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Abstract

There is increasing interest in the use of cure modelling to inform health technology assessment (HTA) due to the development 

of new treatments that appear to offer the potential for cure in some patients. However, cure models are often not included in 

evidence dossiers submitted to HTA agencies, and they are relatively rarely relied upon to inform decision-making. This is 

likely due to a lack of understanding of how cure models work, what they assume, and how reliable they are. In this tutorial 

we explain why and when cure models may be useful for HTA, describe the key characteristics of mixture and non-mixture 

cure models, and demonstrate their use in a range of scenarios, providing Stata code. We highlight key issues that must 

be taken into account by analysts when fitting these models and by reviewers and decision-makers when interpreting their 

predictions. In particular, we note that flexible parametric non-mixture cure models have not been used in HTA, but they 

offer advantages that make them well suited to an HTA context when a cure assumption is valid but follow-up is limited.

Key Points for Decision Makers 

Many new treatments in a range of disease areas offer 

the potential for cure in some patients.

Cure models are not commonly used to inform health 

technology assessment decision-making.

We describe the key characteristics of mixture and 

non-mixture cure models and explain how they should 

be used by analysts and interpreted by reviewers and 

decision-makers.

1 Introduction

It is common for parametric survival models to be used to 

estimate the long-term survival benefits associated with new 

health technologies [1, 2]. New technologies are typically 

evaluated using randomised controlled trials (RCTs), but 

these have limited follow-up—often many participants 

remain alive at the end of the trial. It is therefore necessary to 

extrapolate to obtain complete estimates of survival benefits. 

This is required for health technology assessment (HTA), 

where lifetime costs and benefits are compared to inform 

healthcare resource allocation decisions [3]. Traditionally, 

a suite of ‘standard’ parametric survival models has been 

used to perform the extrapolation task [2, 4, 5], but with the 

development of new immuno-oncology and chimeric antigen 

receptor (CAR) T-cell therapies that appear to cure some 

patients with cancer [6–14], the use of cure models to inform 

HTA has attracted increasing attention [8, 9, 11, 13, 15].

There is logical rationale for the use of cure models to 

estimate long-term survival for treatments that may offer 

a cure, but these models are not commonly used to inform 

HTA decision-making [16]. To some extent, this lack of use 

may be due to a lack of understanding of how cure models 

work, what they assume and how reliable they are. In this 

tutorial we describe mixture and non-mixture cure models, 

focusing on key aspects that we believe analysts, reviewers 
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and decision-makers should be aware of when considering 

these models.

In Sect. 2 we provide a rationale for why cure models may 

be useful for HTA, as well as a brief summary of applied 

and methodological research on their use in an HTA context. 

In Sect. 3 we explain the differences between mixture and 

non-mixture cure models, describe how cure fractions and 

cure timepoints should be interpreted, explain what different 

cure models assume about survival in cured and uncured 

patients, and discuss model specifications and the use of 

standardised mortality ratios (SMRs) and lifetables. In Sects. 

4 and 5 we provide a demonstration of the application of 

mixture and non-mixture cure models in a range of scenarios 

based on colon cancer data. In Sect. 6 we discuss scenarios 

in which different types of cure models may or may not 

be appropriate, highlighting key issues that must be taken 

into account by analysts when fitting these models, and 

by reviewers and decision-makers when interpreting their 

predictions. We provide code that allow the various models 

to be applied.

2  Cure Models in HTA

2.1  ‘Standard’ Survival Modelling and Rationale 
for Cure Models

For many years it has been common to use a range of 

‘standard’ parametric survival models to extrapolate 

survival data for HTA purposes, largely because these were 

the focus of the first National Institute for Health and Care 

Excellence (NICE) Decision Support Unit (DSU) technical 

support document on survival analysis (TSD 14), published 

in 2011 [4]. However, it is well known that these models 

have important limitations—in particular, exponential, 

Weibull, Gompertz and Gamma models cannot cope with 

any turning points in the hazard function over time (that is, 

the rate at which the event of interest occurs over time), and 

log-logistic, log normal and Generalised Gamma models can 

only cope with one turning point. In some circumstances, 

such as when a treatment cures a proportion of patients, 

this can mean that these standard parametric models cannot 

adequately represent the hazard function.

Clinical trials usually involve strict eligibility criteria, 

which means that participants are unlikely to die quickly 

[17]. However, trials often investigate treatments 

for serious diseases with substantial mortality risks. 

Therefore, the hazard of death in an RCT may initially 

be low, but will rise in the short-term. Participants with 

the worst prognosis are likely to die first, changing the 

prognostic mix of those remaining in follow-up. This 

may result in a turning point in the hazard function, with 

the hazard of death reducing in the medium term. In the 

long term, hazards are likely to continue to fall and may 

even drop to levels expected in the general population—

in which case, remaining patients may be considered to 

be cured. In these patients, hazards will eventually rise 

again, due to age-related mortality risks. In this scenario, 

the hazard function would have two turning points, which 

none of the standard parametric models could accurately 

reflect.

This issue was the motivation for a second DSU 

technical support document on survival analysis, published 

in 2020 (TSD 21) [12]. TSD 21 describes flexible models 

that are able to represent complex hazard functions, 

including flexible parametric spline-based models, mixture 

models, landmark models, piecewise models, relative 

survival models and cure models.

2.2  Cure Models – the Answer?

Cure models are not commonly used to inform HTA 

decision-making. A review published in 2020 examined 

26 NICE appraisals of immuno-oncological interventions 

and found that cure models were included in 8, and were 

considered appropriate to inform decision-making in 

only 3 [16]. More recently, a review of HTA reports from 

eight major jurisdictions for cell and gene therapies found 

that cure models were increasingly being used, but exact 

numbers were not presented [18].

The infrequent use of cure models in HTA may reflect 

concerns around the accuracy of their extrapolations. 

Simulation studies have shown that cure models can 

substantially over-estimate survival benefits when there 

is in fact not a cure, or when trial follow-up is very short 

[12, 15, 16]. Othus et  al. analysed 6 leukaemia trials, 

fitting mixture cure models to initial data-cuts used in 

regulatory submissions and then fitting the same models 

to subsequent data-cuts with 3–10 years more follow-up 

[19]. In 4 of the 6 trials, estimates of extrapolated survival 

were higher based on models fitted to the original, short-

term data-cut.

However, studies have also shown the potential value of 

cure models. Bullement et al. revisited a NICE appraisal 

of ipilimumab for advanced melanoma, comparing models 

fitted to the 3-year data-cut available at the time of the 

appraisal with survival subsequently observed in a later data-

cut [9]. Cure models provided more accurate extrapolations 

than non-cure models. Similarly, Vadgama et al. compared 

survival predictions made by models fitted to 1-year data 

from the ZUMA-1 trial of axicabtagene ciloleucel for diffuse 

large B-cell lymphoma with survival observed in the 4-year 

data-cut [20]. Cure models provided accurate extrapolations, 
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but standard and spline-based parametric models did not. 

Other similar studies exist [8, 10, 21], and simulation studies 

have shown that cure models can extrapolate well when a 

cure exists and follow-up is relatively mature [15, 16].

