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ABSTRACT

Passive acoustic monitoring (PAM) – autonomously recording 
ambient sound – could dramatically increase the scale and robust-
ness of species monitoring in rainforest ecosystems. PAM generates 
large volumes of data that require automated methods of target 
species detection. Species-specific recognisers, which often use 
supervised machine learning, can achieve this goal. However, they 
require a large training dataset of target and non-target signals, 
which is time-consuming and challenging to create. Unfortunately, 
very little information about creating training datasets for super-
vised machine learning recognisers is available, especially for tropi-
cal ecosystems. Here, we show an iterative approach to creating a 
training dataset that improved recogniser precision from 0.12 to 
0.55. By sampling background noise using an initial small recogni-
ser, we can address one of the significant challenges of training 
dataset creation in acoustically diverse environments. Our work 
demonstrates that recognisers will likely fail in real-world settings 
unless the training dataset size is large enough and sufficiently 
representative of the ambient soundscape. We outline a workflow 
that can provide users with an accessible way to create a species- 
specific PAM recogniser that addresses these issues for tropical 
rainforest environments. Our work provides important lessons for 
PAM practitioners wanting to develop species-specific recognisers 
for acoustically diverse ecosystems.
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Introduction

Effective monitoring of wildlife populations is required to mitigate rapid and wide-
spread environmental change (Gibbs et al. 1999; Pereira and David Cooper 2006; 
Nichols et al. 2015). Long-term, standardised monitoring provides data on the pre-
sence or abundance of target species, which is necessary to identify the factors 
affecting population growth, abundance, and persistence (Pollock et al. 2002; Fedy 
and Aldridge 2011; Nuttall et al. 2022). These data can be challenging to acquire for 
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a wide-ranging species of conservation concern, as they are often found at low density 
in inaccessible environments such as tropical forests or marine ecosystems (Barnes  
2001; Guschanski et al. 2009; Dénes et al. 2018). The challenge is to collect sufficient 
volumes of ecologically relevant data at appropriate spatial scales. However, tradi-
tional survey methods are not well suited to meet this challenge because they are 
often impractical and labour intensive.

Passive Acoustic Monitoring (PAM) has emerged as a cost-effective method to 
address this challenge. It is one of several advances in high-throughput sensing 
technologies, such as remote sensing, LIDAR, and camera traps, that can scale up 
data collection while maintaining or minimising work effort on the ground (Gibb 
et al. 2019). PAM is a rapidly expanding field, benefitting from developments and 
cost reductions tied to hardware such as Automated Recording Units (Snaddon et al.  
2013; Hill et al. 2019; Teixeira et al. 2019). These developments dramatically increase 
the quality and quantity of ecological data collected (Gibb et al. 2019). Automated 
Recording Units provide an efficient and non-invasive data collection platform to 
inform a wide variety of ecological metrics, including community composition (Pillay 
et al. 2019; Bradfer-Lawrence et al. 2020), abundance (Marques et al. 2013; Pérez‐ 
Granados et al. 2019), occupancy (Wood et al. 2019) and individual breeding biology 
(Marin-Cudraz et al. 2019).

Like any technology, PAM engenders several practical challenges. Critically, PAM 
requires expertise in post-collection data processing to collect meaningful information, 
such as detections of target species from raw audio files. For example, users can extract 
data manually by labelling target signals (Campos‐Cerqueira et al. 2016; Abrahams and 
Geary 2020), though this approach is time-consuming and requires expert knowledge. 
Due to the large quantities of data produced, there is increasing interest in developing 
machine learning classifiers to automate target species identification from raw audio files. 
In addition, deep-learning classifiers can be highly accurate in bioacoustic tasks, though 
they require a large amount of data to train (Bermant et al. 2019; Stowell et al. 2019; 
Zhong et al. 2020). Such classifiers are increasingly used to track individual species in the 
wild, for example, sperm whales (Physeter macrocephalus; Bermant et al. 2019) and the 
Northern grey gibbon (Hylobates funereus; Clink et al. 2020). More generalised deep- 
learning classifiers to identify multiple species have also been developed, though cur-
rently, most are insufficient to classify all species of interest in many ecological applica-
tions (Ventura et al. 2015; Stowell et al. 2019; Zhong et al. 2020). BirdNet was the first 
generalised bioacoustic classifier for avian species. This deep artificial neural network 
(DNN) can identify over 3000 North American and European bird species (Kahl et al.  
2021) with a mean recall of 92.2% when a broadcaster is within 50 m (Pérez-Granados  
2023)

