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The search for non-Gaussian signatures in the cosmic microwave background (CMB) is crucial for

understanding the physics of the early Universe. Given the possibility of non-Gaussian fluctuations in the

CMB, a recent revision to the standard Λ-cold dark matter (ΛCDM) model has been proposed, dubbed

“super-ΛCDM.” This model introduces additional free parameters to account for the potential effects of a

trispectrum in the primordial fluctuations. In this study, we explore the impact of the super-ΛCDM model

on current constraints in neutrino physics. In agreement with previous research, our analysis reveals that,

for most of the datasets, the super-ΛCDM parameter A0 significantly deviates from zero at over a

95% confidence level. We then demonstrate that this signal might influence current constraints in the

neutrino sector. Specifically, we find that the current constraints on neutrino masses may be relaxed by over

a factor of 2 within the super-ΛCDM framework, thanks to the correlation present with A0; such relaxation

persists even when we apply constraints to the trispectrum from local measurements, assuming a strong

similarity between the two forms. Consequently, locking A0 ¼ 0 might introduce a bias, leading to overly

stringent constraints on the total neutrino mass.

DOI: 10.1103/PhysRevD.109.123532

I. INTRODUCTION

Presently, the best representation of our Universe and its

evolution is described by the so-called Λ-cold dark matter

(ΛCDM) model. In this model, the dark energy is repre-

sented by a positive cosmological constant Λ, while the

dark matter is considered to be pressureless or cold. The

ΛCDM model is constructed using only six cosmological

parameters, and it has proven to provide a reliable descrip-

tion of the properties of our Universe.

Nonetheless, despite its tremendous success in explain-

ing a range of astronomical observations, the standard

ΛCDMmodel is not exempt from several ongoing debates

and challenges. Several unresolved issues still persist

within this simple paradigm. One of the most significant

and pressing concerns is the Hubble constant (H0)

tension, as extensively discussed in recent literature [1–10].

This tension highlights a massive discrepancy between

the early-time estimates of H0 by the cosmic microwave

background (CMB), such as Planck’s observations

(H0 ¼ 67.4� 0.5 km s−1 Mpc−1 [11]), assuming a ΛCDM

model in the background, and the late-time measurements

of H0 using a cosmic distance ladder, such as the SH0ES

(supernovae and H0 for the equation of state of dark

energy) Collaboration where type Ia supernovae are

calibrated with Cepheids, leading to H0 ¼ 73.04�
1.04 km s−1Mpc−1 [12].

As the struggle to solve the well-known cosmological

tensions between late- and early-time observations within

the standard ΛCDM model is far from being solved, the

possibility of observing beyond-standard-model physics is

both tantalizing and promising. A particularly insightful

approach for testing new physics involves exploring

departures from Gaussianity in the primordial perturba-

tions. The CMB anisotropies are well suited for such

observations. They are generated early in the Universe’s

history, distinct from other processes imprinting non-

Gaussianities (NG) at later times, and result from the

evolution of the primordial fluctuations of the field that

drives inflation. The simplest inflationary models, which

are constructed starting from a single field slowly rolling
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down to a flat potential, imply that the evolution of the field

fluctuations assumes the form of a harmonic oscillator

equation,where the ground state is aGaussianwave function.

Consequently, the standard prediction of an inflationary

epoch directs that the cosmic fluctuations are Gaussian on

the large scale. Despite being a first-order approximation,

on such models, the departures from Gaussianity are neg-

ligible [13,14]. However, the possibility of observing non-

negligible NG is not completely ruled out. By venturing

beyond the most basic realizations of the inflationary epoch,

higher-order correlations could become nonzero, providing

valuable insight into nonlinear interactions. Even though

current measurements of NG are within the expected pre-

diction of the single-field slow-roll model, the current level of

sensitivity cannot allowus to rule out alternative theories [15].

The scope of this work is to extend the works of

Refs. [16,17]. The authors of Refs. [16,17] first introduced

the super-ΛCDMmodel, an extension of the ΛCDMmodel

where NG are parametrized by an additional parameter in

the angular power spectrum due to super sample signal (i.e.,

super), and the inflationary paradigm is described by the

quasi-single-inflationary case. Precedent works found the

existence of possible NG at 95% CL that is increased at

more than 3σ when the curvature of our Universe is

included in the picture.

