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Operator-free HPLC automated method
development guided by Bayesian optimization†

Thomas M. Dixon, a Jeanine Williams, b Maximilian Besenhard, c

Roger M. Howard,d James MacGregor,e Philip Peach,e Adam D. Clayton, a

Nicholas J. Warren a and Richard A. Bourne *a

The need to efficiently develop high performance liquid chromatography (HPLC) methods, whilst adhering

to quality by design principles is of paramount importance when it comes to impurity detection in the

synthesis of active pharmaceutical ingredients. This study highlights a novel approach that fully

automates HPLC method development using black-box single and multi-objective Bayesian optimization

algorithms. Three continuous variables including the initial isocratic hold time, initial organic modifier

concentration and the gradient time were adjusted to simultaneously optimize the number of peaks

detected, the resolution between peaks and the method length. Two mixtures of analytes, one with

seven compounds and one with eleven compounds, were investigated. The system explored the design

space to find a global optimum in chromatogram quality without human assistance, and methods that

gave baseline resolution were identified. Optimal operating conditions were typically reached within just

13 experiments. The single and multi-objective Bayesian optimization algorithms were compared to

show that multi-objective optimization was more suitable for HPLC method development. This allowed

for multiple chromatogram acceptance criteria to be selected without having to repeat the entire

optimization, making it a useful tool for robustness testing. Work in this paper presents a fully “operator-

free” and closed loop HPLC method optimization process that can find optimal methods quickly when

compared to other modern HPLC optimization techniques such as design of experiments, linear solvent

strength models or quantitative structure retention relationships.

Introduction

Analytical High Performance Liquid Chromatography (HPLC) is

used extensively in the pharmaceutical industry for quality

control, reaction monitoring and quantitative analysis.1–3 Short

method times are essential to increase the sampling rate for

reaction monitoring or quality control purposes. Failure to

obtain sufficient peak resolution can result in coelution of

peaks, which is important to avoid for the accurate character-

isation and quantication of impurities in the pharmaceutical

industry to ensure regulations are met.2 Quantifying impurities

ensures the manufactured Active Pharmaceutical Ingredients

(APIs) are safe for human consumption through analysis of

their pharmacological and toxicological properties, and will

dictate if further purication or reaction condition modica-

tions are required during the manufacture of the API.4 However,

the ability to nd HPLC methods that optimize for these

parameters is costly due to the time and resources required to

screen different conditions.

HPLC methods separate analytes in a mixture based on their

affinity for a stationary and a mobile phase. The technique is

believed to separate between 60–80% of all existing

compounds,5 making it the most used separation technique for

the identication of impurities in the pharmaceutical industry.6

In addition, the method can be easily integrated as an online

technique for monitoring reactions in ow.7 There is a demand

for robust HPLC methods that give baseline resolution in the

shortest amount of time, but the method development process

can take several days for even the most experienced analytical

chemists.

There have been many advancements in the efficiency of

HPLC method optimization. Design of experiments (DOE) and

modelling based method development tools are among the

most popular.8,9 Soware packages such as DryLab,10 ACD/LC

Simulator11 and ChromSword12 aim to automate method
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development by selecting experiments based on different vari-

ations of DOE and offer tools such as peak tracking. Given data

from a DOE, the retention time of each peak under different

method conditions is tted to a model. Using these models,

a range of different method conditions can be simulated and

the chromatogram quality assessed.13,14 Those conditions that

match the desired qualities computationally are then run on the

HPLC to give the optimal method. These models range from

simple quadratics to linear solvent strength (LSS) models,

which can be evaluated computationally to optimize parameters

such as gradient steepness, isocratic hold times, pH or

temperature. This methodology has also been used to automate

robustness testing, ensuring baseline resolution in the chro-

matogram is maintained even with slight alterations in method

conditions. Many examples have used this approach to optimize

HPLC method conditions.15–21

Recent advancements in elution time prediction include in

silico quantitative structure retention relationships (QSRR), that

use machine learning models to map molecular ngerprints

and molecular descriptors to retention times, so that molecules

with unknown retention properties can be estimated using only

their structures.22,23 This novel data driven optimization allows

for information about ideal separation conditions to be ob-

tained without needing to do any prior screening.

The main disadvantages with model-based approaches

include the human processing time to label peaks and verify the

models. The effectiveness of these models to simulate any

secondary separation mechanisms or size exclusion effects can

also lead to incorrect predictions.24 QSRR also requires large

amounts of balanced datasets which are not always available.