Developing effective classifiers for use with PAM can be time-consuming and prohi-
bitively complex for non-expert users (Gibb et al. 2019). Proprietary software such as 
Kaleidoscope (Wildlife Acoustics, USA) and cloud-based platforms such as Arbimon 
(Aide et al. 2013; Bravo et al. 2017) offer a potential solution. However, such tools are 
often limited in their options for species identification tasks and, in some cases, incur 
a prohibitive cost for many conservation projects. Thus, where relevant off-the-shelf 
classifiers or suitable platforms are unavailable, custom classifiers must still be developed 
for individual applications on a case-by-case basis. These domain-specific classifiers are 
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often created using supervised machine learning methods. These have a lower technical 
barrier to entry than deep learning classifiers and can be more suited to smaller datasets.

In broad terms, constructing a recogniser involves two stages: detecting regions of 
interest (ROI) and classifying potential signals. The number and complexity of these 
steps within a pipeline will vary depending on the methodology used (Lasseck 2014; 
Sebastián‐González et al. 2015; Knight et al. 2020). Region of Interest detection identifies 
potential target signals. One simple and accessible ROI technique is template matching, 
which can be used as both the ROI identification and classification (Katz et al. 2016b). 
Template matching involves using a measure such as spectral cross-correlation to assess 
the similarity between one or more reference call patterns and a set of unknown call 
patterns. Using template matching for classification relies on creating a sufficiently 
representative call library (Aide et al. 2013; Gibb et al. 2019) and is therefore sensitive 
to variation in signal structure, i.e. call type and background noise (Brandes 2008; Katz 
et al. 2016a). Combining template matching with machine learning methods reduces the 
false-positive rate of a classifier compared to using template matching alone (Balantic 
and Donovan 2020). In this use case, template matching extracts regions of interest that 
are then classified by a supervised machine learning algorithm. For example, suppose the 
template library sufficiently represents intra-specific call-type variation with an appro-
priate cross-correlation score threshold. In that case, template matching will improve the 
quality of data input into a supervised machine learning classifier. Several different 
supervised machine learning approaches exist; random forest (Brieman 2001) is one of 
the most widely used (Tachibana et al. 2014; Noda et al. 2016; Raghuram et al. 2016) and 
performs well at bioacoustic tasks (Weerasena et al. 2018; Ayala-Berdon et al. 2020; 
Smith-Vidaurre et al. 2020).

An essential part of developing a recogniser is selecting the size of the dataset used to 
train the supervised machine learning. There are few concrete guidelines on what 
constitutes an adequate training dataset size. Sebastián‐González et al. (2015) tested the 
effect of training dataset size on accuracy. They found that a 50% reduction in dataset size 
resulted in a loss of less than 1% balanced accuracy metric (BAC), suggesting that their 
chosen supervised machine learning (a Support Vector Machine) copes well with small 
datasets (n = 642). However, it is not easy to generalise these results because classifier 
performance varies on a species-to-species basis. For example, Digby et al. (2013) 
achieved a recall of 39.8% and precision of 98.1% with 3411 little spotted kiwis 
(Apteryx owenii) calls and 3072 negative cases. In contrast, Sebastián‐González et al. 
(2015) used a maximum of 1285 ‘Amakihi (Hemignathus viren virens) and 2785 negative 
cases and achieved a BAC of 86.5%. Similarly, when attempting to find the best training 
dataset size to optimise their relative sound level (RSL) method, Knight et al. (2020) 
found that the common nighthawk (Chordeiles minor) had an optimal training dataset 
size of 10,590 cases. In contrast, the Ovenbird (Seiurus aurocapilla) needed only 5,540 
cases to achieve a similar performance.

A challenge in developing classifiers for PAM studies is the spatiotemporal 
variation in background noise. For example, various species vocalise concurrently 
in tropical rainforests in overlapping frequency ranges (Slabbekoorn 2004). The 
soundscape also varies as biotic factors, such as breeding season, and abiotic 
factors, such as weather change over time. Plant and animal community composi-
tion can also vary spatially across heterogeneous tropical landscapes (Cintra and 
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Naka 2011; Wardhaugh et al. 2014; Ioki et al. 2016) these factors make ecosystems 
like tropical rainforests challenging for PAM (e.g. Heinicke et al. 2015). One way 
to improve classifier performance, which may be especially important when not 
denoising, is to ensure the training dataset captures the variation in background 
noise. A sufficiently representative dataset is likely to be very large. Creating such 
a training dataset is challenging because it requires identifying the many sources 
of background noise that may be a problem for the classifier. Moreover, deter-
mining this kind of background noise would need an a priori knowledge that is 
not available.

