝐽1𝐽2
(
𝐽1 − 𝐽3

)(
𝐽2 − 𝐽3

)
≠ 0 (34)

and are arbitrary otherwise.

The statement of Proposition 3.3 can be checked by a direct substitution of (31), (32) in (24). Conditions (33), (34) represent 
inequalities (29), (30), where 𝐴𝛼 is given by (32).

Remark 4. Observe that there exists another then (32) parametrization of 𝐴𝛼 , namely:

𝐴𝛼 = − 1
ℎ𝐽𝛼

𝐽𝛽 − 𝐽𝛾
𝑗𝛽 − 𝑗𝛾

, 𝛼 ∈ 1,3. (35)

The parametrizations (32), (35) are equivalent. The equivalence is achieved by an invertible map [18]:

𝐽𝛼 = 𝐽𝛼(𝐽𝛼 − 𝐽𝛽 − 𝐽𝛾 ).

The structure constants 𝐾𝛿 , as it follows from the formula (26) and the above form of 𝐴𝛼 , 𝐵𝛼 , 𝑙𝛼 , are:

𝐾𝛿 = − 2
ℎ

𝑘𝛿

𝐽𝛿

3∑
𝛼=1

𝑗𝛼(𝐽𝛽 − 𝐽𝛾 )

3∏
𝛼=1

(𝑗𝛽 − 𝑗𝛾 )
, 𝛿 ∈ 1,3. (36)

The structure constants 𝑀𝛼 , as it follows from the formula (27) are the following:

𝑀𝛼 =
2𝜈
ℎ𝐽𝛼

𝐽𝛽 − 𝐽𝛾
𝑗𝛽 − 𝑗𝛾

+ 𝜇
(𝐽1 + 𝐽2 + 𝐽3)

𝐽𝛼
, 𝛼 ∈ 1,3. (37)

In the result the generators of the ideal  acquire the following explicit form:

𝑆̂𝛼𝑆̂𝛽 − 𝑆̂𝛽 𝑆̂𝛼 +
1
ℎ𝐽𝛾

𝐽𝛼 − 𝐽𝛽
𝑗𝛼 − 𝑗𝛽

(
(𝑆̂0 + 𝜈)𝑆̂𝛾 + 𝑆̂𝛾 (𝑆̂0 + 𝜈)

)
+𝐾𝛾 (𝑆̂0 + 𝜈) +

𝜇
3∑
𝛼=1

𝐽𝛼

𝐽𝛾
𝑆̂𝛾 , (38a)

𝑆̂𝛾 𝑆̂0 − 𝑆̂0𝑆̂𝛾 + ℎ
(
(𝑗𝛼 − 𝑗𝛽 )(𝑆̂𝛼𝑆̂𝛽 + 𝑆̂𝛽 𝑆̂𝛼) + 2(𝑘𝛼𝑆̂𝛽 − 𝑘𝛽𝑆̂𝛼)

)
, 𝛾 ∈ 1,3, (38b)

where the indices 𝛼, 𝛽, 𝛾 constitute the cyclic permutations of the indices 1, 2, 3 and the ideal parameters (𝐽1 ∶ 𝐽2 ∶ 𝐽3, 𝜈, 𝜇, ℎ) belong 
to the space ℂ𝑃 2 ×ℂ3.

3.4.2. The Casimir elements

Let us now describe the Casimir elements of the algebra (22) with the structure constants (31)-(36).

Proposition 3.4. The following elements:

𝐶1 = −

3∏
𝛼=1

(𝐽𝛽 − 𝐽𝛾 )

3∏
𝛼=1

(𝑗𝛽 − 𝑗𝛾 )

(𝑆̂0 + 𝜈)2

ℎ4
3∏
𝛿=1
𝐽𝛿

+
3∑
𝛼=1

𝐽𝛽 − 𝐽𝛾
𝑗𝛽 − 𝑗𝛾

𝑆̂2
𝛼

ℎ2𝐽𝛼
+

3∑
𝛼=1

𝐾𝛼

ℎ
𝑆̂𝛼 + 𝜇

(
3∑
𝛼=1

𝐽𝛼)(
3∑
𝛼=1

𝑗𝛼𝐽𝛼(𝐽𝛽 − 𝐽𝛾 ))