Although these methods can provide some automation, their

functionality is not fully automated or closed-loop.

Operator-free optimization has shown to be successful in

ow chemistry, where systems have been developed to be able to

autonomously self-optimize input conditions such as residence

time, equivalents and temperature to nd optimal conditions

for objectives such as yield, space-time yield and purity.25–32

These systems make use of optimization algorithms, which are

most commonly used to optimize expensive-to-evaluate func-

tions, where a considerable amount of computer processing or

long experiment times are required. This can result in opti-

mizing input conditions in fewer experiments compared to

other machine learning techniques.33 As chemical reactions can

take a signicant amount of time to run, it makes them an ideal

candidate for optimization algorithms.34 Provided a system can

become “closed-loop”, where input conditions can be freely

modied and objectives can be analyzed and interpreted auto-

matically, an optimization algorithm can be integrated to fully

automate nding optimal conditions. Therefore, the same

approach can be used to optimize HPLC method conditions.

Berridge in 1986 stated that the use of optimization algo-

rithms in HPLC method development is limited as they were

previously only local and single-objective, one example being

the Simplex algorithm.35,36 However recent advancements in

optimization algorithms have increased their functionally to

optimize globally and handle multiple objectives at once,

making the concept of fully autonomous HPLC method opti-

mization possible.34,37 Simplex was used to optimize for chro-

matogram quality.38,39 An iterative stochastic search, based on

a pure random search where the design space is shrunk with

each iteration, was also developed.40 However, both of these

optimization approaches are unlikely to reliably nd the global

optimum in a HPLC method optimization.

Recent research has shown Bayesian optimization algo-

rithms to be particularly efficient at solving complex optimiza-

tion problems.41 They are described as being black box,

meaning no previous intuitive knowledge about the optimiza-

tion problem is required for them work.34 Therefore, other than

developing a way to measure the chromatogram quality, no

fundamental HPLC theory would need to be programmed to use

these algorithms. This may offer an advantage when developing

analytical methods on novel systems as no previous knowledge

about the system would be assumed.

The use of Bayesian statistical modelling has been investi-

gated by Lebrun et al. where multivariate models were used on

experimental data to make predictions about retention time.42 A

Bayesian design space has also been used for robustness testing

for pharmaceutical assays.43 This work aims to incorporate

Bayesian optimization algorithms as a means to nd the global

optima of chromatogram quality by changing method variables.

Fig. 1 A schematic of the closed loop HPLC method optimization system.
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One drawback of Bayesian modelling is that it does not scale

well with problems containing 10–20 variables.44 However,

HPLC method optimization should t comfortably within the

required dimensionality for this.

Boelrijk et al. demonstrated the use of Bayesian optimization

algorithms to optimize HPLC methods for two complex dye

mixtures in as few as 35 experiments.45 Both single and multi-

objective optimization algorithms were used using input

conditions that dened a multi-linear gradient program to

separate the analytes, and custom objective functions such as

‘separation quality’ which combined the number of peaks

detected with the method time. Building on this approach, we

report herein the development of an autonomous impurity

scouting method which focuses on achieving baseline resolu-

tion in the shortest time possible for full quantitative analysis.

Guidelines known as the Quality by Design (QbD) principles

for liquid chromatography were written to ensure HPLCmethod

conditions are explored effectively, ensuring impurities are

identied and methods are robust.46 Coupling single and multi-

objective Bayesian optimization algorithms with automated

data analysis integrated into a closed loop optimization plat-

form, offers a novel approach to HPLC method optimization. A

schematic of this approach is described in Fig. 1. Work detailed

in this paper aims to highlight the advancements of an industry

4.0 approach on HPLC method optimization, aiming provide

a methodology that can be used automate and accelerate the

identication of impurities in chemical reactions for the phar-

maceutical industry.

HPLC automation platform

An automated ‘closed-loop’ HPLC method optimization system

was developed by writing some custom MATLAB code which

could interface with macros in ChemStation. All HPLC

methods, data analysis and generation of new conditions were

performed autonomously, governed by an optimization algo-

rithm. All the code has been made available on GitHub.47

Input conditions

The design space of the optimization is dened by the lower and

upper bounds of the three variables stated in Table 1, along with

a description for each variable.

