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A B S T R A C T 

Star formation is generally considered to be ‘universal’, meaning that it is statistically the same everywhere (and at all times). 
We investigate whether it is possible to find a simple rule for the conversion of molecular cores into bound stellar systems, along 

with the resulting secular decay and dynamical destruction of these systems, which can match the field initial mass functions 
(IMFs) and multiplicity statistics. We find that extreme cases, in which the core fragmentation is self-similar or has a strong 

dependence on initial core mass, cannot reproduce the observations of the field. Ho we ver, a model in which core fragmentation 

is fairly weakly dependent on core mass has some success, if we include the effects of secular decay on the multiplicity statistics. 
This model both fits the IMF well and has an o v erabundance of low-mass binary systems o v er the field that matches local 
star-forming regions. Ho we ver, it is unclear whether this overabundance could be dynamically processed to match the field. 

Key words: methods: statistical – binaries: general – stars: formation. 

1  I N T RO D U C T I O N  

How stars form is one of the most important questions in astrophysics. 
The physics behind star formation is extremely complex, involving 
self-gravity, magnetohydrodynamics, thermal physics, and chemistry 
in a turbulent medium. Our best observation of the outcome of 
star formation is the field, which is the sum of many different star 
formation events in different parts of the Galaxy, spread o v er a long 
period of time. The initial mass function (IMF) in the field and in 
nearby clusters has been e xtensiv ely studied (see re vie ws by Bastian, 
Co v e y & Meyer 2010 ; Kroupa et al. 2013 ; Offner et al. 2014 ). The 
results of such studies can be used to determine whether each star 
formation event produces statistically very similar outcomes (that 
are each not too different from the field), or whether different star 
formation events are very different, and the field is just an average 
o v er all the ways in which star formation can occur (Goodwin 2010 ). 

It is important to know what the spread of star formation outcomes 
is for a number of reasons. When we perform a simulation of star 
formation (attempting to include a wide variety of physics), how do 
we know whether we have the ‘right’ answer? Should a simulation 
al w ays produce an outcome not too dissimilar to the field, or could 
simulations with varying initial conditions that produce very different 
results all be correct? Answering these questions can tell us whether 
there is a simple initial input into e.g. population synthesis models, or 
whether we need to start with a wide variety of initial subpopulations. 
It also allows us to investigate the environmental dependence of star 
formation. 

If all star formation events are roughly similar and produce 
something not too different from the field, then it would seem like 
much of the complexity of the physics of star formation should 
in some way ‘average out’. That is, if different giant molecular 
clouds (GMCs) of different masses and density distributions, with 

⋆ E-mail: astro.rhoughton@gmail.com 

dif ferent le vels of turbulence, magnetic field geometries, external 
radiation fields, and chemistry and metallicity, all produce very 
similar outcomes in terms of the stars they produce, then this might 
argue for a fairly simple set of ‘rules’ that describe star formation. 

In this paper, we start from the assumptions that (a) stellar masses 
are set by observed core masses and (b) all star formation produces 
something like the field. If these are both true, then there may well be 
some ‘simple rule’ of star formation. We are not arguing that these 
assumptions are correct; they merely represent the assumptions we 
wish to test. 

The two most useful observations of the field that we would want 
to fit with a toy star formation model are the IMF and multiplicity 
properties. If all star formation produces something similar to the 
field, then all star formation events should produce an IMF and 
multiplicity properties like those we observe in the field. 

The IMF of stars seems usually to be ‘universal’, in particular in 
local, resolved stellar populations (Bastian et al. 2010 ; Offner et al. 
2014 ), which might suggest that star formation is al w ays similar 
(at least in how it distributes mass between stars). Furthermore, 
observations of the core mass function (CMF) in star-forming regions 
indicate that this is also universal, with a similar shape to the IMF but 
shifted to higher masses (see e.g. K ̈on yv es et al. 2020 , and references 
therein). Determining IMFs is a difficult task, especially in young 
regions (see the discussion in Offner et al. 2014 ). Ho we v er, the y can 
be determined with sufficient accuracy that the general consensus is 
that IMFs in different regions are broadly similar to each other and 
to the field. 

If the IMFs of different regions are al w ays similar, this could be 
taken to argue that the mechanism by which stars accumulate mass 
is al w ays the same. There are two main theories on how stars gather 
mass (we summarize them here, but see Offner et al. 2014 , for a 
much more detailed discussion). 

Stars form from molecular cores, which themselves have a CMF 

(as observed by K ̈onyves et al. 2010 , 2015 ). Therefore, the IMF and 
CMF must bear some relation to each other. The simplest of such 

© 2024 The Author(s). 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
3
1
/3

/3
3
7
3
/7

6
8
6
1
2
3
 b

y
 g

u
e
s
t o

n
 0

7
 A

u
g
u
s
t 2

0
2
4



3374 R. J. Houghton and S. P. Goodwin 

MNRAS 531, 3373–3385 (2024) 

theories suggests that the stellar masses are directly inherited from 

the CMF (Padoan & Nordlund 2002 ; Hennebelle & Chabrier 2008 ; 
Holman et al. 2013 ). Ho we ver, the link between the CMF and the IMF 

is complex; for example, the CMF is a measure of the current masses 
of cores, whereas we are interested in the mass available for stars, 
which may change due to accretion, interactions with protostellar 
systems, or turbulence (i.e. Bonnell, Larson & Zinnecker 2007 ; Bate 
2012 ; Offner et al. 2014 ; Pelkonen et al. 2021 ). It is worth noting that 
even in simple CMF–IMF models such as ours we require the cores 
to lose mass to fit to the IMF, which we include as a star formation 
efficiency (SFE). 

The reason we take the simple assumption that the CMF maps 
simply to the IMF is that we want also to address another observation 
of the field as well as the IMF – multiplicities. Two interesting 
observations are that the multiplicity of field stars seems to increase 
significantly with primary mass (Offner et al. 2023 , and references 
therein) and local star-forming regions appear to have higher mul- 
tiplicities than the field (Kraus et al. 2011 ; King et al. 2012a , b ; 
Duch ̂ ene et al. 2018 ). 

Studies of the field mean that we have a clear picture of the 
distribution of multiplicities by primary mass (Offner et al. 2023 , 
and references therein), along with the IMF. We also know that stars 
form in single and/or multiple systems from gravitationally bound 
dense cores (e.g. Sada v oy & Stahler 2017 ), but multiple systems 
can decay through secular (e.g. Sterzik & Durisen 1998 ; Delgado- 
Donate, Clarke & Bate 2003 ; Valtonen et al. 2008 ; Reipurth & 

Mikkola 2012 ) or dynamical processes (e.g. Parker & Goodwin 2012 ; 
Rawiraswattana & Goodwin 2023 ). This leads to two basic theories 
of how the field is produced: (1) stars form with multiplicities similar 
to the field or (2) stars form with much higher multiplicities and decay 
to produce the field values (e.g. Kroupa 1995a , b ). It is more likely 
that the true process is a combination of both theories, rather than a 
result of either of the two extremes. 