Aims and objectives

We present a case study of two sympatric macaw species: the critically endangered 
Great Green Macaw Ara ambiguus (BirdLife International 2020) and the regionally 
endangered Scarlet Macaw Ara macao (Monge et al. 2016) in the tropical rainforest of 
northern Costa Rica. Parrots are one of the most endangered orders of birds, with 
34% of species classified as threatened (IUCN 2024). They are widely distributed 
globally and native to every continent in the tropics. For many species of conservation 
concern, there is a lack of data on factors important to conservation planning and 
policy, such as their distribution and abundance. This limitation is especially con-
cerning in the case of the Great Green Macaw because they were uplisted to critically 
endangered in 2020 (BirdLife International 2020). Parrots represent a significant 
challenge for classification tasks due to their wide vocabulary (Taylor and Perrin  
2005; Zdenek et al. 2015; Montes-Medina et al. 2016) and context-dependent calls 
(Bradbury 2003). The two focal species present an additional challenge because their 
calls are highly similar and difficult to distinguish, even for experts (TL pers. obs.). 
The study region is also highly varied, from highly anthropogenically disturbed areas 
to mature primary forests. This presents a challenge of spatial variation in back-
ground noise.

Using this case study, we aim to demonstrate that not adequately sampling the 
spatiotemporal variation in background noise will lead to inaccurate estimations of 
recogniser performance. We then give one approach to developing a recogniser that 
can handle spatiotemporal variation in background noise.

Materials and methods

Macaw call characteristics

The calls of the two focal species of macaw are similar (Figure 1). They occupy the same 
frequency band (0.5 kHz to 4 kHz) and are very similar in length (0.2 sec to 1.0 sec). This 
frequency band overlaps significantly with that of anthropogenic noise, meaning that 
bandpass filtering can only offer minimal help to remove background noise (Slabbekoorn  
2004; Slabbekoorn and Ripmeester 2008). The primary difference between the calls of the 
two species is the lack of clear harmonic structure of the Scarlet Macaw call, when 
compared to the Great Green Macaw call (Figure 1).
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The audio

Survey recordings

We used 42 AudioMoth 1.2 (Hill et al. 2019; LabMaker, Germany) Automated Recording 
Units, which we installed on the tallest accessible trees (5–20 m) in a 10 km grid across 
the northeast of Costa Rica (Figure 2). They recorded four 30-min slots throughout 
the day (7:00–7:30, 10:00–10:30, 13:00–13:30, 16:00–16:30). Recording took place 
between 27 January 2020 and 30 June 2020. The standard sampling frequency was 48  
kHz; however, the sampling frequency was not consistent as there was an error in 
configuring some devices for a portion of the deployment period. These devices sampled 
at 96 kHz rather than 48 kHz and therefore recordings were down sampled before they 
were used.

High-quality recordings

Template matching requires high-quality recordings of the target species to create 
reference templates that can be used for spectrogram cross-correlation. We did this 
with recordings made with a directional microphone, Sennheiser ME 67 (Sennheiser 
electronic GmbH & Co., United Kingdom) and a Roland R-05 Wave/MP3 digital 
recorder (Roland Corporation, United Kingdom). Recordings were digitised with a 16- 
bit sampling depth and 48 kHz sampling frequency; recordings were saved as WAV files. 
Recording occurred around known Great Green Macaw nest sites in northeastern Costa 
Rica between January and March 2019 (Figure 1). All recordings were of individuals 
within 200 m of the recorder. Initially, we selected four recordings containing a total of 
157 calls from three different nest sites, as they included single individuals calling to their 
mate and groups of Great Green Macaw calling. This meant we could capture calls in 
different contexts (group and pair), increasing the call variation captured in our initial 

Figure 1. Spectrograms of a Great Green Macaw (GGM) and Scarlet Macaw (SCM) contact call. They are 
very similar apart from the blurring of the harmonics in the centre of the SCM call. This is the 
characteristic difference between the calls of the two species.
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dataset. These were selected by visually screening non-target signals that overlap with 
target calls.

We only used Great Green Macaw calls as high-quality recordings as we could not 
access Scarlet Macaw nest sites to record Scarlet Macaw calls. This is because within the 
study area, Scarlet Macaws are uncommon, and, therefore, their nest sites are infre-
quently discovered. We did not consider this an issue as the way we developed the 
templates ensured we were testing the templates against calls from both species.

