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Introduction
Gene ontology (GO) terms are a widely used and evolving set 
of phrases used to define a gene product (proteins and noncod-
ing RNAs) concerning their biological functions. These are 
curated by the Gene Ontology Consortium1,2 with terms 
added and removed with evolving biological understanding. 
Similarly, the terms linked to a gene may change over time as 
new biological links are found or disproved, typically following 
experimental or in silico analysis. While the current usage of 
GO terms has its limitations, they can still be very useful when 
describing biological phenomena such as attempting to deter-
mine a cell’s physiological response to an environmental stimu-
lus or genetic mutation.

The specificity of terms ranges from very general to highly 
specialized, allowing them to be grouped together such that a 
more general term is the parent of a number of more special-
ized but related terms, which in turn are the parents of even 
more specific terms. These parent–child relationships are then 
linked together to form 3 distinct domains: biological process, 
molecular function, and cellular compartment to form a 
directed acyclic graph structure. Since a term can have a num-
ber of parents, the final structure resembles a road map, mean-
ing it is possible to find several different ways to move from 
one term to a more distantly related term.

The analysis of gene expression using expression microar-
rays and/or next-generation sequencing of RNA is routinely 
performed to identify changes in gene expression profiles 
between various cohorts of biological material. These data 

can then be used to identify differentially expressed genes 
(DEGs) using software such as DeSeq23 or edgeR.4 However, 
simple lists of DEG can often be too large to easily describe 
the resultant changes in sample physiology. To resolve this, 
several applications such as DAVID,5 TopGO,6 and GOstats7 
have been developed that link DEG to their GO terms and 
then determine if a GO term is linked to more or fewer genes 
in the dataset than expected, when compared to a reference 
set of genes, such as all the genes expressed in a sample or 
those present in the organism’s genome. However, as with 
lists of DEG, extensive lists of enriched GO terms can be 
difficult to interpret. Consequently, several applications have 
been developed to visualize GO term enrichment data such 
as AmiGO,8 GO-Figure!,9 Gonet,10 NaviGO,11 QuickGO,12 
and REVIGO.13

These applications typically display the data for a single 
analysis as a bubble plot, a network graph of linked terms, or a 
hierarchical tree graph. Of these, hierarchical graphs most 
accurately reflect the relationships between individual GO 
terms as their structure tends to be a simplified version of the 
relationships in the GO terms’ directed acyclic graph as defined 
by the GO Consortium, with GO terms omitted if they are 
uninformative. These graphs typically do not aggregate data 
from similar GO terms and, since they have a fixed structure, 
are useful for answering specific, detailed questions between 2 
different enrichment experiments. By comparison, bubble plots 
tend to be useful for the display of global GO term enrichment 
trends, due to the number of terms present in an analysis, this 

GOTermViewer: Visualization of Gene Ontology 
Enrichment in Multiple Differential Gene Expression 
Analyses

Milene Volpato, Mark Hull and Ian M Carr
School of Medicine, University of Leeds, Leeds, UK.

ABSTRACT: Gene ontology phrases are a widely used set of hierarchical terms that describe the biological properties of genes. These terms 
are then used to annotate individual genes, making it possible to determine the likely physiological properties of groups of genes such as a list 
of differentially expressed genes. Consequently, their ability to predict changes in biological features and functions based on alterations in gene 
expression has made gene ontology terms popular in the wide range of bioinformatic fields, such as differential gene expression and evolution-
ary biology. However, while they make the analysis easier, it is seldom easy to convey the results in a readily understandable manner. A number 
of applications have been developed to visualize gene ontology (GO) term enrichment; however, these solutions tend to focus on the display of 
aggregated results from a single analysis, making them unsuitable for the analysis of a series of experiments such as a time course or response 
to different drug treatments. As multiple pair wise comparisons are becoming a common feature of RNA profiling experiments, the absence of a 
mechanism to easily compare them is a significant problem. Consequently, to overcome this obstacle, we have developed GOTermViewer, an 
application that displays GO term enrichment data as determined by GOstats such that changes in physiological response across a number of 
individual analyses across a time course or range of drug treatments can be visualized.

