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Abstract

Motivation: The completion of the genome has paved the way for genome-wide association studies (GWAS), which explained certain proportions of 
heritability. GWAS are not optimally suited to detect non-linear effects in disease risk, possibly hidden in non-additive interactions (epistasis). Alternative 
methods for epistasis detection using, e.g. deep neural networks (DNNs) are currently under active development. However, DNNs are constrained 
by finite computational resources, which can be rapidly depleted due to increasing complexity with the sheer size of the genome. Besides, the curse 
of dimensionality complicates the task of capturing meaningful genetic patterns for DNNs; therefore necessitates dimensionality reduction.

Results: We propose a method to compress single nucleotide polymorphism (SNP) data, while leveraging the linkage disequilibrium (LD) 
structure and preserving potential epistasis. This method involves clustering correlated SNPs into haplotype blocks and training per-block 
autoencoders to learn a compressed representation of the block’s genetic content. We provide an adjustable autoencoder design to accommo-
date diverse blocks and bypass extensive hyperparameter tuning. We applied this method to genotyping data from Project MinE, and achieved 
99% average test reconstruction accuracy—i.e. minimal information loss—while compressing the input to nearly 10% of the original size. We 
demonstrate that haplotype-block based autoencoders outperform linear Principal Component Analysis (PCA) by approximately 3% 
chromosome-wide accuracy of reconstructed variants. To the extent of our knowledge, our approach is the first to simultaneously leverage 
haplotype structure and DNNs for dimensionality reduction of genetic data.

Availability and implementation: Data are available for academic use through Project MinE at https://www.projectmine.com/research/data-shar 
ing/, contingent upon terms and requirements specified by the source studies. Code is available at https://github.com/gizem-tas/haploblock- 
autoencoders.

1 Introduction

The complete sequencing of the human genome enabled 
genome-wide association studies (GWAS) to seek relations be-
tween disease status and a vast number, often exceeding a mil-
lion, of genetic variants (Hardy and Singleton 2009). The 
prospect of identifying the genetic factors contributing to varia-
tions in disease susceptibility holds the promise of developing 
treatments for currently incurable diseases (Manolio et al. 
2009). Usually, the phenotypic variance explained by genetic 
variants falls behind its expected portion to be explained, by a 
difference known as the missing heritability (Maher 2008, 
Manolio et al. 2009). Taking amyotrophic lateral sclerosis 
(ALS) as an example, heritability is estimated around 45% 
(Ryan et al. 2019), which is only partially attributed to the latest 
GWAS-identified loci (van Rheenen et al. 2021). In case 
of many complex diseases, part of the heritability may be 
disguised in smaller effects of non-significant loci (Shi et al. 
2016, Boyle et al. 2017). Furthermore, non-additive interactions 

(i.e. epistasis) between already identified loci might account for 
part of the missing heritability (Zuk et al. 2012, Blanco-G�omez 
et al. 2016). All in all, solving the mysterious genetics of com-
plex diseases seems only likely when joint analysis of many var-
iants, ideally the entire genome, is feasible.

The increasing availability of large-scale genotyping data 
has boosted interest in scalable deep neural networks 
(DNNs) (Wainberg et al. 2018). However, a DNN’s perfor-
mance is limited by computational resources, which could 
easily be exhausted due to the exponential increase in net-
work complexity given the sheer size of genotyping data. 
Genetic variants can amount to millions, typically much 
more than the samples due to practical, technical, and cost- 
related limitations (Gazestani and Lewis 2019). Processing 
large genetic input in its raw state would be computationally 
too heavy, even for a shallow network with one hidden layer, 
let alone a deeper one with several layers.

The challenge, known as the curse of dimensionality, can 
manifest itself in issues beyond computational complexity 
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(Donoho 2000). For example, single nucleotide polymor-
phism (SNP) data can be sparse due to rare variants. Data 
sparsity can jeopardize generalization of learning models be-
cause of a high proportion of zeros, such that the model’s 
predictive ability suffers from overfitting (Altman and 
Krzywinski 2018). Or, the model could overlook the predic-
tive power of sparse features and prioritize denser ones. The 
curse of high dimensionality thus complicates finding mean-
ingful patterns for DNNs and may induce spurious genotype- 
phenotype associations.

One could rely on biological priors to alleviate this curse. 
The phenomenon of alleles at different loci being associated 
in a non-random manner is termed Linkage Disequilibrium 
(LD) (Slatkin 2008). High or complete LD between SNP 
pairs is often pointed out as the source of redundancy in 
large-scale genomic data and removing loci based on their 
pairwise correlation is a prevalent practice called LD pruning 
(Calus and Vandenplas 2018). From a practical standpoint, 
adopting a lower correlation threshold in such pre-selection 
methods would be advantageous in sweeping away more 
SNPs not only from high or complete LD pairs but also from 
moderately correlated ones. Therefore, relying solely on LD 
pruning to achieve the desired input dimensionality must be a 
rigorous reduction step, which could potentially impact fu-
ture detection of epistatic interactions.

