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A B S T R A C T

Identifying and segmenting objects in an image is generally achieved effortlessly and is facilitated by the pres-
ence of symmetry: a principle of perceptual organisation used to interpret sensory inputs from the retina into
meaningful representations. However, while imaging studies show evidence of symmetry selective responses
across extrastriate visual areas in the human brain, whether symmetry is processed automatically is still under
debate. We used functional Magnetic Resonance Imaging (fMRI) to study the response to and representation of
two types of symmetry: reflection and rotation. Dot pattern stimuli were presented to 15 human participants (10
female) under stimulus-relevant (symmetry) and stimulus-irrelevant (luminance) task conditions. Our results
show that symmetry-selective responses emerge from area V3 and extend throughout extrastriate visual areas.
This response is largely maintained when participants engage in the stimulus irrelevant task, suggesting an
automaticity to processing visual symmetry. Our multi-voxel pattern analysis (MVPA) results extend these
findings by suggesting that not only spatial organisation of responses to symmetrical patterns can be distin-
guished from that of non-symmetrical (random) patterns, but also that representation of reflection and rotation
symmetry can be differentiated in extrastriate and object-selective visual areas. Moreover, task demands did not
affect the neural representation of the symmetry information. Intriguingly, our MVPA results show an interesting
dissociation: representation of luminance (stimulus irrelevant feature) is maintained in visual cortex only when
task relevant, while information of the spatial configuration of the stimuli is available across task conditions. This
speaks in favour of the automaticity for processing perceptual organisation: extrastriate visual areas compute and
represent global, spatial properties irrespective of the task at hand.

1. Introduction

Many animals, including humans, are sensitive to visual symmetry
(Benard et al., 2006; Delius & Nowak, 1982; Treder, 2010; Wagemans,
1997). Symmetry can be found in both natural (e.g., faces and bodies,
flowers, and crystals) and artificial (e.g., tools, buildings, and artworks)
settings. An early observation about the role of symmetry in perceptual
organisation comes from the Gestalt tradition. As one of the principles of
grouping, symmetry helps in the process of segmenting and organising
perceptual inputs into coherent and meaningful representations. Spe-
cifically, visual symmetry provides a strong cue for processes segre-
gating a figure from its background (e.g., Machilsen et al., 2009),

making it an important component to shape representation (e.g., Kovács
& Julesz, 1993) and object recognition (Baylis & Driver, 1995; Berta-
mini et al., 1997).

When people use the word ‘symmetry’ they usually think of bilateral
symmetry, present in the human body and in many other organisms. A
more formal definition of symmetry is based on group theory, with
transformations that are applied to members of the group. Reflection
and rotation are examples of spatial transformations that preserve
properties, specifically all metric properties, of the object. Other kinds of
visual regularity, such as Glass patterns (Glass, 1969) are not strictly
symmetries, but feature non-accidental spatial relationships between
parts. Some visual regularities lie on a continuum from micro to
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macrotextures, with spatial frequency-defined textures at the extreme-
micro end, and crystallographic wallpaper patterns at the extreme-
macro end (Kohler et al., 2016). The wallpapers involve repeating,
tiled subunits. A single tile with reflected or rotated dots could be
perceived as a small texture or 2D pattern, or as a 2D shape, especially if
the elements are sparse. The current study investigates brain responses
to dot patterns with reflectional symmetry, rotational symmetry, or no
symmetry. We use the term ‘regularity’ to refer to both types of sym-
metry, and ‘reflection’ and ‘rotation’ to refer to the sub-types.

Reflectional symmetry is processed effortlessly and efficiently
(Barlow & Reeves, 1979). Reflectional symmetry might be processed
pre-attentively (Wagemans, 1995) or only when relevant for the task (e.
g., Niimi et al., 2006; Wagemans, 1995). Recent behavioural work by
Kimchi et al., (2016), and Devyatko & Kimchi, (2020) suggests that
there are situations when reflectional symmetry is not processed
pre-attentively.

A perceptual difference between reflectional and rotational sym-
metry was already noted by Ernst Mach (1886). For humans, reflection is
much more salient than rotation, even when these regularities are
matched in terms of the number of isometric transformations (Royer,
1981; van der Helm & Leeuwenberg, 1996). Reflectional symmetry, but
not rotational symmetry, aids figure-ground segmentation (Machilsen
et al., 2009) and is reinforced by closure (Bertamini, 2010). It might be
that reflectional symmetry is special, and thus processed more readily
than other types of regularity.

Neural signatures of regularity processing in humans have been
extensively studied with Event Related Potentials (ERPs). The Sustained
Posterior Negativity (SPN) is a late component presenting a negative
amplitude (Höfel & Jacobsen, 2007b; Makin et al., 2015, 2016; Makin
et al., 2012; Norcia et al., 2002; Rampone et al., 2014), resulting from
the difference between the response to regular and random stimuli.
Reflectional and rotational symmetry produce a similar SPN response
(Makin et al., 2013). This suggests an overlapping mechanism sensitive
to different types of visual symmetry. However, the magnitude of the
SPN is modulated by the type of symmetry (Makin et al., 2013), with the
strongest response emerging for reflectional symmetry, followed by
rotation and translation. Using wallpaper groups, compositions of
reflectional, rotational, translational, and glide symmetries resulting in
16 different stimuli, this effect has been shown to have a much higher
granularity: simpler wallpaper groups produced lower-amplitude
evoked responses in visual cortex, following a hierarchical representa-
tion of symmetries in human visual cortex (Kohler & Clarke, 2021). The
SPN is present whether participants are attending to regularity (i.e.,
regularity is task-relevant) or whether they are directing attention to
other aspects of the visual stimuli (i.e., regularity is task-irrelevant), and
even during passive viewing (i.e., no overt task required) (Bertamini &
Makin, 2014; Höfel & Jacobsen, 2007a, 2007b; Makin, Rampone,
Morris, et al., 2020). Makin et al., (2022) reported analysis of all datasets
from their complete Liverpool SPN catalogue (available on Open Science
Framework, https://osf.io/2sncj/). They found that both stimulus and
task manipulations influence SPN amplitude, with few tasks which
completely abolish the SPN response to the most salient forms of regu-
larity. However, EEG analyses lack the spatial resolution necessary to
assess how regularity is represented in the brain.