2.3  Cure Models – Unanswered Questions

Two tutorial papers on the use of cure modelling in the context 

of HTA have been published [11, 13]. These focus on a subset 

of cure models – mixture cure models (MCMs). TSD 21 

highlights that there are two types of cure model – MCMs 

and non-mixture cure models (NMCs) [12]. Each have 

advantages and disadvantages which may make them more 

or less appropriate for extrapolating from the relatively short-

term, relatively small clinical trial datasets typically seen in 

HTA. In this tutorial, we consider both types of cure model, 

with the aim of providing information on how these models 

can be used in different situations, and how they should be 

interpreted.

3  Methods

In the context of evaluating overall survival, which is the focus 

of this tutorial, all cure models estimate the cure fraction (the 

proportion of patients who will not die from their disease), 

and survival for uncured patients. If cure models are used to 

analyse different endpoints, definitions change. For instance, 

if used to analyse progression-free survival, cure models 

estimate the proportion of patients who will not die or 

experience disease progression, and progression-free survival 

for uncured patients. Irrespective of the endpoint being 

analysed, MCMs and NMCs estimate cure and survival in 

different ways, and can be applied using different frameworks, 

with implications for the definition of the cure fraction. In this 

Section we describe frameworks for fitting cure models, key 

characteristics of MCMs and NMCs, model specification and 

the use of lifetables and SMRs.

3.1  Frameworks for Cure Models

It is important to determine what is meant when a cure model 

is used, and this depends on the framework in which the model 

is fitted. In the context of healthcare interventions that prevent 

people from dying from the disease the treatment is for, it 

is logical to consider cure as occurring when the all-cause 

hazard function for death, h
i
(t), converges with the general 

population hazard function, h∗
i
(t) . In this context, it is typical 

to fit cure models in an ‘excess mortality’ framework, also 

known as a ‘relative survival’ framework; where we model 

the difference between the hazard function observed in the 

trial and the general population hazard (i.e. the excess hazard 

that is associated with the disease of interest, �
i
(t) ). That is, we 

partition the total all-cause hazard as follows:

We can transform from the hazard to the survival scale, 

and rearrange the above equation to show that relative 

survival [ R
i
(t) ] is the ratio of the all-cause survival S

i
(t) and 

the expected survival in the background population S∗
i
(t):

Using this framework, cure models are fitted to the 

relative survival function, which will plateau if and when 

the all-cause hazard approaches general population mortality 

rates, and the excess hazard function approaches 0. All-cause 

survival estimates are derived by multiplying the estimated 

relative survival function by the expected survival function 

for the background population. Taking this approach means 

that we directly use general population mortality rates 

when fitting models to the trial data, and allow these rates 

to govern the long-term survival function. If we expect that 

the disease will have a lasting effect on survival, even in 

cured patients, SMRs can be applied to general population 

mortality rates (see Sect. 3.5), and the relative survival 

function will plateau if and when the all-cause hazard 

approaches general population mortality rates with the SMR 

applied.

It is possible to instead fit cure models using different 

frameworks. A ‘disease-specific’ framework could be 

used, where models are fitted to disease-specific survival 

functions (using cause of death information), or an ‘all-

cause’ framework could be used, where models are fitted 

to all-cause survival functions. Under either approach, 

estimates from these models would need to be combined 

with general population mortality rates in the long term. For 

models fit to disease-specific survival functions, this could 

be done using data on other-cause deaths for the trial period, 

and then from lifetables beyond the trial period. For models 

fit to all-cause survival functions it is more complex – in 

particular, decisions have to be made about when to build 

in background mortality rates: if this is done from time 0, 

this would double count early events; if it is done at a later 

timepoint questions would be asked about how the timepoint 

was chosen.

Because the relative survival approach is intuitive, does 

not need information on cause of death and avoids the need 

to make assumptions around when to begin incorporating 

general population mortality rates, we focus the rest of 

this tutorial on cure models fitted in a relative survival 

framework. This has implications for the definition of the 

cure fraction: in a relative survival framework, because 

we directly model the relative survival function, the cure 

h
i(t) = h

∗

i
(t) + �

i(t).

R
i
(t) =

S
i
(t)

S
∗
i
(t)

.
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fraction corresponds to the proportion of patients alive in 

a world where patients can only die from the disease of 

interest. Therefore, while the cure fraction does represent 

the proportion estimated not to die from their disease, it will 

always be higher than the all-cause survival function at the 

cure timepoint (the point at which excess disease-related 

hazards fall to zero), because some people will have died of 

other causes before this timepoint.

3.2  Mixture Cure Models (MCMs)

MCMs assume that there are two groups of individuals 

– those who are cured of their disease and those who are 

not [22–24]. When fitted in a relative survival framework, 

general population mortality rates are incorporated directly 

into the model and the model uses these, combined with 

the parametric distribution chosen to represent the uncured 

patients, to estimate the cure fraction. General population 

mortality rates are taken from relevant lifetables, with 

rates from the appropriate calendar year used, and these 

are further stratified by characteristics such as age and sex, 

so that each trial participant can be assigned an expected 

background mortality rate. MCMs can be fitted using 

standard software packages, such as strsmix in Stata [25], 

and flexsurv and cuRe in R [26, 27].

3.2.1  When Does Cure Occur?

Strictly speaking, MCMs assume that at the study baseline 

there is a group of patients who experience no excess 

mortality compared with the general population – that is, 

‘cured’ patients are ‘cured’ at baseline [25]. This makes 

interpretation awkward, but it is also useful to consider 

MCMs with respect to the timepoint at which no uncured 

patients remain – representing the timepoint after which all 

remaining patients are assumed to be cured. MCMs place no 

constraint on this timepoint – it could occur early in the trial 

if the difference between hazards observed in the trial and 

hazards in the general population disappears quickly, or it 

could occur much later or not at all: sometimes MCMs will 

predict a 0% cure fraction. It is also important to note that 

the assignment of cure in an MCM is probabilistic rather 

than deterministic – individuals are not segregated into 

cured and uncured groups, they are assigned a probability 

of being cured and the cure fraction is estimated at the 

population level.

3.2.2  What is Assumed for Uncured Patients?

MCMs can be fitted using a range of ‘standard’ parametric 

models – for example, Weibull, log normal, log-logistic, 

etc., to represent survival for the uncured group of 

patients. Hence, it is important to consider which models 

are appropriate for uncured patients – for example, is it 

likely that the hazard function in uncured patients will be 

monotonically increasing or decreasing, or will have turning 

points? Formulations of MCMs using flexible parametric 

models have been developed, but are seldom used in practice 

[28].

3.2.3  What About the Cure Fraction?

The choice of parametric distribution used within an MCM 

to represent uncured patients can have an important impact 

on the cure fraction estimated by the model. For example, 

if a log-logistic MCM is used, the survival distribution for 

uncured patients is likely to have a decreasing hazard in 

the long term, and the estimated cure fraction may be low 

because the distribution used for the uncured group is able 

to represent a reducing hazard and long-term survivors. In 

contrast, if a Weibull MCM is used, the survival distribution 

for uncured patients may have an increasing hazard, and the 

estimated cure fraction may be high, because the distribution 

used for the uncured group is unable to represent long-term 

survivors. The two models may in fact result in similar 

survival curves for the cured and uncured populations 

combined, but these survival curves would be based on very 

different assumptions about survival in uncured patients, 

and would therefore be associated with very different cure 

fractions.