If the super-ΛCDM model proves to be accurate, it could

profoundly impact current cosmological constraints that rely

on theΛCDM assumption. Specifically, in this work, we aim

to examine the potential consequences for the current cos-

mological constraints in the neutrino sector. Such an inquiry is

highly pertinent at this time, as direct constraints of compa-

rable precision regarding parameters like the neutrino mass

are beginning to emerge from ground-based laboratories (see,

e.g., [18]). Any potential discrepancy between laboratory

findings and current cosmological constraints, which are

based on the ΛCDM assumption, would undoubtedly neces-

sitate a reevaluation of the ΛCDM framework.

The article is organized as follows: In Sec. II, we present

the model considered in this work; in Sec. III, we

introduce the methodology and the datasets explored; in

Sec. IV, we show the results we obtained; and, finally, in

Sec. V, we derive our conclusions.

II. MODEL

A. Quasi-single-field inflationary model

In this work, our focus centers on the quasi-single-field

inflation [19–21], a class of models which naturally

emerges when considering UV completion. These models

occupy a middle ground between single-field and multifield

realizations of the inflationary theory. They are distin-

guished by a coupling between the inflaton and massive

scalar fields. This interaction has the potential to produce

large NG distinguishable from the single-field inflation

[22] when the mass is of the order of the Hubble parameter.

In fact, when m ≫ OðHÞ, the predictions align with those

of single-field inflation.
The field space can be subdivided into a flat slow-roll

direction, where the massless Goldstone boson inflaton ϕ

lies, and orthogonal directions corresponding to the massive
isocurvaton modes σ. The morphology of the inflaton
trajectory is crucial, as, if it is straight, we end up with
the conventional slow-rolling scenario, whereas a turning
trajectory is responsible for the coupling between ϕ and σ.
The latter possibility enables the conversion of fluctuations
in σ into fluctuations in the inflaton. This mechanism allows
for the preservation of theNG generated by σ, because, if not
transferred, they are destined to decay exponentially.
Specifically, outside the horizon, the amplitude of δσ is

proportional to ð−τÞ3=2−ν, where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9=4 −m2=H2
p

. In
the case where m=H ∼ 0, there is no decay, leading to the

realization of multifield inflation. For 0 < m2=H2 < 9=4,
the modes decay with a mass-dependent rate. Moreover, if

m2=H2 > 9=4, the exponent acquires an imaginary part and
assumes the characteristic form of an underdamped oscil-
lator, suppressing the transfer of such fluctuations. Our
quasi-single-field paradigm impose that 0 < ν < 3=2.
Since, at leading order, δϕ corresponds to curvature

perturbations ζ, which remain constant after horizon exit,
the conversion of fluctuations preserve NG. Consequently,
quantum fluctuations of the massive field can make a
substantial contribution to the final curvature perturba-
tion [23].
A noteworthy feature of perturbations in this regime is

the fact that the trispectrum amplitude τNL is boosted with
respect to the bispectrum amplitude fNL [24–26]. Let us
first introduce the collapsed limit of an N-point function as
the limit where one internal momentum is smaller than all
the external ones (the internal momentum is the vectorial
sum of M external momenta). From the Suyama-
Yamaguchi inequality [27] we know that the collapsed
limit of the four-point function is constrained from below
by the amplitude in the squeezed limit of the three-point

function. More precisely, τNL ≳ ð6
5
fNLÞ2. This inequality is

particularly sensitive to the presence of multiple sources; if
only one source is considered, it reaches saturation. In the
quasi-single-field scenario, the trispectrum is said to be
boosted, because it is possible to show that

τNL ∼
ð6
5
fNLÞ2
ð ρ
H
Þ2 ; ð1Þ

where ρ represents the coupling. Therefore, for a small
coupling we have the amplitude of the collapsed four-point
function much greater than the amplitude of the squeezed
three-point function. We shall highlight that constraints for
the amplitude of the squeezed three-point function exist
[28] but not for τNLðϵÞ.
Finally, we want to present the explicit form of the

collapsed trispectrum in the quasi-single-field models.

Considering the interchangeability between curvature

and inflaton, we have [26]
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hζk1ζk2ζk3ζk4i0c

⟶

k12⟶0

4τNLðνÞPζðk1ÞPζðk3ÞPζðk12Þ
�

k12
ffiffiffiffiffiffiffiffiffi

k1k3
p

�

3−2ν

ð2Þ

with k12¼jk1þk2j and h·i0 ¼h·ið2πÞ3δðk1þk2þk3þk4Þ.