The localising of brain responses to and representation of regularity
has been investigated in animal models and humans. Regularity re-
sponses can be found in area V4 of awake (Audurier et al., 2022) and
anesthetised (Gallant et al., 1996) monkeys passively fixating while
stimuli (wallpaper patterns, polar and hyperbolic sinusoidal gratings,
respectively) were shown on a screen, likely reflecting the important
role for V4 in processing spatial information underpinning shape
perception. However, regularity may be processed even earlier in the
visual hierarchy as studies of the macaque visual system have shown
regularity-specific activation in area V2 for visual stimuli capturing
structural features of naturalistic textures (Freeman et al., 2013). In
human, primary visual cortex does not show a differential response

when comparing activation to regular versus random configurations
(Chen et al., 2007; Keefe et al., 2018; Kohler et al., 2016; Sasaki et al.,
2005; Tyler et al., 2005; Van Meel et al., 2019). Sasaki et al., (2005)
reports that reflectional symmetry related activation in visual areas
V3A, V4, V7, and the Lateral Occipital Complex (LOC) parametrically
changes with the signal-to-noise ratio present in the stimuli: the higher
the percentage of symmetrical information available, the higher the
measured activation in these extrastriate regions. More recently Keefe
et al., (2018), extended upon this idea by showing that the symmetry
response in extrastriate areas is not only modulated by the amount of
coherence in dot patterns, but also by the number of folds (axes of
reflection) present in the pattern. The extrastriate response to reflec-
tional symmetry was similar during regularity discrimination and pas-
sive viewing. Kohler et al., (2016) added granularity to these findings by
showing that responses in extrastriate visual cortex (V3 and ventral re-
gions V4, VO1, and LOC) were parametrically related to the degree of
rotational symmetry present in the wallpaper patterns used. This rela-
tionship emerged while participants performed a contrast detection task
(i.e., regularity-irrelevant).

To shed light on the neural representation of symmetry types and the
automaticity of symmetry processing (i.e., modulatory effect of atten-
tion), we investigated response to and representations of two types of
symmetry (reflection and rotation) when regularity was task relevant
and when it was not. Specifically, we use two categories of visual sym-
metry: 4-fold reflections (or mirror symmetry), perceptually considered
the most salient type of symmetry (Treder, 2010; Wagemans, 1997), and
45◦ rotational symmetry, together with random dot configurations.
Attention was manipulated by requiring observers to perform a
regularity-relevant (i.e., press a key when two consecutive reflection/-
rotation/random stimuli appear) or regularity-irrelevant (i.e., press a
key when two consecutive patterns with the same luminance appear)
task on the stimuli while patterns of activation from retinotopically
identified visual areas were measured. We first undertook univariate
analysis of the brain responses to compare with our work (Keefe et al.,
2018) and that of others (Kohler et al., 2016). A recent study by Van
Meel et al., (2019) investigated dissimilarities in regular and random
neural representations using classification analysis techniques. Here we
took advantage of this technique and capitalise on the high spatial res-
olution provided by functional MRI, to determine in which retinotopi-
cally defined regions regular patterns are encoded and whether these
representations change under different attentional conditions. We
hypothesise: (1) a difference in neuronal representations of regular and
random configurations will emerge in extrastriate visual areas; (2)
representations of different symmetrical categories will be distinguish-
able in object-selective cortex; (3) different attentional conditions will
modulate the neural representation of regular patterns.

2. Materials and methods

2.1. Participants

Fifteen participants were recruited to the study (mean age 27.8, SD 5;
10 female). Data from two participants were removed from the analysis
as they did not complete all three sessions of the study, while two more
datasets were removed due to at or below chance performance in the
behavioural task. All participants had normal or corrected-to-normal
visual acuity and no history of neurological impairments. All partici-
pants gave written informed consent prior to taking part in the pro-
cedure. The study was approved by the York Neuroimaging Centre
(YNiC) Research Ethics Committee at the University of York (UK). Each
participant underwent a minimum of two (3 hours in total) and
maximum of three (4.5 hours in total) scanning sessions. The study
comprised 60 hours of scanning in total.

E. Zamboni et al.

https://osf.io/2sncj/


NeuroImage 297 (2024) 120760

3

2.2. Stimuli

Stimuli, presented on a dark grey background, consisted of dot pat-
terns generated using custom-based python scripts (available on Open
Science Framework at https://osf.io/t7esz/). Specifically, each dot
pattern consisted of 64 dots (0.016 degrees of visual angle in diameter),
organised within a circular aperture spanning 4.18 dva. Example pat-
terns are provided in Fig. 1: each regular pattern was generated by
populating a quadrant of the pattern that was then reflected, resulting in
a fourfold reflectional symmetry (reflection condition), or rotated
(rotation condition). The random dot patterns were generated such that
the number of elements into each quadrant was consistent with the
regular patterns. The dots were also randomly assigned one of three
luminance values such that a third of the trials had patterns with white
dots, another third had patterns with light grey dots, and a last third had
patterns with dark grey dots (Figs.1 and 2B). This allowed us to have

participants perform either a regularity task or a task judging the
luminance of the dot patterns.

For each participant, seven unique patterns per condition (reflection,
rotation, random) were generated during the first session and each
pattern was presented four times throughout one run. Each individual
participant was presented with the same patterns throughout the study,
however patterns varied across participants, resulting in a large set of
images onto which we base our Multi-Voxel Pattern Analysis (MVPA),
largely reproducing the approach by Van Meel et al., (2019).

The experiment was controlled using Python and open-source Psy-
choPy software (Peirce, 2007; Van Meel et al., 2019). Stimuli were
presented using a projector and a mirror setup (1920 × 1080 pixels
resolution, 120 Hz frame rate) at a viewing distance of 62 cm.

Fig. 1. Example stimuli shown as circular apertures. Each column displays a different exemplar of a pattern type: random, reflection, rotation, respectively. Each row
displays different levels of luminance used in the study. The segments with highlighted dots in the middle and right-most patterns (first row) indicate the kernels used
to generate the rest of the patterns based on the geometrical transformation applied (i.e., 4-fold reflection or 45◦ rotation).
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2.3. Imaging parameters

All imaging data were acquired on a Siemens MAGNETOM 3T Prisma
scanner at the York Neuroimaging Centre (YNiC), University of York,
using a 64-channel head coil for both functional and structural data.
Each functional run consisted of T2*-weighted echoplanar images (EPIs)
(52 slices, resolution 2.5mm isotropic, TR = 1000ms, TE = 30ms, 80 ×

80 acquisition matrix, Multi-Band factor = 4, flip angle = 75 deg).
A T1-weighted high resolution anatomical scan was collected for

each participant during the first session (320 slices, resolution 0.8mm
isotropic, TR = 2400ms, TE = 2.28ms, FOV = 256 × 256, flip angle = 8
deg). To aid alignment of functional data to the T1-weighted, high res-
olution anatomical image, a Turbo Spin-Echo image, with the same
prescription as the functional data was acquired (52 slices, resolution 1
× 1× 2.5mm, TR= 7270ms, TE= 9.2ms, FOV= 200× 200, flip angle=
160 deg).