Optimization algorithms and objective functions

The optimization algorithms used were: a single-objective

Bayesian optimization algorithm with an adaptive expected

improvement acquisition function (BOAEI), with the Gaussian

process model using a ARD Matern kernel with V = 5/2;26,48 and

a Thompson sampling efficient multi objective (TS-EMO) opti-

mization algorithm.49,50 These algorithms are categorised as

black box.

For initialisation, the algorithms require an initial data set

which is generated using Latin hypercube sampling (LHS).51 Seven

initial conditions were generated using LHS for the three input

variables dened in Table 1. A different set of seven initial LHS

conditions were generated for each optimization experiment.

For the optimization algorithm to nd conditions that

maximize chromatogram quality, an objective function(s) must

be dened. This can be done using a range of different chro-

matogram factors. One such factor is the separation between

two peaks, known as resolution (Rs) which is dened in eqn (1).

This factor denotes the separation between two Gaussian peaks,

where tRx is the retention time of peak x and whx is the width of

peak x at half height.

Rs ¼
1:18ðtR2 � tR1Þ

wh1 þ wh2

(1)

The larger the resolution between two peaks, the greater the

separation. Perfect separation between two Gaussian peaks is

achieved when Rs = 1.5. Separating all the peaks in a chro-

matogram with an Rs greater than 1.5 is optimal in most situ-

ations. The smallest overall Rs between any two consecutive

pairs of peaks in a chromatogram is dened as the critical

resolution (RsCrit) shown in eqn (2), where n is the number of

consecutive peak pairs.

RsCrit ¼ min

0

B

B

B

B

B

B

B

B

@
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6

6

6
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6
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Rs2

.

Rsn

3

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

A

(2)

Table 1 Definition of input variables for the optimization

Variable Description Lower bound Upper bound

Initial organic modier

concentration (%)

The organic modier concentration

when time is zero

5 60

Initial isocratic hold time/minutes The length of time the initial

organic modier concentration is
held for before a gradient method

begins

0 10

Gradient time/minutes The length of time from the initial

organic modier concentration to
an organic modier concentration

of 95% aer the initial isocratic

hold

1 10

© 2024 The Author(s). Published by the Royal Society of Chemistry Digital Discovery
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An optimal HPLC method resolve all the analytes in

a mixture with a RsCrit greater than 1.5 in the shortest possible

time. Shorter method times are desirable to increase analysis

throughput. Therefore, it was decided that the overall quality of

the chromatogram would be governed by three factors: The

number of peaks, the time the last peak elutes and RsCrit.

BOAEI was initially used to optimize HPLC method condi-

tions. A weighted objective function (R) was created to represent

the overall chromatogram quality based on these three HPLC

factors. R is summarized in eqn (3), where N is the number of

peaks detected and tRL is the retention time of the last peak in

the chromatogram.

R ¼

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

0:6

�

7�N

7

�

þ 0:3

�

2� RsCrit

2

�

þ0:1
�

tRL

22

�

; RsCrit# 2

0:6

�

7�N

7

�

þ 0:1
�

tRL

22

�

; RsCrit. 2

minimize½R�

(3)

As R tends towards zero, the chromatogram quality is

increased. R = 0 denotes a chromatogram with seven peaks,

RsCrit$ 2 and the time the last peak elutes at zerominutes. R= 1

denotes a chromatogram with zero peaks, RsCrit = 0 and the

time the last peak elutes at 22 minutes. R will always be between

zero and one. BOAEI will aim to minimize R by varying the three

input variables dened in Table 1.

N, RsCrit and tRL are calculated from chromatogram data,

normalized between 0 and 1 using pre-dened limits and then

multiplied by a pre-dened weighting factor based on its

importance. Each factor with its normalisation and weighting is

described in Table 2. A special case for eqn (3) was also dened

so when RsCrit > 2, the 0.3 ((2-RsCrit)/2) term is removed, pre-

venting the term from becoming negative and from giving

optimal values to chromatograms with large RsCrit values over N

and tRL.

N was deemed the most important HPLC factor and so was

given the largest weighting, followed by RsCrit and then tRL.

Therefore, a 6 : 3:1 ratio respectively of the weightings was

selected to focus on this order of importance in the objective

function. Normalisations were dened based on the maximum

and minimum possible values that could be obtained for each

objective in an experiment, based on the input variables dened

in Table 1 and a mixture containing up to seven analytes. The

selection of weightings is difficult without prior information

about the system and can have a signicant impact on the

trajectory of the optimization.52 This is overcome with themulti-

objective optimization approach, where the need to dene

weightings and normalisation parameters is removed.