It should not necessarily be a concern if different 

MCMs give very different estimates of cure fractions: 

this is a function of the parametric distribution chosen for 

uncured patients. Instead, the focus should be on selecting 

appropriate distributions for the uncured patient group.

3.3  Non‑Mixture Cure Models (NMCs)

The key difference between MCMs and NMCs is that NMCs 

do not split the population into cured and uncured groups 

directly, although the cure fraction and the survival of the 

uncured can still be estimated from these models [24, 25, 29, 

30]. NMCs can be fitted using standard parametric or flexible 

parametric distributions. As for MCMs, when fitted in a 

relative survival framework, general population mortality 

rates are incorporated directly into the model and should 

be taken from relevant lifetable sources, using appropriate 

calendar years and stratifying for key characteristics such 

as age and sex. NMCs can be fitted using standard software 

packages such as strsnmix and stpm2 in Stata [25, 31], and 

flexsurv, cuRe and rstpm2 in R [26, 27].
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3.3.1  When Does Cure Occur?

Unlike MCMs, NMCs do not assume that there is a group of 

patients who are ‘cured’ at baseline. The timepoint at which 

cure occurs depends on when the modelled hazards converge 

with those observed in the general population. When fitted 

using standard parametric models, there is no constraint on 

when this convergence will occur and typically the estimates 

of MCMs and NMCs using the same parametric form will 

be similar to one another. When NMCs are applied using 

flexible parametric models, the analyst can specify the point 

at which hazards meet background population levels – these 

have also been referred to as latent cure models.[30]

3.3.2  What is Assumed for Uncured Patients?

NMCs do not split patients into cured and uncured groups, 

so there is not a survival model specific to uncured patients. 

The parametric distribution used within the NMC must be 

sufficiently flexible to model the survival experience of the 

cohort as it approaches the cure fraction.

Fitting NMCs using flexible parametric models allows for 

a complex hazard function to be captured prior to the cure 

timepoint, and provides the analyst with an additional tool to 

control when the cure timepoint will occur, dictated by the 

placement of a ‘boundary knot’ [31]. This may be useful if 

external data or clinical expert opinion allows for the cure 

timepoint to be estimated with some level of confidence. 

Care must be taken with this – specifying a boundary knot 

at (say) 5 years may mean that hazards begin to decrease 

rapidly much earlier, allowing gradual convergence at 5 

years. To protect against an unrealistically early sharp 

decrease in the hazards, it may be necessary to set the 

boundary knot further into the future. Research has been 

undertaken to investigate the estimation of cure timepoints 

[32, 33], and this may help inform boundary knots used 

within flexible parametric NMCs.

3.3.3  What About the Cure Fraction?

The cure fractions associated with NMCs fitted with different 

parametric distributions are likely to differ. As for MCMs, 

this is to be expected. The focus should be on selecting a 

distribution that is likely to be adequate for representing the 

hazard function prior to the cure timepoint.

3.4  Model Specifications

MCMs and NMCs can be fitted to each treatment group 

independently, or with treatment group as a covariate. In 

HTA, it is common to fit independent survival models 

to each treatment arm, due to concerns around assuming 

that the treatment effect (in the form of a hazard ratio for 

proportional hazards models, or a time ratio for accelerated 

failure time models) is constant over time [2, 5]. In a 

MCM and NMC setting, the considerations are similar. 

If dependent models are used, it is possible to allow a 

treatment effect on the cure proportion parameter, and also 

on the parameters that define the survival function for the 

uncured [24, 25]. When choosing between dependent and 

independent cure models, it is important to consider the 

validity of assumptions around the treatment effect enforced 

by using dependent models, to inspect modelled estimates 

of hazards and survival compared with the observed data, 

and to consider the validity of long-term extrapolations. 

Independently fitted models do not enforce assumptions 

around the treatment effect, but the treatment effect implied 

by the models should still be assessed, as recommended by 

TSD 21 [12].

It is rare to include baseline covariates in survival models 

used for HTA. However, this may be more relevant for cure 

models because of their use of lifetable data, stratified by age 

and sex. Over time, if older patients are more likely to die 

from their cancer, the relative age mix in the remaining trial 

population will change, and the conditional hazard function 

at later timepoints will be based on younger people than 

would have been the case if general population mortality 

were the only cause of death. Therefore, if disease-related 

deaths are likely to be associated with age (or sex), cure 

models that include these as baseline variables should be 

superior to models that exclude them. If covariates are 

included in the model, it will often be necessary to obtain 

the marginal all-cause survival function for the cohort as a 

whole, especially in a HTA setting where typically marginal 

rather than conditional survival functions are required. 

This can be achieved through regression standardisation 

and re-incorporation of general population mortality rates. 

Accounting for changes in age and sex distributions over 

time is relatively rare in survival models used for HTA 

– however, this can be important and more details on 

standardisation are available from Lambert et al. [34].

3.5  Standardised Mortality Ratios (SMRs)

SMRs relate to whether cancer survivors are at a higher risk 

of death than the age- and sex-matched general population, 

separate from their disease-related mortality risk, perhaps 

due to co-morbidities or lasting ill-effects of intensive 

treatment. Various studies have reported SMRs relevant for 

different groups of patients with cancer, ranging from values 

of 6 or higher [35, 36] to values close to 1 [37].

When cure models have been used in NICE appraisals, it 

has been common for SMRs to be applied. Recent appraisals 

in ovarian cancer and gastric cancer tested SMRs ranging 
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between 1.4 and 1.8, though these appeared to be based 

primarily on assumption and clinical opinion, rather than 

data [38–41].

SMRs can be particularly important when the cure 

fraction is large. It is important to assess hazards observed 

during trial periods to see whether they approach 

background levels, but if the cure timepoint has not been 

reached during the study, this will not provide information 

on whether applying an SMR > 1 would be appropriate. 

It may be helpful to analyse relevant registry datasets 

that contain long-term survivors with the same disease to 

investigate whether those patients exhibit mortality rates that 

are similar to, or higher than, background population levels.

When SMRs are applied, they should be applied to the 

general population mortality rates in the lifetables being 

used, ensuring that the adjusted rates are incorporated 

directly into the cure models fitted. This is done in the same 

way, irrespective of whether MCMs or NMCs are being 

used.

3.6  Lifetables

Cure models require the use of general population lifetables, 

and therefore the source of lifetable data must be chosen. 

Lifetables are available for different countries (and 

sometimes regions) and are usually split by sex, calendar 

year and age. In the context of fitting a cure model to data 

from an international clinical trial, it could be argued that it 

is most appropriate to use different lifetables for each patient 

according to their country (or region) of residence, their age 

and sex and the year that they entered the trial. Alternatively, 

it could be argued that it is more relevant to use lifetables 

for the country the analysis is designed for (still stratified for 

age, sex and calendar year).

We suggest that this choice should be dictated by 

the specified purpose of the analysis – is the aim purely 

to project survival for trial participants, or is it to project 

survival for a different population (i.e. the population that a 

decision is being made for)? In practice, as shown by TSD 

21, the use of ‘incorrect’ lifetables is unlikely to have a large 

impact on survival predictions [12], although this might not 

be the case if the cure fraction is large and if alternative 

lifetables have large differences in life expectancy.