3. Experimental procedure

The study consisted of two, 1.5-hour sessions, plus a third, 1-hour
session for retinotopic mapping and LOC functional localiser. Two par-
ticipants only completed one experimental session and were therefore
removed from the analysis. For five participants, retinotopic mapping
and functional localiser were already available from previous studies,
the remaining eight participants completed all three sessions. Over the
course of the two experimental sessions, participants performed a total
of 10 runs (5 per task, in counterbalanced order, each lasting 7min 15 s);
during the third session, participants performed between 1 and 3 LOC
functional localisers (each lasting 6 min 20 s; see Vernon et al., 2016),
and between 4 and 8 retinotopic mapping scans (each lasting 2 min 8 s).

3.1. Dot array experiments

For the experimental sessions, we used a rapid-event related design,
in which the order of stimulus presentation was counterbalanced and
optimised using Optseq2 (https://surfer.nmr.mgh.harvard.edu/optseq).
Five stimulus presentation sequences were generated per participant,
per session, such that a total of 84 events were presented per run (21
unique stimuli, each repeated four times). Stimuli were presented cen-
trally for 1s with a jittered inter-stimulus interval (ISI) of between 3 and
11 s. Each run started with 10s and ended with 25s of fixation to ensure
we captured the complete haemodynamic response for the last stimulus
(Vernon et al., 2016). Participants maintained fixation on an orange
central dot throughout the run and performed a one-back task on (1) the
regularity of the patterns (press a button whenever two consecutive
reflection / rotation / random patterns are presented) and (2) the
luminance of the patterns (press a button whenever two consecutive
white / light grey / dark grey patterns are presented). Participants were
made aware of the task to be performed prior to entering the scanner and
instructions were displayed on screen before the start of each run.
During each scan, we recorded video of the participant’s left eye and
later used these recordings to extract eyeblinks using custom-written
software (see Vernon et al., 2016).

3.2. Retinotopic mapping

For the retinotopic mapping session, we followed procedures previ-
ously described (see Keefe et al., 2018; Welbourne et al., 2018). Briefly,
a bar stimulus (width 0.5 deg) moved in one of eight possible directions
within a 10 deg radius circular aperture. A movement across the full
field lasted 16s, followed by a movement across half the direction for 8s,
and interleaved with a mean luminance blank period for 8s before

Fig. 2. (A) Retinotopically defined ROIs: flat patch obtained from the occipital pole overlaid with a colour map detailing polar angle data (top) and eccentricity data
(bottom). Visual areas are then drawn and labelled according to the reversals in phase (top) that demarcate them. (B) Example stimuli shown as circular apertures for
random, reflection, and rotation, respectively. The segments with darker dots in the middle and right-most patterns indicate the kernels used to generate the rest of
the patterns based on the geometrical transformation applied (i.e., 4-fold reflection or 45◦ rotation). (C) Heat maps indicating response to each stimulus category:
random, reflection, and rotation. Note the symmetry-selective responses in extrastriate areas when contrasting response to reflection (middle) to random (left) and
rotation (right) to random (left), while early visual areas V1 and V2 show no changes across categories (no symmetry-selective response observed in the middle and
right maps). Data shown here are for a single participant, z-score thresholding as indicated by the colour bar insert.
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starting the cycle again. Participants performed a minimum of 4 and
maximum of 8 scans.

3.3. Functional localiser

For the LOC functional localiser scan, we followed procedures pre-
viously described (see Vernon et al., 2016). Briefly, an ABAB block
design was used to present images of objects and scrambled objects, for a
total of 16 blocks per condition. Each image was on-screen for 0.8s
followed by 0.2s inter-stimulus interval; participants were asked to
fixate a central red cross and to perform a one-back task on the images
presented.

4. Data analyses

4.1. Preprocessing and general linear model

T1-weighted structural data was used for coregistration and 3D
cortex reconstruction. Grey and white matter segmentation for each
hemisphere was obtained using Freesurfer (https://surfer.nmr.mgh.har
vard.edu/) and further manually edited when necessary using ITKSnap
(www.itksnap.org).

All functional data from the main experiment were analysed using
FSL FEAT (fMRI Expert Analysis Tool; Jezzard et al., 2001). Pre-
processing steps consisted of distortion correction due to non-zero off--
resonance field: at the beginning of each functional run, one volume
with inverted phase encoding direction was acquired and used to esti-
mate a voxel displacement map, subsequently applied to the functional
volumes using FSL topup (Andersson et al., 2003; Smith et al., 2004).
Once undistorted, the functional images underwent slice timing
correction and high-pass filtering (90s cut-off point) to remove
low-frequency drift. Functional volumes were motion corrected using
MCFLIRT and co-registered to each individual’s structural image using
boundary-based registration tools.

Following preprocessing, a general linear model was applied to the
functional images at an individual (first) level, for each task dataset
(Luminance, Regularity) separately:

(1) Univariate analysis:
The model consisted of 3 regressors of interest (i.e., one per

stimulus category: reflection, rotation, random), and six re-
gressors for the motion correction parameters as covariates of no
experimental interest. Moreover, a fourth regressor was added to
the model accounting for blinks during stimulus presentation, as
they have been reported to be potential sources of noise (Gouws
et al., 2014; Hupé et al., 2012). Contrasts were set up to compare
each stimulus category against baseline. To combine data within
a participant, we ran fixed effects analysis with cluster correction
(Z>2.3, p<0.05). Mean percent signal change was then computed
by visual area (see Regions of Interest and Functional Localiser
section) using FeatQuery.

(2) MVPA analysis:
To extract information regarding the regularity of the stimuli,

the model included 21 regressors of interest (i.e., one per stimulus
type: 7 reflection, 7 rotation, 7 random), plus one modelling eye
blinks, six regressors for the motion correction parameters, and
one extra covariate modelling change in dot luminance.

To extract information regarding the luminance of the stimuli,
the model included 3 regressors of interest (i.e., one per lumi-
nance level: white, light grey, dark grey), plus one modelling eye
blinks and six regressors for the motion correction parameters.

For both analyses, contrasts were set up to compare each
stimulus category to baseline. Data were not combined within
participants and resulting contrasts (z-statistics) from each run
were used in the training and testing routine of the MVPA
analysis.

4.2. Regions of interest and functional localiser

Retinotopy data were processed using mrVista analysis software
(https://web.stanford.edu/group/vista/cgi-bin/wiki/index.php/Softw
are) (Vista Lab, Stanford University): within run head motion was cor-
rected and functional runs were aligned to the high-resolution structural
image using, as intermediate step, a Turbo Spin-Echo image acquired
with the same prescription as the functional data. Aligned functional
data were then averaged and correlational analysis followed standard
procedures (e.g., (Keefe et al., 2018; Welbourne et al., 2018). The
resulting phase maps were visualised onto flat patches centred around
the occipital pole and used to identify the following regions of interest
(ROIs) in both hemispheres: V1, V2, V3, V4, VO1, VO2, LO1, and LO2.