A particularly interesting feature of the multiplicity properties of 
the field is that all measures of multiplicity increase significantly 
o v er a small range of mass. Low-mass stars are almost all single, 
while high-mass stars are almost all in (higher order) multiples. The 
change from low multiplicity to high multiplicity occurs between 
primary masses of approximately 0.5 and 5 M ⊙, with 1 M ⊙ being 
the ‘mid-point’. This range of masses does not seem to correspond 
to any feature in the IMF (the peak being at much lower masses). 

In this paper, we test various probabilistic/statistical Monte Carlo 
models for how cores split into stars, and how the resulting systems 
decay. The aim of these models is to see whether a set of simple rules 
can be used to find a simple, ‘universal’ model of star formation (i.e. 
one that reproduces the IMF and multiplicities of the field). As we 
shall see, we do struggle to find such a model, although we do find a 
model that does an arguably reasonable job. 

2  B  AC K G R  O U N D  

2.1 The CMF and the IMF 

The IMF has been determined for many different regions, using 
stellar evolution theories and mass–age–luminosity relations to 
convert between the observed luminosity function (LF) and the mass 
function (MF). The IMF has been fitted with several functional 
forms, which are an approximately lognormal/power-law slope at 
low masses, a turno v er at ∼0.1–0.2 M ⊙, and a high-mass power- 
law slope of Ŵ = −2.35 (Salpeter 1955 ; Kroupa 2001 ; Chabrier 
2003 ; Maschberger 2013 ). Although there are occasionally slight 
differences in the shape of the IMF depending on the environment 

(Bastian et al. 2010 ), the high-mass power slope, turno v er at 0.1–
1.0 M ⊙, and lognormal/power-law slope for low masses appear to be 
universal features (Chabrier 2003 ; Guszejnov & Hopkins 2015 ). 

The CMF has also been studied in various star-forming regions 
using molecular tracers (Benson & Myers 1989 ; Scibelli & Shirley 
2020 ) and dust continuum mapping (Motte, Andre & Neri 1998 ; 
Andr ́e et al. 2010 ; K ̈on yv es et al. 2010 ; Marsh et al. 2016 ; Massi et al. 
2019 ) to identify dense cores. The CMFs determined through these 
studies appear to have an approximately lognormal shape (Andr ́e 
et al. 2010 ), with a high-mass slope with an exponent of Ŵ = −2.35 
and a peak mass of around ∼1 M ⊙. 

The similarities between the CMF and the IMF are often taken to 
imply a direct and self-similar mapping between the two functions, 
where the IMF is shifted to lower masses by a factor of ∼3–5 (Motte 
et al. 1998 ; Padoan & Nordlund 2002 ; Alves, Lombardi & Lada 2007 ; 
Nutter & Ward-Thompson 2007 ; K ̈on yv es et al. 2010 ; Guszejnov & 

Hopkins 2015 ). The shift in the peak of the IMF is therefore assumed 
to be proportional to the SFE ( η) of dense cores, implying a value 
of ∼30 per cent. This matches both observations and simulations 
(Alves et al. 2007 ; Goodwin et al. 2008 ; K ̈on yv es et al. 2015 ; Marsh 
et al. 2016 ), which determine values of ∼20–40 per cent. 

The physical mechanisms responsible for the relationship between 
the CMF and the IMF are still unclear. Often it is assumed that the 
CMF is in some sense static, and hence shows the reservoirs of 
gas available to individual stellar systems. However, it is not clear 
whether this is the case and several models propose that core growth 
via accretion from the surrounding molecular cloud is crucial, and 
stellar masses are not determined solely by the material contained in 
a pre-stellar core at the instant it is observed (e.g. Bonnell & Bate 
2006 ; V ́azquez-Semadeni et al. 2019 ; Nony et al. 2023 ). We will 
assume the CMF is static and directly responsible for the IMF, but it 
is not clear whether this assumption is true. 

If all stars in multiple systems could be resolved perfectly, then the 
observed IMF would be the single-star IMF. Ho we ver, as many stars 
are in multiples that cannot be resolved, there is also the system IMF 

(the IMF of the combined mass of all stars in a bound stellar system). 
Both the system and single-star IMFs have been parametrized by 
Chabrier ( 2003 ) and Maschberger ( 2013 ). As we will discuss, it is 
doubtful we ever actually observe the system IMF as many higher 
order systems will decay on a very short time-scale, and any system 

mass function observed in the field has (at least partially) been 
dynamically processed. Throughout we will use the phrase ‘system 

IMF’ for convenience, to distinguish the mass function from the 
multiplicity fraction, MF. 

It should be noted that field MFs and the IMFs of young systems 
are rather uncertain with incompleteness, unresolved companions, 
and model-dependent mass determinations (especially for pre-main- 
sequence stars) creating possibly significant ‘error bars’ on any mass 
function determination. 

2.2 Multiplicity fractions 

Many stars are observed in multiple systems, and must form as 
multiples as their dynamical creation is extremely unlikely in almost 
all environments we observe. 

Multiple systems are thought to be formed through core frag- 
mentation and/or disc fragmentation. Simulations show that core 
fragmentation is often induced by turbulence and radiative feedback, 
with larger amounts of turbulence potentially leading to more frag- 
mentation, and therefore higher order multiple systems (Goodwin, 
Whitworth & Ward-Thompson 2004 ; Attwood et al. 2009 ; Bate 
2012 ; Lomax et al. 2015 ; Guszejnov, Hopkins & Krumholz 2017 ; 
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Figure 1. The MFs (blue squares, left), THFs (red circles, left), and CSFs (green squares, right) for various primary mass ranges. The x -error bars represent the 
total mass range sampled for which the MF/THF is calculated. All points are corrected for incompleteness. Adapted from Offner et al. ( 2023 ), using the values 
from their table 1. 

Chen et al. 2020 ). Disc fragmentation predominantly occurs in 
massive discs around intermediate and higher mass stars, and is 
believed to increase the MFs at higher masses (Kratter & Lodato 
2016 , and references therein). If one mechanism is more important 
than the other is unclear, and one might think that their relative 
importance should depend on the system/primary mass and/or the 
general environment. In our models, we just provide a simple rule 
for fragmentation and do not consider exactly how this happens. 

Stellar multiplicity is commonly quantified using the multiplicity 
fraction, MF (i.e. the fraction of primaries with at least one compan- 
ion), 

MF = 
B + T + Q + · · ·

S + B + T + Q + · · ·
, (1) 

where S , B , T , and Q are the numbers of single, binary, triple, and 
quadruple systems of a given spectral type, respectively . Similarly , 
the fraction of triple or higher order systems is given by the 
triple/higher order fraction (THF), 

THF = 
T + Q + · · ·

S + B + T + Q + · · ·
, (2) 

and the average number of companions per primary star is given 
by the companion star fraction (CSF), 

CSF = 
B + 2 T + 3 Q + · · ·

S + B + T + Q + · · ·
. (3) 

The MF, THF, and CSFs found in various observational surv e ys 
are shown in Fig. 1 . We see that the MF depends strongly on the 
mass of the primary star, ranging from ∼20 per cent for M dwarfs 
(Fischer & Marcy 1992 ; Ward-Duong et al. 2015 ; Winters et al. 
2019 ) to ∼50 per cent for solar-type stars (Duquennoy & Mayor 
1991 ; Raghavan et al. 2010 ; Tokovinin 2014 ) up to ≥80 per cent for 
massive stars (Mason et al. 2009 ; Sana et al. 2012 ; De Rosa et al. 
2014 ; Sana et al. 2014 ; Moe & Di Stefano 2017 ). The THF and CSFs 
also imply that the majority of high-mass stars will be in triple or 
higher order systems. 