ℎ3
3∏
𝛿=1
𝐽𝛿

3∏
𝛼=1

(𝑗𝛽 − 𝑗𝛾 )
𝑆̂0, (39)

and

̂
3∑ 1 𝐽𝛽 − 𝐽𝛾 ̂2
7

𝐶2 = −
𝛼=1 ℎ

2 𝑗𝛽 − 𝑗𝛾
(𝐽𝛼 − 𝐽𝛽 − 𝐽𝛾 )𝑆𝛼+
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2
3∑
𝛼=1

𝑘𝛼

ℎ2

𝑗𝛼(𝐽𝛽 − 𝐽𝛾 )(𝐽𝛼 − 𝐽𝛽 − 𝐽𝛾 ) − 𝑗𝛽 (𝐽𝛾 − 𝐽𝛼)𝐽𝛾 − 𝑗𝛾 (𝐽𝛼 − 𝐽𝛽 )𝐽𝛽
(𝑗1 − 𝑗2)(𝑗3 − 𝑗1)(𝑗2 − 𝑗3)

𝑆̂𝛼 +
𝜇(

3∑
𝛼=1

𝐽𝛼)(
3∑
𝛼=1

𝑗𝛼(𝐽𝛽 − 𝐽𝛾 ))

ℎ3
3∏
𝛼=1

(𝑗𝛽 − 𝑗𝛾 )
𝑆̂0 (40)

are central elements of the algebra of the algebra (22) with the structure constants (31)-(37).

Idea of the Proof. The Casimir elements are found using the method of the indeterminate coefficients in the assumption of the 
linear-quadratic form of the Casimirs. □

Remark 5. From (38b) it follows that Heisenberg equation of motion with respect to 𝑆̂0 :

𝑖ℏ
𝑑𝑆̂𝛾

𝑑𝑡
= [𝑆̂𝛾 , 𝑆̂0], 𝛾 ∈ 1,3

coincides — on the quotient algebra — with the dynamical equations (15) if and only if ℎ = −𝑖ℏ.

3.5. The variety of quantum algebras and the classical limit

3.5.1. Affine re-parametrisation of the ideal

In this subsection we give another parametrisation of the ideal that yields a quantum analogue of the Poisson pencil structure. It is 
based on the observation that a simultaneous re-scaling of the parameters 𝐽𝛼 → 𝐽𝛼 =𝑄𝐽𝛼, 𝑄 ≠ 0 does not affect the ideal generated 
by the polynomials (38).

Lemma 3.1. Let 
3∑
𝛼=1

𝐽𝛼𝑗𝛽𝑗𝛾 (𝑗𝛽 − 𝑗𝛾 ) ≠ 0. Then up to projective equivalence 𝐽𝛼 = 𝑄𝐽𝛼 the structure constants 𝐽𝛼 can be parametrised as 

follows:

𝐽𝛼 = 1 + ℎ2𝑗𝛼
(
𝐶 + (𝑗𝛽 + 𝑗𝛾 )𝐷

)
, 𝛼 ∈ 1,3, (41)

where 𝐶 and 𝐷 are arbitrary complex parameters.

Proof. The system of three equations on variables 𝐶, 𝐷 and 𝑄

𝑄𝐽𝛼 = 1 + ℎ2𝑗𝛼
(
𝐶 + (𝑗𝛽 + 𝑗𝛾 )𝐷

)
, 𝛼 ∈ 1,3

admits a unique solution

𝐶 =
3∑
𝛼=1

𝐽𝛼𝑗𝛼(𝑗𝛽 − 𝑗𝛾 )

ℎ2
3∑
𝛼=1

𝐽𝛼𝑗𝛽𝑗𝛾 (𝑗𝛽 − 𝑗𝛾 )
, 𝐷 = −

3∑
𝛼=1

𝐽𝛼(𝑗𝛽 − 𝑗𝛾 )