Data from the LOC functional localiser runs were processed and
analysed following procedures described in (Vernon et al., 2016).
Briefly, data were slice-time corrected, high pass filtered (90s cut-off),
and motion corrected using MCFLIRT. No spatial smoothing was
applied, while FILM prewhitening was used. Data was combined, where
possible, within participants using fixed effects analysis with cluster
correction (Z>2.3, p<0.05). The resulting maps were then used, at the
individual level, to guide identification of LO1 and LO2 boundaries
whenever data from the retinotopic maps alone were not sufficient.

ROIs were further restricted by eccentricity (stimulus size) based on
a stimulus vs fixation contrast obtained from the main experiment
functional data (across sessions).

4.3. Multi voxel pattern analysis

We used multi voxel pattern analysis (MVPA) to investigate the
representations of different regular patterns (i.e., reflection and rota-
tion) across the visual cortex. We trained a linear Support Vector Ma-
chines (SVM, Schölkopf et al., 1999) classifier using LIBSVM
(https://www.csie.ntu.edu/~cjlin/libsvm/; Chang & Lin, 2011; Vernon
et al., 2016) implemented in MATLAB to discriminate: (a) reflection
from random patterns; (b) rotation from random patterns; and (c)
reflection from rotation patterns, when participants were attending to
the regularity of the patterns vs when they were attending to the lumi-
nance of the patterns. Classification accuracy for each condition was
computed using a leave-one-run-out cross-validation (Kriegeskorte
et al., 2009): data for each participant, for each task, and each ROI were
divided into training and test datasets, with a minimum of 28 training
patterns (n=1 participant with 3 runs per task) and a maximum of 70
training patterns (for n=1 participant with 6 runs per task; the
remaining participants had 5 runs per task, hence 56 training patterns)
and 14 patterns for the test set. This method of cross-validation is
important to limit overfitting the classifier (Valente et al., 2021): by
iteratively generating a model on different training-testing sets, the
potential of an extremely good/bad fit driving the overall performance is
attenuated (Tong& Pratte, 2012; Cawley& Talbot, 2010). Classification
accuracy was then averaged across validation sets, for each condition,
and across participants, for each ROI and task, separately. The resulting
accuracies were then tested against chance performance using
one-sample tests (Kriegeskorte et al., 2007; Wailes-Newson et al., 2019)
for each ROI separately, (the higher the classification accuracy, the more
distinct the representations of different regular patterns are for a specific
area in the visual cortex). Performance of each independent ROI clas-
sifier is measured by percent correct classification (accuracy), with the
null hypothesis of the classifier to perform at chance level (e.g., 50% for
a two-way classification routine). Univariate t-test therefore allows to
test whether classification accuracy is significantly better than chance,
and a significant t-value indicates that the region’s response contains
information about the experimental condition (Kriegeskorte et al.,
2006).
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4.4. Multiple comparisons and power analysis

While the work we present here highly leveraged (1) the use of ROI
analysis that specifies precisely retinotopic visual areas of the brain lo-
cations and the stimulus representations within in them and (2) a rela-
tively high number of trial presentations, we quantitatively verified that
the power of our analyses was sound. Albeit post-hoc, we repeated our
main three-way, repeated measures ANOVA analysis, with factors Task
(luminance, regularity), ROIs, and Stimulus (random, reflection, rota-
tion) 100 times by randomly selecting, with replacement, a set of data on
each iteration. We then computed the power for the three-way inter-
action (Task * ROIs * Stimulus) on the resulting 100 p-values. This
resulted in a power of 0.71, which supports the robustness of the out-
comes reported in the Results section.

The p-values resulting from our statistical tests (three-way and two-
way repeated measures ANOVAs in the univariate analysis, as well as
paired t-tests for the multivariate analysis) were corrected for multiple
comparisons using Benjamini-Hochberg False Discovery Rate. The table
in the Results section show the FDR adjusted p-values.

5. Results

5.1. Univariate responses

We identified visual areas using standard retinotopic mapping pro-
cedures as shown in Fig. 2A for one representative participant and
measured the BOLD response to dot patterns that were either random,
reflectional symmetry, or rotational symmetry (exemplars depicted in
Fig. 2B, from left to right, respectively). Statistical maps in response to
each individual stimulus category for a representative participant are
provided in Fig. 2C (random>baseline, reflection>random, rota-
tion>random, respectively). This standard contrast approach appears to
show more widespread responses to reflection vs random compared to
rotation vs random. However, the ROI analysis we employ offers a more
sensitive way of assessing stimulus selectivity as presented below.

The responses to the reflection, rotation and random dot stimuli are
presented in Fig. 3. Data are separately plotted for the two task condi-
tions of luminance and regularity in panels A and B, respectively, and
then across both tasks in panel C. Data are presented this way to allow
visualisation of the effects that emerged from the statistical analysis
presented below. It appears that there is little or no preferential response
to symmetry in primary visual cortex and symmetry selectivity emerges
more clearly up the visual hierarchy.

We investigated whether attending to regularity or luminance
modulated the BOLD response across the visual cortex using a three-
way, repeated measures ANOVA with factors of Task (attending to
luminance, regularity), ROIs (V1, V2, V3, V4, VO1, VO2, LO1, LO2) and
Stimulus (random, reflection, rotation). The degrees of freedom for the
factor ROI were corrected using Huynh-Feldt (estimated epsilon larger
than .5) following a departure from sphericity. There was a significant
three-way interaction (F(6.546,64.560)=2.507, p=0.027, η2=0.2)
showing that the way in which responses to the stimuli vary by ROI is
dependent on the task. An indication of this is evident from comparing
Figs 3A and B, where the regularity task appears to boost differences in
responses to stimuli in extrastriate regions.

The application of the 3-way ANOVA also highlighted one significant
two-way interaction; ROI by Stimulus (F(8.856,88.558)=10.886,
p<0.0001, η2=0.521) and is illustrated in Fig 3C, where it is clear that
regularity selective responses emerge in extrastriate cortex. The other
two-way interactions that depended on task did not reach significance;
Task by ROIs (p=0.066) and Task by Stimulus (p=0.988). Main effects of
ROI and Stimulus, but not Task were also significant; (ROI: F
(3.681,36.830)=5.386, p=0.002, η2=0.35; Stimulus: F(2,20)=12.566,
p=0.001, η2=0.557, respectively), Task: F(1,10)=3.484, p=0.092,
η2=0.258)

To follow up on the three-way interactions we employed two-way

ANOVAs with Stimulus and Task as factors for each ROI (each test
and its post hoc, pairwise t-tests are given in Table 1). The analyses
revealed a main effect of Stimulus across regions beyond V1 and V2,
with areas V3, V4, VO1, VO2, LO1, and LO2 all showing an enhanced
response to regular patterns (reflection and rotation) compared to
random configurations, irrespective of task (all p<0.001). Interestingly,
we also observed an effect of Task in ventral visual areas VO1 and VO2,
where attending to the regularity of the patterns resulted in a larger
BOLD response compared to when attending to the luminance of the
stimuli (F(1,10)=11.87, p=0.006, η2=0.534; F(1,10)=5.915, p=0.035,
η2=0.372 for VO1 and VO2, respectively). It appears therefore that the
three-way interaction is driven by Task significantly boosting responses
in VO1 and VO2, but not in other extrastriate areas, which do exhibit
stimulus, but not task related responses.