Acoustic features

We extracted a total of 113 acoustic features using the warbleR package in R (R Core 
Team 2021): 20 measurements of frequency, time, and amplitude parameters, and 93 
Mel-frequency cepstral coefficients (MFCCs) (Araya‐Salas et al. 2017). MFCCs were 
initially designed for human speech recognition but have been widely used in bioacous-
tics (Loh et al. 2013; Colonna et al. 2016; Noda et al. 2016; Salamon et al. 2016). MFCCs 
reduce any signal to a set of coefficients (Colonna et al. 2016) while minimising any loss 
of biologically relevant information (Davis and Mermelstein 1980).

Recogniser workflow elements

Region of interest detection: template matching

The manually labelled calls from four high-quality recordings were used to construct 
templates (n = 157) following Hafner and Katz (2018) (Figure 3). We did not screen the 

Figure 2. Automated recording unit locations in northeastern Costa Rica. Forty-two automated 
recording units were set out on a 10 km grid; holes in the grid are areas that were inaccessible due 
to dense forest or lack of permission from landowners.
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Figure 3. Schematic of classifier development. Panel (a) represents how all recordings were divided to 
create the three datasets. D1 was selected from recordings up to the middle of March when TL had to 
leave the field due to the pandemic. After April, recording devices were left in the field until June and 
so any failures were not rectified, which resulted in fewer recordings taking place towards the end of 
the study period. Most sites had issues with recording devices failing at some point; at site 43, the 
recording device failed and then was stolen, so it was not re-installed. (b) The workflow used to 
develop each classifier, starting from raw sound files (light green) and resulting in classifiers and 
performance metrics (red).
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calls for background noise before converting them into templates. Once they had been 
converted into templates, we visually checked them and removed any if they contained any 
non-target signal (n = 94). With the remaining templates, we evaluated them on five 30 
min, randomly selected Automated Recording Unit recordings that included Great Green 
Macaw and Scarlet Macaw calls. To sample randomly, we used dplyr:slice_sample() 
(Wickham et al. 2023) across the data frame containing target file names arranged by 
filename. Spectrogram cross-correlation is used to score the similarity of a detection to the 
template. We set a low default threshold (0.2) to allow flexibility in matching call types and 
amplitudes. Templates that detected less than 10% (n = 28) or over 200% (n = 17) of the 
total number of calls were removed. We removed templates with a true-positive-to-false- 
positive ratio above 1:5 or if 90% of a template’s detections were identical to another’s. In 
this case, to determine which template to keep, we manually screened the detections and 
kept the template that had the most unique detections. To test their accuracy, we ran the 
final group of templates (n = 4) over 10 randomly selected Automated Recording Unit 
recordings containing Scarlet Macaw and Great Green Macaw calls and 10 randomly 
selected recordings without any calls. We set the window length used in the template 
matching to 1 s to reflect the maximum call length (1 s).

Signal classification: supervised ML

We used a tidymodels workflow (Kuhn and Wickham 2020) in R (R Core Team 2021) 
to train each random forest algorithm. We used a 75:25 split of the training dataset to 
create the training and test data, meaning that 75% of the training dataset is used to 
train the classifier, and 25% is withheld to estimate performance. A random forest has 
three hyperparameters to be tuned: the number of trees, nodes, and variables per 
node. We set the number of trees to 1000 and used a tuning grid to tune the number 
of nodes (2–10 with five levels) and the number of variables per node (10–30 with 
five levels). Finally, we used k-fold cross-validation with 10 equal-size subsamples to 
estimate the area under the ROC curve, which was used to select the best value for the 
tuning parameters.

Recogniser one training dataset

To create the training dataset for recogniser one, we used recordings from between 
27 January 2020 and 15 March 2020. We used recordings from this period because the 
global COVID-19 pandemic forced us out of the field and meant recogniser development 
started before all the data had been collected.

