
This is a repository copy of An in silico modelling approach to predict hemodynamic 
outcomes in diabetic and hypertensive kidney disease.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/215592/

Version: Published Version

Article:

Wang, N., Benemerito, I. orcid.org/0000-0002-4942-7852, Sourbron, S.P. orcid.org/0000-
0002-3374-3973 et al. (1 more author) (2024) An in silico modelling approach to predict 
hemodynamic outcomes in diabetic and hypertensive kidney disease. Annals of 
Biomedical Engineering, 52 (11). pp. 3098-3112. ISSN 0090-6964 

https://doi.org/10.1007/s10439-024-03573-2

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Vol.:(0123456789)

Annals of Biomedical Engineering 

https://doi.org/10.1007/s10439-024-03573-2

ORIGINAL ARTICLE

An In Silico Modelling Approach to Predict Hemodynamic Outcomes 
in Diabetic and Hypertensive Kidney Disease

Ning Wang1,2,4 · Ivan Benemerito1,2 · Steven P Sourbron1,3 · Alberto Marzo1,2

Received: 21 March 2024 / Accepted: 27 June 2024 

© The Author(s) 2024

Abstract

Early diagnosis of kidney disease remains an unmet clinical challenge, preventing timely and effective intervention. Dia-
betes and hypertension are two main causes of kidney disease, can often appear together, and can only be distinguished 
by invasive biopsy. In this study, we developed a modelling approach to simulate blood velocity, volumetric flow rate, and 
pressure wave propagation in arterial networks of ageing, diabetic, and hypertensive virtual populations. The model was 
validated by comparing our predictions for pressure, volumetric flow rate and waveform-derived indexes with in vivo data 
on ageing populations from the literature. The model simulated the effects of kidney disease, and was calibrated to align 
quantitatively with in vivo data on diabetic and hypertensive nephropathy from the literature. Our study identified some 
potential biomarkers extracted from renal blood flow rate and flow pulsatility. For typical patient age groups, resistive index 
values were 0.69 (SD 0.05) and 0.74 (SD 0.02) in the early and severe stages of diabetic nephropathy, respectively. Similar 
trends were observed in the same stages of hypertensive nephropathy, with a range from 0.65 (SD 0.07) to 0.73 (SD 0.05), 
respectively. Mean renal blood flow rate through a single diseased kidney ranged from 329 (SD 40, early) to 317 (SD 38, 
severe) ml/min in diabetic nephropathy and 443 (SD 54, early) to 388 (SD 47, severe) ml/min in hypertensive nephropathy, 
showing potential as a biomarker for early diagnosis of kidney disease. This modelling approach demonstrated its potential 
application in informing biomarker identification and facilitating the setup of clinical trials.

Keywords Chronic kidney disease · Hypertension · Diabetes mellitus · 1D modelling · Renal circulation modelling · 
Biomarkers

Introduction

Chronic kidney disease (CKD) is a debilitating condi-
tion that affects approximately 800 million individuals 
worldwide. Its estimated annual medical costs vary across 

disease stages, ranging from approximately $1700 (stage 
2), to $3500 (stage 3), and $12,700 (stage 4) per patient 
[1]. CKD is more frequently observed in older age groups, 
with a prevalence of 39.4% among individuals over 60 years 
old, compared to 12.6% and 8.5% among those aged 40–59 
and 20–39 years, respectively [2]. Unfortunately, most CKD 
patients do not experience symptoms until the disease pro-
gresses to the later stages when the condition is irrevers-
ible [1]. Furthermore, CKD diagnosis is often confounded 
by different cause-effect mechanisms and co-morbidities, 
especially diabetes (affecting 40% of CKD patients) and 
hypertension (affecting 35.8% of stage 1 CKD patients, 
84.1% of stage 4 and 5 CKD patients) [3, 4]. Hypertensive 
nephropathy (HN) is a kidney disease linked to prolonged 
high blood pressure, whereas diabetic nephropathy (DN) is 
a severe complication of diabetes marked by kidney dam-
age due to sustained high blood sugar levels, both leading to 
similar CKD symptoms. Diabetes and hypertension are com-
mon comorbidities, but the only way to distinguish between 

BIOMEDICAL
ENGINEERING 
SOCIETY

Associate Editor Stefan M. Duma oversaw the review of this 
article.

 * Ning Wang 
 ning.wang@sheffield.ac.uk

1 INSIGNEO Institute for In Silico Medicine, The University 
of Sheffield, Sheffield, UK

2 Department of Mechanical Engineering, The University 
of Sheffield, Sheffield, UK

3 School of Medicine and Population Health, The University 
of Sheffield, Sheffield, UK

4 The University of Sheffield, Room E09, The Pam Liversidge 
Building, Mappin Street, Sheffield S13JD, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s10439-024-03573-2&domain=pdf


 N. Wang et al.

HN and DN is through invasive kidney biopsies. In diabetic 
kidney disease, characteristic Kimmelstiel-Wilson lesions 
manifest in the glomerular capillary loops [5], whereas this 
feature is absent in hypertensive kidney disease [6].

Kidney biopsies are rarely performed in the earlier dis-
ease stages where there is most scope for renoprotective 
intervention. There exists therefore a critical unmet need for 
more accessible and non-invasive diagnostics to distinguish 
between these two main causes of CKD. Since diabetes and 
hypertension both have strong vascular involvement, one 
possible route is through hemodynamic imaging biomark-
ers, either from ultrasound (US) or magnetic resonance 
imaging (MRI). The US biomarker resistive index (RI) is 
readily available in clinical practice and is affected by kid-
ney disease [7–10]. In hypertension, RI increases from 0.65 
to 0.73 from stage 2 to stage 3 [11], and an elevated RI is 
related to renal organ damage [7]. Patients at stage 2 of HN, 
who were undergoing antihypertensive therapy, had RI in 
the normal range [8]. RI also increases in DN, reflecting 
progressive renal damage [9], with RI increasing from 0.66 
at stage 1 to 0.85 at stage 5 [10]. An example of a hemo-
dynamic biomarker measurable in MRI is the renal blood 
volumetric flow rate (RBF, in mL/min, measured by phase-
contrast MRI) [12–14]. RBF distinguishes between healthy 
individuals and those with DN but there is no data on the 
correlation with estimated glomerular filtration rate (eGFR) 
in CKD [15, 16]. While biomarkers such as RBF and RI may 
have some use in distinguishing between HN and DN, it is 
difficult to put forward precise hypotheses without a clearer 
mechanistic understanding of the relationship between these 
different etiologies and their effect on the biomarkers.