Our stimuli varied also along the luminance dimension (with three
levels: dark grey, light grey, and white), although it is important to note
that the presentation order of the stimuli was not optimised to detect
effects of stimulus luminance. For completeness, however, we tested
whether there was an effect of luminance level on BOLD response across
visual cortex using a three-way, repeated measures ANOVA with factors
Task (attending to luminance, regularity), ROIs (V1, V2, V3, V4, VO1,
VO2, LO1, LO2) and Luminance (dark grey, light grey, white). The de-
grees of freedom for the factor ROI were corrected using Huynh-Feldt
(estimated epsilon larger than .5) following a departure from sphe-
ricity. While this analysis did not show a significant three-way interac-
tion (F(10.352, 103.52)=0.631, p=0.78, η2=0.059), the interaction
between ROIs and Luminance was significant (Fig 4a; F(5.945, 59.447)=
2.629, p=0.024, η2=0.059). This result indicates that BOLD responses
across the visual cortex vary depending on luminance levels, with lowest
responses to patterns with dark grey elements (lowest luminance),
compared to white elements (highest luminance). Furthermore, a Task
by ROIs interaction (Fig 4b; F(4.771, 47.706)=2/702, p=0.033,
η2=0.213) supports our previous results where regularity task appears to

Fig. 3. Univariate results for (A) luminance, (B) regularity, and (C) across
tasks. Visual areas are represented along the x-axis, percent signal change is
shown on the y-axis. Responses to random patterns are in light brown, re-
sponses to rotational patterns in purple, responses to reflection in green. Error
bars indicate +SEM. Asterisks indicate areas where both responses to rotation
and reflection were significantly higher than responses to random patterns:
*<0.05, **<0.01, ***<0.001 following FDR correction consistent with statistics
reported in Table 1.
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boost differences in responses to stimuli in extrastriate, object-selective
regions VO1 and LO2 (tests and post-hoc t-tests are given in Table 2).

In summary, our univariate analysis showed: (1) an extrastriate
network of visual areas starting beyond V2 that process regularity; this is
in line with our hypothesis and previous literature, supporting the
reliability of this result; (2) regularity is processed automatically,
whether we are attending regularity or luminance of the patterns, with
the exception of more ventral areas that show also a larger response
when attending to regularity; (3) the extrastriate network exhibits
indistinguishable univariate response to reflection and rotation.

5.2. Multivariate responses

The advantage and added value of our design is that it allows us to
exploit not only the average response of an ROI to a set of stimuli, but
also look at the spatial organisation of the responses and attempt to
discriminate between the response patterns relating to one stimulus
category compared to another. To this end, we used multivoxel-pattern
analysis techniques and trained an SVM classifier to distinguish be-
tween: (a) reflection and random patterns; (b) rotation and random
patterns. We then run a one-sample t-test for each task condition

(attending to luminance, attending to regularity) decoding accuracy
against chance level (i.e., 50% accuracy of distinguishing between
representation of the regular vs random configurations) separately for
each ROI. The univariate analysis reported above already showed a
significant difference between the mean BOLD response for these con-
ditions. We would therefore expect our MVPA results to largely reflect
the univariate findings.

Decoding accuracy for reflection vs random classification (Fig. 5A)
showed significantly above chance results for both tasks and for all ROIs
except V1 (V1: t(10)=1.994, p=0.080 and t(10)=2.068, p=0.078 for
regularity and luminance tasks, respectively; all other ROIs show
p<0.048 for both regularity and luminance tasks). Except for V2, the
results are in line with the univariate analysis reported in the previous
section.

One sample t-test on decoding accuracy for rotation vs random
condition (Fig. 5B; results for each t-test performed, including estimate
of effect size based on Hedge’s g computation to account for small
sample size reported in Table 3) showed above chance classification
accuracy when attending to regularity for all extrastriate ROIs. When
attending to luminance, extrastriate areas VO1 and LO1 (p<0.012) still

Table 1
Results of two-way ANOVA performed on each region of interest. ROIs are shown in each row, while columns show data for the interaction (Task x Stimulus), main
effects of Task (luminance, regularity), and Stimulus (random, reflection, rotation). Post-hoc t-tests (Task, Reflection vs Random, Rotation vs Random, Reflection vs
Rotation) assess differences in task and stimulus types. Bold cells indicate statistical significance (after FDR correction, p<0.05).
ROI Task x Stim

(F, p, η2)
Task
(F, p, η2)

Stim
(F, p, η2)

Reflection vs Random
(t, p, Hedge’s g)

Rotation vs Random
(t, p, Hedge’s g)

Reflection vs Rotation
(t, p, Hedge’s g)

V1 .444, .795, .043 .060, .886, .006 .891, .594, .082 -.237, 1.000, .5885 1.937, .409, -.0714 -1.111, 1.000, -.3350
V2 .958, .594, .087 .000, .993, .000 2.242, .336, .183 1.500, .721, 1.1215 3.571, .024, .4571 -.343, 1.000, -.1046
V3 .217, .886, .021 1.598, .235, .138 11.074, .004, .525 4.259, .012, 1.3946 4.684, .008, 1.2723 .896, 1.000, .2698
V4 .209, .886, .020 1.401, .264, .123 14.958, .0004, .599 5.000, .004, 1.5357 5.047, .004, 1.5288 1.333, .872, .4078
VO1 .038, .993, .004 11.870, .006, .543 17.934, .0004, .642 6.758, .0024, 1.4264 4.677, .006, 2.0603 1.243, .973, .3738
VO2 .881, .607, .081 5.915, .035, .372 16.138, .0004, .617 5.075, .004, 1.4674 4.857, .006, 1.5351 .825, 1.000, .2476
LO1 1.507, .452, .131 3.719, .083, .271 13.730, .0004, .579 5.108, .004, 1.2195 4.000, .015, 1.5371 1.125, 1.000, .3391
LO2 .474, .795, .045 4.674, .056, .319 13.179, .0004, .569 5.581, .004, 1.1039 3.700, .024, 1.6808 1.550, .721, .4645

Fig. 4. Univariate results for (A) across tasks, (B) across luminance. Visual
areas are represented along the x-axis, percent signal change is shown on the y-
axis. Responses to patterns of dark grey luminance are in light brown, responses
to patterns of light grey luminance in purple, responses to patterns with white
luminance dots in green. Error bars indicate +SEM. Asterisks indicate areas
where responses to white dots luminance were significantly higher than re-
sponses to dark grey luminance: *<0.05, **<0.01, ***<0.001 following FDR
correction consistent with statistics reported in Table 2.