TS-EMO, a multi-objective Bayesian optimization algorithm,

was next used with three objective functions. This time the

HPLC factors dened in Table 2, N, RsCrit and tRL, were used

individually as the different objective functions. The natural log

of each objective was taken before it was fed into the optimi-

zation algorithm, as surrogate models tend to t better to log

transformed data.53 As TS-EMO aims to minimize its objective

functions, the result of the log transformed N and RsCrit objec-

tives were multiplied by −1, as these objectives are to be

maximized. The TS-EMO optimization with three objectives is

summarized in eqn (4).

Minimize[−lnN, −lnRsCrit, ln tRL] (4)

TS-EMO prioritizes solutions that maximize the hyper-

volume improvement of the design space. This makes use of

Thompson sampling, an acquisition function that balances

exploration of the design space versus exploitation of points that

are believed to be optimal from the Gaussian process model,

and NSGA-II, a genetic algorithm that uses Pareto ranking and

crowding distance computations to nd points that maximize

the hypervolume improvement. The result is an algorithm that

aims to nd the trade-off between different objective functions.

The points that lie on the boundary of the trade-off are

described to be Pareto dominant and can be used to plot

a Pareto front. This represents points in the design space for

a given objective that cannot be improved without having

a detrimental effect on another objective.34,50 Therefore, TS-

EMO will aim to nd the trade-off between N, RsCrit and tRL.

The optimization loop

The results from the initial conditions are processed and fed

into the objective function(s) to calculate the objective(s). All the

input conditions and the associated objective(s) is fed into the

optimization algorithm selected to generate a new HPLC

method, which is written to an excel le. A ChemStation macro

reads the data written to excel and alters the HPLC method

within ChemStation. Aer three minutes of equilibration at the

newly dened conditions the HPLC method is started. Once the

method has nished, the chromatogram data is read, and its

quality is assessed by the selected objective function(s). The

newly generated method condition along with the objective

function(s) is concatenated with the other conditions and fed

Table 2 The different HPLC factors used for the BOAEI HPLCmethod optimization, with their normalisation and weighting values that define the

weighted objective function (R)

Factor Desired result Normalisation Weighting

Number of peaks (N) Maximize 0–7 0.6

Critical resolution (RsCrit) Greater than or equal to two 0–2 0.3

Time last peak elutes (tRL) Minimize 0–22 0.1

Digital Discovery © 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery Paper

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

4
 J

u
n
e 

2
0
2
4
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/7
/2

0
2
4
 1

1
:4

5
:0

9
 A

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



back into the optimization algorithm, where a new data point is

generated. The cycle continues, each time with new data being

acquired to aid in the search for the global optimum of the

objective function(s). Fig. 1 shows a schematic of this process.

Automated data analysis

The chromatogram datales were read and normalized between

0 and 200 before being processed by a Gaussian peak picking

algorithm to automatically nd the width and retention time for

each peak detected.54

Experimental section
Materials

Acetonitrile and toluene were analytical grade and purchased

from Sigma-Aldrich. Ultrapure Water (18.2 MU) was obtained

using a Millipore Gradient water purication system. Ammo-

nium formate was purchased from Fluorochem. Thiourea,

benzyl alcohol, toluene, benzophenone, naphthalene, biphenyl,

anisole, benzaldehyde, phenol, benzyl benzoate and 4-nitro-

phenol were reagent grade and purchased from Sigma-Aldrich.

All reagents were used without further purication.

Sample preparation

Mixture A (seven molecules). Biphenyl, 4-nitrophenol,

benzaldehyde, anisole, toluene, phenol and thiourea (20 mg

each) in acetonitrile (30 mL).

Mixture B (eleven molecules). Thiourea, benzyl alcohol,

toluene, benzophenone, naphthalene, biphenyl, anisole, benz-

aldehyde, phenol, benzyl benzoate, 4-nitrophenol (30 mg each)

in acetonitrile (40 mL).

The structures of these molecules are shown in Fig. 2.