In the last few decades, in silico medicine has estab-
lished itself as a valuable tool for representing intricate, 
non-observable physiological and pathological mecha-
nisms in the human body [17–19]. Reduced-order mod-
elling approaches have gained significant popularity for 
their capacity to navigate the trade-off between computa-
tional efficiency and physiological accuracy. 1D modelling 
approaches can reliably describe the physics of pulse wave 
propagation within the cardiovascular system [20, 21]. These 
models can be naturally aligned with well-established clini-
cal procedures by including the modelling of the whole sys-
temic circulation [22], the effects of age on pulse waves [23], 
the cerebral circulation [24], and the pulmonary circulation 
[25]. Through the use of these models, and by simulating 
the effects of pathology on pressure waveforms, several 
authors have identified potential biomarkers for the diagno-
sis of many diseases, such as pulmonary hypertension [25], 
cerebral vasospasm [26], coronary artery disease [27], and 
aortic aneurysms [28].

Existing in silico investigations on kidney disease are 
focused on 3D patient-specific modelling of blood flow 
through specific regions of interest, such as the main renal 

artery [29, 30], as the larger lumen area of this vessel allows 
for easier image acquisition, segmentation, and geometry 
reconstruction. This can be useful for diagnosing nephrop-
athy caused by renal artery stenosis, but offers limited 
insights into the representation and understanding of other 
essential comorbidities such as DN and HN, which can affect 
systemic circulation as well as the smaller renal vessels and 
microvasculature. Haemodynamic characteristics of intrare-
nal arteries undergo significant changes in kidney disease, 
and these changes, such as vessel stenosis and RI measured 
in the smaller segmental renal arteries, have been proposed 
in the diagnosis of kidney disease [31, 32]. A more compre-
hensive model representation of the more peripheral, smaller 
vessels within the kidneys, and the systemic effects of dia-
betes and hypertension would allow a more precise charac-
terisation of CKD pathophysiology and offer an opportunity 
for validation and alignment with the published clinical data. 
This remains largely unexplored.

This study aimed to develop, validate, and calibrate a 
modelling approach that extended an existing 1D whole 
circulation model to include a more comprehensive renal 
circulation component, including the intrarenal vascular 
networks, where validation and calibration were conducted 
utilising in vivo data sourced from the literature. The model 
incorporates an ageing and a DN and HN model, across sev-
eral stages of disease progression. The model also allowed 
the mechanistic representation of these conditions in virtual 
populations, for the representation of physiological variabil-
ity and the identification of clinically-aligned, effective bio-
markers that could be used to distinguish between HN and 
DN from an early stage.

Materials and Methods

The workflow in Fig. 1 shows the different stages of devel-
opment and parameterisation of the model, which is further 
described in the paragraphs below.

1D Whole‑Circulation Baseline model

The network utilised in this study was extended starting from 
an existing, validated anatomical 1D model [22, 33]. The 
newly developed model, comprising a total of 113 blood 
vessels, one inlet (ascending aorta) and 49 outlets, includes 
additional branching of the abdominal aortic vessel into the 
left and right renal networks. A total of 38 renal arteries 
from the main renal arteries to the smaller interlobar arter-
ies were added on each side of the descending thoracic aorta 
[34]. Fiugre 2 shows the anatomy and extent of the resulting 
circulation model. A comprehensive and detailed description 
of the model and its parametrization is available as supple-
mentary materials.
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The model parameters included vessel geometry (lumen 
radius, length, and thickness), and material properties 
(Young’s modulus, Poisson’s ratio), where Young’s modu-
lus represented blood vessel’s elasticity. Volumetric flow 
rates, derived from cardiac output (CO) data reported in the 
literature, were applied in the ascending aorta as an inlet 
boundary condition. Peripheral vascular resistance (PVR) 
and compliance (PVC), here representing viscous resist-
ance to flow and compliance in the peripheral vascular bed, 
were described using lumped-parameter R-C-R (vascular 
resistance and compliance) models fully coupled with the 
1D model at its outlets. In this study, the arcuate, interlobu-
lar arterioles, and glomeruli in the renal circulation were 
described using lumped-parameter R-C-R models. Further-
more, our model utilised generic parameters from the litera-
ture, aiming for gender neutrality. Each geometric and mate-
rial parameter was assigned a single value that fell within the 
range observed for both males and females.

The Navier-Stokes-based open-source software, openBF 
[35], was employed to compute blood pressure, volumetric 

flow rate and pressure waveforms for a Newtonian fluid in 
each vessel throughout a complete cardiac cycle. Results 
were derived from the solution of the discretized form of the 
continuity (1), momentum (2) and constitutive (3) equations 
reported below, using the finite volume method [33]:

where A is the vessel cross-sectional area, Q is the volu-
metric flow rate, (P(A) − Pext) is the transmural pressure, 
A

0
 is the reference cross-sectional area, h

0
 is the reference 

wall thickness, E is the vessel Young’s modulus, ν is the 
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Fig. 1  Workflow chart of the study methodology. Validation through comparison with in vivo data was performed for the baseline and healthy 
ageing model, whereas calibration was performed through comparison with in vivo data for the disease models
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Poisson’s ratio, ρ is blood density, μ is blood viscosity, γ
v
 is 

a parameter that regulates the shape of the velocity profile 
for the calculation of viscous losses, and α is the Coriolis 
coefficient.

Velocity values across the cardiac cycle at each location, 
were derived from volumetric flow rates divided by the 
vessel cross-sectional area at the same locations. RI values 
were computed from (4) at five locations in the left and right 
renal networks, at segmental artery level, as shown in Fig. 2. 
These were reported as a mean representative value for all 
these locations. Mean RBF rates were calculated as arith-
metic average of volumetric flow rate across a cardiac cycle.

where V
PSV

 is peak systolic blood velocity, V
EDV

 is end dias-
tolic blood velocity.