Table 2
Results of post-hoc t-tests (Luminance, Dark grey vs Light grey, Dark grey vs
White, Light grey vs White; Task, Luminance vs Regularity) assess differences in
levels of luminance across stimulus types and task. Bold cells indicate statistical
significance (after FDR correction p<0.05).
ROI Dark vs

Light
(t, p,
Hedge’s g)

Dark vs
White
(t, p, Hedge’s
g)

White vs
Light
(t, p,
Hedge’s g)

Luminance vs
Regularity (t, p,
Hedge’s g)

V1 -1.9784,
.0961, -.5965

-4.0513,
.0078,
-1.2215

-2.4258,
.0612, -.7314

-.3948, .1055, -.1190

V2 -1.2584,
.2706, -.3794

-5.0593,
.0024,
-1.5254

-1.999,
.0961, -.6028

-.2713, .1055, -.0818

V3 -.6535,
.5761, -.1971

-4.2271,
.0072,
-1.2745

-2.5783, .06,
-.7774

-1.6011, .1404, -.4827

V4 -1.5577,
.1804, -.4697

-5.8676,
.0012,
-1.7692

-2.7386,
.0577, -.8257

-1.7511, .1262, -.5280

VO1 -.0499,
.9612, -.0150

-8.0309,
.0012,
-2.4214

-2.6381,
.0595, -.7954

-3.9959, .02, -1.2048

VO2 -.4503,
.6908, .1358

-3.7368,
.0117,
-1.1267

-2.4978,
.0609, -.7531

-2.5062, .0829, -.7556

LO1 -2.1749,
.0875, -.6557

-5.6744,
.0012,
-1.7109

-2.4724,
.0609, -.7455

-2.1528, .1055, -.6491

LO2 -2.0047,
.0961, -.6045

-7.4170,
.0012,
-2.2363

-1.9875,
.0961, -.5993

-2.8097, .074, -.8472
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show above chance classification accuracy, with area V2 (p<0.036) and
LO2 (p<0.045) showing a marginally significant effect (p>0.052 for the
other ROIs). These results suggest that rotation can be decoded at rates
significantly above chance early in the visual hierarchy when attending
to regularity.

While the previous analyses allowed us to confirm and further
expand results from the univariate analyses, highlighting the automa-
ticity of processing reflectional patterns in extrastriate visual areas, the
MVPA analysis technique also provides the advantage of investigating
whether we can differentiate between regularity types. Indeed, the
univariate analysis reported in the previous section did not show sig-
nificant differences in the mean response to reflection and rotation. Here
we therefore ask the following questions: do reflection and rotation

result in different neural representations in extrastriate cortex, and how
does attention modulate these representations? We trained an SVM
classifier to best discriminate between the two classes of regular con-
figurations, for each attentional task, respectively, and run a one-sample
t-test for each task condition decoding accuracy against chance level, for
each ROI separately. Interestingly, this analysis revealed that, when
attending to regularity, our classifier was able to reliably differentiate
between reflections and rotations across all ROIs, with exception of
ventral areas VO1 and VO2. Attending to the luminance of the dots,
resulted in similar outcomes: all ROIs but V1 and VO2 showed signifi-
cantly above chance classification between reflection and rotation (Tale
3 - columns 5 and 6; Fig. 5C).

Finally, given that one of the manipulations of our stimuli consisted
in change of luminance, we implemented SVMs to test whether lumi-
nance category (i.e., white, light grey, and dark grey) could be decoded
across the visual hierarchy, and whether attention had an effect on these
responses. We therefore ran a multi-category decoding classification (i.
e., white vs light grey vs dark grey) on the response patterns while
attending to luminance and while attending to regularity and run one-
sample t-tests, with chance level this time being 33.33%. In Table 4
we show the results of the one-sample t-tests in each ROI.

Interestingly, attending to luminance resulted in above chance
decoding accuracy across the visual cortex, excluding areas V1, VO2,
LO1 and LO2 (Fig. 6A). But when participants were engaged in the
regularity task, the classifier was not able to distinguish between rep-
resentations of any luminance condition in any of the ROIs investigated
(all p>0.147).

The same multi-category decoding classification applied to the
stimulus configuration (i.e., random vs reflection vs rotation) showed a
very different pattern of results. Here, one-sample t-tests against chance
level (33.33%) revealed above chance decoding accuracy beyond area
V1 (all p<0.025) both when participants were performing the luminance
and the regularity task (Fig. 6B). This result aligns with the findings that
information of spatial configurations is retained during sensory pro-
cessing in a more automatic/task-independent fashion.

6. Discussion

We presented participants with two categories of regular dot pat-
terns, as well as random configurations, while they engaged in either a
regularity-relevant (1-back task on the category of the patterns) or
regularity-irrelevant (1-back task on the luminance of the dots in the
patterns) task. This design, combined with the spatial specificity that
functional MRI at high resolution provides, allows us to tap into the
mechanisms underlying regularity processing and test whether these
mechanisms are modulated by attention. We provide evidence of the
interplay between two level of tasks and two types of symmetry across
visual cortex. In line with previous fMRI studies (Keefe et al., 2018;
Kohler et al., 2016; Sasaki et al., 2005; Tyler et al., 2005; Van Meel et al.,
2019), we observe regularity-selective responses to emerge in V3 and
continue throughout the extrastriate visual cortex. This reliable evi-
dence supports the knowledge of an extended network of visual areas
contributing to processing regularity information, while the early visual
cortex (V1 and V2) does not show a regularity-specific change in hae-
modynamic response.

Notably, analysis of our task manipulation suggests an automaticity
to the processing of visual regularity: attending to the luminance of the
patterns, a feature that does not require processing of the spatial orga-
nisation of the dots, still resulted in reliable symmetry-specific BOLD
responses in extrastriate areas. This aligns well with evidence from
Sasaki et al., (2005), and Keefe et al., (2018), as well as Audurier et al.,
(2022), albeit in monkeys, showing regularity-selective responses even
while participants were passively viewing dot patterns, without actively
engaging in a regularity-relevant task. Kohler et al., (2016) further
showed that performing a contrast discrimination task (regular-
ity-irrelevant) while presented with task-irrelevant wallpaper stimuli