ℎ2
3∑
𝛼=1

𝐽𝛼𝑗𝛽𝑗𝛾 (𝑗𝛽 − 𝑗𝛾 )
, (42)

and

𝑄 =

3∏
𝛼=1

(𝑗𝛽 − 𝑗𝛾 )

3∑
𝛼=1

𝐽𝛼𝑗𝛽𝑗𝛾 (𝑗𝛽 − 𝑗𝛾 )
. □

Remark 6. In terms of the parameters 𝐶, 𝐷 the inequalities (33), (34) take the form(
ℎ2

(
𝐶
(
𝑗1 + 𝑗2 − 𝑗3

)
+ 2𝐷𝑗1𝑗2

)
+ 1

) 4+
16ℎ4

(
𝑗1 − 𝑗3

)(
𝑗2 − 𝑗3

)(
𝐶 +𝐷𝑗1

)(
𝐶 +𝐷𝑗2

)(
ℎ2𝑗2

(
𝐶 +𝐷

(
𝑗1 + 𝑗3

))
+ 1

)(
ℎ2𝑗1

(
𝐶 +𝐷

(
𝑗2 + 𝑗3

))
+ 1

)
≠ 0,

1 + ℎ2
(
𝐶
(
𝑗𝛼 + 𝑗𝛽 − 𝑗𝛾

)
+ 2𝐷𝑗𝛼𝑗𝛽

)
≠ 0, 1 + ℎ2𝑗𝛼

(
𝐶 +𝐷

(
𝑗𝛽 + 𝑗𝛾

))
≠ 0, 𝛼 ∈ 1,3.

(43)

The following Proposition is the main result of the present article:

Proposition 3.5. A quantisation ideal of the form (22) for the Zhukovsky–Volterra top (15), (16) leads to a quadratic quantum algebra 
with the commutation relations:

̂ ̂ 2ℎ ( (𝑆̂0𝑆̂𝛾 + 𝑆̂𝛾 𝑆̂0) ̂ ̂
)

8

[𝑆𝛼,𝑆𝛽 ] = −
1 + ℎ2𝑗𝛾

(
𝐶 + (𝑗𝛽 + 𝑗𝛼)𝐷

) (𝐶 +𝐷𝑗𝛾 ) 2
+ (𝐴+𝐵𝑗𝛾 )𝑆𝛾 +𝐷𝑘𝛾𝑆0 +𝐵𝑘𝛾 , (44a)
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[𝑆̂𝛾 , 𝑆̂0] = −ℎ
(
(𝑗𝛼 − 𝑗𝛽 )(𝑆̂𝛼𝑆̂𝛽 + 𝑆̂𝛽 𝑆̂𝛼) + 2(𝑘𝛼𝑆̂𝛽 − 𝑘𝛽𝑆̂𝛼)

)
, 𝛾 ∈ 1,3, (44b)

where parameters ℎ, 𝐴, 𝐵, 𝐶, 𝐷 satisfy the inequalities (43) and arbitrary otherwise.

Remark 7. The parameters 𝜈, 𝜇 are related with the constants 𝐴, 𝐵, 𝐶, 𝐷, ℎ as follows:

𝜈𝐷 =𝐵, 2𝜈ℎ𝐶 + 𝜇
(
3 + ℎ2

(
2𝐷

3∑
𝛼=1

𝑗𝛽𝑗𝛾 +𝐶
3∑
𝛼=1

𝑗𝛼
))

= 2ℎ𝐴. (45)

3.5.2. The classical limit

Let us now assume that the functions 𝐴, 𝐵, 𝐶 , 𝐷 are analytical functions of ℎ:

𝐴 = 𝑎+(ℎ), 𝐵 = 𝑏+(ℎ), 𝐶 = 𝑐 +(ℎ), 𝐷 = 𝑑 +(ℎ). (46)

Under such the assumption the quantum algebra (44) is a quantum deformation of the classical inhomogeneous quadratic Poisson 
algebra with the Poisson brackets (11) labeled by four parameters 𝑎, 𝑏, 𝑐, 𝑑. Indeed, using (44) and the expansions (46), it is easy 
to see that in the limit ℎ → 0 the right-hand-side of (44) is exactly { , }𝑎,𝑏,𝑐,𝑑 multiplied by −ℎ (i.e. by 𝑖ℏ). The inequalities (43) are 
obviously satisfied in the neighbourhood of ℎ = 0.