Ageing Model

The ageing process is known to influence various mechani-
cal, physiological, and haemodynamic parameters such 

(4)RI =
V

PSV
− V

EDV

V
PSV

as length, lumen radius, Young’s modulus, wall thick-
ness, PVR, PVC, and CO. The non-dimensional values of 
these properties, together with their variability range, were 
informed from data in the literature, assuming a Gaussian 
distribution within each age group, as presented in Table 1. 
In this study, we assumed that the parameters of each blood 
vessel within each circulation model were mutually inde-
pendent. These parameters were randomly and indepen-
dently assigned by sampling each value for each blood vessel 
from its respective Gaussian distribution. Using these data 
and their distributions within each age group, we param-
eterised our baseline model to represent the ageing process 
in an initial virtual population of 12,000 individuals (2,000 
individuals per age group) ranging from 20 to 79 years old 
(yo). The actual dimensional values for age group 20-29 yo 
model parameters, can be found in the supplementary mate-
rial, and were used to nondimensionalize all data within all 
age groups in Table 1. This resulted in the non-dimensional 
values, reported in Table 1, for CO (inlet boundary condi-
tion), and vessel mechanical properties for all vessels. The 
corresponding age-based healthy subjects were generated 
by multiplying the dimensional model parameters by the 
age-specific, non-dimensional scaling values. Some model 

Fig. 2  Illustration of openBF whole-circulation network (centre) with 
the two renal networks (left and right). Measurement locations of the 
mean RBF rate were shown by a grey circular plane (I) at the main 
renal artery, and measurement locations for blood velocity wave-
forms and RI values were shown by grey circular planes (II) at the 
five segmental renal arteries in the enlarged representation of the left 

(L) renal network. Model flow rate waveforms for a typical individual 
were shown on the right hand side, a blood volumetric flow rate in 
ascending aorta imposed as inlet boundary condition, b renal blood 
volumetric flow rate predicted at location (I), c renal blood velocity at 
location (II)
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parameterisations were filtered out (physiology filter, Fig. 1) 
if their solutions led to unphysiological values of systolic 
blood pressure (SBP) or diastolic blood pressure (DBP) 
(for details, see 2.6). Typical values for brachial pressure 
reported in the literature and in Table 1 were used to remove 
unrealistic predictions in the physiological filter.

Kidney Disease Progression

In openBF we cannot directly simulate eGFR and urinary 
albumin-to-creatinine ratio (ACR), which are normally used 
to measure progression of kidney disease. Instead, disease 
stages were simulated by matching RI values to in vivo data 
from the literature linked to these stages. These values cor-
respond with mild to moderate renal impairment in DN and 
HN patients. RI data (mean ± SD) used for establishing these 
four models include: mild renal function impairment (RI: 
0.69 ± 0.05 [10]) for DN patients, moderate renal function 
impairment (RI: 0.74 ± 0.02 [10]) for DN patients, mild 
renal function impairment (RI: 0.65 ± 0.07 [8]) for HN, and 
moderate renal function impairment (RI: 0.73 ± 0.05 [11]) 
for HN. Parameterizations are shown in Tables 2 and 3. 
In the remainder of the text, we refer to these groups as: 
Early.D (early diabetes), Severe.D (severe diabetes), Early.H 
(early hypertension), and Severe.H (severe hypertension), 
respectively.

Diabetic Patient Model

Diabetes is known to influence the geometric and mechani-
cal properties of blood vessels, such as their Young’s 
modulus, wall thickness, proximally and peripherally, and 
therefore PVR, and PVC. Additionally, high blood sugar 

(hyperglycemia) can increase blood viscosity due to the 
decrease of red blood cell fluidity and deformability, which 
in turn leads to a decrease in CO. As diabetes advances, 
these properties gradually change, and extensive quantitative 
data supporting these changes are documented in Table 2.

In order to link vascular properties to different stages of 
progression of diabetes, we conducted an analysis of the 
mechanical properties of blood vessels between healthy 
individuals and diabetic patients using data available in the 
literature (references in table caption). We categorised mild 
or moderate renal function impairment based on either the 
eGFR or the urinary ACR, as determined in each respective 
study. We did not consider the influence of age on disease 
progression as this information was often not available. Fol-
lowing this stratification, we proceeded to extract the data 
on vascular mechanical properties for differing degrees of 
renal dysfunction. In instances where specific blood vessels’ 
data were not available in the literature for diabetic patients, 
but those vessels were present in our model, we extrapolated 
their behaviour based on trends observed in other blood ves-
sels, for which data was available. Additionally, data used 
in diabetic patient models at various disease stages were 
normalised using data available for healthy individuals.

Subsequently, model parameters were calibrated within 
their pathophysiological range, to achieve a better align-
ment with in vivo data on RI. This calibration process was 
informed by a global Sobol’s sensitivity analysis where the 
effects of variability of all model parameters (length, lumen 
radius, Young’s modulus, wall thickness, PVR and PVC) 
and its effect on RI was studied. The result of the sensitivity 
analysis showed that the lumen radius, PVR, and PVC of 
the renal arteries exhibited the highest sensitivity towards 
renal RI. Only these parameters were changed manually in 

Table 1  Distribution of 
normalised parameters for the 
ageing model

Distribution of scaling parameters for CO are from [23], length [23], radius [23], Young’s modulus [23, 
36], thickness [23, 37], PVR and PVC [23] across age groups ranging from 20–29 to 70–79  years old. 
Number of virtual patients within each age group after the filtering process is reported as n. Typical distri-
butions of brachial pressure are from [38]

Parameters Age groups [year old]

20-29 
n = 759
Mean (SD)

30-39 
n = 822
Mean (SD)

40-49 
n = 701
Mean (SD)

50-59 
n = 711
Mean (SD)

60-69 
n = 655
Mean (SD)

70-79 
n = 605
Mean (SD)