By quantifying the correlation between SNPs, LD can be used 
to segment genome-wide information into disjoint substruc-
tures. It is not unprecedented to divide the genome prior to di-
mensionality reduction, as a refuge from multi-collinearity. 
Hibar et al. summarized correlated SNPs within each gene into 
principal components that explain 95% of the variance per 
gene (Hibar et al. 2011). Li et al. proposed a local window ap-
proach, scanning each chromosome to form high-LD SNP clus-
ters, which are then projected onto their principal components 
(Li et al. 2018). Despite its usefulness in disposing of the redun-
dancy in sparse data, Principal Component Analysis (PCA) is 
only able to preserve variance as long as the SNPs can be as-
sumed to interact linearly (McVean 2009, Alanis-Lobato et al. 
2015). This would not be the ideal way out of the dimensional-
ity issue when missing heritability is concerned, for bearing the 
risk of obscuring epistasis.

Autoencoders, on the other hand, offer a compelling solu-
tion due to their ability to compress high-dimensional geno-
type data effectively while preserving complex and non-linear 
patterns in the data (Bank et al. 2020). First designed as neu-
ral networks trained to reconstruct their input in the output 
layer (Rumelhart et al. 1986), autoencoders could learn ab-
stract data representations, hence they were advertised as 
more powerful yet costly non-linear generalizations of PCA 
transformation (Hinton and Salakhutdinov 2006, Fournier 
and Aloise 2019). These concurrent utilities helped diversify 
their use cases, prominently in dimensionality reduction 
(Goodfellow et al. 2016).

Above all, our aim is to compress high-dimensional geno-
type data in a way that preserves genetic patterns. 
Considering the uncharted genetic nature of complex dis-
eases, we ought to take the quest further into scalability and 
non-linearity. We strive to find a balance between the curse 
of dimensionality and unwanted loss of information. Our 
strategy is to leverage inter-SNP correlations (LD), so as to 
maximize compression across disjoint genome segments. We 
hereby make use of haplotype blocks, hereinafter referred to 
as haploblocks, i.e. sections of the genome that have high 

internal LD (Barrett et al. 2005), to draw the boundaries be-
tween clusters of correlated SNPs. Next in our workflow 
(Fig. 1) comes the compression of each haploblock in a low- 
dimensional space through autoencoders. We hypothesize 
that exploiting the local correlation among SNPs could secure 
dual benefits, as it would not only mitigate the loss of valu-
able information but also overcome obstacles posed by the 
curse of dimensionality.

To achieve the proposed compression, many haploblocks 
need to be compressed and many autoencoders need to be 
trained. Given the variety of these blocks, optimization of each 
network’s hyperparameters would consume time and resources 
beyond practicality, even feasibility. Therefore, we seek a stan-
dardized way to build autoencoders, which manages the trade- 
off between compression rate and reconstruction accuracy. We 
investigate the link between certain characteristics of haplo-
blocks and their corresponding optimal autoencoder configura-
tions. Furthermore, we discuss the opportunities for favouring 
computational efficiency over marginal returns in performance. 
Following a versatile analysis, we finalize by compressing an en-
tire chromosome and assess the performance of our method in 
terms of both quantified reduction and conservation of signifi-
cant data patterns.

Our contribution is therefore 3-fold. First, we propose an 
efficient dimensionality reduction approach that extends be-
yond linearity based on LD and autoencoders. Second, we 
provide a standardized way to tailor haploblock-specific 
autoencoder architectures. Lastly, we show that our strategy 
reduces the data to around 10% of the original size while 
maintaining a reconstruction accuracy exceeding 99%.

2 Materials and methods
2.1 Data description and preprocessing

We used genotyping data from Project MinE, an international 
effort to collect clinical and genetic data from ALS patients and 
healthy controls (Project MinE ALS Sequencing Consortium 
2018). The data contains 23 209 ALS cases and 90 249 con-
trols, including 56 208 males and 57 250 females from 16 
European nationalities. Preceding the most extensive GWAS of 
ALS carried out so far, participants were gathered in cohorts 

Figure 1. An overview of the workflow.
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according to their genotyping batch, where they passed individ-
ual and variant-level quality control (van Rheenen et al. 2021). 
Subsequently, these cohorts were merged to form five strata 
based on their matching genotyping platforms and were again 
subjected to quality control and imputation. Detailed informa-
tion regarding the GWAS cohorts and five strata involved in 
this study can be found in Supplementary Tables S1 and S2. We 
reserved the participants in Stratum 1 (2254 cases and 11 155 
controls) for testing, and the final results are reported on this 
stratum only. All our experiments leading up to the final config-
uration are carried out using the training dataset of 100 049 
individuals (20 955 cases and 79 094 controls) formed by the 
remaining four strata.