We chose an initial target of 1000 calls per species to create the dataset to match the 
smallest published training dataset size (Sebastián‐González et al. 2015). To calculate how 
many recordings we would need to screen manually to reach 1000 calls per species, we 
first manually labelled 100 recordings to estimate the call rate per 30-min recording. The 
recordings were randomly selected using dplyr:slice_sample()(Wickham et al. 2023), as 
above. These were 3.13 Great Green Macaw and 1.18 Scarlet Macaw calls per recording. 
Therefore, to reach at least 1000 calls per species, we sampled 848 (1000/1.18) recordings 
using Sobol sequences to create a pseudo-random sample (Sobol 1967; Antonov and 
Saleev 1979) across sites and survey times (Figure 2). Sobol sequences are a type of quasi- 
random low-discrepancy sequence that are used in numerical methods for integrating 
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and for generating pseudo-random samples (Renardy et al. 2021). Unlike traditional 
random sampling methods that use purely random numbers, Sobol sequences are 
designed to fill the space more uniformly (Sobol 1967; Antonov and Saleev 1979). 
They are also useful because they can handle dimensionality, and in this case we wanted 
to randomly sample across space and time. We manually labelled calls using Raven Lite 
(Bioacoustics Research Program 2016) to generate a reference dataset of known true 
cases: 2773 Great Green Macaw calls and 843 Scarlet Macaw calls.

We ran our template set over the 848 recordings and used the reference dataset 
to label all target cases; the remaining detections were labelled negative. We used 
Sobol sequences to create a pseudo-random sample (Sobol 1967; Antonov and 
Saleev 1979) of the negative cases equal to the total target cases of both classes 
(Great Green Macaw and Scarlet Macaw). Therefore, recogniser one’s training 
dataset consisted of 4247 Great Green Macaw calls, 1393 Scarlet Macaw calls, and 
5710 negative cases. The number of target cases was higher than that of manually 
labelled reference data because overlapping calls were only recorded once when 
manually labelling them. However, we designed the template matching detections 
not to overlap because the multiple templates could detect the same call. Therefore, 
these continuous calls would be detected as multiple cases rather than a single 
manually labelled case.

Build & validation datasets

When we received the second set of recordings from the field (16 March 2020 to 
30 June 2020), we combined them with the recordings not used to create recogniser 
one’s training dataset. We then divided these recordings into two sets, one that we used to 
evaluate the accuracy of the recogniser one and build a subsequent recogniser. We used 
the second to assess the accuracy of any other recognisers. To ensure an even spatial and 
temporal sampling of the recordings in each set, we again used Sobol sequences to create 
a pseudo-random sample (Sobol 1967; Antonov and Saleev 1979). This resulted in two 
equally sized datasets (build: n = 8084/validation: n = 8084 - Figure 2).

Recogniser performance

We used recall and precision as our performance metrics. Recall uses the number of false 
negatives (FN) to give a metric of how often a recogniser labels target signal as non-target 
signal (Recall = TP/TP + FN), and precision uses the number of false positives (FP) to 
create a metric for how often a recogniser labels non-target signal as target signal 
(Precision = TP/TP + FP).

We used two approaches to estimating the performance of the recognisers: 
1) Evaluation: using 25% of the training data withheld from the model during 
training. 2) Validation: we ran the recogniser over the validation dataset and then 
manually checked all positive detections to count the number of true positives (TP) 
and false positives (FP). We did the same with a sample of the negative cases to 
count the number of true negatives (TN) and false negatives (FN) made by the 
recogniser. The second approach allowed us to get an accurate measure of 
performance.
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As we expected the number of negative cases to be high and manually screening all of 
them would not be practical, we conducted a power analysis to determine how many 
negative cases we needed to check manually. For this, we needed the false-negative effect 
size: 

Where nFN is the number of false-negative cases, and N is the total number of all cases. 
We set the significance level to 0.05 and power to 0.95.

Sources of error

To understand how variation in background noise impacts performance, we 
labelled each false-positive case to species or genera level where possible. This 
meant we could investigate spatiotemporal variation in background noise and how 
this affects recogniser precision.

Recogniser two training dataset

We used all of the manually checked positive detections made by recogniser one. 
We combined these with the recogniser ones’ training dataset to form the training 
dataset for recogniser two. Once trained, we applied the newly trained recogniser 
to the validation dataset and estimated performance in the same way as recog-
niser one.

Results

Region of interest detection: template matching

Across the whole dataset, the template set made 2,072,080 detections, a mean of 
121.75 detections per recording (n = 17020). In the 848 recordings used to create the 
training dataset for recogniser one, the mean detection rate was 119.98 per recording. 
The mean number of Great Green Macaw calls found when we manually labelled the 
same dataset was 3.27 (n = 848), demonstrating that the template matching step 
captured a lot of non-target signals.

Recogniser one

The performance of recogniser one, estimated using the 25% withheld test data, was high 
in both recall (Great Green Macaw = 0.92/Scarlet Macaw = 0.85) and precision (Great 
Green Macaw = 0.93/Scarlet Macaw = 0.96 - Figure 4).