B. Super-ΛCDM

By introducing ϵ ¼ 3=2 − ν into Eq. (2) and performing

the shift ns → ns þ ϵ for ki and ns → ns − 2ϵ for k12, we
can derive the full-sky expression for the NG covariance for

the contribution of Eq. (2) (see [16] and the references

therein):

CNG ¼ 9

π
τNLðϵÞCSW

L¼0ðns−2ϵÞClðnsþ ϵÞCl
0ðnsþ ϵÞ; ð3Þ

where Cl’s are the lensed harmonics [29] and CSW
L is the

Sachs-Wolfe angular power, defined as

CSW
L ðns − 2ϵÞ ¼ 4πAs

9ðk0r⋆Þa
ffiffiffi

π
p

Γð1 − a
2
ÞΓðLþ a

2
Þ

4Γð3
2
− a

2
ÞΓð2þ L − a

2
Þ ; ð4Þ

where a ¼ ns − 2ϵ − 1, 0 < a < 2, and r⋆ is the comoving

distance to the last scattering surface.

If we compute the soft limits by splitting the fields into

short and long modes (ϕ ¼ ϕL þ ϕS and σ ¼ σL þ σS)

[26], it becomes more evident that the interaction couples

long and short modes. We can take advantage of this fact

and include the trispectrum contribution to the covariance

matrix using the supersample method [30,31].

The main idea is that, even though they are not directly

observable, large modes (larger than the survey scale, i.e.,

supersample modes) affect the evolution of small modes

(subsample modes). As a consequence, the power spectrum

is affected. Rather than considering this impact as an

additional source of noise, we treat it as an extra parameter

with the same analysis pipeline. This approach allows us to

examine the response of the power spectrum alongside other

parameters, streamlining the data analysis process. As the

effect of this parameter should be equal to a noise con-

tribution, its mean value has to be zero, whereas its variance

should be set in away that Eq. (3) is recovered. Therefore, in

our case of study, taking under consideration the trispectrum

consistency condition for supersample signal [32,33], the

power spectrum can be modified as follows:

Cm
l
¼ Cl − A0Clðns þ ϵÞ; ð5Þ

where m stands for the power spectrum measured in the

presence of the NG whereas Cl represents the CMB power

spectrum for a realization without supersample signal

coupling. A0 is our additional parameter which quantifies

the contribution of the trispectrum. Hence, we need to

impose the condition

hA2
0i ¼

9

π
τNLðϵÞCSW

L¼0ðns − 2ϵÞ: ð6Þ

It is important to underline that the latest constraints on

τNL [34] are referred to the local trispectrum for multifield

inflation (i.e., ϵ ¼ 0). For a vanishing ϵ, the Sachs-Wolfe

angular power spectrum computed at L ¼ 0 diverges for

small modes, and, therefore, it cannot be directly related to

our constraints of A0.

Taking into account the framework we have outlined, we

can promote the ΛCDMmodel to the super-ΛCDMmodel;

i.e., to the usual six cosmological parameters, we add ϵ,

originating from the quasi-single-field framework Eq. (2),

and A0 introduced within the supersample approach. This

extension of the standard model, initially introduced in

Refs. [16,17], provides a more convenient picture to study

the NG. The response of the CMB power spectrum in the

super ΛCDM scenario was already addressed in [16].

Specifically, this scenariowas investigated using the temper-

ature power spectrum from Planck 2015 release [35] also in

conjunction with Pantheon type Ia supernovae [36] and

baryon acoustic oscillation data [37–39]. Additionally, in

Ref. [17], the curvature of our Universe was included and

constrained the resulting scenario using both polarization

and temperature spectra from Planck 2018 [11,40],

Pantheon type Ia supernovae [36], and SH0ES [41]. Our

purpose is to add new constraints to the parameters by using

different datasets. We also want to explore possible corre-

lations among NG and neutrino physics.

III. METHODOLOGY AND DATASET

When performing our data analysis, we need to compute

the difference between the theoretical and observed CMB

power spectra. Therefore, to take into account the response

parametrized in Eq. (5), we have modified our theoretical

code to generate the theoretical angular power spectrum

Cl → Cl þ A0Clðns þ ϵÞ: ð7Þ

As mentioned at the end of the previous section, we

studied the super-ΛCDM model putting constraints to its

eight cosmological parameters and extensions to it.

Moreover, we consider the following parameters to study

the potential consequences in the neutrino sector.

(i) Neff is the effective number of neutrino species in the

Universe [42,43]. If neutrino decoupling had been

instantaneous, we would have Neff ¼ 3. However,

due to noninstantaneous decoupling, some energy is

transferred to neutrinos during eþe− annihilation,

leading to a slightly higher effective number. In fact,

in the standard model we have Neff ≈ 3.04 [44–47].