We only allowed for common SNPs with minor allele fre-
quencies (MAF) above 0.01 and excluded all SNPs with non- 
zero missing genotype rates, which could induce bias (Marees 
et al. 2018). As a result of these steps, 6 546 842 SNPs were 
kept for analysis.

To format genotype data into data that is usable by autoen-
coders, we encoded our SNP input to single allele dosage values 
of 0, 1, or 2. We resorted to additive recoding, i.e. allelic dosage 
values are obtained by counting the minor alleles at each locus 
per person. This conversion generates a tabular data format 
where each SNP is represented by a column.

All computations were executed on a system equipped with 
an Intel Xeon Gold 6242R processor, running at 3.10 GHz, 
paired with 376 GB of RAM and running Rocky Linux ver-
sion 8, offered by the Utrecht Bioinformatics Center’s (UBC) 
high performance compute (HPC) facilities.

2.2 Parsing the human genome into haploblocks

Combinations of alleles that are inherited together from one 
parent constitute a haplotype (International HapMap 
Consortium 2005). The term haploblock then describes a 
bounded genomic region on a chromosome, harbouring only 
a few distinct haplotypes (Wall and Pritchard 2003). We esti-
mated haploblock boundaries using the implemented solution 
(Taliun et al. 2014) to the Haploview algorithm (Gabriel 
et al. 2002, Barrett et al. 2005) in PLINK 1.9 (Purcell et al. 
2007). Haploview delimits a haploblock over a region where 
only a minor share of the SNP pairs exhibit signs of historical 
recombination. The first step of our method is partitioning 
the feature space (SNPs) into these biologically defined 
regions, the boundaries of which should be uniform across 
the genomes of all included samples. SNPs contained in each 
haploblock constitute the input space that the associated 
autoencoder will not only be trained but also tested on, 
which is why the genomic position of a haploblock should be 
standardized across all samples beforehand. The authors of 
Haploview hypothesize that block boundaries are consider-
ably aligned across populations, as are certain haplotypes re-
siding in those blocks. This ensures that determining these 
boundaries is not too susceptible to the underlying popula-
tion structure and accords with our aforementioned rationale 
to simultaneously consider samples from genetically diverse 
(European) cohorts.

To obtain lengthy, that is more crowded, blocks—advanta-
geous for dimensionality reduction—we calibrated Haploview’s 
default parameters: the confidence interval for strong LD be-
tween 0.5 and 0.85, as well as the upper bound for historical re-
combination, which was set to 0.7 instead of 0.9. We also 
extended the SNP window option from 200 Kb to span 10 Mb 

of the genome. Such adjustments have indeed helped elongating 
the blocks.

2.3 Autoencoders

Next, autoencoders come into play to learn lower- 
dimensional representations of each haploblock. One by one, 
the models are trained to reconstruct their highly correlated 
SNP input, such that valuable genetic patterns can be com-
pressed in the bottleneck.

2.3.1 Model architecture and configuration

Our approach entails building haploblock-specific autoen-
coders. Given the large number of blocks, this process needs 
to be highly standardized. Due to the diversity of the number 
of SNPs in the blocks, it would not be ideal to impose identi-
cal architectures to each autoencoder. Conversely, designing 
distinct network architectures for each block would be im-
practical. Instead, we propose a flexible mechanism, to con-
struct the autoencoder based on three hyperparameters, i.e. 
shape, number of hidden layers, and bottleneck dimension, 
which denotes the rate of compression.

Each autoencoder consists of sequential fully-connected 
layers. The dense connection between consecutive layers 
compresses the input into a lower dimension at minimum in-
formation loss, eliminating redundancy. The number of hid-
den layers hl corresponds to the number of layers between 
both the input and output layers and the bottleneck, hence 
the depths of the encoder and the decoder. The autoencoder 
has 2 � hl þ 3 layers in total.

The number of neurons in each layer l is determined by the 
hyperparameter shape, and is computed using the bottleneck di-
mension (bn), the number of hidden layers (hl), and the slope of 
the encoder and decoder geometries (p). p can be 0 or 0.5, cor-
responding to shape types rectangular or elliptic, respectively 
(Fig. 2). The number of neurons in layer l is calculated as: 

nðlÞ ¼ bn þ
input dimension − bn

ðhl þ 1Þp � jljp
 !

; (1) 

where l 2 Z, − ðhl þ 1Þ ≤ l ≤ hl þ 1. The number of neurons 
in the input (output) layer are given by nð− ðhl þ 1ÞÞ
(nðhl þ 1Þ) and are equal to the input dimension. The bottle-
neck dimension is given by nð0Þ and equals bn. The number 
of neurons in a layer should always be integer, else nðlÞ is 
rounded to the nearest one.