We applied it to the build dataset to more rigorously evaluate recogniser performance. 
Recogniser one made 37,639 positive detections (35814 Great Green Macaw and 1825 Scarlet 
Macaw), 4161 were true Great Green Macaw and 201 true Scarlet Macaw when we manually 
checked them. We checked 41,514 negative cases, determined by a power analysis using the 
Scarlet Macaw false-negative effect size, as it was the lowest of either target species (Great 
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Green Macaw = 0.0327, Scarlet Macaw = 0.0177). Finally, we reviewed all positive detections 
made by recogniser one (n = 37639) to estimate its performance. Compared to the test 
performance metrics, precision degraded (Great Green Macaw = 0.12/Scarlet Macaw = 0.11) 
significantly for both species when evaluated on the build dataset. Recall declined for the 
Scarlet Macaw (0.04), whereas it increased for the Great Green Macaw (0.98 - Figure 4).

Recogniser two

We combined the 4362 (4161 Great Green Macaw + 201 Scarlet Macaw) detections made 
by recogniser one in the build dataset with the 5640 (4247 Great Green Macaw + 1393 
Scarlet Macaw) detections made by recogniser one’s training dataset. Recogniser two was 
trained with these (8408 Great Green Macaw + 2112 Scarlet Macaw) and all non-target 
positive detections from recogniser one (n = 31999) plus the negative cases used to train 
recogniser one (n = 5710). Therefore, the final dataset was 8408 Great Green Macaw/ 
2112 Scarlet Macaw/37709 negative.

Initial performance on the test data was lower than the performance of recogniser 
one: recall (Great Green Macaw = 0.69/Scarlet Macaw = 0.75) and precision (Great 
Green Macaw = 0.86/Scarlet Macaw = 0.78) (Figure 4). This is likely due to the size 
and spatiotemporal scale of the training dataset being larger and capturing more 
background noise, therefore being more representative. Hence, performance estimates 
are closer to reality.

We manually checked all positive (n = 6390) and 119,759 negative detections. Scarlet 
Macaw false-negative effect size was again used to calculate the number of negative 
detections to review, as it was the smallest (Great Green Macaw = 0.0498, Scarlet 
Macaw = 0.0104). Recall for the Great Green Macaw did not change significantly 
(0.66), whereas precision did drop (0.56), but it was not by as much as for recogniser 
one. Scarlet Macaw performance dropped for both metrics (Recall = 0.66/Precision =  
0.24), but the decline was less severe than for recogniser one. The discrepancy between 
the two species’ performance is likely due to the large difference in the training dataset 
size for each species.

Sources of error

The sources of error varied over time (Figure 5) and space (Figure 6). However, we can 
see a noticeable change in the dominant source of error after the period used to create the 
recogniser one (Figure 5b). This suggests that, even though performance is poor, the 
temporal variation in background noise is driving the worse performance later in the 
season (Figure 5a). Unidentified passerines stay a constant proportion of the error, 
whereas Amazona spp. decrease after this point, and clay-coloured thrush (Turdus grayii) 
and chickens (Gallus domesticus) increase. This is probably because the breeding season 
of the clay-coloured thrush begins after March, whereas the breeding season for 
Amazona spp. ends around this time.

Overall, false-positive detections from all sources were reduced by recogniser two 
compared to recogniser one, apart from the misclassification of Great Green Macaw as 
Scarlet Macaw (Figure 6). Recogniser one’s false-positive detections at many sites are 
dominated by one or two sources of error (e.g. site 5, 1 and 29 - Figure 6). In contrast, 
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there is a smaller number with a wide variety of sources of error (e.g. site 16, 20 and 25). 
However, there is a distinct spatial variation in the types of sources of error. For example, 
misclassifications are caused mainly by other wild bird species in the northern sites, 
whereas there is more anthropogenic noise (chainsaw, industry) in the south and east. 
Although a wild bird, the clay-coloured thrush is often strongly associated with areas of 
human disturbance (Dyrcz 1983), and our results support this association. Spatial varia-
tion in the source of error demonstrates that capturing this is critical in creating 
a representative training dataset.