Observationally determined MFs suffer from systematic uncer- 
tainties due to incompleteness corrections (i.e. unresolved com- 
panions), and Malmquist bias if the sample is magnitude limited. 
The multiplicity statistics in Fig. 1 are corrected for biases and 
incompleteness. 

Observations of nearby star-forming regions show a significantly 
higher number of multiples compared to the field (Leinert et al. 
1993 ; Duch ̂ ene 1999 ; Haisch et al. 2004 ; Duch ̂ ene & Kraus 2013 ; 
Duch ̂ ene et al. 2018 ; Tobin et al. 2022 ). Ho we ver, this is primarily 
the case for associations rather than dense clusters (Duch ̂ ene et al. 
2018 ), as clusters typically have similar multiplicities to the field 
(Patience et al. 2002 ; Deacon & Kraus 2020 ; Torres, Latham & Quinn 
2021 ). This could be explained if almost all stars form in multiple 
systems (Goodwin & Kroupa 2005 ) and then undergo significant 
post-formation processing due to a combination of both secular 
(from inherent instabilities and without external perturbations) and 
dynamical (from encounters with other stars in dense environments 
and star-forming regions) decay, which lowers the MFs and results 
in the field population (Goodwin et al. 2007 ). This would imply 
a universal method of star formation and environment-dependent 
decay (Kroupa & Bouvier 2003 ). 

3  T H E  M O D E L  

Our key question is: Can we find a very simple set of rules that 
takes us from the CMF to both the stellar and system IMFs and 
the field multiplicities? To investigate this, we use Monte Carlo 
simulations, where we define a simple rule for the way cores are 
split into stars (representing the fragmentation process), and assign 
some probability that a system decays (representing the combined 
effects of both dynamical and secular decay). An ideal model will be 
able to produce a canonical IMF, and also replicate the increase of 
the MF/CSFs with primary mass. 

We compare the results of our simulations to the overall MFs 
determined through each surv e y, rather than the binary fraction o v er 
a particular separation range. This is because in our simple model 
we do not produce separations at all (doing so would require several 
extra parameters and take us away from our goal of trying to be as 
simple as possible). 

Our results show that it is difficult to find a model that replicates 
these trends, and it is unclear whether a simple rule exists. 

3.1 Simulations 

All simulations begin by drawing masses for n cores (with masses 
M c ) from the Maschberger function (Maschberger 2013 ). Our CMF 
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adopted the characteristic parameters of the L 3 system IMF, but with 
a scale parameter (i.e. peak value) of 1 M ⊙, a lower mass limit of 
m l = 0.1 M ⊙, and an upper mass limit of m u = 150 M ⊙. For all 
simulations presented in Section 4 , the number of cores sampled was 
set at n = 1 × 10 6 . 

Each core then fragments into N ∗ stars, where the N ∗ can be 
random or vary with mass. We discuss the rules we use to fragment 
cores in detail in Section 4 , as it turns out that these are crucial when 
trying to match the observations. Note that although we refer to the 
cores as fragmenting into a defined number of stars, this represents 
the sum of processes such as classical core fragmentation or via 
disc fragmentation, as the nature of our simulations means that the 
microphysical properties of the core are not modelled. 

The total stellar mass, M sys , is calculated using the core mass 
multiplied by the SFE, η, so M sys = ηM c . As discussed in Section 
2.1 , a single efficiency factor is often assumed due to the mapping 
between the CMF and the IMF. To rectify the fact that a constant value 
of η might not be representative of the efficiency in all scenarios, such 
as high-mass stars continuing to accrete (i.e. Pelkonen et al. 2021 ; 
Nony et al. 2023 ), we ran several simulations with different values 
of η. 

In the first, η is assumed to be constant. In the second, η varies 
randomly between 0 and 1 for each core. One might expect the 
SFE to vary systematically, depending on the mass of the embedded 
stars (Matzner & McKee 2000 ). However, it is not clear whether this 
would increase (due to more gas contained within the larger potential 
well of the star) or decrease (due to stellar feedback) the SFE with 
increasing core mass (Goodwin et al. 2008 ). Since we are aiming to 
find an o v erall rule for explaining the origin of the field population, 
a constant value of the SFE should represent an average of the SFE 

across all cores. 
The total stellar mass is then divided up between the stars by 

randomly selecting N ∗ − 1 mass ratio values q from a uniform 

distribution in the range 0.2–1. For binary systems, we select a single 
value of q 12 and assign masses such that m 2 = q 12 m 1 . For triple 
systems, m 3 will have the value q 23 m 2 . This pattern is continued for 
higher order systems. This gives initial mass-ratio distributions (pre- 
dynamical and secular processing) similar to those of the field (cf. 
Goodwin 2013 ). 

3.2 Secular decay and dynamical destruction 

The steps abo v e produce an initial system, containing either a 
single or multiple stars. Ho we ver, if the initial system is a multiple, 
there is a possibility that it will not enter the field in its initial 
state; higher order multiples can decay due to secular effects, and 
systems can be dynamically destroyed by an encounter. Decay and 
destruction alter the multiplicity statistics, and change the system 

IMF (note that the single-star IMF is not altered by decay and 
destruction). 

Secular decay should (to a first approximation) be environment 
independent, but the efficiency of destruction depends on the density 
and velocity dispersion of the environment of a system that sets 
the frequency and energy of encounters that could destroy a system 

(Hurley, Aarseth & Shara 2007 ; Parker & Goodwin 2012 ). 
The field represents the sum of star formation across all envi- 

ronments o v er all time. If star formation is universal in the sense 
that there is some ‘typical outcome’, we might hope that a single, 
simple rule could capture both the secular decay and dynamical 
destruction of (initially statistically identical) populations to give 
the field multiplicities. Therefore, we try to use a single probability 
distribution of a system ‘decaying’ to represent the combined effects 

Table 1. The decay probabilities for N = 2–7 systems. The column headings 
show the different decay channels defined according to Sterzik & Durisen 
( 1998 ), where BS: binary system and N − 2 singles; TS: triple system and 
N − 3 singles; QS: quadruple system and N − 4 singles; BBS: two binary 
systems and N − 4 singles; and TB: one triple system and one binary system 

and N − 5 singles. The N = 3, 4, and 5 rows contain the values from Sterzik & 

Durisen ( 1998 ) (for a clump mass spectrum), and the other rows (in bold) 
contain the extrapolated values for lower/higher order systems based on these 
probabilities. 

N BS TS QS BBS TB Other 

2 1000 – – – – –
3 874 118 – – – 8 
4 751 181 37 12 – 19 
5 532 340 62 41 8 17 
6 313 499 87 70 31 –
7 94 658 112 99 37 –

of both dynamic and secular decay. As we will discuss throughout 
Section 4 , such a rule struggles to match observations. 