When cure models are used, they should ideally be 

fitted to patient-level data. This allows for the distribution 

of age, sex and calendar year to be accounted for in the 

model, as well as how the age and sex mix in the surviving 

population changes over time. If patient-level data are not 

available, published survival curves can be digitised to 

reconstruct the data using commonly used methods [42], 

but the reconstructed dataset will not include information on 

age, sex and calendar year of recruitment for each patient. 

Assumptions are then required to assign values for these 

variables for each patient (likely based on published means 

and distributions), which make resulting model predictions 

prone to additional error, though these are likely to be small.

4  Demonstrating the Application of Cure 
Models

4.1  Data

To illustrate the application of a range of MCMs and 

NMCs, we use data on 15,564 people diagnosed with colon 

cancer in a North European country between 1975 and 

1994, with follow-up until 1994. Variables include age, 

sex, diagnosis date, clinical stage at diagnosis (localised, 

regional, distant), survival status and time. A total of 70% 

died during the 20 years of follow-up. We sampled from 

the complete dataset to generate datasets more similar to 

those collected in RCTs, representing a ‘medium cure’ 

scenario (Scenario 1), a ‘low cure’ scenario (Scenario 2) 

and a ‘no cure’ scenario (Scenario 3):

 (i) Scenario 1: 440 patients randomly selected from 

those with regional disease. Approximately 28% of 

these patients were alive at 10 years.

 (ii) Scenario 2: 391 patients randomly selected from 

those with distant disease. Approximately 5% were 

alive at 10 years.

 (iii) Scenario 3: 481 patients randomly selected from 

those with distant disease who did not live beyond 8 

years.

Summary characteristics of the datasets generated for 

each of these scenarios are presented in the supplementary 

materials.

To replicate circumstances whereby models are used to 

extrapolate from immature RCT datasets, we conducted 

analyses with data artificially censored at 24 months and 

48 months for each scenario. Kaplan–Meier plots for Sce-

narios 1–3 are presented in Fig. 1.

Dataset files and lifetable data are provided in 

supplementary materials. These are also available from the 

strs package in Stata [43], and the cuRe package in R [26].

4.2  Models Applied

We fitted the following models to the 24- and 48-month 

data for each scenario:
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(a) Scenario 1 (medium cure on)

(b) Scenario 2 (low cure on)

(c) Scenario 3 (no cure)

Fig. 1  Kaplan–Meier survival plots
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– MCMs

o Log normal distribution

o Weibull distribution

o With and without including age as a baseline 

covariate

– Flexible parametric NMCs

o With a 5-year boundary knot

o With a 15-year boundary knot

o With 2 and 4 interior knots placed at default centiles 

of the distribution of the uncensored log survival 

times (50% and 95% for 2 knots; 25%, 50%, 75% 

and 95% for 4 knots)

o With and without including age as a baseline 

covariate

For models that included age as a baseline covariate we 

used standardisation to obtain marginal all-cause survival 

curves. Appropriate lifetable data were used to incorporate 

background hazards, matched by age, sex and calendar 

year. We conducted analyses with no adjustment to the 

background hazard rates (i.e. SMR = 1) and repeated this 

with an SMR of 2.5, where we multiplied the lifetable 

hazards used in the models by 2.5.

We recorded model estimates of restricted mean survival 

time (RMST) at 10 and 20 years, survival proportions at 5, 

10 and 20 years and constructed plots of estimated hazard 

and survival functions. We compared these estimates with 

observed outcomes (without artificial censoring), and 

assessed whether model estimates lay within 95% confidence 

intervals (CI) of observed values. However, the aim of 

our analyses was not to provide a definitive evaluation of 

the performance of the models, rather, it was simply to 

demonstrate their application.

In the supplementary materials we provide Stata code 

for conducting the analyses. We fitted MCMs using strsmix 

combined with stexpect3 [25, 44], and fitted NMCs using 

stpm2 combined with standsurv [45, 46].

5  Results

Results for Scenarios 1–3 are presented in Tables 1, 2, 3 

and Figs. 2, 3, 4. Results for models that used an SMR of 

2.5 are presented in the supplementary materials. For ease 

of interpretation, in Figs. 2, 3, 4 we do not include all mod-

els. In general, including age as a baseline covariate and 

the number of internal knots included in NMCs made little 

difference to model estimates, so we include plots only for 

models that included age, and for NMCs with 2 internal 

knots. The only exception to this is for Scenario 3, where 

MCMs with age as a baseline covariate did not converge: 

MCMs that excluded age are presented instead.

For each scenario we briefly describe the results, and then 

explain why the models produced these results.

5.1  Scenario 1 (Medium Cure Fraction)

5.1.1  Model Estimates

When models were fit to 24-month data, only NMCs with a 

15-year boundary knot produced estimates that fell within 

the 95% CIs of the observed survival proportions at 5, 10 

and 20 years (Table 1, Fig. 2). MCMs substantially under-

estimated long-term survival, and NMCs with a 5-year 

boundary knot predicted survival curves that flattened too 

early. Including age as a baseline covariate in the models 

made little difference to the NMCs, but improved MCM 

estimates.

Estimated cure fractions ranged considerably. As 

explained in Sections 3.2 and 3.3, cure fractions should 

be interpreted with extreme care, and it is likely to be 

more appropriate to consider long-term all-cause survival 

predictions. We report both in Table 1 to illustrate this point. 

Cure fractions ranged from 0–21% with MCMs to 48–62% 

with NMCs, whilst survival at 10 years ranged from 6–21% 

with MCMs to 30–39% with NMCs. Observed survival at 

10 years was 28% (95% CI 23–34%). RMST estimates at 

20 years ranged from 3.7–5.7 years for MCMs, and from 

7.1–8.3 years for NMCs, whilst the observed value was 7.1 

years (95% CI 6.3–7.9).

When models were fit to the 48-month data, only NMCs 

with a 5-year boundary knot, and those with a 15-year 

boundary knot which included age in the model, produced 

estimates that fell within the 95% CIs of the observed 

survival proportions at 5, 10 and 20 years. MCMs again 

substantially under-estimated long-term survival, although 

their estimates were closer to the observed values than 

those associated with the 24-month models. Cure fractions 

ranged from 0–38% with MCMs to 42–53% with NMCs, 

and survival at 10 years ranged from 18–23% with MCMs 

to 26–33% with NMCs [observed value: 28% (95% CI 

23–34%)]. RMST estimates at 20 years ranged from 5.4–6.1 

years for MCMs, to 6.5–7.4 years with NMCs [observed 

value 7.1 years (95% CI 6.3–7.9)].

5.1.2  Explaining the Results

Figure 2b shows that observed hazards increased until just 

after 2 years, before beginning to decrease. MCMs fitted 

to the 2-year data could not identify the turning point in 

the hazard and estimated low or zero cure fractions, under-

estimating survival as a result. In contrast, the NMCs were 

‘told’ that hazards will return to background population 
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levels at the boundary knot timepoint, and were therefore 

forced to predict a turning point in the hazard.

Estimates from the MCMs improved when they were fit 

to the 48-month data because the turning point in the hazard 

had occurred by this point. However, the MCMs estimated 

hazards that decreased too slowly, and long-term survival 

continued to be under-estimated.