Instrumentation

The liquid chromatography instrumentation used was an Agi-

lent Innity II HPLC that included a vial sampler, quaternary

pump VL, diode array detector wide range and multicolumn

thermostat. The instrumentation was controlled using Chem-

Station (version C.01.09 [144]). The chromatographic column

used was an Agilent Poroshell 120 EC-C18 (50 mm × 4.6 mm,

2.7 mm) thermostated at 30 °C and buffered using the following

solvent system: A = 10 mM ammonium formate in water, B =

10 mM ammonium formate in 9 : 1 acetronitrile : water. The

owrate was 1.5 mL min−1 and the injection volume was 2 mL.

All methods nished at 95% B for two minutes and newly

submitted methods were equilibrated for three minutes prior to

starting. Detection was at 210 nm with a bandwidth of 2 nm.

MATLAB (version R2021b), Excel (office 365) and Chem-

Station (version C.01.09 [144]) were used to automate the HPLC

method development process and were run on a HP Prodesk

computer with an Intel® Core™ i5-8500 processor @ 3.00 GHz,

6 cores, and 8 Gb RAM.

HPLC optimizations

Nine optimizations were run in total. All the experimental data

is available in the SI in Tables S1 to S9.† Traces for each opti-

mization are also available in Fig. S6 to S8.† The design space

for each optimization was dened according to Table 1.

Optimizations 1–3. Given the weighted objective function

dened in eqn (3), seven initial conditions were run using LHS

before 33 iterations of the BOAEI optimization algorithm were

used to optimize the HPLC method conditions for Mixture A

overnight. This optimization process was repeated three times

to give optimizations 1, 2 and 3.

Optimizations 4–9. Implementing the three objective func-

tions described in eqn (4), seven initial conditions were run

using LHS before 43 iterations of the TS-EMO optimization

algorithm with three objectives were used to optimize the HPLC

method conditions for Mixture A and Mixture B overnight. This

optimization process was repeated: three times for Mixture A to

give optimizations 4, 5 and 6, and three times for Mixture B to

give optimizations 7, 8 and 9.

Results and discussion

A range of molecules containing chromophore groups and

varying polarities were selected to test the effectiveness of the

automated HPLC method optimization system, shown in Fig. 2.

For Mixture A, seven molecules were selected including thio-

urea which is unretained on the C18 column used. Biphenyl is

commonly used as an internal standard for quantitative anal-

ysis. Structurally similar compounds with different functional

groups were selected to mimic the formation of a range of

products in a standard reaction.

BOAEI: single weighted objective optimization

Optimizations 1–3 used BOAEI and a weighted objective func-

tion R dened in eqn (3) to optimize for chromatogram quality

on Mixture A. For a HPLC method to be labelled as ‘optimal’ for
Fig. 2 Molecular structures of the components within Mixture A (7

components) and Mixture B (11 components).

© 2024 The Author(s). Published by the Royal Society of Chemistry Digital Discovery
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Mixture A, criteria were dened as N = 7, RsCrit$ 2, and tRL # 6

minutes. These criteria were selected to allow for one minute of

separation between each analyte peak and to ensure adequate

baseline resolution. As R tends towards one, it represents

a poorer quality HPLC method with a chromatogram that has

a smaller N due to coelution, a smaller RsCrit from peak overlap

and/or a longer tRL. As R tends towards zero, the opposite is true

and will represent a chromatogram that is more likely to be

deemed optimal. BOAEI will aim to minimize R by varying the

input variables dened in Table 1. Optimizations 1–3 ran for 40

experiments overnight without interruption, facilitating usage

during a time that would normally be instrument downtime.

Fig. 3 shows the rst chromatograms that satised the optimal

criteria for each repeated optimization.

BOAEI was able to nd method conditions for optimizations

1–3 that satised the dened criteria in an average of 13

experiments. Experiments 12, 19 and 9 for optimizations 1–3

respectively were the rst experiments to reach optimal condi-

tions, achieving R values of 0.0195, 0.0222 and 0.0238

respectively.

Further experimentation resulted in even more optimal

HPLC method conditions being discovered, where tRL was

reduced to 3.9 minutes aer 33 experiments (R = 0.0178), 3.3

minutes aer 24 experiments (R= 0.0150) and 5.1 minutes aer

28 experiments (R = 0.0230) for optimizations 1–3 respectively,

which also satised the N = 7 and RsCrit$ 2 criteria. The design

spaces for optimizations 1–3 are shown in Fig. 4 and have been

Fig. 3 The first chromatograms from optimizations 1 (top), 2 (middle)

and 3 (bottom) that satisfied the design space criteria (N = 7, RsCrit $ 2

and tRL # 6 minutes), representing experiments 12, 19 and 9

respectively.