For the simplest combined model, each channel of decay for a 
system of N ∗ stars is mass independent and has an equal probability; 
This leads to a scenario where 50 per cent of binaries ‘decay’ to 
two singles and 50 per cent remain stable. For triples, one-third 
of systems will eject two stars, one-third will eject one star, and 
the rest will remain stable. Similarly, for quadruples, one-quarter of 
systems will eject one star, one-third of systems will eject two stars, 
etc. This pattern continues for N ∗ = 5 and N ∗ = 6. As we expect 
the lowest mass objects to be preferentially lost (at least in secular 
decay; Anosova 1986 ; Reipurth & Mikkola 2012 ; Reipurth et al. 
2014 ), we remo v e stars and make them single in order of increasing 
mass. 

Due to the high rate of decay of binaries, these probabilities are 
representative of a population that has a high rate of destruction due 
to interaction with other stars (Parker & Goodwin 2012 ), and are a 
good starting point for testing the effect of different o v erall decay 
rates on MFs. 

Ho we ver, in reality, it is unlikely that all decay channels have 
equal probability. Sterzik & Durisen ( 1998 ) give probabilities for 
different decay channels, and include channels that our simple rules 
do not (such as the decay of a quadruple to a pair of binaries, 
see Table 1 ). Ho we ver, this only accounts for secular decay, not 
dynamical destruction. We return to these points in much more detail 
later. 

3.3 Output 

We use the stellar masses outputted from our simulations to calculate 
the stellar IMF, to compare with the canonical IMF. We compute both 
the single-star IMF (the IMF counting all stars) and the system IMF 

(using the mass of each stellar system M sys ). 
We also calculate the multiplicity statistics of our stellar popu- 

lation for different primary mass intervals. Due to the fact that all 
observed multiplicity values used for comparison are corrected for 
incompleteness, all companions with a mass greater than 0.012 M ⊙

( ∼minimum brown dwarf mass) are included in our statistics. This 
is discussed further in Section 5.2 . 

The output of our simulations provides the multiplicity statistics 
and IMF at the end stage of star formation, when the systems are 
dynamically evolved and dispersed into the field. 
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Figure 2. The system (top) and single-star (bottom) IMFs for the fully 
random model. On both plots, the Salpeter (orange), Chabrier (blue), and 
Maschberger (pink) IMFs are shown by the solid lines. (The functional 
forms of the Salpeter and Chabrier IMFs were generated using https: 
// github.com/ keflavich/ imf.) The CMF used in our simulations is shown by 
the solid black line. The IMFs are plotted for several values of the SFE: η = 

0.3 (densely dashed), η = 0.5 (dotted), η = 0.9 (dashed), and η = U [0 , 1] 
(dash–dotted). The gre y-shaded re gion on the left of both plots shows the 
brown dwarf regime. 

4  RESULTS  

4.1 Self-similar model 

We start with a set of models in which all cores fragment into a 
random number of stars between N min and N max , with no dependence 
on the initial core mass (as used as the basis for simulations such as 
Goodwin et al. 2008 ; Holman et al. 2013 ). The reason why models 
such as this were used by Goodwin et al. ( 2008 ) and Holman et al. 
( 2013 ) is that they are self-similar and so preserve the shape of the 
CMF in the IMF, with some combination of fragmentation and SFE 

shifting the peak of the distribution. Therefore we expect this model 
to give a good fit to the IMF. 

We repeat this simulation with sev eral fix ed values of the SFE ( η) 
and one scenario where η is allowed to vary randomly between cores. 

For the simulations we present, we assume that all cores form 

multiple systems with N min = 2 and N max = 6 with no dependence on 
core mass. We use our simple combined decay model to then evolve 
these initial multiple systems. 

In Figs 2 , 3 , and 4 , we show the system and stellar IMFs, 
multiplicity properties, and mass-ratio distributions, respectively, of 
one particular simulation. This simulation is representative of every 
self-similar simulation and the problems they all face in trying to fit 
the data. 

Figure 3. Top: Observed MFs (blue squares) and THFs (red circles) from 

various sources listed in table 1 of Offner et al. ( 2023 ). The blue lines and red 
lines show the MFs and THFs, respectively, from our model using random 

fragmentation and ejection rules. The values for the MFs and THFs are plotted 
for se veral v alues of the SFE: η = 0.3 (densely dashed), η = 0.5 (dotted), 
η = 0.9 (dashed), and η = U [0 , 1] (dash–dotted). Bottom: CSFs following 
the same rules as the top plot. 

Figure 4. Mass-ratio distributions for systems with M-type primaries ( ∼0.1–
0.5 M ⊙, red), solar-type primaries ( ∼0.55–1.45 M ⊙, orange), and A/B type 
primaries ( ∼1.6–12.0 M ⊙, blue) for the self-similar model. The data are 
normalized for better comparison between the three mass ranges. These values 
do not include any brown dwarf companions. 

Fig. 2 shows the resulting IMFs from our simulations in compar- 
ison to the normalized Salpeter (Salpeter 1955 ) in orange, Chabrier 
(Chabrier 2003 ) in blue, and Maschberger (Maschberger 2013 ) in 
pink, forms of the IMF. The top plot of Fig. 2 shows the system IMF 

and the bottom plot shows the single-star IMF (both after processing). 
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The CMF is shown by the solid black line, and the dashed black lines 
are the system and single-star IMFs for different values of the SFE. 

The single-star IMFs are a very good fit to the canonical IMFs. 
This is unsurprising as this model was designed to produce this 
match by preserving the shape of the CMF. The system IMFs are 
significantly wider than the canonical system IMFs; while this could 
possibly be fixed by adjusting how masses are distributed between 
stars within a core, there seems very little point due to the poor fit of 
the multiplicities. 

Fig. 3 shows the fit from this model to the multiplicity properties 
of stars. The blue points and red points in the top plot show the 
observed MFs and THFs, respectively, and the green points in 
the bottom plot show the observed CSFs (from table 1 of Offner 
et al. 2023 ). The horizontal error bars show the primary mass 
interval co v ered by each data point. The various dashed blue, 
red/orange, and green lines on each plot represent our MFs, THFs, 
and CSFs, respectively, for the same discrete mass ranges as the 
Offner et al. ( 2023 ) values, but shown as a continuous line to aid the 
eye. 

The most obvious thing about Fig. 3 is what a poor fit the model is 
to the data. All observed multiplicity measures increase with primary 
mass and rise sharply in the mass range 0.5–5 M ⊙. Ho we ver, the 
simulations rise slowly from very low masses and plateau abo v e 
around 1 M ⊙. 

The details of this behaviour are down to the details of our 
model, especially the decay probabilities, but they are indicative 
of a significant problem with this general self-similar model. If 
all cores produce multiple systems, then for all masses the initial 
(pre-decay and dynamical destruction) population will have the 
same, very high multiplicity measures (MF = 1, THF ∼ 1, and 
a CSF > 1). We expect higher order systems to decay that produces 
single stars so diluting the multiplicities, but roughly equally at 
all masses (because the lowest mass objects are ejected there is a 
slight tendency to dilute low-mass multiplicities more). Therefore, 
using a self-similar fragmentation model with mass/multiplicity- 
independent decay probabilities leads to a roughly flat multiplicity–
mass dependency, which completely fails to match the observations. 
This issue is present regardless of the values used for N min and 
N max and actually flattens the multiplicity–mass dependence further 
if cores are allowed to form a single star, as shown in Fig. 5 . This 
contradicts findings from multiplicity studies such as Tobin et al. 
( 2022 ), revealing a fundamental flaw in the assumptions of this 
model. 