NMCs with a 5-year boundary knot forced survival curves 

to flatten too quickly, because, in fact, observed hazards 

reached background levels at 8 years. NMCs with a 15-year 

boundary knot more closely approximated the decrease in haz-

ards, but slightly underestimated long-term survival. Figure 2d 

illustrates that observed hazards fell below background hazards 

between 8 and 15 years, likely due to chance and small sample 

Table 1  Scenario 1 (medium cure fraction) model predictions and observed survival, SMR = 1

Bold – estimate lies within 95% confidence interval of observed data. Some NMCs fitted to 24-month data that included 4 internal knots did not 

converge, so 3 knots were used instead

AIC Akaike information criterion, CI confidence interval, MCM mixture cure model, NMC non-mixture cure model, SMR standardised mortality 

ratio, 5y bk 5-year boundary knot, 15y bk 15-year boundary knot

Model Restricted mean survival time Survival proportions Cure fraction AIC

10 years 20 years 5 years 10 years 20 years

Observed data (95% CI) 4.71 (4.33–5.09) 7.10 (6.27–7.93) 38.9% 

(34.1–

43.8%)

28.4% (23.4–33.6%) 20.1% (13.5–27.5%) N/A N/A

Models fitted to 24 months of data

MCM log normal 4.35 5.38 37.5% 18.3% 5.1% 0% 743

MCM Weibull 3.54 3.70 27.0% 5.7% 0.2% 0% 736

NMC, 5y bk, 2 knot 5.42 8.18 49.6% 37.6% 18.9% 62.3% 737

NMC, 5y bk, 4 knot 5.41 8.15 49.4% 37.4% 18.9% 62.0% 740

NMC, 15y bk, 2 knot 4.88 7.06 42.0% 29.8% 15.0% 49.3% 736

NMC, 15y bk, 3 knot 4.88 7.06 42.0% 29.9% 15.0% 49.3% 738

Models with age included as a baseline covariate

MCM log normal 4.38 5.70 38.3% 20.5% 8.6% 14.7% 753

MCM Weibull 3.87 4.75 31.0% 14.0% 5.7% 21.3% 747

NMC, 5y bk, 2 knot 5.45 8.34 49.9% 38.7% 20.4% 61.6% 744

NMC, 5y bk, 4 knot 5.42 8.29 49.5% 38.3% 20.2% 61.0% 747

NMC, 15y bk, 2 knot 4.91 7.23 42.5% 31.0% 16.3% 49.0% 743

NMC, 15y bk, 3 knot 4.88 7.15 41.9% 30.5% 16.1% 48.2% 745

Models fitted to 48 months of data

MCM log normal 4.34 5.36 37.4% 18.2% 5.0% 0% 1094

MCM Weibull 4.44 6.08 37.0% 22.9% 11.0% 37.7% 1089

NMC, 5y bk, 2 knot 4.94 7.29 42.3% 32.0% 16.2% 53.1% 1099

NMC, 5y bk, 4 knot 4.90 7.21 41.4% 31.4% 15.8% 52.0% 1098

NMC, 15y bk, 2 knot 4.63 6.53 38.3% 26.1% 13.1% 43.0% 1090

NMC, 15y bk, 4 knot 4.62 6.50 38.2% 25.8% 12.9% 42.4% 1092

Models with age included as a baseline covariate

MCM log normal 4.39 5.87 38.0% 21.5% 10.4% 15.9% 1092

MCM Weibull 4.26 5.69 36.0% 19.7% 11.0% 24.4% 1090

NMC, 5y bk, 2 knot 4.94 7.38 42.3% 32.6% 17.3% 52.4% 1104

NMC, 5y bk, 4 knot 4.90 7.29 41.4% 32.0% 17.0% 51.2% 1103

NMC, 15y bk, 2 knot 4.65 6.68 38.6% 27.1% 14.4% 42.9% 1088

NMC, 15y bk, 4 knot 4.63 6.61 38.3% 26.5% 14.1% 41.8% 1091
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sizes. Therefore, it is reasonable to conclude that NMCs with 

15-year boundary knots provided good predictions when fit-

ted to 24- and 48-month data in this scenario. Notably, cure 

fractions estimated by these models were substantially higher 

than the proportion alive at the 10-year timepoint because, 

as explained in Sect. 3.1, the cure fraction corresponds to the 

relative survival function, not the all-cause survival function.

Models that included an SMR of 2.5 substantially 

underestimated long-term survival (Table S2, Fig. S1) because 

observed hazards fell to background levels: an SMR > 1 was 

not appropriate.

5.2  Scenario 2 (Low Cure Fraction)

5.2.1  Model Estimates

When fitted to 24-month data, all models except the log nor-

mal MCM appeared to estimate too sharp a decrease in the 

hazard function between 1 and 6 years (Fig. 3b), resulting 

in over-estimated survival (Table 2, Fig. 3). The log normal 

MCM provided good estimates of survival at 5 years, but 

under-estimated survival in the longer term. Cure fractions 

ranged from 3–16% with MCMs to 10–18% with NMCs, 

and survival at 10 years ranged from 2% with the log normal 

MCM to 9% with the Weibull MCM, and from 6 to 11% with 

NMCs, compared with the observed value of 5% (95% CI 

3–7%). RMST estimates at 20 years ranged from 1.3 with 

Table 2  Scenario 2 (low cure fraction) model predictions and observed survival, SMR = 1

Bold – estimate lies within 95% confidence interval of observed data

AIC Akaike information criterion, CI confidence interval, MCM mixture cure model, NMC non-mixture cure model, SMR standardised mortality 

ratio, 5y bk 5-year boundary knot, 15y bk 15-year boundary knot

Model Restricted mean survival time Survival proportions Cure fraction AIC

10 years 20 years 5 years 10 years 20 years

Observed data (95% CI) 1.35 (1.11–1.58) 1.77 (1.34–2.20) 6.7% (4.4–9.7%) 4.7% (2.7–7.4%) 3.9% (2.0–6.8%) N/A N/A