Cardiac output 1.00 (0.22) 1.00 (0.22) 0.91 (0.22) 0.87(0.21) 0.80 (0.20) 0.75 (0.18)
Length 1.00 (0.13) 1.08 (0.14) 1.16 (0.16) 1.22 (0.17) 1.32 (0.18) 1.40 (0.19)
radius 1.00 (0.03) 1.03 (0.06) 1.04 (0.07) 1.07 (0.07) 1.15 (0.10) 1.18 (0.11)
Young’s modulus 1.00 (0.13) 1.10 (0.18) 1.23 (0.16) 1.32 (0.25) 1.60 (0.35) 2.00 (0.45)
Thickness 1.00 (0.18) 1.10 (0.20) 1.12 (0.22) 1.25 (0.22) 1.51 (0.26) 1.75 (0.28)
PVR 1.00 (0.20) 1.06 (0.24) 1.15 (0.25) 1.25 (0.27) 1.23 (0.28) 1.46 (0.29)
PVC 1.00 (0.25) 0.89 (0.24) 0.77 (0.21) 0.65 (0.18) 0.58 (0.15) 0.50 (0.11)
Brachial pressure
SBP (mmHg) 120 (11) 119 (11) 121 (11) 124 (11) 126 (10) 127 (10)

DBP (mmHg) 74 (8) 75 (8) 76 (7) 77 (7) 76 (7) 74 (7)
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the calibration process, while other less sensitive parameters 
were aligned with reliable pathological changes, until good 
alignment was achieved with the in vivo data. Specifically, 
we aimed to minimise the percentage difference in mean RI 
values between in vivo and virtual DN populations to below 
5% at both early stages (in vivo: 0.69 [10] vs. openBF: 0.70) 
and severe stages (in vivo: 0.74 [10] vs. openBF: 0.76).

Hypertensive Patient Model

Hypertension, through different mechanisms, has a similar 
impact on the geometric and mechanical characteristics of 
blood vessels as diabetes, although the extent and variability 
of these changes are different. During the earlier stages of 

hypertension, blood vessels activate short-term compensa-
tory mechanisms such as vasodilation and adjustments in 
blood vessel compliance to counteract the increased pres-
sure. This adaptive response aims to maintain normal blood 
flow and thus control blood pressure within the normal 
range. Over the longer term, arteries undergo remodelling 
in response to chronic pressure overload. This remodelling 
involves changes in the size, structure, and composition 
of the vessel walls. Over time, this can lead to concentric 
hypertrophy, where the walls thicken axisymmetrically, and 
the lumen of the vessel narrows. Furthermore, prolonged 
high blood pressure can cause damage to the endothelial 
cells lining the inner surface of blood vessels. Endothelial 
dysfunction impairs the production of nitric oxide to prevent 

Table 2  Parameter distribution 
presented as mean and standard 
deviation (SD) for early and 
severe diabetic models

For early stage diabetes: distribution of normalised blood viscosity are from [39, 40]; Distribution of nor-
malised CO [41]; Distribution of normalised lumen radius in abdominal aorta [42], carotid artery [42], 
and radial artery [42]; Distribution of normalised Young’s modulus in ascending aorta [43], radial artery 
[44, 45], brachial artery [44, 45], and carotid artery [46, 47]; Distribution of normalised wall thickness 
in descending aorta [48] and carotid artery [49]; Distribution of PVR [50–52] and PVC [53]. For severe 
stage diabetes: distribution of normalised blood viscosity [39, 40, 54]; Distribution of normalised CO [55]; 
Distribution of normalised lumen radius in abdominal aorta [42] and radial arteries [42]; Distribution of 
normalised Young’s modulus in ascending aorta [43]; Distribution of normalised wall thickness in carotid 
artery [42]; Distribution of normalised PVR [53] and PVC [53]
a Detailed values for those parameters reported as a range in the healthy model data are provided in the sup-
plementary material

Parameters Healthy Early.D Severe.D

Model  dataa

Mean (SD)
Normalised data
Mean (SD)

Calibrated 
model

Normalised data
Mean (SD)

Cali-
brated 
model

Viscosity (mPa·s) 4.00  ~1.07 (0.26) 1.10  ~1.23 (0.30) 1.20
Cardiac output (L/min) 5.74 0.85 (0.10) 0.85 0.72 (0.05) 0.70
Lumen radius (mm)
 Abdominal aorta 7.49 0.93 (0.02) 0.95 0.91 (0.02) 0.90
 Renal artery 2.71 n/a 0.95 n/a 0.90
 Carotid artery 3.17 0.93 (0.02) 0.95 n/a 0.90
 Radial artery 1.38 0.96 (0.02) 0.95 0.96 (0.02) 0.90
 Other arteries 0.68–12.95 n/a 0.95 n/a 0.90

Young’s modulus (kPa)
 Ascending aorta 400 1.15 (n/a) 1.10 1.29 (n/a) 1.30
 Renal artery 400 n/a 1.10 n/a 1.30
 Radial artery 400 1.06 (0.30) 1.10 n/a 1.30
 Brachial artery 400 1.10 (0.28) 1.10 n/a 1.30
 Carotid artery 400 1.18 (0.64) 1.10 n/a 1.30
 Other arteries 400–500 n/a 1.10 n/a 1.30

Wall thickness (mm)
 Descending aorta 2.12 1.21 (0.23) 1.15 n/a 1.28
 Renal artery 0.54 n/a 1.15 n/a 1.28
 Carotid artery 0.70 1.05 (0.2) 1.15 1.40 (0.03) 1.28
 Other arteries 0.34–1.79 n/a 1.15 n/a 1.28

Vascular bed
 PVR  (1010·Pa·s/m3) 0.11–17.20 1.12 (0.26) 1.20 1.40 (0.33) 1.40

 PVC  (10−10·m3/Pa) 0.02–2.60 0.82 (0.25) 0.82 0.80 (0.26) 0.80
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vascular relaxation and dilation. The loss of this vasodila-
tory effect contributes to increased vascular resistance and 
Young’s modulus.

Extensive evidence and data supporting these find-
ings can be found in the relevant literature, and reported 
in Table 3. Similar to what reported above for the diabetic 
patient model, a calibration process was repeated for the 
hypertensive patient model to find better alignment with 
in vivo data from the literature. This led to the alignment of 
RI values with in vivo data at both early stage hypertension 
(in vivo 0.65 [8] vs. 0.66 openBF) and severe stage hyperten-
sion (in vivo 0.73 [11] vs. 0.71 openBF).