In Fig. 4 , we show the mass-ratio distributions for M-type 
stars, solar-type stars, and intermediate/high-mass stars. To fit the 
observations, we would expect the mass-ratio distribution for M 

stars to be ske wed to wards equal mass ratios, solar-type stars to 
be approximately flat, and intermediate/high-mass stars skewed 
towards more unequal mass-ratio distributions (Offner et al. 2023 , 
and references therein). Whilst the low-mass stars appear to follow 

the observed trend, there is little distinction between the mass ratios 
in the 0.5–1.5 M ⊙ range and the 1.6–12.0 M ⊙ range. 

Again, this is a result of the self-similar nature of this model, where 
the multiplicity does not depend on the initial mass of the core. As 
the MFs are approximately the same for masses � 1 M ⊙, the mass- 
ratio distributions will not differ significantly for primaries within 
this mass range. Changing the way in which masses are distributed 
between the stars in our model may impro v e the mass ratios, but 
would not fix the issues with the MFs and would break the self- 
similarity. 

In this model, we have essentially applied a flat dynamical decay 
probability with mass to systems that survive secular decay. This 

Figure 5. MFs (top, blue dashed line), THFs (top, red dashed line), and CSFs 
(bottom, green dashed line) for the self-similar model simulation where the 
number of stars formed varies between one star ( N min = 1) and a maximum 

of four stars ( N max = 4). This simulation used an SFE value of η = 0.3, but 
is characteristic of the results for all different efficiencies. The blue, red, and 
green points are as defined in the caption for Fig. 2 . 

probability has to be extremely high to try and reduce the low-mass 
multiplicities to close to the observed values, which (as can be seen 
in Fig. 3 ) then reduces the high-mass multiplicities to well below the 
observations. 

One can imagine a dynamical decay probability that depends 
on mass (which is more physical – higher mass systems should 
be more resistant to dynamical decay), but it would need to be a 
very strong function of mass. Systems > 5 M ⊙ need to survive, 
while almost all systems < 0.5 M ⊙ need to be destroyed, with a 
‘tipping point’ at ∼1 M ⊙ where there is a 50 per cent survi v al 
chance. Such a dynamical decay function would seem rather fine- 
tuned, and it is not obvious why destruction would be so tuned 
to primary mass. There are various scenarios where dynamical 
decay is thought to be common (e.g. Kroupa 1995a ), but that 
requires low-mass stars to all be born in environments where 
decay is probable, which seems unlikely [e.g. the re vie w of Wright 
et al. ( 2022 ) suggests a significant fraction of stars are born in 
associations]. 

To summarize, a mass-independent fragmentation of cores gives 
a good fit to the IMF by design, but produces at best only 
a very weak correlation between mass and multiplicity, which 
is not what is observed. Whilst there may be scenarios that 
produce a strong decay–mass relationship, they would need to 
be very fine-tuned and go against the purpose of this paper, 
which is to investigate if there are simple , universal rules that 
take us from a CMF to the observed IMF(s) and multiplicity 
properties. 
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Figure 6. IMFs from the BE mass-dependent model. See the caption for 
Fig. 2 for more details. 

4.2 Strongly mass-dependent model 

We showed abo v e that self-similar fragmentation of cores produces 
multiplicities that are much too flat with respect to mass. Therefore, 
it is possible that a better match to the multiplicities could be found 
if N ∗ increases with M c . 

Some theories suggest that the number of stars formed from a 
collapsing core may be proportional to the ratio of the core mass to the 
critical Bonnor–Ebert (BE) mass M BE (e.g. Lada et al. 2008 ), which 
is the maximum mass that can be contained within an isothermal 
BE sphere while remaining in hydrostatic equilibrium (Ebert 1955 ; 
Bonnor 1956 ). In general, M BE is given by 

M BE = 1 . 82 

(

n̄ 

10 4 cm −3 

)−0 . 5 (
T 

10 K 

)1 . 5 

M ⊙, (4) 

where n̄ is the volume density of the core, and T is the temperature 
(Lada et al. 2008 ). M BE is often represented in terms of parameters 
such as the external pressure, density, or speed of sound in the 
medium. Due to its dependence on the properties of the host cloud, 
the critical BE mass varies significantly depending on the host 
environment, e.g. from ∼0.6 M ⊙ in the Aquila cloud (K ̈on yv es et al. 
2015 ) up to ∼2 M ⊙ in the Pipe Nebula (Lada et al. 2008 ). We discuss 
below the possible implications of this variation. 

We consider a case in which the multiplicity of the final system is 
a strong function of the initial core mass, with each core fragmenting 
such that N ∗ = M c / M BE . For the results presented in this section, 
we randomly select a value of the critical BE mass from a uniform 

distribution between 0.5 and 2.5 M ⊙. 
Figs 6 , 7 , and 8 show the IMFs, multiplicities, and mass-ratio 

distributions from this model (cf. Figs 2 , 3 , and 4 abo v e). 

Figure 7. Multiplicities from the BE mass-dependent model. See the caption 
for Fig. 3 for more details. 

Figure 8. Mass-ratio distributions for the BE mass-dependent model, using 
a value for the SFE that varies from a random uniform distribution between 
cores. See the caption for Fig. 4 for more details. 

As expected, the multiplicities in Fig. 7 no w sho w a strong depen- 
dence on primary mass, comparable with the observed dependence. 
The THFs show a reasonable fit to the observations and although the 
MFs are far from a perfect fit, it captures the fundamental trends well. 
Similarly, the mass-ratio distributions no w sho w a much stronger 
distinction between their trends for different mass ranges, showing 
the characteristically flat distribution for solar-type stars and skewed 
distributions for high- and low-mass stars. 

Ho we ver, there is a significant flaw in this model when it comes 
to the multiplicities: due to the condition that all stars below the 
BE mass do not form stars, and cores below 2 M BE form only one 
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star, multiple systems with a total mass of less than 2 η M BE cannot 
form. As soon as the core mass exceeds M BE , we see a huge jump 
in the multiplicity as suddenly cores start forming two or more stars. 
As N ∗ increases with M c , the MF, THF, and CSF all continue to 
increase rapidly as the core mass exceeds two BE masses. Therefore, 
this model does manage to approximate the multiplicity statistics for 
stars > 1 M ⊙, but fails at producing low-mass binaries. It is worth 
noting that the mass-ratio distributions in Fig. 8 now follow the 
trends that we expect from the observations, but small variations in 
the SFE cause the mass-ratio distributions to vary wildly, which is a 
significant problem with this model. 