Models fitted to 24 months of data

MCM log normal 1.24 1.43 6.2% 3.0% 1.2% 4.1% 534

MCM Weibull 1.63 2.23 11.5% 8.4% 4.0% 14.9% 554

NMC, 5y bk, 2 knot 1.81 2.53 13.5% 10.0% 4.9% 17.6% 550

NMC, 5y bk, 4 knot 1.72 2.38 12.2% 9.0% 4.5% 15.9% 540

NMC, 15y bk, 2 knot 1.56 2.05 9.9% 6.8% 3.3% 11.9% 543

NMC, 15y bk, 4 knot 1.49 1.92 8.9% 5.9% 2.9% 10.4% 537

Models with age included as a baseline covariate

MCM log normal 1.14 1.25 5.5% 1.8% 0.7% 3.1% 518

MCM Weibull 1.66 2.32 12.3% 9.2% 4.4% 16.2% 537

NMC, 5y bk, 2 knot 1.85 2.68 13.9% 10.9% 5.9% 17.1% 526

NMC, 5y bk, 4 knot 1.77 2.54 12.7% 10.1% 5.6% 15.5% 518

NMC, 15y bk, 2 knot 1.57 2.10 9.9% 7.0% 3.7% 11.2% 520

NMC, 15y bk, 4 knot 1.51 1.99 9.0% 6.4% 3.4% 9.9% 516

Models fitted to 48 months of data

MCM log normal 1.19 1.34 5.5% 2.4% 0.9% 3.0% 639

MCM Weibull 1.30 1.63 6.6% 4.7% 2.2% 8.3% 664

NMC, 5y bk, 2 knot 1.52 2.05 9.8% 7.3% 3.6% 12.8% 672

NMC, 5y bk, 4 knot 1.43 1.87 8.2% 6.1% 3.0% 10.7% 653

NMC, 15y bk, 2 knot 1.37 1.73 7.5% 4.9% 2.4% 8.6% 650

NMC, 15y bk, 4 knot 1.31 1.60 6.4% 4.1% 2.0% 7.1% 642

Models with age included as a baseline covariate

MCM log normal 1.12 1.23 5.2% 1.9% 0.7% 2.1% 624

MCM Weibull 1.34 1.73 7.7% 5.3% 2.6% 10.6% 651

NMC, 5y bk, 2 knot 1.55 2.16 10.1% 7.9% 4.3% 12.4% 648

NMC, 5y bk, 4 knot 1.47 1.99 8.6% 6.9% 3.8% 10.4% 633

NMC, 15y bk, 2 knot 1.38 1.77 7.6% 5.2% 2.7% 8.2% 628

NMC, 15y bk, 4 knot 1.34 1.68 6.7% 4.5% 2.4% 6.9% 621
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the log normal MCM to 2.3 years for the Weibull MCM, and 

from 1.9 to 2.7 years with NMCs, whilst the observed value 

was 1.8 years (95% CI 1.3–2.2). Including age as a baseline 

covariate made little difference.

When fitted to the 48-month data, models performed 

much better: in particular, NMCs with a 15-year boundary 

knot and Weibull MCMs produced estimates that closely 

approximated observed survival proportions at 5, 10 and 

20 years. Log normal MCMs continued to under-estimate 

long-term survival, and NMCs with a 5-year boundary 

knot tended to over-estimate survival. Cure fractions 

ranged from 2–10% with MCMs to 7–13% with NMCs, 

and survival at 10 years ranged from 2% with the log nor-

mal MCM and 5% with the Weibull MCM, and from 4 

to 8% with NMCs [observed value: 5% (95% CI 3–7%)]. 

RMST estimates at 20 years ranged from 1.2 with the 

log normal MCM to 1.7 years for the Weibull MCM, and 

from 1.6 to 2.2 years with NMCs [observed value 1.8 years 

(95% CI 1.3–2.2)].

5.2.2  Explaining the Results

Figure 3b illustrates that the turning point in the observed 

hazard occurred more quickly in Scenario 2 than in Scenario 

1. MCMs were able to identify the turning point and estimate 

reducing long-term hazards, similar to those predicted by 

the NMCs, even when fitted to the 24-month data. Hence, 

the range in estimates from the different cure models was 

Table 3  Scenario 3 (no cure) model predictions and observed survival, SMR = 1

Bold – estimate lies within 95% confidence interval of observed data. MCMs fitted to 24-month data that included age as a baseline covariate did 

not converge.

AIC Akaike information criterion, CI confidence interval, MCM mixture cure model, NMC non-mixture cure model, SMR standardised mortality 

ratio, 5y bk 5-year boundary knot, 15y bk 15-year boundary knot

Model Restricted mean survival time Survival proportions Cure fraction AIC

10 years 20 years 5 years 10 years 20 years

Observed data (95% CI) 0.91 (0.80–1.02) 0.91 (0.80–1.02) 2.5% (1.2–4.5%) 0% 0% N/A N/A

Models fitted to 24 months of data

MCM log normal 0.90 0.92 2.6% 0.6% 0.1% 0.3% 582

MCM Weibull 1.27 1.68 7.8% 5.7% 2.7% 10.3% 609

NMC, 5y bk, 2 knot 1.46 1.99 9.9% 7.3% 3.5% 13.1% 604

NMC, 5y bk, 4 knot 1.37 1.82 8.6% 6.3% 3.0% 11.3% 593

NMC, 15y bk, 2 knot 1.24 1.55 6.7% 4.4% 2.1% 7.9% 593

NMC, 15y bk, 4 knot 1.16 1.42 5.6% 3.6% 1.7% 6.4% 588

Models with age included as a baseline covariate

MCM log normal . . . . . . .

MCM Weibull . . . . . . .

NMC, 5y bk, 2 knot 1.49 2.08 10.2% 7.8% 4.2% 12.8% 580

NMC, 5y bk, 4 knot 1.40 1.93 8.9% 6.9% 3.8% 11.1% 571

NMC, 15y bk, 2 knot 1.24 1.57 6.7% 4.5% 2.3% 7.6% 569

NMC, 15y bk, 4 knot 1.17 1.45 5.7% 3.8% 2.0% 6.2% 566

Models fitted to 48 months of data

MCM log normal 0.87 0.89 2.3% 0.4% 0.0% 0.0% 672

MCM Weibull 0.94 1.08 2.9% 2.0% 0.9% 3.6% 708

NMC, 5y bk, 2 knot 1.21 1.57 6.8% 5.0% 2.4% 8.9% 725

NMC, 5y bk, 4 knot 1.11 1.39 5.2% 3.8% 1.8% 6.8% 702

NMC, 15y bk, 2 knot 1.06 1.26 4.5% 2.8% 1.4% 5.0% 693

NMC, 15y bk, 4 knot 1.00 1.14 3.4% 2.0% 1.0% 3.5% 681

Models with age included as a baseline covariate

MCM log normal 0.87 0.94 3.1% 1.1% 0.5% 1.8% 655

MCM Weibull 0.92 1.06 3.3% 2.1% 0.9% 4.5% 694

NMC, 5y bk, 2 knot 1.23 1.62 6.9% 5.3% 2.8% 8.7% 700

NMC, 5y bk, 4 knot 1.14 1.45 5.4% 4.2% 2.3% 6.7% 681

NMC, 15y bk, 2 knot 1.06 1.27 4.5% 2.8% 1.4% 4.9% 667

NMC, 15y bk, 4 knot 1.01 1.17 3.5% 2.1% 1.1% 3.6% 658
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narrower in Scenario 2. However, none of the models fitted 

to the 24-month data could accurately predict the long-term 

gradient of the decrease in the hazards. This was vastly 

improved when models were fit to the 48-month data, when 

the gradient of the decrease was more established. NMCs 

with a 5-year boundary knot forced hazards to decline 

too quickly, whereas those with a 15-year boundary knot 

predicted the observed hazards closely. These and the 

Weibull MCM produced credible estimates of long-term 

survival in this scenario.

5.3  Scenario 3 (No Cure)

In this scenario all models except the log normal MCM 

substantially over-estimated survival at 5, 10 and 20 years 

when fitted to the 24-month data, with estimates slightly 

improved when using the 48-month data. The log normal 

MCM produced accurate survival estimates because it 

predicted a low cure fraction and its distribution provided a 

reasonable approximation of the observed hazards.

6  Discussion

In this tutorial we have outlined key characteristics of 

MCMs and NMCs, and demonstrated their application in 

three scenarios. Here we outline aspects to consider when 

using these models.

6.1  Think About the Hazard Function

If hazards in the observed period are increasing, MCMs 

will estimate a 0% cure fraction and extrapolations will 

be based on the distribution assigned to uncured patients. 