In terms of parameters 𝐴, 𝐵, 𝐶 , 𝐷, the central elements (47)-(48) of the quantum algebra take the form:

𝐶1 = −
ℎ2

3∏
𝛼=1

(𝐶 +𝐷𝑗𝛼)(𝐷𝑆̂2
0 + 2𝐵𝑆̂0)

𝐷
3∏
𝛼=1

(1 + ℎ2𝑗𝛼(𝐶 + (𝑗𝛽 + 𝑗𝛾 )𝐷))
+

3∑
𝛼=1

(𝐶 +𝐷𝑗𝛼)𝑆̂2
𝛼
+ 2𝐷𝑘𝛼𝑆̂𝛼

(1 + ℎ2𝑗𝛼(𝐶 + (𝑗𝛽 + 𝑗𝛾 )𝐷))
−

− 2(𝐴𝐷 −𝐶𝐵)
(𝐷 + ℎ2(𝐶2 +𝐶𝐷

3∑
𝛼=1

𝑗𝛼 +𝐷2
3∑
𝛼=1

𝑗𝛽𝑗𝛾 ))

𝐷
3∏
𝛼=1

(1 + ℎ2𝑗𝛼(𝐶 + (𝑗𝛽 + 𝑗𝛾 )𝐷))
𝑆̂0, (47)

𝐶2 =
3∑
𝛼=1

(𝐶 +𝐷𝑗𝛼)(1 + ℎ2(𝐶(𝑗𝛽 + 𝑗𝛾 − 𝑗𝛼) + 2𝐷𝑗𝛽𝑗𝛾 ))𝑆̂2
𝛼
+ 2

3∑
𝛼=1

(𝐷 − ℎ2(𝐶2 +𝐷𝐶𝑗𝛼 −𝐷2𝑗𝛽𝑗𝛾 ))𝑘𝛼𝑆̂𝛼 − 2(𝐴𝐷 − 𝐶𝐵)𝑆̂0 . (48)

The classical limit of the central elements 𝐶1 and 𝐶2 yield Casimir elements (12) of the quadratic Poisson bracket (11):

𝐶1 = lim
ℏ→0

𝐶̂1 = lim
ℏ→0

𝐶̂2 =
3∑
𝛼=1

(𝑐 + 𝑑𝑗𝛼)𝑆2
𝛼
+ 2𝑑

3∑
𝛼=1

𝑘𝛼𝑆𝛼 − 2(𝑎𝑑 − 𝑏𝑐)𝑆0 (49)

𝐶2 = lim
ℏ→0

1
ℎ2

𝐷

3∏
𝛼=1

(𝐶 +𝐷𝑗𝛼)

(
𝐶̂2 −

𝐷
3∏
𝛼=1

(1 + ℎ2𝑗𝛼(𝐶 + (𝑗𝛽 + 𝑗𝛾 )𝐷))

(𝐷 + ℎ2(𝐶2 +𝐶𝐷
3∑
𝛼=1

𝑗𝛼 +𝐷2
3∑
𝛼=1

𝑗𝛽𝑗𝛾 ))
𝐶̂1

)
= 𝑑𝑆2

0 +
3∑
𝛼=1

𝑆2
𝛼
+ 2𝑏𝑆0. (50)

3.6. Comparison with the existing algebras

3.6.1. Sklyanin algebra

The quantum Sklyanin algebra [10] corresponds to the case of the purely quadratic structure of quantum anisotropic Euler’s top, 
i.e. to the case 𝜇 = 𝜈 = 0 and 𝑘𝛼 = 0, 𝛼 ∈ 1,3. The corresponding ideal generators (38) are simplified to the following form:

𝐹𝛾 = 𝑆̂𝛼𝑆̂𝛽 − 𝑆̂𝛽 𝑆̂𝛼 +
1
ℎ𝐽𝛾

𝐽𝛼 − 𝐽𝛽
𝑗𝛼 − 𝑗𝛽

(
𝑆̂0𝑆̂𝛾 + 𝑆̂𝛾 𝑆̂0

)
, 𝛾 ∈ 1,3, (51a)

𝐺𝛾 = 𝑆̂𝛾 𝑆̂0 − 𝑆̂0𝑆̂𝛾 + ℎ(𝑗𝛼 − 𝑗𝛽 )(𝑆̂𝛼𝑆̂𝛽 + 𝑆̂𝛽 𝑆̂𝛼), (51b)

The algebra with commutation relations (51) is equivalent to the Sklyanin algebra obtained from the quantum group considerations, 
where

𝐽𝛼 =
1 + 2𝑗𝛼ℎ2 + ((𝑗𝛽 + 𝑗𝛾 )𝑗𝛼 − 𝑗𝛽𝑗𝛾 )ℎ4

(1 + ℎ2𝑗𝛼)
, 𝛼 ∈ 1,3. (52)

The above expression for 𝐽𝛼 coincides with the one obtained by Sklyanin after the re-parametrisation ℎ2 = 1∕℘(𝑖ℏ), where ℘ is a 
9

Weierstrass elliptic function with 𝑔2 = −4(𝑗1𝑗2 + 𝑗2𝑗3 + 𝑗3𝑗1), 𝑔3 = −4𝑗1𝑗2𝑗3, assuming 𝑗1 + 𝑗2 + 𝑗3 = 0.
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It follows from Lemma 3.1 that corresponding functions 𝐶 = 𝐶(ℎ) and 𝐷 =𝐷(ℎ) are:

𝐶 =
1 − ℎ4

3∑
𝛼=1

𝑗𝛽𝑗𝛾 − 2ℎ6𝑗1𝑗2𝑗3

1 + ℎ6(
3∑
𝛼=1

𝑗3
𝛼
+ 𝑗1𝑗2𝑗3) − ℎ8

3∑
𝛼=1

𝑗2
𝛽
𝑗2
𝛾

,

𝐷 =
ℎ2(3 + ℎ4

3∑
𝛼=1

𝑗𝛽𝑗𝛾 )

1 + ℎ6(
3∑
𝛼=1

𝑗3
𝛼
+ 𝑗1𝑗2𝑗3) − ℎ8

3∑
𝛼=1

𝑗2
𝛽
𝑗2
𝛾

.

In this case 𝑐 = 1, 𝑑 = 0, i.e. in the classical limit we obtain the first quadratic (Sklyanin) brackets.

3.6.2. Algebra of Levin-Olshanetsky-Zotov

Levin, Olshanetsky and Zotov proposed a quantisation of the Zhukovsky-Volterra top (𝑘𝛼 ≠ 0) [6]. Basing on the reflection equation 
algebra they found a quantum algebra defined by the following ideal:

𝐿𝑂𝑍 = ⟨𝑆̂𝛼𝑆̂𝛽 − 𝑆̂𝛽 𝑆̂𝛼 − 𝑖(𝑆̂0𝑆̂𝛾 + 𝑆̂𝛾 𝑆̂0), 𝑆̂𝛾 𝑆̂0 − 𝑆̂0𝑆̂𝛾 + 𝑖
(𝐽𝛼 − 𝐽𝛽 )
𝐽𝛾

(𝑆̂𝛼𝑆̂𝛽 + 𝑆̂𝛽 𝑆̂𝛼) +
𝑖

𝐽𝛾
(𝑙𝛼𝑆̂𝛽 − 𝑙𝛽 𝑆̂𝛼)⟩. (53)