Fig. 4 The design spaces for optimizations 1–3 and the trade-off between RsCrit and tRL where N = 7. The color scale represents the value of the

weighted objective function R.
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plotted in a four-dimensional design space with R represented

by a blue to green color scale (for 2D matrix plots see Fig. S9†).

The crosses represent the rst experiments to satisfy the design

space criteria and correspond to the method conditions used to

acquire the chromatograms in Fig. 3. The green stars represent

the experiments with the smallest value of R achieved by each

optimization. Despite more optimal conditions being found in

later experiments, the algorithm was highly effective at nding

the optimal regions of the design space in early experiments,

demonstrated by the near overlap of the crosses and stars for

each optimization in Fig. 4.

Fig. 4 shows that there are two optimal regions in the design

space that lead to small values of R. The most optimal region lies

with an initial organic modier between 30 and 40%, a gradient

time of one minute and the initial isocratic hold time between

one and three minutes. The BOAEI algorithm in optimizations 1

and 2 found R to beminimized in this region of the design space.

However, a second optimal region is observed when longer

gradient times between six and ten minutes are selected, the

initial isocratic hold time is close to zero minutes and the same

initial organic modier concentration is used. This is where the

BOAEI identied R to be minimized in optimization 3.

The results from optimization 3 demonstrated that methods

with long, shallow gradients, that allow the rst four peaks to

elute with a RsCrit$ 2, were just as optimal as methods with fast

and steep gradients but with a longer initial isocratic hold time

to enable efficient separation of the last three peaks, shown in

optimizations 1 and 2.

Despite the success of BOAEI using R to nd optimal chro-

matograms in as few as nine experiments, one drawback is

demonstrated by the differences in the optimal chromatogram

tRL aer 40 experiments. The most optimal method condition

found in optimization 2 had a tRL of 3.3 minutes, which is

clearly more desirable than the most optimal methods in opti-

mizations 1 and 3 which were only able to achieve 3.9 and 5.1

minutes respectively. Consequently, the R values are too similar

for each optimal condition, with a difference of only 0.0043

between them. The weighting for the tRL term in R had a smaller

inuence on the overall value of R compared to the N and RsCrit

terms, making the two regions in design space similarly optimal

for the BOAEI algorithm.

Re-dening the individual weightings and normalisation

factors for R may help to prevent this, however further experi-

mentation and knowledge about the system being optimized

would be required, which contradicts the aims of this research.

Simply increasing tRL weighting could have other detrimental

effects, such as favouring small tRL times over maximising N.

Therefore, more complicated mixtures with unknown numbers

of analytes may not be suitable for this type of optimization as

an outside knowledge is required to compose an ideally suitable

weighted objective function.

The trade-off between the RsCrit and tRL for optimizations 1–3

where N= 7 is also shown in Fig. 4. The red dashed box denotes

the experiments that satised the design space criteria. A total

of 13 experiments from optimizations 1–3 were found to satisfy

these criteria. Most of the data points in the trade-off plot lie to

the right-hand side where RsCrit is maximized. This is due to the

RsCrit term in R having a larger weighting associated with it

compared with the tRL term, so the BOAEI algorithm will focus

on these methods more as the value of R is smaller.

The trade-off graph in Fig. 4 shows that if the critical resolu-

tion criteria were to be lowered to 1.5, a tRL of 2.05 minutes for the

separation of Mixture A could be achieved, which was experiment

25 in optimization 2. R for this point is only 0.0694 as the R

favours methods with RsCrit $ 2. For the algorithm to effectively

explore methods with RsCrit $1.5 instead, the normalisation

factors in R would have to be rewritten and the optimization

repeated. A more suitable approach to optimising HPLCmethods

would involve an algorithm that removes the need for normal-

isation and weighting factors, and instead explores this trade-off.

Therefore, it was decided that a multi-objective optimization

algorithm such as TS-EMO, which is designed to effectively

explore the trade-off between objectives such as N, RsCrit and tRL,

would be more suitable. This Pareto front can then be used to

select optimal conditions based on the user's requirements. It

would also ensure that if the requirements ever changed, the

optimization would not need to be repeated. Removing the

weightings and normalisation factors would also mean less

information about themixture being optimized would be needed.

TS-EMO: multi-objective optimization

For optimizations 4–6 TS-EMO was used to optimize Mixture A.