The weights of the hidden layers are initialized with He 
uniform variance scaling initializer (He et al. 2015). We use 
the Leaky Rectified Linear Unit activation function (Leaky 
ReLU) in each layer but the output (Maas 2013). The output 
activations should range from 0 to 2, to reflect our recoded 
SNP values. Hence, we fashioned the following custom acti-
vation function, rðxÞ, based on the tangent hyperbolic func-
tion (tanhðxÞ), whose output values lie between 0 and 2 
instead of the original range from −1 to 1: 

rðxÞ ¼ tan hðxÞ þ 1 ¼
ex

− e − x

ex þ e − x

� �

þ 1: (2) 

2.3.2 Training and evaluation

We preserved 100 049 individuals (20 955 cases, 79 094 con-
trols) in four strata (� 88:18% of data) as our training and 
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validation subsets while the remaining stratum of size 13 409 
(2254 cases, 11 155 controls) is set aside for testing. All 
hyperparameter tuning experiments were conducted exclu-
sively on the training subset.

Since the SNP dosages (0, 1, 2) are of ordinal nature, we 
used Mean Squared Error (MSE) to quantify the reconstruc-
tion loss. Network weights are optimized using the Adam al-
gorithm where the learning rate is initialized as 0.0001 
(Kingma and Ba 2017). On each haploblock, autoencoders 
were trained for 50 epochs with a batch size of 32.

Two metrics are indicative of how well every single autoen-
coder performs: the reconstruction loss and the SNP recon-
struction accuracy, hereinafter referred to as SNP accuracy. 
The former is calculated with the MSE function as a measure 
of the discrepancy between the input and the output values. 
The latter assesses the accuracy of individual predictions and 
is computed by rounding the predicted values of the SNPs to 
the nearest integer and then comparing those to the input val-
ues one by one. Thus, the SNP accuracy is the percentage of 
correctly predicted SNP dosages.

Moreover, we are interested in assessing to what extent the 
autoencoders are able to compress the haploblocks. By defini-
tion, the dimension of the bottleneck layer is equivalent to 
the reduced data size, and its ratio to the original input size, i. 
e. the number of SNPs in a haploblock, yields the compres-
sion ratio: 

compression ratio ¼
bn

input dimension
(3) 

2.3.3 Hyperparameter tuning

We adopted an adjustable structure defined through three 
hyperparameters (shape, hl, and bn) which ideally need to be 
optimized for each haploblock individually. While tuning the 
hyperparameters of each model seems theoretically possible, 
it would require extensive memory and computation time.

In our case, the marginal gain from an extensive hyper-
parameter tuning procedure may not be as favorable as econ-
omizing on computational resources. To bypass the burden 
of tuning every autoencoder, we first selected a diverse subset 
of 221 haploblocks across 22 chromosomes (autosomes) and 
optimized hyperparameters for each of these blocks individu-
ally. To ensure that we select blocks of various lengths, in 
each chromosome, we grouped those in bins based on their 
sizes and randomly sampled one block per bin. This way, 
some of the blocks with a high number of member SNPs, 
which would have been outliers in a distribution-based selec-
tion, were represented in our subset. For each of the selected 
blocks, we carried out a grid search over a parameter space in 
which the bn ranges from 1 to 10, hl from 1 to 5, and the 
shape of the autoencoders is elliptic or rectangular. For this, 
we used 5-fold cross-validation with 100 049 training indi-
viduals to ensure that the testing stratum remained unseen by 
any of the trained autoencoders. Meanwhile we recorded 
both MSE losses and SNP accuracies of the 5-fold validation 
subsets for evaluation.

For downstream analyses, the bottleneck layer outputs a 
compressed version of the original haploblock. Choosing bn 
thus predetermines the level of dimensionality reduction. We 
treat bn as a measure for the achieved compression, as well as 
a hyperparameter to be optimized. Specifically, we ran the 
grid search for 221 haploblocks in our subset, to find the best 
possible combinations of shape and hl per block, under fixed 
bn. We repeated the search for every bn size from 1 to 10 to 
obtain optimal configurations while controlling for the com-
pression level.

3 Results
3.1 Descriptive statistics of the haploblocks

Due to our method’s dependency on LD for defining haplo-
blocks, we ruled out rare genetic variants from the original 
data with an MAF cutoff of 0.01. We have clustered the 
remaining 6 546 842 common variants into 193 122 haplo-
blocks over 22 autosomes.

We observe in Supplementary Fig. S1 and Supplementary 
Table S3 that the distribution of haploblock sizes is positively 
skewed in each chromosome, such that most blocks contain rel-
atively few SNPs while fewer blocks appear more populated.

3.2 The trade-off between compression 

and accuracy

For each haploblock in our subset of 221, the grid search 
yielded 10 optimal hyperparameter settings corresponding to 10 
values of bn. To examine the impact of the compressed input di-
mensionality on the SNP accuracy, we averaged the optimal val-
idation accuracies over all the haploblocks for each of the 10 
different bn. We also estimated the corresponding 95% confi-
dence intervals, which can provide insight into the reliability of 
the SNP accuracy estimates across different bn (Fig. 3).