Generation of Virtual Population

For the generation of virtual populations, firstly, param-
eters for each blood vessel were randomly sampled 
according to their physiological distribution as reported 
in Table 1, for each of the six age groups. Subsequently, 

we generated 12,000 virtual subjects, evenly distributed 
across the six age groups, with 2,000 subjects in each age 
group. To maintain physiological validity, we implemented 
a filtering process based on the methodology proposed by 
Benemerito et al. [69]. Specifically, we removed subjects 
whose mean values of systolic or diastolic brachial blood 
pressure deviated by more than 2.575 standard deviations 
from the experimentally measured mean values [38]. This 
filtering step allowed us to exclude parameterizations that 
would lead to unrealistic values, and introduce undesired 
bias into the results, to ultimately ensure alignment with 
physiological norms. The resulting number of virtual 
individuals for each age group is listed as n in Table 1. 
Because blood pressure ranges vary across age groups, the 
number of randomly selected physiologically appropriate 
age-based health individuals varies slightly within each 
age group. The filtering process resulted in a subset of 
4167 physiological subjects from the initial 12,000. We 
then used the distribution of SBP, DBP, RI and mean renal 

Table 3  Parameter distribution 
presented as mean and standard 
deviation (SD) for early and 
severe hypertensive models

For early stage hypertension: distribution of normalised blood viscosity are from [56]; Distribution of nor-
malised CO [57]; Distribution of normalised lumen radius in ascending aorta [58–60], renal arteries [61], 
and carotid artery [62]; Distribution of normalised Young’s modulus in carotid artery [46]; Distribution 
of normalised wall thickness in descending aorta [63] and carotid artery [62]; Distribution of normalised 
PVR [64] and PVC [65]. For severe stage hypertension: Distribution of normalised blood viscosity [66]; 
Distribution of normalised lumen radius in ascending aorta [59, 60]; Distribution of normalised Young’s 
modulus in carotid artery [67]; Distribution of normalised PVR [68] and PVC [65, 68]
a Detailed values for those parameters reported as a range in the healthy model data are provided in the sup-
plementary material

Parameters Healthy Early.H Severe.H

Model  dataa

Mean (SD)
Normalised data
Mean (SD)

Calibrated 
model

Normalised data
Mean (SD)

Cali-
brated 
model

Viscosity (mPa·s) 4.00 1.02 (0.09) 1.00 1.06 (0.12) 1.00
Cardiac output (L/min) 5.74  ~1.15 (n/a) 1.15 n/a 1.00
Lumen radius (mm)
 Ascending aorta 15.95 0.96 (0.02) 0.95 0.92 (0.02) 0.93
 Renal artery 2.71 1.00 (0.13) 0.98 n/a 0.95
 Carotid artery 3.17 0.99 (n/a) 0.98 n/a 0.95
 Other arteries 0.68–12.95 n/a 0.98 n/a 0.95

Young’s modulus (kPa)
 Ascending aorta 400 n/a 1.20 n/a 1.40
 Renal artery 400 n/a 1.20 n/a 1.40
 Carotid artery 400 1.21 (0.54) 1.20 1.51 (0.98) 1.40
 Other arteries 400-500 n/a 1.20 n/a 1.40

Wall thickness (mm)
 Descending aorta 2.12 1.00 (0.10) 1.00 n/a 1.10
 Renal artery 0.54 n/a 1.00 n/a 1.05
 Carotid artery 0.70 1.02 (0.22) 1.00 n/a 1.05
 Other arteries 0.34–1.79 n/a 1.00 n/a 1.05

Vascular bed
 PVR  (1010·Pa·s/m3) 0.11–17.20 1.17 (0.27) 1.15 1.33 (0.32) 1.35

 PVC  (10-10·m3/Pa) 0.02–2.60 0.86 (0.25) 0.86 0.67 (0.02) 0.70
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blood volumetric flow rate at different ages to validate this 
ageing model.

To generate virtual populations representing patients 
with diabetes or hypertension, we scaled the parameters of 
each healthy subject within six different age groups by mul-
tiplying them by the normalised values for CO and vessel 
mechanical properties across all vessels. We assumed that 
the mechanical properties of all segments of the aorta fol-
lowed the same trends reported in Tables 2 and 3 for specific 
aortic segments. This resulted in an equal number of virtual 
patients, for each disease type and stage, and for each of the 
six age groups to the number of healthy individuals within 
the same age group. To validate the disease model, we con-
sidered the range of 20-79 yo age group, for which in vivo 
data on the RI distribution for DN [70] and HN [8, 70] at 
early and severe stages were available.

Results

Validation of Ageing Model

Results reported in Fig. 3 show a comparison between pre-
dictions from openBF and in vivo data from literature. Fig-
ure 3a and b show good alignment of brachial systolic and 
diastolic blood pressure, for both mean trends and distri-
butions and across the different age groups. For ages over 
50 years old, diastolic pressure declines while systolic pres-
sure continues to rise, and this is well captured by the mod-
elled data. Figure 3c shows a comparison between model-
derived RI data and in vivo data. Modelled and in vivo 
median RI values and age-specific distributions follow 
similar upward trends, ranging from 0.63 (0.62 for in vivo 
data) at 20–29 yo age group to 0.67 (0.66 for in vivo data) at 
70–79 yo age group, with a small offset between modelled 
and in vivo data. Figure 3d shows a comparison between 
modelled and in vivo data for total mean RBF rate (the sum 
of mean RBF rate in both kidneys). OpenBF predictions 
show a reduction in blood volumetric flow rate, decreasing 

Fig. 3  Validation of modelled 
data for a healthy, ageing popu-
lation. a and b: Comparison of 
modelled systolic and diastolic 
blood pressure in the brachial 
artery against in vivo data [38]. 
c: Comparison of RI distribu-
tions in renal segmental arteries 
against ultrasound measurement 
data [71]. d: Comparison of 
modelled total mean renal blood 
flow rate (the sum of mean RBF 
rate in both kidneys) in main 
renal arteries against MRI-
measured data [72]
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from approximately 1000 to 670 ml/min from ages 20 to 79. 
The results of openBF are generally in good agreement with 
in vivo data, although some differences are observed in the 
20–29 yo age group (1003 ml/min for in vivo data against 
1066 ml/min for openBF) and 70–79 yo age group (512 ml/
min for in vivo data against 670 ml/min for openBF).