Fig. 5. MVPA results for different stimulus conditions across visual ROIs. (A)
Reflection vs Random: extrastriate areas show above chance classification ac-
curacy during both the luminance (white) and the regularity (grey) tasks. (B)
Rotation vs Random: extrastriate areas show above chance classification ac-
curacy during regularity task, while attending to local features (i.e., luminance
of dot patterns) results in above chance classification in ventral areas higher up
the hierarchy (VO2and LO1). (C) Reflection vs Rotation: extrastriate areas show
above chance classification during both luminance and regularity tasks, with
the exception of ventral areas VO1 and VO2. Individual dot markers indicate
single subject data. Dashed lines indicate MVPA accuracy at 50% chance. Error
bars indicate +SEM. Asterisks indicate significance as follows: *<0.05,
**<0.01, ***<0.001 following FDR correction consistent with statistics re-
ported in Table 3.
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differing in symmetry content (number of rotation axes) did not affect
responses to rotation that were instead robust across extrastriate and
ventral visual cortex. More recently, Kohler& Clarke, (2021), deploying
the same contrast discrimination task, still allowed to characterise SPN
responses based on the hierarchy of complexity expressed in wallpaper
groups. Furthermore, (Makin, Rampone, & Bertamini, 2020; Makin,
Rampone, Morris, et al., 2020) also show strong evidence for the auto-
matic processing of visual regularity: the SPN is observed across a range
of tasks, including regularity discrimination, colour judgements, oddball

trials, and sound/colour congruency judgements. Our simultaneous
manipulation of regularity task-relevance therefore shows that the brain
responds to regularity whether the task at hand actively requires
perceptual organisation processing or not. It is important to notice that
extraretinal regularity, e.g., reflectional symmetry disrupted by
perspective distortion or occlusion, is more fragile (Keefe et al., 2018;
Makin et al., 2015; Rampone et al., 2019): Reflectional
symmetry-selective responses are measured only when regularity, and
thus spatial organisation of the visual elements, is task relevant.

Our results here show an enhanced response when attending to
regularity in ventral regions VO1 and VO2, while no such effect is shown
by other extrastriate / object-selective areas. This boost is consistent, at
least in part, with findings from Keefe et al., (2018) showing strongest
symmetry response in area VO1 (and LOB) that is further enhanced
during reflectional symmetry detection task (compared to passive
viewing). The difference in the extent of this attentional modulation, not
observed across extrastriate areas in our data, could be linked to the
difference in configuration of the stimuli: while both studies used
salient, fourfold reflectional symmetry as one condition of interest, the
size of the patterns differed considerably. Indeed, our stimuli were
designed to optimise our multivariate analysis. Specifically, we chose a
size that would allow processing of (global) spatial information while
preventing eye movements. Furthermore, the location of individual dots
was randomly selected within the aperture to control for potential
confounds arising from repeated presentations of specific retinal infor-
mation. Thus, this design strategy ensures that each pattern is specific to
the regularity, rather than being a pattern (e.g., template / shared part as
used in Van Meel et al., 2019) that would be modulated by the regu-
larity. This clearly has methodological advantages, however it also sets a
harder challenge to the classification routine, given that each pattern
has its own, non-shared, configuration.

The results from the MVPA analysis largely agree with the univariate
results: our classifier distinguished between neuronal representations
elicited by reflectional patterns compared to those from random pat-
terns. This was the case across extrastriate visual areas, and

Table 3
Results of one-sample t-tests assessing classification accuracy against 50% chance level for each stimulus pairing and task, across regions of interest. ROIs are given in
each row and columns show statistical t, p-value, and Hedge’s g as a measure of effect size accounting for small sample size, for classification test (reflection vs random,
rotation vs random, reflection vs rotation) and each task (luminance, regularity). Bold cells indicate statistical significance (after FDR correction p<0.05).

Reflection vs Random
(t, p, Hedge’s g)

Rotation vs Random
(t, p, Hedge’s g)

Reflection vs Rotation
(t, p, Hedge’s g)

ROI luminance regularity luminance regularity luminance regularity
V1 2.068, .078, .575 1.994, .080, .555 1.499, .188, .417 .887, .413, .247 2.127, .074, .592 2.679, .030, .745
V2 3.476, .012, .967 2.367, .048, .658 2.654, .036, .738 2.433, .044, .677 3.617, .010, 1.006 3.821, .0096, 1.063
V3 4.568, .003, 1.271 2.823, .025, .786 1.105, .307, .307 3.127, .0165, .870 4.901, .003, 1.364 3.769, .0096, 1.049
V4 4.720, .003, 1.313 4.967, .006, 1.382 2.208, .069, .614 4.596, .006, 1.279 2.692, .036, .749 5.075, .0024, 1.412
VO1 8.145, .0008, 2.266 4.787, .006, 1.332 6.337, .0008, 1.763 3.701, .0096, 1.030 3.326, .013, .925 2.006, .080, .558
VO2 5.180, .0008, 1.441 3.682, .0096, 1.024 1.373, .218, .382 3.241, .015, .902 .961, .359, .267 .760, .465, .212
LO1 4.820, .003, 1.341 3.785, .0096, 1.053 3.405, .012, .947 3.425, .011, .953 3.666, .0096, 1.020 3.934, .0096, 1.095
LO2 4.376, .003, 1.217 3.426, .011, .953 2.497, .045, .695 3.148, .016, .876 3.672, .0096, 1.021 3.455, .011, .961

Table 4
Results of one-sample t-tests assessing classification accuracy against 33.33%
chance level for multi-category (three luminance levels; three stimulus config-
uration levels) and task, across regions of interest. ROIs are given in each row
and columns show statistical t, p-value, and Hedge’s g as a measure of effect size
accounting for small sample size, for classification test (white vs light grey vs
dark grey; random vs reflection vs rotation) and each task (luminance, regu-
larity). Bold cells indicate statistical significance (after FDR correction p<0.05).

Stimulus Luminance
(t, p, Hedge’s g)

Stimulus Configuration
(t, p, Hedge’s g)

ROI luminance regularity luminance regularity
V1 2.335, .056,

.650
1.609, .203,
.448

2.155, .065, .599 2.140, .116,
.596

V2 2.705, .0352,
.753

1.523, .232,
.424

3.996, .0068,
1.112

4.465, .0032,
1.242

V3 2.631, .0363,
.732

1.929, .147,
.537

4.871, .0032,
1.355

4.931, .0032,
1.372

V4 3.271, .016,
.910

1.605, .203,
.447

4.826, .0032,
1.343

4.415, .0032,
1.228

VO1 3.910, .007,
1.088

-.462, .747,
-.128

7.595, .0008,
2.113

4.146, .0032,
1.153

VO2 1.250, .240,
.348

.499, .747,

.139
2.759, .0352,
.768

2.635, .0571,
.733

LO1 2.235 .060,
.622

.041, .987,

.012
5.250, .0008,
1.461

4.943, .0032,
1.375

LO2 1.482, .180,
.412

-.016, .987,
-.005

4.752, .0032,
1.322

3.849, .008,
1.071

Fig. 6. MVPA results for 3-way classification on luminance (A) and stimulus configuration (B) conditions across visual ROIs. (A) All visual areas, except VO1, VO2,
LO1 and LO2, show above chance classification accuracy during the luminance (white) task, whereas attending to regularity (grey) impacts classification in all
regions. (B) All visual areas, except for V1, show above chance classification accuracy during both luminance (white) and regularity (grey) tasks. Individual dot
markers indicate single subject data. Dashed lines indicate MVPA accuracy at 33.33% chance. Error bars indicate +SEM. Asterisks indicate significance as follows:
*<0.05, **<0.01, ***<0.001 consistent with statistics reported in Table 4.
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classification performance was not affected by the specific stimulus
property (luminance or regularity) that was task relevant at the time of
encoding. This speaks in favour of the saliency and automaticity of
regularity processing across areas of the visual cortex.