A wider bottleneck can lead to higher SNP accuracies by 
allowing for more detailed representations (Fig. 3). Also, the 
confidence intervals become larger on decreasing bn. Given 
the constant sample size of 221, a larger confidence interval 
necessarily indicates increasing standard deviation, thus a 
higher degree of uncertainty associated with the average 
SNP accuracies.

Finding the optimal bottleneck dimension involves striking 
a balance between a high level of compression and 

Figure 2. Visualizations of rectangular and elliptic autoencoders. Both 

networks have the same input size, number of hidden layers, and 

bottleneck size (inputs ¼ 10, hl ¼ 4, bn ¼ 3) and only differ by the slope p, 

see also Equation (1).
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maintaining sufficient information for accurate reconstruc-
tion. For this, a trade-off point, where the diminishing return 
in SNP accuracy is no longer worth widening the bottleneck, 
can be found at the bottleneck size of 3 (Fig. 3). The average 
SNP accuracy improves only marginally (by 0.0016) with an 
additional bottleneck dimension between 2 and 3. Below we 
explore when we can prioritize compression by pushing the 
elbow point.

3.3 The influence of haploblock characteristics 

on accuracy

Every haploblock harbours a different number of SNPs. This 
property can be implicitly linked to the physical length of the 
block, hence the extent of genetic variation within 
(Supplementary Fig. S2). Figure 4 illustrates how the relation-
ship between the block size and SNP accuracy is affected un-
der different compression scales. Evidently, a more rigorous 
compression results in lower robustness of the SNP accuracy 
to increasing block sizes.

Haploblocks can otherwise be assessed by quantifying their 
internal genetic variation using the average pairwise LD. The 
higher the LD within a block, the more similar the haplotypes 
are to each other, indicating lower variation. Overall, a 
higher degree of compression triggers the sensitivity of SNP 
accuracy to the variation in blocks (Fig. 4). The positive cor-
relation between SNP accuracy and LD gradually becomes 
weaker as bn increases.

Given the elbow at bn¼3 and its minor advantage over 
bn¼2 (Fig. 3), we zoom in to provide a clearer comparison, 
see Fig. 4. The SNP accuracy still seems less sensitive to 
changing internal LD for bn¼3, although we can observe an 
LD threshold at 0.4, beyond which the difference between 
bn¼2 and bn¼3 becomes negligible. Below this threshold, 
haploblocks require more nodes in the bottleneck to ensure 
sufficient flow of information, as they exhibit higher internal 
genetic variation. Here, we can seize the opportunity to prior-
itize compression over accuracy by compressing the haplo-
blocks to two dimensions, if their internal LD is above 0.4. 
Otherwise we stand by the original elbow at 3.

3.4 The cost of compression

Among the optimal hyperparameter settings for the 221 hap-
loblocks, we counted the occurrences of each combination of 
bn, hl, and shape. The diagonal pattern with darker shades in 
Supplementary Fig. S3 indicates a negative correlation be-
tween hl and bn. When we track the frequencies of elliptic 
and rectangular architectures, a large proportion of best 

models has the rectangular shape for nearly all bottleneck 
sizes. For the majority of the haploblocks, resulting optimal 
models featured five hidden layers and rectangular shape 
when the desired bottleneck size is 2 or 3.

To gain further insight into the computational cost in-
curred by different levels of compression, we monitored the 
average time to train the best performing models across all 
five cross-validation folds during each block’s grid search. 
The average fitting times across 221 blocks decrease as the bn 
increases from 2 to 10 (Supplementary Fig. S4). Our 3-fold 
findings hereby suggest a need for deeper (more hidden 
layers) and wider (more neurons) autoencoder architectures, 
hence a proportional rise in computational costs, incurred by 
higher levels of compression.

3.5 Marginal returns of hyperparameter tuning

To assess the worth of a larger hl, we sampled all haploblocks 
for which the optimal hl is 5 and tested for a significant non- 
zero improvement comparing SNP accuracies resulting from 
different values for hl. Next, we conducted a similar test to 
compare elliptic and rectangular shapes, this time using the 
blocks for which rectangular is the optimal shape. 
Supplementary Table S4 shows results of these one-tailed 
t-tests.

The statistical analysis does not provide sufficient evidence 
to suggest that using hl¼ 5 instead of hl¼ 4 leads to a signifi-
cant improvement for a bn of 2 and 3, at a significance level 
of 0.05. Yet in both bottleneck settings, the models achieve 
significantly higher SNP accuracies when using hl¼4 com-
pared to 1, 2, or 3. Similarly testing between rectangular and 
elliptic shapes resulted in P-values above the significance 
level. The return on the extra computational cost of five hid-
den layers or rectangular autoencoders is thus not evident. 
Therefore, we conclude that an elliptic autoencoder with four 
hidden layers can adequately compress diverse haploblocks 
to 2 or 3 dimensions, conditioned on the block’s average 
pairwise LD.