Resistive Index in Healthy, Diabetic 
and Hypertensive Models

Figure 4 shows a comparison between predictions of RI from 
openBF and in vivo data from the literature for the 20–79 
yo age group, in presence of healthy and disease. In general, 
this comparison shows good agreement for healthy, diabetic, 
and hypertensive populations and across the different stages 
of disease. The highest discrepancy (absolute percentage dif-
ference) between modelled and in vivo data in mean values 
was observed for groups representing healthy, early diabetic 
(Early.D), and severe hypertensive populations (Severe.H), 
where there were around 0.006 (1.02%) and 0.007 (0.99%), 
0.008 (0.98%) difference between the openBF modelled and 
in vivo results, respectively. Some more noticeable differ-
ence between modelled and in vivo data was also observed 
in the minimum and maximum values for the healthy popu-
lation, and severe hypertensive populations (Severe.H), 
where the discrepancy in maximum value among these 
groups were 0.030 (4.10%) and 0.022 (2.66%), respectively, 
and the discrepancy in minimum values among these groups 
were 0.030 (3.70%), and 0.020 (3.90%). Early.H have the 
highest discrepancy in the lower quartile with a discrepancy 
of 0.013 (2.10%), and Early.D have the highest discrepancy 
in the median value with a discrepancy of 0.022 (2.70%), 

and upper quartile with a discrepancy of 0.015 (2.00%). Fur-
thermore, disease progression led to a significant increase 
in RI values for both diseases, with mean RI values increas-
ing from 0.70 (Early.D) to 0.76 (Severe.D) for diabetes, 
and from 0.66 (Early.H) to 0.72 (Severe.H) for hyperten-
sion. Absolute percentage differences between openBF and 
in vivo results were computed as the difference between 
openBF values and in vivo values divided by their average, 
multiplied by 100.

Biomarkers Discriminatory Performance in Healthy, 
Diabetic and Hypertensive Models

Figure 5 illustrates the distributions of RI and mean RBF 
rate through single kidney in the modelled healthy and dis-
eased populations range between 50 and 59 yo. The distri-
bution of RI from in vivo data indicate that RI might be a 
potential discriminator of disease progression, both for DN, 
where its values increased from 0.71 (SD 0.06) to 0.76 (SD 
0.07) (as shown in Figure 4), as well as HN, with values 
increasing from 0.65 (SD 0.07) to 0.71 (SD 0.07), as they 
advance from the early to severe stages. However, the early 
and severe stages of diabetes and hypertension both show a 
substantial overlap. Distributions of RI and mean RBF rate 
in the modelled diseased populations for other age groups 
are provided as supplementary material, and show similar 
trends to those observed for the 50–59 yo age group.

Figure 5 illustrates that the mean RBF rate shows better 
disease stratification than RI between these two diseases at 
both early and severe stages. It is noticeable the significant 
overlap of the healthy population distribution with the dis-
tribution for the early stage of hypertension (Early.H). The 
distributions of mean RBF rate values through single kidney 
are also visualised via boxplots in Fig. 6, where its distribu-
tion with mean and standard deviation values for the Early.D 

Fig. 4  Comparison of RI values in segmental renal arteries with 
in vivo literature data for 20-79 yo healthy individuals [71], diabetic 
(Early.D/Severe.D) [70] and hypertensive (Early.H/Severe.H) patients 
[8, 70] at different disease stages. Simulation results are shown in 
black, and in vivo data are shown in grey. White solid lines represent 
mean values, while white solid circles represent median values

Fig.5  Scatter plot, showing RI and mean RBF rate distributions 
through single kidney for a 50-59 yo virtual population in presence of 
health, diabetes or hypertension at different disease stages
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and Early.H groups are 329 (SD 40) and 443 ml/min (SD 
54), respectively. The interquartile range for Early.D is from 
298 ml/min for the lower quartile and 354 ml/min for the 
upper quartile, mirroring the pattern observed in Severe.D. 
In Early.H, the interquartile range spans from 405 ml/min 
(lower quartile) to 476 ml/min (upper quartile), while in 
Severe.H, it ranges from 356 ml/min (lower quartile) to 
420 ml/min (upper quartile). Notably, an overlap is evident 
around 380 ml/min between Early.D and Early.H. Similarly, 
an overlap is observed around 365 ml/min between Severe.D 
and Severe.H. This overlap results in a challenge to differen-
tiate between DN and HN based solely on mean RBF rate.

Receiver Operating Characteristic Curves

Figure 7 presents the Receiver Operating Characteristic 
(ROC) curves for various classifiers, assessing and com-
paring the diagnostic performance of the biomarker RI or 
the mean RBF rate in distinguishing between DN and HN 
from early to severe stages. The ROC curve for the early 
disease stage (Early.D/H) using RI represents an area under 
the curve (AUC) of 0.79 (0.64 specificity, 0.81 sensitivity), 
indicating moderate diagnostic accuracy. In contrast, the 
ROC curve for the early disease stage (Early.D/H) using the 
mean RBF rate achieves a substantially higher AUC of 0.97 
(0.91 specificity, 0.93 sensitivity), reflecting better diag-
nostic accuracy. For the severe disease stage (Severe.D/H), 
ROC curve using the RI represents an AUC of 0.85 (0.78 
specificity, 0.75 sensitivity). Meanwhile, the ROC curve for 
the severe disease stage (Severe.D/H) using the mean RBF 
rate shows an AUC of 0.91 (0.86 specificity, 0.82 sensitiv-
ity). Additionally, Figure 7 marks the best cut-off values 

(solid black dots) for each ROC curve. The best cut-off 
point for the early disease stage is 0.65 for RI and 378 ml/
min for mean RBF rate. Similarly, for the severe disease 
stage (Severe.D/H), the best cut-off point is 0.73 for RI and 
352 ml/min for mean RBF rate.

In order to create ROC curves, all RI values and mean 
RBF rates in the early stages of kidney disease were consid-
ered potential cut-off points to distinguish patients with DN 
from those with HN. For each potential cut-off point, we cal-
culated the true positive rate (sensitivity) and false positive 
rate (1-specificity). We repeated the same steps to generate 
the ROC curve for the severe stage. To determine the opti-
mal cut-off point, we used Youden’s Index, which maximises 
the difference between sensitivity and specificity, calculated 
as the sum of sensitivity and specificity minus one. The cut-
off point with the highest Youden’s Index was considered 
the optimal cut-off point for distinguishing between DN and 
HN patients.