Keywords: Gene ontology enrichment, RNA seq analysis, next-generation sequencing, differential gene expression analysis

RECEIVED: October 17, 2023. ACCEPTED: June 29, 2024.

TYPE: Method and Protocol

Funding: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article: This work was supported by the 
NIHR Senior Investigator award to Professor Mark Hull.

Declaration Of Conflicting Interests: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this 
article.

CORRESPONDING AUTHOR: Ian M Carr, School of Medicine, Worsley Building, 
University of Leeds, Leeds, LS2 9JT, UK.  Email: i.m.carr@leeds.ac.uk

1271550 BBI0010.1177/11779322241271550Bioinformatics and Biology InsightsVolpato et al.
research-article2024

mailto:i.m.carr@leeds.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1177%2F11779322241271550&domain=pdf&date_stamp=2024-09-18


2	 Bioinformatics and Biology Insights ﻿

is often achieved by aggregating data for similar terms into 
clusters.

While the structure of hierarchical graphs is strongly influ-
enced by the relationships between GO terms, the structure of 
the other types of display is dictated by the strength of the 
relationships between GO terms in the displayed data set. The 
strength of a relationship is represented by their semantic simi-
larity score, which can be calculated in a number of ways. 
Resnik14 published one of the earliest scoring methods used by 
this type of application,15 and was subsequently refined by 
Lin.16 These methods first identify common ancestral terms of 
a pair of GO terms and then evaluate the ancestral GO term 
based on the frequency at which it and its child terms are pre-
sent in the gene ontology annotation (GOA) of the EBI’s 
UniProt knowledgebase.17 Where 2 terms have multiple com-
mon ancestors, the score may reflect the best score of the com-
mon ancestors or their average score. While the Resnik/Lin 
scores reflect the structure of the GO term graph, other scoring 
systems have been developed that measure the physiological 
link between different terms for instance CAS11,18 and PAS8 
use the frequency by which 2 terms are referenced in the same 
PubMed abstract to determine their similarity, whereas IAS12,19 
uses the frequency by which 2 terms are linked to proteins 
know to interact with each other. While it is important that 
these scores are both up to date and the GO terms used in their 
creation match those used in the enrichment analysis to avoid 
erroneous scores,9,20 Reijnders9 suggested that this may not be 
true for many analyses performed using online websites.

Due to the large number of enriched GO terms identified 
by some enrichment analyses, many applications perform a 
term reduction step to simplify the final display. Initial GO 
terms may be omitted from the display if they are too general, 
for instance, REVIGO ignores terms that have a frequency 
greater than 5% in the GOA. The semantic similarity scores 
are then determined for all the pairs of GO terms which are 
used to aggregate GO terms into clusters, eg, GO-Figure! 
combines a pair of GO terms if they have a semantic similarity 
score over 0.7. Once the clusters have been created, they may 
undergo a final filtering step either directed by the user, select-
ing those with a P value below a preset cutoff or by ranking the 
GO terms and selecting the top ’n’ GO terms.

While a single enriched GO term has obvious attributes 
such as a name, frequency of occurrence in GOA, number of 
DEG associated with it and enrichment P value, aggregate 
terms do not. Consequently, applications that merge GO terms 
often use a decision tree to determine a representative GO 
term whose values are then used to describe the cluster. 
Typically, these decisions are based on the term’s P value, par-
ent–child relationship, and level of specificity, with a cluster’s 
attributes derived from the constituent GO term with the low-
est P value and/or lowest level of specificity with parent terms 
beating child terms.

When displaying a GO term, its P value is generally used to 
determine the GO term’s colour, while for bubble plots, its size 
may reflect the number of DEG linked to it or by the number 
of GO terms a cluster represents. Interestingly, while REVIGO 
clusters GO terms, it may still display each individual GO term 
in a cluster but only labels the GO term that is found to be 
representative of that cluster.