Discussion

We have demonstrated that users must be careful when preparing a training 
dataset for a PAM recogniser. A training dataset that captures relevant back-
ground noise variation across space and time is required to construct a robust 

Figure 4. Classifier performance metrics show the improvement between R1 and R2. There is a trade- 
off between precision and recall: when precision increases, recall decreases and visa-versa. There is 
a constant large difference between evaluation and validation precision metrics, and this demon-
strates the potential pitfalls of using default validation datasets to estimate the performance of 
classifiers.
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recogniser. Our workflow addresses this by using an initial small recogniser to 
create a training dataset that captures non-target signals driving false-positive 
detections. This method is similar to the ‘basic recognition model’ approach 
used by Buxton and Jones (2012), whereby a small amount of data is used to 
train a basic model, which is then used to search for more positive training data 

Figure 5. The temporal change in source background noise in the false-positive detection of 
recogniser one in the evaluation dataset across the study period. There is a distinct change in the 
proportions of Amazona spp., clay-coloured thrush and chicken after the time period that the 
recogniser one’s training dataset was selected (dashed line).

Figure 6. Site-level variation in the overall top 10 sources of error; Scarlet Macaw and Great Green 
Macaw detections from recogniser one (R1) and recogniser two (R2). There is a clear difference in the 
sources of error across the study sites, with northern sites being dominated by Amazona spp., 
unidentified passerines and at sites 29 and 38, the slaty spinetail (Synallaxis brachyura). Overall false 
positives were reduced by 90% from R1 to R2 and at each site, and the variation in sources of error was 
also generally reduced.
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in other recordings. The main difference is that we extended this approach to 
gather positive and negative cases.

We initially assumed Great Green Macaw and Scarlet Macaw calls were sufficiently 
distinctive that using recordings from a narrow window in the breeding season would 
allow us to construct a robust recogniser. However, the performance of our initial 
breeding season recogniser was very poor when applied to data from outside the breeding 
season due to the increased diversity of the soundscape. Importantly, this variation is 
difficult to capture without using a large, manually labelled dataset. This would have 
required us to label over 9000 30-min recordings. Incorporating the positive detections 
and previous training datasets to train a second classifier significantly increases precision 
whilst losing only a small level of recall performance. This method is similar to the 
workflow of Balantic and Donovan (2020), using template matching and machine 
learning together to reduce false positives. The main benefit of our approach is the 
relatively simple pipeline structure. Nonetheless, we found that iterative labelling and 
training were required to create a useable recogniser when the target species exhibits 
considerable call-type variation and high spatiotemporal variation in background noise.

Recogniser two, which included seasonal variation, still performed poorly compared 
to many other machine learning PAM studies (Bravo et al. 2017; Jahn et al. 2017; Knight 
and Bayne 2019; Balantic and Donovan 2020; Knight et al. 2020; Gillings and Scott 2021). 
However, our results are comparable to similar studies in tropical environments (Swiston 
and Mennill 2009; Heinicke et al. 2015). This reduced performance likely reflects the 
highly diverse soundscape arising from the high diversity of species with overlapping 
signal frequencies (Slabbekoorn 2004) and anthropogenic noise (Slabbekoorn and Peet  
2003) in tropical settings. Both factors were apparent in our study region in the northeast 
of Costa Rica, which encompasses primarily cropland and urban in the south and mainly 
cattle pasture and forest land use types in the north (Fagan et al. 2013; Jadin et al. 2016; 
Karra et al. 2021).

When we combine all our manually checked positive detections, we found that 
macaws are only found in 5.5% of the recordings (n = 592). This demonstrates another 
issue with creating a recogniser for a rare species: a lack of training data. Macaws’ 
behaviour means that when they are at a site, it is likely they will call multiple times. 
The most calls we found in one recording were over 200. This can then be biased as sites 
where macaws are found less often will not be as represented in the training dataset. 
When this issue is considered alongside the high variation in spatio-temporal back-
ground noise, it demonstrates the challenge of creating a recogniser in this type of 
environment.

Another important finding was that the performance of the breeding season recog-
niser was hugely over-estimated. Practitioners should consider this when creating classi-
fiers for large-scale rollout. Here, we have explicitly described the data used to assess 
model performance, but this is not always the case (Heinicke et al. 2015). It is unclear 
how many published recognisers would perform in a real-world PAM study, especially if 
studies use high-quality recordings to create their classifier (Bardeli et al. 2010; Buxton 
and Jones 2012; Priyadarshani et al. 2018). Manually checking positive detections and 
using power analysis to determine how many negative cases need to be reviewed is 
a more labour-intensive task but gives a more accurate assessment of real-world 
performance.