Any additional relativistic particle produced before

recombination can be treated as an additional

contribution to this number, and even primordial

gravitational waves can contribute to it [48,49].
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Therefore, observing a ΔNeff ≠ 0 (i.e., deviation

from the standard value) can be a hint of new

physics. Conversely, smaller values suggest a lower-

temperature reheating [50] than expected in the

ΛCDM universe. Notably, as the radiation energy

density ρr is proportional to the effective number of

neutrinos, different values of Neff modify the sound

horizon at recombination. In particular, larger values

decrease the horizon and, consequently, require

higher values of H0 (and σ8) potentially moving

toward late-time H0 measurements. However, we

cannot take this possibilitywith pure optimism, as the

increased value of the σ8 parameter exacerbates

tensions with large-scale structure data [51].

(ii)
P

mν is the sum of neutrino masses (see, e.g., [52]).
The Planck ΛCDM base model assumes a normal
mass hierarchy, with the minimal mass

P

mν ¼
0.06 eV. However, it is worth noting that the case
of the smallest mass splitting does not determine the
value, and

P

mν > 0.06 eV remains a plausible
possibility. On the other hand, an inverted hierarchy
increases the lower bound to be

P

mν > 0.1 eV;
thus, a stringent upper bound can exclude the latter
scenario. In general, this extension can be considered
the bestmotivated, as laboratory experiments confirm
that at least two neutrinos are massive [53,54]. Also,
cosmological probes provide constraints on the sum
of neutrino masses (see, e.g., [55–61]). The effect of
massive neutrinos is to suppress power on scales
smaller than their free-streaming scale, which can be
related to the reduction of lensing potential. There-
fore, due to the lensing anomaly, caution is advised
when interpreting Planck results, as they might yield
an overly strong upper limit [18,62,63]. Additionally,
increasing the neutrino mass intensifies the cosmo-
logical tension, as it leads to lower values of H0.

(iii) meff
ν;sterile is the effective mass of sterile neutrinos [64–

67]. For example, if the sterile neutrinos were to
thermalize with the same temperature as active
neutrinos, we should expect Neff ≈ 4. However, to
maintain generality, we can equally consider an
arbitrary temperatureTs or a distribution proportional
to the active-sterile neutrinomixing angle [68]. In this
case, a relationship between the effective mass and
the physical mass of sterile neutrinos can be derived
through Neff . For instance, within the context of a
thermally distributed scenario, we have mν;sterile ¼
ðΔNeffÞ3=4mthermal

sterile . We can see that, for small values

of the effective number of relativistic species, the

physical mass mthermal
sterile increases. Consequently, neu-

trinos become nonrelativistic before recombination.
A limit to the physical mass is required in order to
leave out the cases where sterile neutrinos can be
considered a candidate for warm and cold darkmatter

[69]. Specifically, we set mthermal
sterile < 10 eV, as done

by the Planck Collaboration [11].

For all the different cosmological parameters, we choose

flat-prior distributions, varying them uniformly in the

conservative ranges listed in Table I. Then, for each model,

we perform Monte Carlo Markov chain (MCMC) analyses

using the publicly available package COBAYA [70] and

computing the theory with our modified version of CAMB

[71,72] according to Eq. (7). We explore the posteriors of

our parameter space using the MCMC sampler developed

for CosmoMC [73,74] and tailored for parameter spaces with

a speed hierarchy which also implements the “fast drag-

ging” procedure [75]. The convergence of the chains

obtained with this procedure is tested using the Gelman-

Rubin criterion [76], and we choose as a threshold for chain

convergence R − 1≲ 0.02. The likelihoods we decided to

use are the following.

(i) CMB temperature and polarization power spectra

from the legacy Planck release [11,40] with

plikTTTEEEþ lowlþ lowE, which we will call

from now on Planck.

(ii) Lensing Planck 2018 likelihood [77], reconstructed

from the measurements of the power spectrum of the

lensing potential. We refer to this dataset as just

lensing.

(iii) Baryon acoustic oscillation (BAO) measurements

extracted from data from the 6dFGS [37], SDSS

MGS [38], BOSS DR12 [78], and eBOSS DR16

[79] surveys. We call this dataset BAO.

(iv) Pantheon sample which consists of 1048 type Ia

supernovae measurements spanning the redshift

range 0.01 < z < 2.3 [36].