Ho we ver, the biggest problem with the mass-dependent model is 
the IMFs shown in Fig. 6 , which are very different from the canonical 
IMFs, as they no longer have a self-similar mapping from the CMF. 
There is a strong o v erabundance of stars around the average BE 

mass in both the single star and the system IMF (though it is more 
pronounced in the single-star IMF), appearing as a very large ‘bump’ 
at the peak of this IMF at ∼1 M ⊙. This ‘bump’ is smoothed out 
somewhat if the SFE is allowed to vary, but is still very distinct. 
The IMFs tend to decline far too quickly abo v e and below the peak, 
and the shape is fundamentally wrong (this was noted in passing by 
Goodwin et al. 2008 ). 

These models are for a range of BE masses chosen core by core. 
In a scenario for star formation within a single star-forming region, 
we would expect the BE to be roughly fix ed. F or a fix ed BE mass, 
the bump is even sharper and more pronounced due to the much 
stronger mass dependence, and peaks at the value of the BE mass 
used. This would suggest that the IMF should vary strongly from 

region to region depending on the local BE mass, which is at odds 
with the apparent universality of the IMF. 

It would be possible to fine-tune this model, e.g. the instanta- 
neously observed form of the CMF does not match the reservoirs 
of gas available to make stars, and the ‘true’ CMF has a form such 
that it does map onto the IMF. Ho we ver, the true CMF would have 
to have a very particular form that varied in exactly the right way 
from region to region to then al w ays produce the same, smooth IMF 

everywhere (we return to this point in the Discussion section). 

4.3 Hybrid model 

We have shown in Sections 4.1 and 4.2 that core fragmentation 
struggles to match the observations if it is either completely self- 
similar or a strong function of core mass. The former cannot 
reproduce the observed MFs, and the latter produces strange, bumpy, 
and variable IMFs. 

It is plausible that a hybrid model with elements of both previous 
models might ‘average out’ the problems with each and give an 
answer that looks like the observations. We therefore consider a 
model where N ∗ depends loosely on the core mass. We start by 
splitting the masses from the CMF uniformly in log space, so that 
we have a mass range corresponding to each value of N ∗. Rather 
than forcing cores of a given mass to only fragment into N ∗ stars, 
we select a random value surrounding the corresponding value of 
N ∗. The mass ranges and their corresponding possible N ∗ values are 
shown in Fig. 9 . 

Varying these conditions slightly makes very little difference to 
the results we present below, and varying them significantly leads to 
the same problems we have already discussed with self-similar and 
mass-dependent models. 

For our initial test of this model, stars are ejected from systems 
using the simple secular plus dynamical model as in Sections 4.1 and 
4.2 . 

Figure 9. Conditions for fragmentation in the hybrid model. The histogram 

shows the core mass distribution in log space. The vertical dashed lines show 

the different mass ranges with the text above each section stating the possible 
values of N ∗ (uniformly weighted) for a core in the corresponding mass range. 

Figure 10. IMFs from the model where core fragmentation is semi- 
dependent on M c . See the caption for Fig. 2 for more details. 

A hybrid model does provide a better fit to observations as one 
might expect. In Fig. 10 , we can see that the hybrid model fits 
the system and single-star IMFs reasonably well. The single-star 
IMF has a very small bump close to the peak, but due to the 
uncertainties associated with the IMF, the chance of seeing this 
feature in observations if it exists is unlikely. Furthermore, the high- 
mass tail of the IMF deviates from the Salpeter slope when M p > 

20 M ⊙, but here we are in the low- N tail of our distribution and 
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Figure 11. Multiplicities from the model where core fragmentation is semi- 
dependent on M c . See the caption for Fig. 2 for more details. 

Figure 12. Mass-ratio distributions from the model where core fragmenta- 
tion is semi-dependent on M c . See the caption for Fig. 4 for more details. 

it is not at all clear whether our universal model would extend to 
extremely high-mass systems. 

The best fits to the different IMFs are at different SFEs: to the 
system IMF when η = ∼0.5. In the case of the single-star IMF, 
when η is ∼0.3. But one could argue that η = 0.4 would provide a 
reasonable fit to both IMFs within the observation errors. 

In Fig. 11 , we see that the hybrid model does a good job of fitting 
the CSF (green) and THF (red), but is poor at fitting the high-mass end 
of the MF (blue). In Fig. 12 , we see that the mass-ratio distributions 
do a reasonable job of matching observations: biased to high q for 
low-mass primaries, roughly flat for solar-mass primaries, and biased 
to low q for intermediate-mass stars. 

The balance of increasing the number of stars formed with core 
mass, but not fragmenting into so many objects that high-mass 
stars are underproduced, means that the THFs and CSFs match 
the observ ations. Ho we ver, the MFs for primary stars with masses 
> 1 M ⊙ are far lower than the observations; in the simulated highest 
mass bin, approximately 60 per cent of stars are in multiples and 
50 per cent are in high-order systems, meaning that there are far too 
many single high-mass stars (compared to the expected number of 
binaries) in this simulation. 

This is due to the large number of binary systems that decay due 
to the random ejection rules in our simulations; most cores massive 
enough to form stars ≥a few solar masses will form a large number 
of stars, as in the BE mass-dependent model. The majority of these 
very high order systems ( N ∗ = 5–7) will eject a few stars, diluting 
the MF whilst keeping the THF and CSF high. 

4.3.1 Modelling secular decay only 

The models presented abo v e are able to fit various aspects of both 
the IMFs and multiplicities. Ho we ver, there are still some major 
issues with the MFs, which could well be due to our crude model for 
ejections. 

To investigate this, we use the same fragmentation conditions as 
in Section 4.3 , but apply the ejection rules determined by Sterzik & 

Durisen ( 1998 ) They used numerical and analytical modelling of non- 
hierarchical N = 3, 4, and 5 systems to e v aluate decay probabilities 
for secular decay only, which are presented for various initial mass- 
ratio distributions in their table 1. 

As well as considering cases where the multiple system ejects 
single stars, they also include the various decay channels that produce 
two lower order systems (i.e. an N = 5 system may decay to a binary 
and a triple system). They do not include any decay statistics for N = 

6 or N = 7 systems, so we extrapolate from the data presented in their 
paper to estimate the probabilities of high-order systems decaying 
through each channel (shown in Table 1 ). We assume that all binaries 
are stable in this model as it considers secular decay only. 

The IMF and MFs determined using the Sterzik & Durisen ( 1998 ) 
decay rules are shown in Figs 13 and 14 . The shape of the single-star 
IMF is the same as in Fig. 10 , and the system IMFs are extremely 
similar as one would expect. 

The multiplicity measures are rather different as we have only 
included secular decay. The MFs (blue) fit well at high masses, but 
we have far too many multiples at low masses. The THF (red) fits 
well at all masses, and the CSF (green) is much flatter than the 
observations. The reasons behind this are worth exploring to see if 
later dynamical destruction could solve them. 

With secular decay only, any binaries survive. At < 1 M ⊙ we only 
have singles, binaries, and triples initially. Most triples will secularly 
decay to a binary and a single, ejecting the lowest mass member. This 
reduces the MF, and significantly lowers the THF and CSF as there 
are so many low-mass single stars and only binaries to counter these. 
For primaries > 1 M ⊙ the initial population contains many triples, 
quadruples, and even higher order systems. These eject low-mass 
members (further diluting the multiplicities at lower masses), but 
retain the highest mass members in binaries and triples resulting in 
high THFs and CSFs. 