The re-scaling of the variables

𝑆̂0 → 𝑖ℎ𝑆̂0, 𝑆̂𝛼 →
√
𝐽𝛼𝐽𝛽𝑆̂𝛼, 𝑙𝛼 → ℎ

√
𝐽𝛼𝐽𝛽𝑙𝛼, 𝛼 ∈ 1,3

transforms the ideal (53) to the form

 = ⟨𝑆̂𝛼𝑆̂𝛽 − 𝑆̂𝛽 𝑆̂𝛼 + ℎ

𝐽𝛾
(𝑆̂0𝑆̂𝛾 + 𝑆̂𝛾 𝑆̂0), 𝑆̂𝛾 𝑆̂0 − 𝑆̂0𝑆̂𝛾 +

(𝐽𝛼 − 𝐽𝛽 )
ℎ

(𝑆̂𝛼𝑆̂𝛽 + 𝑆̂𝛽 𝑆̂𝛼) + (𝑙𝛼𝑆̂𝛽 − 𝑙𝛽 𝑆̂𝛼)⟩. (54)

The ideal  is a partial case of the ideal  (22), corresponding to the following choice of the parameters

𝐴𝛼 =
ℎ

𝐽𝛼
, 𝐵𝛼 =

(𝐽𝛽 − 𝐽𝛾 )
ℎ

, 𝐾𝛼 = 0, 𝑀𝛼 = 0, 𝑁𝛼 = 0, 𝛼 ∈ 1,3. (55)

The parametrisation (55) satisfies the condition (24), (25) of our Theorem 3.1, and therefore the quantum algebra of Levin, Olshanet-

sky and Zotov possess PBW property up to monomials of the third order.

The Heisenberg equations with the Hamiltonian 𝑆̂0 in [6] are not equivalent to the dynamical system (15) on the free algebra 
 = ℂ⟨𝑆̂0, … , 𝑆̂3⟩, in other words, the coefficients 𝐵𝛼 do not have the form (31), since the ideal (54), (55) is not invariant with 
respect to the non-Abelian dynamics (15). The quantisation presented in [6] can be regarded as a simultaneous deformation of both 
the commutative algebra of functions on the phase space and the constants 𝑗𝛼 of the dynamical system (1). This deformation depends 
on a single parameter ℏ

𝐽𝛼 =

√
(1 + ℎ2𝑗𝛽 )(1 + ℎ2𝑗𝛾 )√

(1 + ℎ2𝑗𝛼)
, 𝛼 ∈ 1,3, (56)

where ℎ2 = 1∕℘(𝑖ℏ) with 𝑔2 = −4(𝑗1𝑗2 + 𝑗2𝑗3 + 𝑗3𝑗1), 𝑔3 = −4𝑗1𝑗2𝑗3, and 𝑗1 + 𝑗2 + 𝑗3 = 0. In the classical limit ℏ → 0 we get

𝐽𝛼 = 1 + ℏ2𝑗𝛼 +(ℏ4), 𝛼 ∈ 1,3,

the commutation relations yield the quadratic Poisson structure (11) with 𝑐 = 1, 𝑎 = 𝑏 = 𝑑 = 0, and the limiting system coincides with 
(1).

4. Conclusion and discussion

The results of this paper pose several interesting mathematical and physical problems. The quantisation obtained depends on five 
parameters, one of which can be identified with the Planck constant. This quantisation is a generalisation of the commonly used 
deformation of the 𝑠𝑜(3) standard Poisson bracket and Sklyanin’s quadratic Poisson structure in the case of the Euler top. In the 
classical limit, it results in a four-parametric family of Poisson brackets, which lead to the same dynamical system as the Zhukovsky-

Volterra (and Euler) top, thereby yielding identical dynamics.

In the quantum case, the problem is more subtle. Although the equations of motion formally coincide, the observables 𝑆𝛼 satisfy 
commutation relations that essentially depend on a choice of the quantisation parameters. We have reasons to believe that the resulting 
spectrum of the Hamiltonian also depends on the choice of the parameters. In order to compare our results with experimental data, 
it is necessary to develop a representation theory for the obtained five-parametric algebra (see [11] for the Sklyanin algebra subcase) 
10

and solve the spectral problem for the corresponding Hamiltonian.
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