3.6 Compression of Chromosome 22

Using the chosen autoencoder architecture per haploblock, 
we compressed Chromosome 22—which originally contained 
70 247 SNPs clustered in 2854 blocks—to 7341 dimensions 
in total. All autoencoders were trained and evaluated using 
the same predefined training and test samples. To assess the 
overall performance, we computed the average losses and ac-
curacies along with their standard deviations across 2854 
autoencoders, see Supplementary Table S5.

In the end, we achieved a dimensionality reduction down 
to 10.45% of the original input size with an average SNP ac-
curacy of 99.55% on the training samples and 99.56% on 
the test stratum. The mean MSE losses obtained on the train-
ing and test samples were 5:69×10− 3 and 4:75×10− 3, 
respectively.

Given the inherent sparsity of genetic input, in the sense 
that the most common dosage value in the data is 0, the 
autoencoder may simply output only 0 s and still achieve a 
fair SNP accuracy in highly sparse blocks. Therefore, we also 
evaluate the SNP accuracies of subsets in the data depicted in  
Fig. 5. The reconstruction of 0 s yielded the highest average 
accuracy, followed by 2 s, whereas the widest spread is 
obtained for 1 s.

Furthermore, we inspect the SNP accuracies of ALS cases 
and controls separately to assess whether the disease 

Figure 3. Elbow plot of validation reconstruction accuracies of the best 

models across bn2 f1; . . . ;10g, averaged over 221 haploblocks, with 95% 

confidence intervals. The black line is the elbow point.
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phenotype impacts the reconstruction performance. The ac-

curacies obtained for both groups spread within highly simi-

lar ranges as can be seen from Fig. 5, and their means over all 

the haploblocks differ only marginally, with all values above 

99.50% for both training and testing samples, see 

Supplementary Table S5 for details.

3.7 Comparison with PCA reconstruction

It is possible to reconstruct the original data from the leading 

principal components. For each haploblock in Chromosome 

22, we applied linear transformations using PCA with the same 

latent space dimensionality as the autoencoder’s bottleneck 

layer. Here, the orthogonal basis is obtained through the same 

training data which is used to train the autoencoders, and the 

test stratum is projected to this basis only for evaluation. 

Subsequently, we reconstructed the original haploblocks from 

these principal components and calculated MSE losses and SNP 

accuracies by comparing the reconstructed outputs to the 

inputs, see Supplementary Table S6. Additionally, we calculated 

the chromosome reconstruction accuracy considering the total 

number of variants correctly predicted in the reconstruction 

across the entire Chromosome 22 as below: 

chromosome reconstruction accuracy ¼

P2854
i¼1 ai ×bi
P2854

i¼1 bi

; (4) 

where ai is the SNP accuracy of block i and bi the size of 
block i.

Job submissions were configured to utilize 32 CPU cores 
per task for compressing batches of eight haploblocks in par-
allel. Relevant computational background is provided in 
Supplementary Table S7.

Autoencoders effectively reconstructed 99.63% of 
Chromosome 22 on the unseen data, while PCA achieved 
96.80%, see Table 1. To pinpoint where this difference origi-
nates in, we break the SNP accuracies down based on the 
dosages (0, 1, or 2) and plot these against block sizes for both 
methods in Fig. 6.

Autoencoders consistently outperform PCA across increas-
ing block sizes, maintaining stable performance while PCA’s 
accuracy declines. As given in Supplementary Fig. S5, PCA 
closely matches autoencoders only for the reconstruction of 
1 s and 2 s in the smallest blocks with less than 10 SNPs, but 
the disparity in their reconstruction abilities widens evidently 
with increasing block sizes, see Fig. 6.

The range of the performance gap between two methods in  
Fig. 6 extends as dosage values become less abundant in the 
data. For 0 s, PCA accuracies remain above 98% and closer 
to autoencoders, with an erratic performance for smaller 
blocks. For 1 s and 2 s on the other hand, PCA accuracies di-
verge from the autoencoders at a much faster rate, leading to 
a gap that eventually exceeds 10%. Considering the sparsity 
of genetic data, adequate reconstruction of 0 s is necessary 
but insufficient to claim that the genuine SNP interactions 
were indeed captured. Autoencoders excel in accurately 
reconstructing these scarcer dosage values, also showing ro-
bustness to varying block sizes.

Figure 4. The highest validation accuracies obtained from the grid search for each block, with bottleneck values ranging from 1 to 10. The accuracies are 

plotted against the number of SNPs in each block (left) and against the within-block average pairwise LD (right). The zoomed-in plot on the right focuses 

on bottleneck values 2 and 3, offering a clearer comparison and highlighting the LD threshold at 0.4.

Figure 5. Box plot of SNP accuracies obtained from 2854 autoencoders 

used for compression of all haploblocks in Chromosome 22. Accuracies 

were also calculated for three categories of genotype dosage values (0 s, 

1 s, and 2 s), and for two phenotypic groups (ALS cases and controls) as 

displayed on the y-axis.