Where the secular decay only model fails is to o v erproduce 
binaries at lower masses. 

A downturn appears in the MF at 0.5–1 M ⊙ (depending on the 
SFE). For the best-fitting SFE of 0.3–0.5, the downturn occurs for 
primaries less massive than about ∼0.7 M ⊙. The reason for this 
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Figure 13. IMFs from the semirandom fragmentation model where low- 
mass stars are ejected from multiple systems following the Sterzik & Durisen 
( 1998 ) decay rules. See the caption for Fig. 2 for more details. 

Figure 14. Multiplicities from the semirandom fragmentation model where 
low-mass stars are ejected from multiple systems following the Sterzik & 

Durisen ( 1998 ) decay rules. See the caption for Fig. 3 for more details. 

feature is that systems that form from cores around the peak of the 
CMF ( ∼1 M ⊙) will usually form stars of 0.1–0.5 M ⊙ (one to three 
stars of total system mass 0.3–0.5 M ⊙). Therefore by far the most 
common triple systems around the peak of the IMF will eject stars 
of typically 0.1–0.2 M ⊙, which significantly dilutes the lowest mass 
bins. To dilute mass bins greater than about 0.8 M ⊙ requires ejections 
of stars of that mass from what must be initially much higher mass 
cores, which are much rarer. 

There are very few systems in which the lowest mass component 
is about 0.5–1 M ⊙ and so it is impossible to significantly dilute the 
MF abo v e that mass. As the system IMF drops to higher masses there 
are fewer and fewer increasingly high-mass stars ejected to dilute the 
high-mass MF. 

That the observed IMF peaks well below 1 M ⊙ means that the 
observed rapid decline in MFs between 5 and 0.5 M ⊙ cannot be due 
to dilution of the MF by secular decay; there are not enough systems 
with masses greater than a few M ⊙ that can produce the numbers of 
ejected roughly solar-mass stars required. 

Given our argument in Section 4.2 we cannot enforce a strong 
change of fragmentation in this regime to cause this rapid change in 
MF without losing the mapping of the CMF to the IMF. This leaves us 
with seemingly one option – that additional dynamical decay reduces 
the MF at low masses to what we observe in the field. We will return 
to this point in the Discussion section. 

5  DI SCUSSI ON  

Comparing the IMFs and multiplicities generated from our Monte 
Carlo simulations to observations allows us to eliminate some 
universal star formation models. 

First, self-similar fragmentation cannot replicate the significant 
and rapid increase of multiplicity with primary mass. This is because 
if all cores fragment in the same way, then initially all the multiplicity 
measures at all masses are equally high. Secular decay will only 
have a slight mass-dependent effect (preferentially losing the lowest 
mass members). The only solution would be to have an extremely 
mass-dependent dynamical decay that destroys almost all low-mass 
multiples, b ut ha ving no effect on moderately high-mass multiples. 
Such a solution would be very fine-tuned and is difficult to see 
how it could work with a wide variety of different star-forming 
environments (in particular, in associations there should be very little 
dynamical decay). 

Secondly, having a strict rule where the number of stars formed 
is proportional to the core mass (in our case, the number of BE 

masses contained within the core) significantly changes the peak and 
shape of the IMF. When splitting cores based on a strongly mass- 
dependent condition, the resulting IMF is a convolution of the CMF 

and the function defining how N ∗ depends on M c , making self-similar 
mapping impossible. 

Given these problems, we tried a hybrid model where core 
fragmentation is a weak function of core mass. The hybrid model 
provides a reasonable fit to both the system and single-star IMFs. The 
gentle dependence of N ∗ on M c solves the problem of overproducing 
low-mass multiples (as in the self-similar model) without introducing 
harsh features in the IMF (as in the strongly core mass-dependent 
model). 

Ho we ver, the hybrid model is not perfect. Its main problem is that 
it really struggles in o v erproducing binaries for primaries < 2 M ⊙

(see the top panel of Fig. 14 ). In smoothing the mass dependence of 
fragmentation to keep the IMF close to observations, it fails to give 
the quite rapid decline in MF that we observe. Ho we ver, if we change 
the fragmentation rule to optimize fitting the MFs, then this breaks 
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the smoothness of the IMF in re gions a way from the peak of the 
IMF (around 1 M ⊙). It is better than the self-similar model in its fit 
to the multiplicities, but in some ways retains the same fundamental 
problem. 

We have been unable to find a simple rule for the conversion of a 
static CMF to multiple systems that is able to fit the observations of 
both a universal canonical IMF and the multiplicities of the field. 

One possible reason is that no such rule exists, and star formation 
is not universal and that different regions produce at least different 
multiplicity properties (and perhaps slightly different IMFs). The 
field would therefore just be the average of these different star 
formation events. This would solve our problem, but at the cost 
of making every star formation event potentially quite different in its 
outcomes, and so there is no single answer to the question ‘How do 
stars form?’ (and so no single ‘right answer’ to compare simulations 
to). 

Another possibility is that the observed CMF does not represent a 
static distribution of the mass reservoirs available to form stars. We 
are assuming that a core mass remains constant and therefore a 1 M ⊙

core contains 1 M ⊙ of gas from which it can form stars. Ho we ver, 
cores should (at least sometimes) be able to accrete more mass, and so 
the mass of a core at the instant it is observed is not a measure of how 

much mass will be available to form stars. This would mean that we 
are not using the ‘correct’ CMF as a starting point. Whilst this would 
allow us to vary the CMF from what is observed, it is not obvious 
to what extent this would change the results of our models. We are 
already in some way accounting for this in having variable SFEs, as 
we already assume that not all the gas in a core will turn into stellar 
mass – so if the core mass grows this can be accounted for within the 
SFE. Ho we ver, we are still left with the problem that the CMF would 
need to have an unusual shape to balance out the feature at ∼1 M ⊙, 
introduced by the strongly mass-dependent fragmentation model. 
First, there is no reasoning that we can see which would explain 
why the CMF should hav e e xactly the form required to produce a 
nice, smooth resulting IMF. Secondly, if where fragmentation occurs 
changes with the environment (e.g. varying Bonner–Ebert masses), 
then the CMF would need to be altered in each region in such a way 
as to produce the same smooth canonical IMF everywhere. 

Throughout, we have assumed that the IMF is universal, and have 
judged the quality of fit of our simulations similarities to the canonical 
IMF. Whilst this is widely assumed, there is still some debate about 
the level of variation between IMFs in different regions. Observations 
of young clusters by Dib ( 2014 ) suggest that the IMF may not be 
universal, but there is also strong evidence that the form of the IMF 

is mostly unaffected by environmental factors (Damian et al. 2021 ; 
Guszejnov et al. 2022 ). Interestingly, the strongly peaked IMF as seen 
in our mass-dependent model shows some similarities to the unusual 
IMF in Taurus (Luhman et al. 2003 ; Dib 2014 ), which has a strong 
peak at ∼0.8 M ⊙. A detailed comparison between our simulated IMF 

and the observed IMF in Taurus is outside the scope of this paper, 
but similarities are intriguing (cf. Goodwin et al. 2004 ). 