Discussion

The aim of this study was to develop a novel modelling 
approach, capable of realistically representing the effects of 
diabetes and hypertension in the kidney, and their progres-
sion, in typical arterial networks, and in presence of typical 
physiological variability observed in human populations. We 

Fig.6  Box plot of modelled mean RBF rate through single kidney 
for 50 to 59 yo healthy individuals, DN and HN patients at different 
disease stages. White solid lines represent mean values, while white 
solid circles represent median values. Black solid star signs repre-
sent outliers defined as values that fall below the first quartile − 1.5 * 
interquartile range (IQR) or above the third quartile + 1.5 * IQR

Fig.7  ROC curves for 50 to 59 yo Early.D, Early.H, and Severe.D, 
Severe.H populations using RI and mean RBF rate classifiers. Solid 
black line represents the ROC curve for the early disease stage 
(Early.D/H) using RI. Dotted black line represents the ROC curve 
for the severe disease stage (Severe.D/H) using RI. Dashed black 
line represents the ROC curve for the early disease stage (Early.D/H) 
using mean RBF rate. Dash dotted black line represents the ROC 
curve for the severe disease stage (Severe.D/H) using mean RBF rate. 
Black solid dot on each ROC curve is the best cut-off point to classify 
between DN and HN in early and severe stages. Dashed grey line rep-
resents a random classifier
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have developed and extended an arterial network compris-
ing a 1D representation of the biomechanics of blood flow 
through elastic vessels down to the interlobar arteries. The 
more peripheral renal arterioles were represented through 
lumped parameter models (arcuate, interlobular, and glomer-
ular arterioles), which were fully coupled to the 1D whole-
circulation model. A process of calibration was performed 
in order to find better alignment between modelled data and 
in vivo data in the presence of diabetes and hypertension.

The results show that this numerical approach can reli-
ably model the ageing process of the cardiovascular system 
with strong quantitative alignment with in vivo results for 
DBP, SBP, mean RBF rate, and RI distribution in differ-
ent age-based populations. For the validation of our age-
ing model, we used SBP and DBP data from the literature 
encompassing a total of 3,619 healthy men and women. As 
for the validation of our RI predictions, we used RI values 
from the literature reported for 572 healthy participants, 
aged 20 to 80 years. For validation of our mean RBF rate 
predictions, we used data from 180 healthy participants aged 
20 to 90 years. The minor deviations observed between pre-
dicted and in vivo data from the literature can be attributed 
to variations in individual physiology, measurement meth-
ods, or limitations in the assumptions of the model. Fur-
thermore, lifestyle choices, genetic factors, and underlying 
health conditions, not represented in our model, may also 
lead to differences between modelled and real data [73]. In 
contrast to existing models, our approach comprehensively 
accounts for the mutual influence of the renal system on the 
systemic circulatory system during the ageing process [23, 
69]. This distinction is important, as the high-flow in the 
renal circulation and kidney can have significant influence 
on systemic blood pressure.

Model-derived and in vivo RI data (Fig. 3c) show a 
good agreement at population level. The age-specific 
trends, as evidenced by median values, exhibit similar 
trends to those observed in vivo, suggesting that openBF 
is capable of accurately capturing the effects of ageing 
and these pathologies on blood flow. The data showed a 
small offset between modelled and in vivo data for RI. 
This might be due to a simplistic representation of arterial 
biomechanics (Eq. 3) which does not consider viscous-
elastic effects in the arterial wall. This may well affect a 
waveform-derived biomarker such as RI. Variations in the 
RI measurement locations for in vivo data, such as dif-
ferences in renal artery branch selection or measurement 
techniques, may also lead to differences between in vivo 
and openBF results, where data was consistently extracted 
from specific locations, Fig. 2. The model also predicts 
a consistent reduction in mean RBF flow rate with age-
ing, similar to what is observed in vivo. However, a rela-
tively high difference is observed in the 70–79 yo group, 
where openBF predicts higher flow rates when compared 

to in vivo data. This difference could be due to the fact that 
these in vivo data were reported for a group of individuals 
aged 80 and above, whereas in the openBF results, we only 
considered individuals aged 70 to 79 yo [72], for which 
parameterization data was available.

The simulations confirm that RI is a candidate biomarker 
to monitor the progression of kidney disease, with the mean 
value of RI increasing from 0.70 to 0.76 for early and severe 
stages of diabetes, and from 0.66 to 0.71 for early and severe 
stages of hypertension. For the validation of our Early.D 
and Severe.D populations, we used RI data from the lit-
erature encompassing one group of patients with diabetes 
and mild renal function impairment, and another group of 
patients with diabetes and moderate renal function impair-
ment, reported for a total of 194 kidney disease cases, aged 
around 20 to 80. As for the validation of our Early.H and 
Severe.H populations, we used RI data from the literature 
reported for 132 hypertensive patients with mild renal func-
tion impairment, and a group of hypertensive patients with 
moderate renal function impairment, reported for a total 194 
kidney disease cases, aged around 20 to 80. The model pro-
vides an explanation for these changes in RI by mechanisti-
cally linking these to direct disease effects. The increase in 
RI primarily results from narrowing of the vascular lumen 
and thickening of the arterial wall. The thickening of the 
arterial wall reduces the lumen area of the blood vessel, 
elevating vascular resistance and constraining the ability 
of blood vessel to dilate, thereby impacting diastolic blood 
flow stability. Consequently, to counteract this heightened 
resistance and sustain sufficient blood flow to the kidney, an 
increase in systolic blood velocity is necessary. Addition-
ally, thickened arteries hinder passive expansion, reducing 
space for blood flow during diastole and causing decreased 
end-diastolic blood velocity. These factors lead to higher RI 
values by increasing peak systolic velocity and decreasing 
end-diastolic velocity.