The location of a GO term in a bubble plot may be deter-
mined by the unmodified values of the term or by calculating 
its coordinates based on the attributes of all the enriched GO 
terms in the display. For instance, NaviGO allows the user to 
select which method is used. One option is to use 2 different, 
user selected, similarity scores for each GO term as the GO 
term’s x and y coordinates. While the other option creates a 
multidimensional matrix of the semantic similarity scores of 
each pair of GO terms which is then reduced to 2 dimensions 
to determine the x and y coordinates for each GO term. To do 
this NaviGO uses an ‘S’ implementation of the multidimen-
sional scaling algorithm,21,22 while GO-Figure! performs a 
similar task using the SciKit-Learn23 dimension reduction 
function. These coordinates may then be modified to ensure 
that 2 clusters do not completely or partially overlap before 
they are used to plot each cluster. Consequently, the location of 
a GO term in an image drawn using a pair of semantic similar-
ity scores for the x and y axes is constant across different enrich-
ment analyses but varies between plots of different enrichment 
analyses or the same analysis displayed using different cut off 
values when a single semantic similarity score is used to deter-
mine a GO terms position. Whichever method is used, more 
similar GO terms tend to be located closer to each other than 
less similar GO terms.

The visualization of GO terms in a network graph has simi-
larities to both hierarchical graphs and bubble plots in that like 
hierarchical graphs, GO terms tend not to be aggregated and 
the data point is of a fixed size, while like bubble plots, the 
arrangement of the data points is determined by the semantic 
similarity score of each pair of terms as well as their relation-
ship to each other in the GO term hierarchy. Unlike bubble 
plots the parent-child (ancestor-descendant) relationships are 
shown as lines that link pairs of related GO terms. Therefore, 
related terms can be identified by their proximity to each other 
as well as the presence of a connecting line. However, as the 
number of terms in a network graph increases, the presence of 
these lines can make the graph more confusing. Network 
graphs are the most flexible display type and may be extended 
to include other types of data, for instance, GOnet network 
graphs also includes differentially expressed proteins linked to 
the GO terms in the display. Consequently, the location of a 
GO term (and protein) is dependent on both its relationships 
with other features, like a hierarchical graph and like a bubble 
plot on the attributes all the visualized GO terms and 
proteins.
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The majority of programmes created to visualize GO term 
enrichment datasets are designed to represent single sets of 
analysis. Two exceptions are VLAD,24 which was able to show 
the relative enrichment between at least 2 analyses, visualized 
as a hierarchical graph and GO-Figure! which states that it was 
designed with the comparison of multiple datasets in mind; 
however, VLAD no longer appears to be available and neither 
the paper or linked GitLab hosting page indicate how to per-
form enrichment comparisons with GO-Figure!. Consequently, 
we have developed GOTermViewer, an application that allows 
the easy comparison of multiple enrichment analyses such that 
it is possible to observe the progressive change in physiology 
over a time course or range of treatment regimes.

Materials and Methods
GO term enrichment data

Next-generation sequencing data for the GEO project 
GSE23737725 were downloaded from the NCBI SRA archive 
and converted to fastq files. The sequence data were trimmed 
to remove adaptor sequences and low-quality base calls using 
Cutadapt.26 The trimmed data were then aligned to the mouse 
reference genome (mm39) with reference to its RefSeq gene 
annotation obtained from the UCSC table browser27 using the 
STAR aligner.28 Reads aligned to the RefSeq gene sequences 
were then counted using the R package Rsubread.29 DEG for 
the 4 pair wise analyses (Table 1) was determined using 
DeSeq2, with the lists DEG from each pair wise analysis com-
pared to a list of genes expressed in the samples to identify 
over- and underenriched GO terms using the R package 
GOstats.7 The results of the GO term over- and underenrich-
ment were combined to produce a single results file for each 
pairwise analysis.

Results
Methodology

The underlying steps involved in the processing and display of 
the data are outlined in Figure 1. The analysis consists of 2 
distinct phases the importation of the GO terms and the link-
ing of these GO terms to the enrichment data (shown as light 
grey objects with black text in Figure 1) and then the user-
driven GO term selection and display (shown as dark grey 

Table 1.  Description of the analyses used in Figure 2.