There is no value to fitting MCMs in this case. Flexible 

parametric NMCs are forced to predict a turning point in 

the hazard function, so that hazards return to background 

levels at the boundary knot timepoint. Therefore, if hazards 

are increasing in the observed period, but a cure can be 

confidently predicted (perhaps on the basis of external data, 

or strong clinical opinion), flexible parametric NMCs are the 

only logical cure model option.

When hazards have begun decreasing during follow-up, 

MCMs and NMCs may produce credible extrapolations, 

but this will depend on how well established the decreasing 

hazard is, and it is difficult to determine whether data 

are mature enough for the shape of the hazard function 

Fig. 2  Scenario 1 (medium cure fraction) survival and hazard plots. 5y bk 5-year boundary knot, 15y bk 15-year boundary knot
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to be well enough established for models to extrapolate 

accurately. With less severe disease the rate of events 

will be lower and it may take longer for the shape of 

the hazard function to become established: in general, 

longer-term follow-up is required for less severe diseases, 

if cure models are to be relied upon to provide accurate 

extrapolations. If hazards are observed to begin to decrease 

only shortly before the end of follow-up, the decrease in 

the hazards may not be well enough established for models 

to extrapolate accurately. In this case, applying flexible 

parametric NMCs with a range of boundary knots could 

be used as a form of sensitivity analysis, as the boundary 

knots influence the rate of decline of the extrapolated 

hazards.

In our analyses, a range of MCMs and NMCs 

extrapolated accurately in Scenario 2 when fitted to 

48-month data, when 88% of patients had died and the 

hazard function was well established. This was not the 

case in Scenario 1, when only 48% had died at 48 months, 

the turning point in the hazard function was later, and the 

subsequent decrease in hazards was less well established. 

However, it is notable that NMCs with 15-year boundary 

knots did extrapolate well in Scenario 1, even when 

fitted to 24-month data. This indicates that when a cure 

assumption is valid but data are heavily censored, flexible 

parametric NMCs may be more likely to extrapolate 

credibly than MCMs, though uncertainty will be high and 

the choice of boundary knots will be important.

In addition, when considering the hazard function and 

model fits, it is important to interpret plots with care. The 

plots of observed hazards that we present use a smoothing 

function because unsmoothed plots are likely to be volatile. 

With or without smoothing, plots of observed hazards may 

not provide reliable values towards the tail of the curves where 

numbers at risk are low. In addition, because the hazard is 

an instantaneous event rate rather than a cumulative measure, 

models may appear to provide a worse fit when comparing 

their predictions with observed hazards than when comparing 

their predictions with observed survival. Hence, a model 

that does not closely follow a smoothed plot of the observed 

hazards for its entire length does not necessarily represent a 

poor model, though it is desirable for model estimates to reflect 

any clear turning points in the observed hazards and to lie 

within the confidence intervals of the smoothed plots.

Fig. 3  Scenario 2 (low cure fraction) survival and hazard plots. 5y bk 5-year boundary knot, 15y bk 15-year boundary knot
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6.2  Choosing Boundary Knots for Flexible 
Parametric NMCs

Predictions from NMCs may vary substantially, depending 

on where the boundary knot – that is, the cure timepoint 

– is placed. Our analyses demonstrate that predicted hazards 

will begin to fall sharply substantially before the boundary 

knot. Setting a 5-year boundary knot resulted in hazards that 

fell steeply at around 2 years, so that they were almost at 

background levels by 3.5 years. Setting a 15-year boundary 

knot resulted in hazards that were not much higher than 

background levels at 5 years, but they fell more gradually. 

The shape of the hazard should be discussed with clinical 

experts using recognised elicitation techniques [47, 48], and 

when cure timepoints are uncertain, sensitivity analysis is 

likely to be useful. However, given that flexible parametric 

NMCs are likely to result in hazards that become close to 

background levels well before the boundary knot timepoint, 

setting boundary knots at relatively late timepoints is 

advisable.

6.3  Think About Survival in Uncured Patients

If MCMs are deemed appropriate, the shape of the hazard 

function in uncured patients should dictate the choice of 

MCM distribution. If hazards in uncured patients are likely 

to be monotonic, a Weibull MCM may be reasonable; if 

hazards may increase and then decrease, a log normal, 

log-logistic or Generalised Gamma MCM may be more 

appropriate. For NMCs, the chosen distribution must be 

able to represent the hazards before the cure timepoint. 

In our analyses, the number of interior knots included in 

the  flexible parametric NMCs made little difference to 

model estimates. In a non-cure setting, the number of knots 

included in flexible parametric models dictates the portion 

of data upon which extrapolations are based, and therefore 

the number of knots chosen is often very important. In a 

cure setting, boundary knots have the largest influence on 

extrapolations – though it remains important to select a 

reasonable number of interior knots to capture the shape 

of the hazard function without over-fitting to the data 

[12]. In general, flexible parametric NMCs should allow a 

reasonable fit to observed data  whilst also allowing the cure 

timepoint to be defined: this seems particularly useful in an 

HTA context.

Fig. 4  Scenario 3 (no cure) survival and hazard plots. 5y bk 5-year boundary knot, 15y bk 15-year boundary knot
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6.4  Interpreting Cure Fractions

Cure fractions are a function of the framework models are 

fitted in, and the distributions used within the models. They 

should be expected to differ between models.

Cure models can predict long-term survivors even when 

estimating a 0% cure fraction if the distribution used for the 

uncured has a long tail. For cure models fitted in a relative 

survival framework, the cure fraction corresponds to the 

relative survival function and will always be greater than the 

all-cause survival function. The extent to which this is the 

case will depend on the relative importance of other cause 

mortality. Fundamentally, we recommend focusing on the 

survival proportions predicted by each model over time, 

rather than the estimated cure fraction.

6.5  SMRs and Model Specification

Applying inappropriate SMRs can lead to poor 

extrapolations, especially when there is a large proportion 

of long-term survivors. It may not be appropriate to apply 

a SMR > 1, as shown by our case study, especially in 

Scenarios 1 and 2, where observed hazards fell to general 

population levels. However, there is nuance to this. In 

Scenario 2, a proportion of patients were cured, and hazards 

fell to general population levels. Several of the cure models 

over-estimated the cure fraction, and their long-term survival 

predictions improved when a SMR of 2.5 was used (see 

supplementary materials), because this forced survival 

curves downwards. This is a case of two modelling errors 

causing bias in opposite directions and to some extent 

cancelling out. We believe it is preferable to attempt to 

determine which cure models produce credible survival 

extrapolations when a realistic SMR is applied, rather than 

applying an increased SMR in an attempt to protect against 

over-estimated cure fractions. SMRs should be considered 

on a case-by-case basis, informed by external data (ideally 

including an assessment of hazards in long-term survivors 

with the same condition) and clinical expert opinion.

In epidemiological research, it is standard practice to 

include age in relative survival models, including cure 

models [49]. This made little difference in our analyses, in 

which we focused on average survival curves, but it is likely 

to improve model accuracy within subgroups by age and is 

more important when there is a large proportion of long-

term survivors.

6.6  Choosing Between Models

Survival models used for extrapolation should never be 

chosen purely on the basis of statistical fit to the observed 

data – the plausibility of extrapolations is more important 

[4, 5, 50]. This is especially the case for cure models, where 

expectations around credible ranges of long-term survival 

proportions and cure timepoints are crucial. In Scenario 1, 

MCMs and NMCs had similar Akaike Information Criterion 

values but produced widely diverging extrapolations 

– NMCs extrapolated adequately, but MCMs did not.