Three objective functions were constructed that dictated the

overall quality of the chromatograms, dened in eqn (4). All

three of these objectives were optimized for simultaneously,

removing the need to dene a custom weighted objective

function. This makes using this HPLC method optimization

system more applicable when working with mixtures with an

unknown number of analytes.

Optimizations 4–6 ran for 50 experiments each overnight

without interruption. Fig. 5 shows the design space for all three

of these optimizations overlayed (for 2D matrix plots see

Fig. S10†), along with the trade-off between the RsCrit and tRL
when N= 7, with the blue to orange color scale representing the

distance to the Pareto front when RsCrit $ 1.5. This metric

represents the smallest normalized distance of each point to the

pareto front. Points that have RsCrit < 1.5 were deemed sub-

optimal and so have been set to the maximum distance of 1.

This metric aims to show the optimal conditions that are close

in proximity to the pareto front so that they can be visualised in

the design space clearly.

Fig. 5 shows that the optimal HPLC method conditions for

optimizations 4–6, that lie close to these best conditions, are in

a very similar location of the design space compared to the

method conditions where R is minimized for optimizations 1–3

in Fig. 4, showing that both algorithms were successful at

effectively exploring the design space and identifying optimal

conditions. As TS-EMO is a multi-objective optimization algo-

rithm, it was efficient at nding points that lie close to the

Pareto front between RsCrit and tRL when N = 7 in the trade-off

graph in Fig. 5, unlike BOAEI in Fig. 4 where most of the data

points in the trade-off graph were focused to the right-hand side

with large RsCrit values.
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The number of experiments required to reach an optimal

method condition where N = 7, RsCrit $ 2, and tRL # 6 minutes

for optimizations 4–6, excluding the initial LHC, was 17, 40 and

22 respectively, making the average number of experiments

required to reach the design space criteria, 26.3, over double the

average of 13 experiments when compared to optimizations 1–3.

The overall best methods out of the 50 experiments for opti-

mizations 4–6 were able to reduce tRL to 2.8 minutes aer 17

experiments, 3.5 minutes aer 44 experiments and 3.2 minutes

aer 22 experiments respectively, as well as satisfyingN and RsCrit
criteria. Although TS-EMO required more experiments, it out-

performed BOAEI as it was able to consistently ndmore optimal

HPLC method conditions with a smaller average tRL. It was

additionally able to efficiently explore the Pareto front between

RsCrit and tRL, which can be used to select chromatograms with

other characteristics, such as methods with RsCrit $ 1.5, without

the need to repeat the optimization. Therefore, if new design

space criteria were to be dened as: RsCrit$ 1.5, N = 7 and tRL#

6, the algorithm (excluding LHC experiments) was able to opti-

mize the method conditions in as few as 11, 12 and 10 experi-

ments for optimizations 4–6 respectively. The fastest overall

experiment that satises these new criteria was experiment 32 in

optimization 6 with tRL = 2.4 minutes. Given that in the phar-

maceutical industry, methods need to undergo robustness

testing, which is part of the QbD process for HPLC method

development, the exibility to change criteria without needing to

repeat experimentation could be a useful time saving tool.

Some datapoints unfortunately in Fig. 5 were just below an

Rscrit of 1.5 and therefore deemed sub-optimal. For example,

experiment 31 in Optimization 4 had a tRL of 2.04 and an Rscrit of

1.46, which is very similar to experiment 25 in optimization 2

shown in Fig. 4, which had a tRL of 2.05 and Rscrit of 1.60. As TS-

EMO aims to nd the trade-off between objectives, conditions

where RsCrit # 1.5 were also explored, which may be undesir-

able. A constraint on the objective function could be added here

to help reduce the number of experiments in this region and

focus on more useful HPLC conditions.

To further test the effectiveness of using TS-EMO for HPLC

method optimization, Mixture B which was a more complex

mixture with 11 analytes was created. This mixture contained the

same analytes as Mixture A but added four new molecules that

were again varied in polarity and represented typical molecules

found in reactions. The same design space that was used for

optimizations 1–6 dened in Table 1 was selected to make the

optimization process challenging, even though more molecules

were present in Mixture B. Optimizations 7–9 ran for 50 experi-

ments each, without interruption overnight. Fig. 6 shows the

design space for all three of these optimizations overlayed (for 2D

matrix plots see Fig. S10†), along with the trade-off between the

RsCrit and tRL when N = 11, with the blue to orange color scale

representing the distance to the Pareto front when RsCrit $ 1.5.