Analysis Reference samples Modified samples

1 mg AN1284 versus saline in wild-type mice Wild-type mice were given saline Wild-type mice given 1 mg of AN1284

1 mg AN1284 versus saline in NASH mice NASH mice were given saline NASH mice given 1 mg of AN1284

5 mg AN1284 versus saline in wild-type mice Wild-type mice were given saline Wild-type mice given 5 mg of AN1284

5 mg AN1284 versus saline in NASH mice NASH mice were given saline NASH mice given 5 mg of AN1284

Figure 1.  A high-level flowchart delineating the important stages of the 

data processing and visualization performed by GOTermViewer. The pale 

grey objects with black text identify tasks performed when importing the 

data (shown as the white object with black text), while the objects shaded 

in darker grey with white text indicate processes that modify the displayed 

data in response to user input.
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objects with white text in Figure 1). Initially, the gene ontology 
file is processed with data for each GO term retained. Once all 
the terms have been imported, each term is linked to any child 
terms before being placed in 1 of the 3 domains ( ‘Molecular 
Function’, ‘Cellular Component’, and ‘Biological Process’). The 
current version of the GO terms contains ~47 000 GO terms 
with over 91 000 parent–child relationships, giving over third 
of a million unique paths across the directed acyclic graph from 
a root term to a term with no child terms of its own. 
Consequently, the terms are stored as 3 unstructured collec-
tions, one for each domain with any paths across the directed 
acyclic graph constructed on the fly when needed. While this 
significantly reduces the loading time and memory requires for 
storing the data, it dramatically increases the complexity of the 

programme such that it is no discernible lag when modifying 
the display in response to user input.

Implementation

GOTermViewer is a Windows desktop application written in 
C#, designed to visualize the results of GO term enrichment 
analyses from a series of related differentially expression 
experiments. The application principally consists of 2 win-
dows, the primary window containing all the data display 
options which modify how the data are displayed on the sec-
ondary window. The right side of the primary window con-
sists of a tree view panel, with each GO term represented as a 
node which can be expanded to show its child nodes. GO 

Figure 2.  The primary window of GOTermViewer showing the display options to the left and a partially expanded tree of GO terms to the right.
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term nodes with enrichment data are shown with a green disc 
icon, while terms without data, but whose child terms do have 
data are identified with a green circular icon. By default, terms 
that on not linked to any data are hidden, but if displayed are 
identified by a pink disc. Selecting a node causes its enrich-
ment data as well as that of any parent terms to be displayed 
in the secondary window (if required data from parent terms 
can be hidden) (Figure 2). To identify the location(s) of GO 
terms in the tree view, it is possible to search for either indi-
vidual terms or the nearest common ancestor to a number of 
related GO terms. Since the tree view displays the GO terms 
as a set of all possible paths from the root GO term to each 
childless GO term, a term may occur numerous times in the 
tree. Consequently, it is advisable to consider which path is 
selected, for instance when viewing data for RNA catabolism 
it may prove to be more informative to select the path that 
passes through the Macromolecule metabolic process term 
rather than Cellular nitrogen compound catabolic process 
term.

Once selected, a term’s data are displayed in the secondary 
window: this display consists of 2 areas, to the left the GO 
term’s name and its relationship to other terms are displayed, 
while to the right, the enrichment data are displayed with the 
results of multiple analyses shown as a series of graphs allowing 
their easy comparison (Figure 3). GOstats enrichment data 
consist of the GO term’s odds ratio value and its statistical sig-
nificance P value as well as the observed and expected number 
of DEG linked to the term. The value of the odds ratio is 
shown by the location of a triangle, which is green for signifi-
cant enrichment or pink of non-significant terms. The orienta-
tion of the triangle indicates if the term is enriched (the triangle 
points up) or underrepresented (triangle points down). Since 
the number of DEG varies between different analyses, the 
number of expected and observed genes linked to a GO term 
are not directly comparable between analyses. Consequently, 
the fold change in enrichment for each term is displayed, with 
this value identified by a red vertical bar (significant enrich-
ment) or a grey vertical bar (non-significant enrichment).