6.7  Fitting Cure Models When There is no Cure

Fitting any type of cure model when there is in fact not a 

cure is likely to result in over-estimated long-term survival. 

MCMs with distributions for the uncured that can reflect 

decreasing hazards may protect against this, because these 

models are more likely to estimate zero cure fractions. 

However, in our analyses, log normal MCMs were amongst 

the worst performing models when there was a cure. 

Therefore, it is inadvisable to fit log normal MCMs ‘just 

in case’ there is not a cure. Instead, when cure is uncertain, 

it is more sensible to fit cure and non-cure models to allow 

reviewers and decision-makers to assess the sensitivity of 

effectiveness and cost-effectiveness estimates to the cure 

assumption.

6.8  Other Modelling Approaches

This tutorial focuses on MCMs and NMCs, but these are 

not the only models that can extrapolate cure-like long-

term survival. TSD 21 describes other models, including 

piecewise, landmark-based and relative survival models 

[12]. Each approach has advantages and disadvantages 

and this tutorial is not an endorsement of any particular 

method. Landmark-based piecewise models may combine a 

parametric curve up until a specified landmark timepoint and 

general population mortality rates beyond the landmark, and 

in some respects may appear similar to an NMC. However, 

these models do not use the data to estimate the cure, and 

may result in discontinuities in the predicted hazard function. 

They also incorporate background mortality rates in a less 

sophisticated way. Therefore, if this type of approach is to be 

taken, we suggest that using a flexible parametric NMC with 

carefully selected boundary knots (and sensitivity analyses) 

would be preferable.

It is important to acknowledge that in this demonstration 

we present NMCs using flexible parametric models, 

with extra information added in the form of boundary 

knot timepoints, but only present MCMs using standard 

parametric models. This may place NMCs at an advantage. 

The rationale for this is that flexible parametric NMCs 

are well recognised for the analysis of population-level 

survival studies [12, 31, 51, 52], whereas, to the best of 

our knowledge, MCMs have very rarely been applied using 

flexible parametric models.

In addition, Felizzi et al. developed ‘informed’ MCMs, 

whereby the cure fraction is obtained from external 
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information and used as an input to the MCM [11]. Like 

using boundary knots within flexible parametric NMCs, 

this allows the analyst some control over the survival 

curve estimated by the model, and is worthy of further 

consideration. However, it is arguable whether it is preferable 

to use a cure fraction as an input to a cure model or a cure 

timepoint  (as used within flexible parametric NMCs), 

especially given the difficulties associated with interpreting 

cure fractions estimated using different frameworks (i.e. 

relative survival or all-cause mortality), and the differences 

between fractions estimated by different parametric models. 

We have not included these models in this tutorial because 

they necessitate consideration of several additional factors 

and a separate tutorial focused solely on these models exists 

[11].

Botta et  al. also introduced a potentially valuable 

extension to MCMs, whereby they attempted to estimate and 

adjust for the increased risk of non-cancer deaths in patients 

with cancer. This is similar in concept to using SMRs, but 

where the increased risk is estimated using the data to which 

the cure models are applied [53].

6.9  Limitations

In addition to limiting our focus to a specific subset of cure 

models that can be used to extrapolate survival, we have not 

applied an exhaustive set of analyses for the cure models 

that we have tested. We applied MCMs using a subset of 

standard parametric models, and NMCs using flexible 

parametric models. This is because we expect MCMs and 

NMCs using the same standard parametric models to give 

similar results. NMCs that use flexible parametric models 

provide the analyst with an additional tool with which to 

‘control’ long-term survival predictions through the setting 

of boundary knots, and therefore we considered it valuable 

to demonstrate the use of these models. For simplicity, 

and to avoid presenting results for a very large number of 

analyses, we chose to apply MCMs using only Weibull and 

log normal distributions. These represent models where 

there can (the log normal MCM) and cannot (the Weibull 

MCM) be a turning point in the hazard function for the 

uncured population.

We also limited the specification of the models we fitted 

with respect to baseline covariates (including or excluding 

age) and SMRs (SMR of 1 or 2.5). We could also have 

included sex as a baseline covariate. Standardisation would 

then be required to obtain marginal survival functions, as 

we demonstrated for analyses that included age as a baseline 

covariate. In epidemiological research it is generally 

considered more important to include age in relative survival 

models, rather than sex. However, in some circumstances, 

such as when survival differs considerably by sex, including 

sex could be important.

With respect to SMRs, we did not undertake a review 

or an expert elicitation process to determine a potentially 

relevant value – in practice this should be done. We did, 

however, observe that in the long-term data that we derived 

our scenario datasets from, hazards appeared to return to 

background levels (albeit with associated uncertainty), 

indicating that a SMR of 1 is likely to be reasonable.

Finally, in the datasets constructed for each of the 

scenarios we analysed, for the 24- and 48-month analyses we 

simply censored data for patients whose observed follow-up 

was greater than 24 (or 48) months. Given that entry into 

clinical trials is usually staggered over a period of time, our 

approach means that there will be less uncertainty in the 

tails of the observed survival curves in our scenarios than 

there might be in a clinical trial setting. More sparse long-

term data is likely to mean that hazard functions take longer 

to become established, which is relevant when considering 

the results of the analyses that we demonstrate. However, 

this does not negate our conclusions or interpretation, and 

we refer readers particularly to Sect. 6.1 for a discussion on 

data maturity in relation to cure modelling.

6.10  Further Research

As commented on in Sects. 6.8 and 6.9, this tutorial is not 

exhaustive with respect to models that can extrapolate cure-

like long-term survival, and does not attempt to formally 

evaluate the performance of these methods. A neutral 

comparison study of the relevant model types would be 

valuable [54]. Demonstrating the use of flexible parametric 

NMCs in a range of clinical trial datasets would also be 

of value, as would research into appropriate methods for 

determining SMRs for a range of cancers. Research into cure 

timepoints for different cancers (and stages of cancer) would 

also be highly valuable – for instance, analysing timepoints 

at which mortality hazards reach background population 

levels in registry datasets with long-term follow-up.

7  Conclusions

Cure models are generally interpreted with extreme 

caution in HTA. This is reasonable because these models 

can produce highly variable extrapolations and are likely 

to be extremely inaccurate if a cure assumption is not 

valid. However, when a cure assumption is credible, it is 

reasonable to explore extrapolations from cure models. 

When a cure exists and data are relatively mature, with well-

established hazard functions, MCMs and NMCs are likely 

to produce similar, credible extrapolations. However, at the 

time of HTA submission, survival data are usually immature. 

In such cases, standard parametric MCMs are unlikely to 
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be able to extrapolate accurately. Flexible parametric 

NMCs are more able to produce accurate extrapolations 

in cure scenarios when trial follow-up is short, provided 

that sensible and reasonably accurate cure timepoints are 

selected. Therefore, flexible parametric NMCs are likely 

to be more useful than standard MCMs in the context of 

HTA. However, extrapolations from these models will be 

prone to substantial uncertainty in such scenarios, and their 

validity rests on the credibility of the cure assumption and 

the placement of boundary knots.
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