The model also provides some mechanistic insight into 
the mean RBF rate changes with disease progression. In the 
early stages of diabetes, a decrease of 100 ml/min in mean 
RBF rate is observed in the Early.D population, as indicated 
by the parameterization of DN (refer to Table 2). A similar 
downward trend in total mean RBF rate is observed in stage 
2, which is qualitatively in agreement with clinical data on 
kidney perfusion derived with arterial spin labelling (ASL) 
[15]. This decline is primarily attributed to decreased CO 
and increased renal peripheral vascular resistance resulting 
from diabetes. In the Early.H population, the distribution 
of mean RBF rate is similar to the healthy population. The 
model shows that this is due to the effect of two competing 
changes, the decreased lumen area of blood vessels leading 
to increased peripheral vascular resistance, and the increased 
CO. However, the model predicts a 60 ml/min decrease in 
the Severe.H population, characterised by a decrease in CO 
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and continued reduction in lumen area alongside increased 
peripheral vascular resistance.

The scatter plot distribution (Fig. 5) reveals that there is 
a substantial overlap between healthy and disease distribu-
tions. However, compared to RI, mean RBF rate in diabetic 
and hypertensive populations exhibits better stratification 
performance for both early and severe stages. The mean RBF 
rate for individuals with early stage diabetes (Early.D) is 
concentrated within a lower interval (230 to 380 ml/min). 
In contrast, early stage hypertension (Early.H) data span 
a broader mean RBF rate (300 to 590 ml/min). Notably, 
this overlapping region enlarges as the disease progresses, 
indicating that as kidney disease worsens, distinguishing 
whether it is caused by diabetes or hypertension might be 
more challenging.

From the ROC curves in Fig. 7, it is evident that the 
AUC for Early.D/H using the mean RBF rate is significantly 
higher (0.97) compared to the AUC for Early.D/H using RI 
(0.79). This substantial difference in AUC indicates that 
the mean RBF rate has superior sensitivity and specificity 
in distinguishing early stage DN from HN. Similar trends 
are observed for RBF discriminating performance at severe 
stages of the two diseases. Although the difference in AUC 
is less pronounced in the severe stage, the mean RBF rate 
still demonstrates a higher accuracy and reliability. There-
fore, the mean RBF rate shows promise as a more reliable 
biomarker for distinguishing DN from HN compared to RI, 
which is calculated based on systolic and diastolic velocities 
and serves as an indirect measure of renal vascular resist-
ance. Further studies could look at integration of additional 
diagnostic criteria and biomarkers to improve the discrimi-
nating performance between disease types.

This study has some limitations to consider. Firstly, since 
the literature sources for model parameterisation tend to 
describe the effects of diabetic and hypertensive nephropa-
thy only on large arteries such as the aorta and carotids, we 
had to assume that these pathologies affected the mechani-
cal and geometrical properties the other vessels in a similar 
way. This may be true or there could be a differential effect 
between the more elastic versus the stiffer peripheral vessels. 
Furthermore, the study also does not consider the relatively 
common situation of subjects that have both diabetes and 
hypertension.

Secondly, our current study was based on a gender-neutral 
model. This approach utilised the parameterizations and dis-
tributions of vascular mechanical parameters in both sexes, 
ensuring that the results of the virtual individuals generated 
by our model were not biased toward either sex. However, 
this approach may result in an analysis of RI and mean RBF 
rate in virtual patients that lack sex-specific insight. Given 
that sex is a significant factor in clinical trials, it is recom-
mended that in future studies a mechanistic model that 
incorporates sex-specific parameters is used. Additionally, 

the study did not account for variations in anthropometric 
features like height and weight.

Thirdly, the number of unphysiological virtual individu-
als filtered out in this study reached 7747 out of a total of 
12,000 (65% filtering rate). The high rate of unphysiologi-
cal virtual individuals in our model is primarily due to the 
random selection and allocations of parameters to our mod-
els. Although each parameter remains within physiologi-
cal ranges, the independent parameters’ selection and their 
uncorrelated combination in a virtual patient can result in 
unrealistic combinations. For instance, a very stiff blood ves-
sel wall might be paired with the same vessel being very nar-
row and long, therefore leading to unphysiological/unrealis-
tic results (blood pressure). This issue is exacerbated by the 
complexity of the model, which involves over 100 blood ves-
sels and 500 parameters. The unknown correlations between 
parameters across blood vessels significantly contribute to 
the low filter rate, as many generated combinations do not 
represent realistic physiological conditions. In the absence 
of more specific data distributions in real populations, we 
followed similar state-of-the-art approaches to Willemet 
et al. [74] and Benemerito et al. [69] for removing unrealis-
tic parameterizations, which achieved similar filtration rates 
(58% and 75%, respectively).

In this study, the most peripheral renal vessels (arcuate, 
interlobular renal arterioles, and glomeruli) were not directly 
and individually modelled, but rather lumped into an R-C-R 
model representation. This prevented us from modelling the 
early differential effects of DN and HN, which mainly affect 
the glomeruli. When most patients first develop diabetic kid-
ney disease, an increase in eGFR (over 120 mL/min/1.73m2) 
can be observed caused by dilation of afferent arterioles 
and constriction of efferent arterioles to response to dia-
betic kidney disease. This process is commonly and clini-
cally known as hyperfiltration [75]. In hypertension, both 
afferent and efferent arterioles are constricted in the early 
stages [76]. These processes were not directly modelled in 
our study. In addition, the literature data that informed the 
parameterisation of our models was not detailed enough to 
separate the influence of solely diabetes or solely hyper-
tension on the parameters of our model. These are often 
concomitant factors in chronic kidney disease. For example, 
the increased Young’s modulus observed in diabetic patients 
in the later stages of disease progression, might be caused 
by an increase in systemic pressure rather than by diabetes. 
Therefore, whether the increased Young’s modulus should 
be included as part of the parameterization of diabetic model 
remains worth investigating in the future.

In conclusion, we showed that our coupled 1D-0D com-
putational model is capable of realistically capturing the 
physiological changes associated with ageing in healthy 
individuals and the renal damage resulting from diabetes or 
hypertension. By incorporating virtual patients representing 
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various stages of diabetes and hypertension, our analysis 
indicates that mean RBF rate might help to differentiate 
between DN and HN from an early stage, whilst RI showed 
potential to be used in the progression of diabetic and hyper-
tensive kidney disease. Following further validation and cal-
ibration in vivo, this modelling approach in renal circulation 
has the potential to identify biomarkers for clinical trials. 
These biomarkers could pave the way for a potentially non-
invasive diagnosis and management of CKD from an early 
stage, when intervention may still be effective in mitigating 
or reversing the condition.
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