324 T. C. LEWIS ET AL.



We did not succeed in creating a recogniser that can be used without manually 
checking outputs. This is not uncommon. Even when classifiers have high-performance 
metrics, manually checking positive classifications to filter out false positives is often 
done before downstream analyses of species abundance and distribution (Buxton and 
Jones 2012; Zwart et al. 2014; Colbert et al. 2015; Kalan et al. 2015; Sidie-Slettedahl et al.  
2015). A way to deal with this need for manual checking is to use statistical methods that 
can reduce the amount of data needed for validation (Knight et al. 2020), account for false 
positives (Banner et al. 2018), false negatives (MacKenzie et al. 2002) or both (Chambert 
et al. 2018; Wright et al. 2020). Our method reduced the number of false positives that 
must be manually validated by 80%, from 3.95 per recording (n = 33243) in R1 to 0.75 per 
recording (n = 6309) in R2. Therefore, although it is still necessary to manually check all 
positive detections when the final recogniser runs on new data, this represents 
a significant reduction in the effort needed to clean the data.

Denoising can increase classifier accuracy (Stowell et al. 2016). Interestingly, denois-
ing is not often used, even when studies report the high performance of recognisers. This 
supports the argument made by Priyadarshani et al. (2018) that many published PAM 
studies are done in low-noise environments, using species with simple calls. The primary 
barrier to denoising is that few simple, user-friendly techniques are available, so many 
classifiers do not use them (e.g. Sebastián‐González et al. 2015; Balantic and Donovan  
2020; Knight et al. 2020). We provide an alternative way to tackle the issue of background 
noise without using denoising. However, it does not entirely deal with the problem as our 
recogniser performance is not comparable to the best-published recognisers.

Future work

We could improve our classifier in several ways. Effective template matching requires 
a sufficiently representative call library (Aide et al. 2013; Gibb et al. 2019). We set the 
matching threshold very low to help our classifier deal with intra- and inter-call type 
variation of the Great Green Macaw and Scarlet Macaw. Although we did not miss any 
target signal, the random forest classified a large volume of data. Investing extra time in 
developing and refining the template set would likely reduce the time needed to review 
calls and improve performance by reducing the size of the initial dataset.

Training dataset imbalance is common in machine learning, not just in bioacoustics 
(Salamon and Bello 2017). Methods such as data augmentation can provide an excellent 
solution to this problem (Stowell et al. 2019). Our training dataset was very imbalanced, 
and the quantity of Scarlet Macaw training data was only ~25% of the Great Green 
Macaw training dataset. This resulted in the performance of Scarlet Macaw being 
significantly lower than that of the Great Green Macaw. Our current workflow uses 
a standard window size of 1 s, within which the call may occupy only a fraction. 
Therefore, we would have to change how we structure our pipeline to accommodate 
data augmentation, as many data augmentation techniques need to have the start and end 
of the target signal (Salamon and Bello 2017). Being able to find the beginning and end of 
a target signal automatically would be a massive step towards facilitating data augmenta-
tion. It would also help reduce the effect of background noise on random forest accuracy 
by reducing the amount of background noise present in each window to be classified.
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Conclusions

When developing a recogniser there is a trade-off between recall and precision. If the 
target species are rare, then high recall, so no potential target signal is missed, might be 
preferred. However, this could come at the expense of precision. We have demonstrated 
that by using the iterative approach to creating a training dataset, we can increase 
precision significantly, whilst recall only decreases slightly. Importantly, we have 
shown that performance needs to be done over a large dataset to get an accurate 
estimation. This is particularly important if practitioners are using performance metrics 
to determine how many detections need to be screened to validate a survey.

Passive acoustic monitoring has great potential to enable the scaling up of biodiversity 
monitoring to inform policy and conservation strategies. There is an increasing need for 
simple methods to automate or semi-automate data extraction from PAM surveys 
(Marques et al. 2013; Stowell et al. 2016). The development of generalised deep-learning 
classifiers will make PAM a simple and accessible tool for biodiversity monitoring. 
However, their development may still be far off, and species-specific recognisers can be 
more accurate (Priyadarshani et al. 2018). Custom recognisers also allow practitioners to 
tailor them to their specific needs. Developing such recognisers is challenging, and 
although there is an increasing amount of literature on different methods to create 
classifiers, these are often small-scale studies in temperate environments (Sugai et al.  
2019) that rely on high-quality recordings of species with simple calls (Priyadarshani 
et al. 2018). We have demonstrated a simple workflow that can provide users with an 
accessible but time-consuming way to create a PAM recogniser for acoustically diverse 
environments.
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