Table 1. Comparison of PCA and autoencoder reconstruction through 

complete compression of Chromosome 22.

Method MSE loss Chr. Rec. accuracy

Train Test Train Test

Autoencoder 5:69×10− 3 4:75×10− 3 99.65% 99.63%
PCA 1:54×10− 2 1:48×10− 2 96.72% 96.80%

Bold face indicates the best chromosome reconstruction accuracies.
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4 Discussion

This work introduced a non-linear approach to effectively 
compress massive genotyping data while optimizing the 
trade-off between retaining meaningful genetic information 
and low dimensionality. First, we segmented the genome into 
non-overlapping haploblocks that capture the LD structure 
of the genome. Then, we trained autoencoders to compress 
these haploblocks into low-dimensional representations. 
When these are pieced together, the resulting assembled ge-
nome becomes easier for AI approaches to digest, for exam-
ple in disease prediction tasks, while allowing for 
explainability at the haploblock level. The prominent advan-
tages of our approach can be attributed to several compo-
nents: (i) leveraging the correlation between SNPs to facilitate 
compression using the haploblock arrangement, (ii) retaining 
the complex SNP interactions within those blocks through 
the layers of the autoencoder, (iii) bypassing the burdensome 
phase of hyperparameter tuning through a standardized 
autoencoder configuration, and (iv) yielding high SNP accu-
racies, indicating minimal loss of SNP information.

In cases where certain subpopulations are abundant in the 
data, autoencoders may be prone to overfitting to dominant 
genetic patterns driven by those, which would compromise 
the model’s ability to capture the genetic diversity of 

underrepresented groups. Namely, defining population-specific 
haploblock boundaries would generate population-specific fea-
ture spaces, therefore requiring training population-specific 
autoencoders; which might jeopardize their generalization abil-
ity. Instead, segmenting the genome using fixed boundaries 
enhances statistical power. The training and testing samples 
were both representative of the European genetic diversity car-
ried by the rich Project MinE data, to which we owe the re-
markable generalization of LD-based autoencoders to 
previously unseen genotypes. As previously stated, the five 
strata involved in this study were separated by genotyping plat-
form. Thus, the reconstruction performances on the testing stra-
tum are also indicative of the robustness of our approach to 
potential platform-specific biases, i.e. technical deviations that 
do not reflect the true biological variation between samples.

Imposing a fixed autoencoder architecture to each haplo-
block to short-circuit hyperparameter optimization would ig-
nore the diversity of the blocks. In addition to a flexible 
network design with an adjustable input layer and complex-
ity based on only three hyperparameters, our results revealed 
a criterion for the best configuration applicable to the entire 
genome. Although this generalized setting might be sub- 
optimal for individual blocks, it struck the balance between 
computational efficiency and performance. Our compromise 
to optimize strategy achieved a successful generalization of 
the autoencoders to an unseen stratum yielding an average 
test SNP accuracy of 99.63% across 2854 blocks throughout 
the entire Chromosome 22.

The dimensionality of each compressed haploblock can be 
controlled through the width of the corresponding autoen-
coder’s bottleneck. There is a trade-off between this width and 
the SNP accuracy, in other words the extent of the information 
retained in the low-dimensional representations of the blocks. 
Our methodology allows for customizing the compression set-
tings depending on the scope of downstream tasks. For exam-
ple, when predicting monogenic or maybe even polygenic traits, 
assuming that the causal genomic regions can be selected prior 
to analysis, a wider bottleneck can be chosen on account of a 
higher accuracy. However, for complex traits with much more 
intricate genetic architectures according to the hypothesis of the 
omnigenic model (Boyle et al. 2017), preferably the entire ge-
nome should be involved in the analysis. Hence, compressing 
more genetic information into fewer dimensions becomes the 
better remedy. The reconstruction performance is highly sensi-
tive to the genetic variation (internal LD) covered by the haplo-
block, notably for lower bottleneck dimensions (below 4). This 
could mean that a wider bottleneck more steadily ensures the 
necessary network complexity. To provide the desired dimen-
sionality as well as to avoid overcomplicating the networks, we 
considered LD-thresholding to decide between two and three 
bottleneck nodes.

We deduced from the grid search that the narrower the 
bottleneck was, the higher the complexity of the best per-
forming models became, hence the run times of these models 
increased. In principle, grid search appoints the optimal set-
ting only considering the reconstruction performance, and 
favors a deeper and wider network for a minor accuracy im-
provement, regardless of the increased training cost. The ac-
cumulated gain from economizing on run time and model 
complexity during each haploblock’s compression can lead to 
enhanced computational efficiency for the entire genome. 
After statistically assessing the choices made by the grid 
search, we seized any opportunity to simplify the networks as 

Figure 6. Scatter plots of SNP accuracies obtained by AE and PCA for 

dosage values 0, 1, and 2 (top to bottom). The x-axes represent block 

sizes, shared across plots. Solid lines illustrate the moving average of 

SNP accuracies on training samples using a window size of 50, dotted 

lines depict the same for test accuracies.
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long as there was no statistical evidence of inferior 
performance.