5.1 Secular and dynamical decay modelling 

The secular and dynamical decay conditions we applied to the models 
are a simplified version of the physical processes occurring during 
star formation. We applied the decay probabilities of Sterzik & 

Durisen ( 1998 ) to see what purely secular decay would do to the 
hybrid model. We find that it fits the multiplicity properties for 
primaries greater than 2 M ⊙ surprisingly well, but results in too 
many binaries (not triples or higher order systems) for primaries of 
0.1–2 M ⊙. The MF does decline with primary mass in this range, but 

is consistently roughly double the field values for all primary masses 
in this range. 

There are two interesting things to say about this result. 
First, as we mentioned abo v e, in order to fit the field multiplicities 

we would need to dynamically process some of these binaries into 
two singles. In order to reduce the MF by a factor of 2, we need to 
dynamically destroy about a third of the systems. For example, for 
an MF of 0.6, i.e. 60/100, to become an MF of 0.3, if we process 20 
of the 60 binaries into 40 singles the MF is now 40/120 (lowering 
the number of binaries from 60 to 40, and in the process producing 
20 new single systems). This would need to be somewhat mass 
dependent: not ef fecti ve for systems with primaries o v er a few M ⊙, 
and equally ef fecti ve for all low-mass systems. 

This is still quite a significant level of processing that requires 
one-third of systems to spend enough time in an environment with 
high enough density and encounter energy to have an unbinding 
encounter. Ho we ver, one-third of systems spending time in such an 
environment (e.g. a fairly dense cluster) is not implausible, and such 
environments are ef fecti v e at processing binaries (e.g. P arker et al. 
2009 ). 

Secondly, a slight o v erabundance of binaries is observ ed in some 
local star-forming regions. King et al. ( 2012a , b ) found that local 
low-density star-forming regions all show a similar o v erabundance 
of multiples by a factor of roughly 2 when compared to the field, 
and Duch ̂ ene et al. ( 2018 ) find the same o v erabundance in the Orion 
Nebula Cluster. Therefore, for at least roughly 1 M ⊙ primaries local 
star-forming regions possibly match the too high MFs found with 
secular decay only in the hybrid model. This might possibly argue 
for the hybrid model being a good model of how cores produce stellar 
systems, and then how those systems secularly decay. 

A problem here is that the observed local overabundance contains 
too many hard binaries below 100 au separation to be dynamically 
processed by any of the environments in which they are found (King 
et al. 2012a , b ; Duch ̂ ene et al. 2018 ). 

Therefore, we would require around one-third of stars to be formed 
at much higher densities than we observe locally in order to process 
them. This could cause problems to the universal model we are 
trying to make work in this paper as then it is arguable that they 
do not form in the same way as stars locally. In particular, at high 
densities cores will not be isolated while forming stars and they will 
interact (Goodwin et al. 2007 ), and we have implicitly assumed cores 
are isolated objects so that there can be a mapping from the CMF 

to IMF. Since locally we observe cores to be quite separate, isolated 
objects, this could suggest a different ‘mode’ of forming stars in 
much denser environments. 

5.2 Inclusion of brown dwarf companions 

As mentioned in Section 3 , we include all companions with a mass 
> 0.012 M ⊙ (the minimum brown dwarf mass) in our multiplicity 
statistics. The solar-type MFs are calculated by counting all stellar 
and brown dwarf companions (Raghavan et al. 2010 ), but the original 
M dwarf statistics from Winters et al. ( 2019 ) do not include brown 
dwarf companions; in a discussion of results, ho we v er, the y state 
that the inclusion of BD companions only increases the MFs by 
∼1 per cent. For intermediate/higher mass stars, the surv e ys by De 
Rosa et al. ( 2014 ) (1.6–2.4 M ⊙), Moe & Kratter ( 2021 ) (1.6–2.4 M ⊙), 
and Moe & Di Stefano ( 2017 ) (3–17 M ⊙) identified companions 
down to 0.08 M ⊙, and only corrected for completeness down to this 
limit. Furthermore, the majority of MFs are calculated for different 
separation distributions, which were factored into our simulations. 
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5.3 Separation distributions 

There are several additional factors that could be taken into account in 
order to make this model more detailed. Applying a mask of different 
separations to each of our multiple systems would allow us to 
predict the MFs across different separation ranges and compare these 
results to observations. We could also use the separation distribution 
to estimate which systems would be detected in observational 
surv e ys, which would then allow us to introduce a new model 
for the dynamic and secular decay of systems depending on the 
separations. Incorporating these effects would contravene the main 
purpose of our simulations (to find a simple rule that reproduces the 
o v erall multiplicity trend with mass), but would provide interesting 
opportunities for follow-up research. 

5.4 Comparisons to previous statistical studies 

Star formation from molecular cores is not a trivial process to model. 
Turbulence, magnetic fields, rotation, and chemistry (among other 
properties) all need to be taken into account for detailed simulations 
of multiple system formation. 

Previous statistical models have had success in reproducing some 
of the observed multiplicity and properties and stellar IMFs of 
different populations of stars. Recent simulation works by Gusze- 
jnov & Hopkins ( 2015 ), Guszejnov et al. ( 2017 ), and Haugbølle, 
Padoan & Nordlund ( 2018 ) predict that the observed IMF and 
MFs are predominantly set by isothermal turbulence, in agreement 
with past simulations such as Goodwin et al. ( 2004 ). Guszejnov 
et al. ( 2017 ) model star formation from the beginning of the GMC 

collapse and predict properties such as the spatial distribution of the 
stars, which our simulations do not. We also note that Guszejnov 
et al. ( 2023 ) and Kuruwita & Haugbølle ( 2023 ) have had success 
numerically reproducing the field MFs with core fragmentation-only 
models. 

We also note that Ambrose & Whitworth (in preparation) have had 
success in reproducing the MF of solar-type stars using an N -body 
model of secular decay only. 

Our simulations complement the results of past studies by compar- 
ing results to the THF and CSF, which are not quantified in studies 
such as Holman et al. ( 2013 ) or Guszejnov et al. ( 2017 ). Furthermore, 
the aims of our models differ from those of more physically detailed 
hydrodynamical or semi-analytical models, as we are aiming to 
explore the universality of star formation using simple rules, and 
focusing on the dependence of the IMF and multiplicities primarily 
on core mass. 

6  C O N C L U S I O N S  

We have tested several scenarios for universal star formation. Using 
the stellar populations at the end of the simulation, we have compared 
our results to the observed IMF and MFs of the field. We have not 
found a model that perfectly fits both the IMFs and multiplicities, 
but some models have more success than others. 

The key issue with self-similar fragmentation, in which all cores 
form a random number of stars irrespective of the initial core mass, 
is that it produces MFs that do not have the strong primary mass 
dependence seen in the observations. If cores fragment with a strong 
dependence on their mass, this breaks the self-similar mapping 
between the CMF and the IMF, and produces a significant feature in 
the IMF around the peak. 

A hybrid model with a weak core mass fragmentation dependence 
finds a good fit to the IMF, and a somewhat reasonable fit to the 

multiplicities. Interestingly, the hybrid model with secular decay 
only seems to match the IMFs and multiplicities of local star-forming 
regions, but it appears non-trivial to argue for how those multiplicities 
could be processed to form the field. 
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