Representations of rotational patterns could be distinguished from
those of random ones across extrastriate areas when volunteers were
engaged in the regularity task. During the luminance task, only object-
selective regions, and to some extent area V2, showed above chance
classification accuracy, suggesting that rotation is a type of regularity
benefitting from attentional boost when consolidating its neuronal
representation in visual cortex. These results extend our univariate
findings by showing a potential role of area V2 in regularity processing
(noting that V2 has some significant decoding performance, but not
across all stimulus/task conditions). Interestingly, this area showed
enhanced connectivity with ventral region V4 when processing reflec-
tional vs random stimuli (Van Meel et al., 2019), suggesting a feedfor-
ward process where local, low-level features accessed in V2 are further
processed into more complex properties along the visual hierarchy. Our
observation that there is at least some involvement of V2 in represen-
tation of regularity is not strongly supported by other neuroimaging
studies including our own that have largely been concerned with
assessing univariate responses, which routinely emerge in V3 and
beyond. However, studies of the macaque visual system have shown
regularity-specific activation in area V2 for visual stimuli capturing
structural features of naturalistic textures. Freeman et al., (2013)
compared single cell recordings from macaques V1 and V2 while pre-
sented with regular synthesised texture stimuli and matched noise
patches and showed a vigorous response to regular, naturalistic textures
for neurones in V2, compared to V1. The authors also measured mod-
ulation of BOLD responses in humans to the same stimuli, and reported
regularity-specific responses in area V2, suggesting a sensitivity to
higher-order features in this region that contribute to processing spatial
properties of incoming sensory information. More recently, Audurier
et al., (2022) show symmetry-selective responses to wallpaper stimuli
emerging from area V2, and extending to V3, V4, and V3A, in macaques.
This study, replicating the experimental protocol by Kohler et al., (2016)
in humans and adopting it for macaques, thus suggests that macaque
area V2 is sensitive to spatial structures within visual stimuli that are fed
forward to more ventral areas (direct anatomical connections with V4;
Felleman et al., 1997; Gegenfurtner et al., 1997), thus contributing to
perceptual organisation of higher order spatial properties. Our findings
suggest that the increased sensitivity of multivariate approaches may
have unmasked a potential role for V2 in regularity processing in
humans, too.

As highlighted above, MVPA analysis provides the power to disen-
tangle neuronal representations of different regular patterns within re-
gions of interest. Our classifier shows that voxel patterns related to
reflection can be distinguished from those related to rotational config-
urations in extrastriate, object-selective areas. Importantly, the decod-
ing of spatial information here is also irrespective of the task performed:
attending to a first order property of the stimulus such as luminance does
not affect classification. Again, these results not only speak to the
automaticity of regularity processing but extend the univariate findings:
by exploiting fine-grained spatial arrangements of multi-voxel response
patterns, it is possible to gain processing information that would
otherwise be averaged out in univariate analyses. This becomes critical
when considering the stimuli used in the study. While previously shown
that different types of symmetry result in distinguishable responses in
extrastriate cortex (Audurier et al., 2022; Keefe et al., 2018; Kohler &
Clarke, 2021; Kohler et al., 2016; Sasaki et al., 2005), our reflectional,
rotational, and random patterns were optimised, in size and spatial
arrangement, to deploy a multivariate analysis and thus exploit the
spatial organisation of brain patterns related to stimulus types. This
finding therefore suggests reflection and rotation do not activate the
same neural populations in the extrastriate cortex - however SPN
priming studies show that reflection and rotation representations are not

completely independent. Prior presentation of rotation increases the
SPN response to reflection and vice versa (Experiment 5 in Makin et al.,
2021).

Finally, we were able to ask our classifier to identify voxel response
patterns relating to different luminance stimulus conditions. While
luminance is a global property of the dot patterns, this can be resolved at
the local level, i.e. attending to individual elements of the patterns will
suffice to perform the luminance task here, and equally this property
could be encoded when attending to the global structure of the patterns
in the regularity task. Thus, one would hypothesise that first order visual
properties such as luminance might be automatically accessible under
different task and attentional conditions. However, our MVPA results
show that this is not the case: decoding luminance information is task-
selective, and this feature is available across regions of the visual cor-
tex only when overtly attending to it.

While at first counterintuitive, there are two important consider-
ations. The first is that it is known that attention modulates processing of
luminance and contrast (Anton-Erxleben & Carrasco, 2013; Di Russo
et al., 2001; Herrmann et al., 2010; Morrone et al., 2004). The second
factor is a possible role for perceptual organisation. Our visual system
engages in perceiving and representing spatial properties in the effort of
generating meaningful representations despite a large variability of first
order property conditions such as luminance. The visual system, and
extrastriate cortex more specifically, can therefore discount and remove
representation of sensory information that are not relevant for the task
at hand and do not determine an invariant representation of the emer-
gent spatial structure. This is a feature known in object-selective areas
such as the LOC (Kourtzi& Kanwisher, 2001), with LO1 and LO2 regions
shown to independently process spatial aspects of complex objects -
orientation and shape, respectively (Kourtzi & Kanwisher, 2001; Silson
et al., 2013).

When considering limitations, we can review type 1 and type 2 error
risks (false positives and false negatives). Our control of type 1 error is
adequate. We used ROI analysis based on precise retinotopic mapping,
aligning with the category of work known as ‘precision fMRI’ where
emphasis is drawn onto the techniques that allow known biological
representations in the brain to be identified and further probed for
functional properties. Furthermore, we applied adequate correction for
multiple comparisons. We also have broad consistency with previous
fMRI work on extrastriate symmetry response. We can thus be confident
that our reported significant effects were not false positives. However,
our control of type 2 error was poor. With a sample of 11, statistical
power is low, and we acknowledge therefore that small-to-medium sized
effects may have been missed.

7. Conclusion

In summary, we show regularity-specific responses to emerge from
area V3 and extend throughout extrastriate/ventral and object-selective
visual areas. Multi-voxel pattern analysis supports this finding and
suggests the emergence of a role in processing of spatial information
potentially in area V2. Furthermore, the contrast in the task effect of the
classification performance for distinguishing regularity and luminance
is intriguing. The fact that the dot luminance could not be classified
when participants attend to regularity indicates that this first order vi-
sual property is likely discounted from the neural representation in a
task specific way. In contrast, the spatial properties of the stimuli can be
decoded even when participants did not attend to those features. We
propose therefore that the visual system, most particularly the extras-
triate visual areas, computes and represents these global properties
automatically and underpins perceptual organisation.
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