All three optimizations were unable to nd HPLC method

conditions that gave RsCrit $ 2, given the dened design space.

Only a total of 12 experiments across optimizations 7–9 were

found where RsCrit was greater than 1.5. Subsequently the design

space criteria were redened so RsCrit$ 1.5, N = 11 and tRL# 10.

This was rst observed rst for experiment 8 for Optimization 7

and experiment 10 for optimization 9. However, optimization 8

failed to nd any optimal method conditions within 50 experi-

ments. Points that were optimal appear to have their initial

organic modier concentrations between 5 and 35%, with short

isocratic hold times and long gradient times, therefore most of

the optimal conditions lie in the corner of this design space.

The randomness incorporated into selecting initial condi-

tions using LHS may have been the reason why optimization 8

was unable to nd any chromatograms that satised the design

space criteria, when compared to optimizations 7 and 9. In this

instance, using a 2k factorial DOE instead of LHS for initial

conditions, where the corners of the design space are explored

rst, may have beenmore suitable as an initial starting point for

TS-EMO to explore a wider range of conditions more quickly.

Extra experiments were run on optimization 8 and an

optimal point was eventually found on experiment 68, which

was signicantly slower compared to optimizations 7 and 9,

resulting in an average of 29 experiments across all three

Fig. 5 The design spaces for optimizations 4–6 and the trade-off between RsCrit and tRL where N = 7. The color scale represents the distance to

Pareto front when RsCrit $ 1.5, represented by points to the right-hand side of the dotted line in the trade-off plot.
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optimizations to satisfy the design space criteria. One experi-

ment for optimization 8 was however able to reach an RsCrit of

1.48 by experiment 44, and located in a similar region of the

design space to the optimal points in optimizations 7 and 9.

Despite few optimal chromatograms being discovered, the

region of the design space that contains the optimal solutions is

small. These experiments show that for more optimal solutions

to be found, expansion of the design space, specically changing

the gradient time parameter to an upper bound of 15–20

minutes,may have enabled expansion of the Pareto front towards

methods that give RsCrit$ 2. Selecting a suitable parameter space

for the optimization will vary depending on the mixture being

optimized. Generally, some prior knowledge about the mixture

being optimized will be known. However, starting with a design

space with a large range between variables and running an

optimization will allow the user to see where the optimal points

lie. This may be more benecial to do before then reducing the

range of the variables in the design space and repeating to ne

tune more optimal conditions along the Pareto front.

Optimization 7 found the fastest tRL that satised the design

space criteria, with separation in 5.2 minutes with an RsCrit of

1.58 by experiment 30. Optimal chromatograms for both

Mixture A and Mixture B are shown in Fig. 7.

Conclusion

This research has demonstrated the use of both BOAEI, a single

objective optimization algorithm, and TS-EMO, a multi-

objective optimization algorithm, to autonomously nd HPLC

method conditions that result in optimal chromatograms in as

few as nine experiments for two different mixtures of analytes.

Optimizations were run overnight with minimal interruption,

making use of potential instrument downtime and alleviating

method development during the working day so that increased

focus on characterisation of peaks and robustness testing can

be achieved, aiming to help accelerate impurity scouting during

the manufacture of APIs.

Further modications to this soware could include the

implementation of discrete and continuous variable optimiza-

tion algorithms to allow for different columns, pH's and

solvents to be investigated, such as MVMOO.55 Dening desired

input conditions and implementing custom written objective

functions could enable the soware to be used to optimize for

methods across a range of different applications, including in

the separation of polymers in GPC, proteins in size exclusion

chromatography and for nding preparative HPLC conditions.

Data availability

All data from the optimisations is available in the electronic

(ESI†). Code used for data analysis, graphics and the HPLC

automation application is available via GitHub, details of which

are also available in the ESI.†

Fig. 6 The design spaces for optimizations 7–9 and the trade-off between RsCrit and tRLwhereN= 11. The color scale represents the distance to

Pareto front when RsCrit $ 1.5, represented by points to the right-hand side of the dotted line in the trade-off plot.

Fig. 7 Optimal chromatograms for Mixture A (top) and Mixture B

(bottom) using TS-EMO, representing optimization 4 experiment 17

and optimization 7 experiment 30 respectively.
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