Our findings demonstrate the performance advantage of 
autoencoders over PCA, which seems particularly evident in 
the reconstruction of 1 s and 2 s by at least 2% in mean train 
and test accuracies, see Supplementary Tables S5 and S6. The 
significance of this statistical advantage can be better 
grounded with reference to genotyping errors. Even when oc-
curring at a rate below 1%, genotyping errors are deemed 
non-negligible as they can have serious repercussions for sub-
sequent analyses (Pompanon et al. 2005, Wang 2018). Unlike 
0, dosage values of 1 and 2 indicate the presence of a minor 
allele at a particular genetic locus, hence existence of a SNP. 
As a linear transformation, PCA’s limited ability to capture 
these values hints at the intricacy and non-linearity of the 
SNP interactions within a block. Despite its low maintenance 
and cost-effectiveness, breaking the non-linearity in the pro-
cess and the associated risk of losing epistasis renders PCA 
unappealing for compressing the genome, an issue that can 
be overcome with autoencoders.

Although our approach is promising for developing AI- 
applicable representations of haploblocks, there are potential 
areas for improvement. First, the foundation of our method 
is to segment the genome using the LD structure, not directly 
applicable to the rare variants (Zhang et al. 2002), which 
were excluded from the data beforehand. Hence the haplo-
blocks in this work contain only the common SNPs (MAF 
above 0.01) by definition. Besides, even if rare SNPs could be 
considered in the analysis, the latent space learnt by the 
autoencoders might not authentically represent the rare vari-
ation due to the low frequency of such variants in the popula-
tion. However, regarding ALS in particular, discovering the 
pathogenicity of rare variants could play a major role in re-
solving the genetic mystery of the disease (van Rheenen et al. 
2021). This renders the further development of compression 
or feature learning strategies focused on rare variants inevita-
ble. Also, estimating the boundaries of haploblocks involves 
presetting a scanning window for SNPs (10 Mb in this study). 
Therefore, the long-range dependencies between physically 
distant genetic variants are not necessarily covered by the 
haploblocks and they might not be captured throughout com-
pression. Fortunately, the corpus for modeling the long-range 
dependencies in sequential data is progressing fast and show-
ing encouraging outcomes in genomics (Ji et al. 2021, 
Nguyen et al. 2024) and our compressed representations 
form suitable inputs for modeling such dependencies at the 
haploblock level. Lastly, our final results display the effective-
ness of our method only on Chromosome 22, as a practical 
demonstration. Here, it should be acknowledged that the LD 
structure varies between different chromosomes (De La Vega 
et al. 2005), leading to potential differences in haploblock 
characteristics; therefore the outcomes of our method on 
Chromosome 22 may not invariably generalize to 
Chromosomes 1–21. In one respect, if a chromosome holds 
larger haploblocks with lower variation within, our system 
could prove more effective in terms of reduced dimensionality 
and reconstruction accuracy, and vice versa.

5 Conclusions and future work

In this article, we presented a dimensionality reduction ap-
proach that makes massive genome data compatible with AI 
techniques. To retain local patterns, we first partitioned the 

genome into clusters of correlated SNPs, forming haplo-
blocks. Then, we trained autoencoders capable of capturing 
intricate relationships to compress each block. Given the 
unique characteristics of these blocks, we devised adjustable 
autoencoder architectures using only three hyperparameters. 
Our findings revealed a criterion for the optimal hyperpara-
meters, which helped mitigate their resource-intensive tuning 
process. Evaluation of our method on an entire chromosome 
showcased the unprecedented potential of leveraging the LD 
structure of the genome in conjunction with autoencoders for 
data compression, with notably high reconstruction perform-
ances. Such a synergy between LD and autoencoders holds 
promise for effectively preprocessing the genome, eventually 
to demystify complex disease genetics.

Our compression approach enables various possibilities, 
including an alternative to single SNP-association tests. The 
compressed representations can be utilized for conducting 
haploblock association studies. While the former might offer 
higher resolution at the SNP level, the latter can provide addi-
tional insights into the genetic architecture of complex traits 
by capturing the effects of multiple closely linked SNPs 
(Hirschhorn and Daly 2005, Hayes 2013). Furthermore, 
drawing inspiration from the denoising autoencoders 
(Vincent et al. 2010), which reconstruct noiseless targets 
from perturbed inputs, our method holds significant potential 
for reference-free missing SNP imputation. Lastly, the self- 
supervised nature of autoencoders can be modified by condi-
tioning their learning through a supervised task (Dincer et al. 
2020). We plan to expand our approach with an auxiliary 
ALS classification task, pursuing the missing heritability of 
the disease.
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