Figure 3.  The secondary window of GOTermViewer visualizing the GO term enrichment for various terms linked to nucleoside monophosphate 

catabolism for a series of 4 differential expression analysis. Statistically significant enrichment of GO terms is shown by a green triangle whose position 

indicates the enrichment’s odds ratio and a red vertical bar that indicates the fold change of genes linked to a term compared to the expected number 

linked to the term. Triangles that point upwards indicate GO terms with more genes linked to them than expected, while triangles that point down have 

fewer than expected genes linked to them. While the figure displays the x-axis for fold change enrichment, it is possible to exchange this with the scale for 

the odds ratio which is in the range 0 to 25.
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Once the final display of the data has been finalized, it’s 
possible to save the analysis as an image for inclusion in a pub-
lication or thesis. Furthermore, a specifically selected list of 
GO term paths can also be saved and re-imported to recreate 
the display for further analysis, or as a starting point for the 
analysis of new but related datasets.

Discussion
A number of programmes have been developed to visualize 
GO term enrichment data; however, these applications tend to 
focus on the display of aggregated data from a single data set. 
The process by which data are aggregated and positioned in a 
display can be very sensitive to differences in the enrichment 
data or the parameters used to process it. While they can still 
be highly informative for the display of a single analysis, this 
approach leads to displays that may not be amenable for the 
comparison of enrichment data from a data series such as a 
time course or dose-response experiments as the results will 
contain both subtle and obvious differences in the enrichment 
data. Consequently, we chose to display the comparison of a 
series of enrichment analysis in a manner similar to a hierarchi-
cal graph, however, rather than displaying each data point as 
part of a hieratical graph, the order and indentation of a GO 
term’s name is used to display its relationship to other GO 
terms and then the linked data for each analysis is shown as a 
series of graphs to the right of the GO term’s name.

By allowing the user to select which GO terms are visual-
ized and then displaying the selected GO terms in a highly 
detailed, unaggregated manner, it is possible to circumvent 
many of the problems associated with displaying GO term 
enrichment data as a bubble plot or network node. While using 
the indentation of the GO terms’ labels to show the relation-
ship between terms, rather than using nodes in hierarchical 
graph, allows multiple enrichment analysis to be displayed 
without making the display cluttered or cramped.

An example of the ability of GOTermViewer to succinctly 
and clearly visualize data from a series of related enrichment 
analysis is shown in Figure 3, and while the ‘Nucleoside phos-
phate catabolic process’ term is enriched in NASH mice irre-
spective of the dose of AN1284,30 it is only with the higher 
dose that the terms linked to pyrimidine catabolic processes are 
enriched showing the drug has a stronger effect on purine 
catabolism than pyrimidine catabolism. Similarly, by displaying 
the fold-change and odds ratio for each term, one can observe 
that the higher dose appears to be linked to an increase in the 
number of genes linked to the drug in NASH mice. While not 
statically significant, there also appears to be an increase in the 
number of genes linked to pyrimidine catabolism at the lower 
dose of AN1284 which may prompt future work to determine 
the effect of intermediate doses of AN1284 on nucleoside 
catabolism. GOTermViewer allows these findings to be readily 
identified in a way that would not be possible if the data were 
displayed using bubble plots with aggregated clusters of Go 

terms or displays that have a limited ability to display second-
ary information such as hierarchical and network graphs.

While GOTermViewer simplifies the comparison of GO 
term enrichments from a series of related experiments, it 
should be noted that the results should be seen as a guide to 
future work rather than a definitive answer. In particular, RNA-
seq is prone to batch effects whereby experiments and/or 
sequencing performed at different times can have noticeable 
differences in the detected gene expression. These differences 
may arise from uncontrolled environmental factors affecting 
the cells during the experiment or use of different batches of 
reagents used to prepare and sequence the samples.

Conclusions
There are many applications designed to display GO term 
enrichment data, the vast majority of these programmes are 
primarily aimed at the display of a single analysis. However, as 
the ease by which differential gene expression analyses can be 
performed as increased, experiments are increasingly being 
performed that contain multiple pairwise analysis such as a 
series of time courses or treatment regimes. However, there has 
not been a satisfactory way to compare the resultant series of 
GO term enrichment analyses; consequently, we have devel-
oped GOTermViewer to undertake this increasingly impor-
tant task.

Data Availability
The data used to create Figure 2 are available from the NCBI 
GEO website as the GEO project: GSE237377. The pro-
gramme’s source code, binaries and GOstats enrichment exam-
ple data are available on GitHub: https://github.com/msjimc/
GOTermViewer.
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