IV. RESULTS

Here, we list the constraints on super-ΛCDM and its

various extensions that we obtained with the MCMC analy-

ses. Full results can be found in Table II and Fig. 1 (for only

super-ΛCDM), Table III and Fig. 2 (super-ΛCDMþ Neff),

TABLE I. List of the parameter priors. The cutoff for ϵ is due to

the fact that at ϵ ¼ 0 we leave the quasi-single-field model and

obtain the trispectrum for a multifield inflationary model.

Parameter Prior

Ωbh
2 [0.005, 0.1]

Ωch
2 [0.001, 0.99]

100θMC [0.5, 10]

τ [0.01, 0.8]

logð1010ASÞ [1.61, 3.91]

ns [0.8, 1.2]

A0 ½−0.6; 0.6�
ϵ ½−1; 0�
Neff [1, 5]

meff
ν;sterile [eV] [0, 3]

Σmν [eV] [0, 2]
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FIG. 1. Marginalized 2D and 1D posterior distributions for the super-ΛCDM.

TABLE II. Results for super-ΛCDM. The constraints on parameters are at 68% CL, while upper bounds are at 95% CL.

Parameter Planck Planckþ lensing Planckþ BAO Planckþ Pantheon Planckþ all

Ωbh
2 0.02258� 0.00017 0.02250� 0.00016 0.02255� 0.00015 0.02259� 0.00017 0.02251� 0.00014

Ωch
2 0.1185� 0.0016 0.1187� 0.0015 0.1187� 0.0011 0.1183� 0.0014 0.11861� 0.00099

100θMC 1.04110� 0.00033 1.04105� 0.00033 1.04107� 0.00029 1.04112� 0.00032 1.04106� 0.00029

τreio 0.0516� 0.0086 0.0512� 0.0085 0.0514� 0.0087 0.0515� 0.0084 0.0510� 0.0085

logð1010AsÞ 3.160� 0.050 3.081� 0.027 3.143� 0.043 3.162� 0.048 3.081� 0.024

ns 0.952� 0.012 0.9586� 0.0076 0.951� 0.011 0.952� 0.011 0.9584� 0.0075

H0 [km s−1 Mpc−1] 68.13� 0.71 67.99� 0.68 68.01� 0.49 68.20� 0.65 68.01� 0.45

σ8 0.849� 0.019 0.8190� 0.0085 0.843� 0.016 0.849� 0.018 0.8190þ0.0084
−0.0095

S8 0.857� 0.020 0.828� 0.013 0.852� 0.017 0.856� 0.019 0.828� 0.011

A0 −0.116� 0.048 −0.045� 0.029 −0.101� 0.043 −0.118� 0.045 −0.046þ0.031
−0.027

ϵ > −0.369 > −0.605 > −0.384 > −0.325 > −0.573
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TABLE III. Results for super-ΛCDMþ Neff . The constraints on parameters are at 68% CL, while upper bounds are at 95% CL.

Parameter Planck Planckþ lensing Planckþ BAO Planckþ Pantheon Planckþ all

Ωbh
2 0.02248� 0.00026 0.02234� 0.00024 0.02247� 0.00019 0.02252� 0.00024 0.02241� 0.00019

Ωch
2 0.1170� 0.0031 0.1161� 0.0030 0.1166� 0.0030 0.1171� 0.0031 0.1163� 0.0029

100θMC 1.04128� 0.00046 1.04136� 0.00046 1.04133� 0.00046 1.04127� 0.00046 1.04134� 0.00045

τ 0.0512� 0.0087 0.0503� 0.0084 0.0515� 0.0085 0.0514� 0.0087 0.0509� 0.0086

lnð1010ASÞ 3.148� 0.056 3.068� 0.029 3.139� 0.043 3.153� 0.052 3.075� 0.024

ns 0.945� 0.016 0.950� 0.012 0.944� 0.015 0.0.947� 0.016 0.952� 0.011

H0 [km s−1 Mpc−1] 67.3� 1.7 66.7� 1.6 67.2� 1.2 67.6� 1.6 67.1� 1.1

σ8 0.842þ0.024
−0.026

0.810� 0.013 0.837� 0.018 0.844� 0.023 0.812� 0.011

S8 0.855� 0.019 0.827� 0.013 0.849� 0.018 0.853� 0.020 0.824� 0.011

A0 −0.109� 0.050 −0.040þ0.032
−0.027

−0.101� 0.040 −0.113� 0.046 −0.045þ0.030
−0.027

ϵ > −0.420 > −0.692 > −0.391 > −0.388 > −0.632

Neff 2.93� 0.21 2.86� 0.20 2.91� 0.18 2.96� 0.20 2.90� 0.17

FIG. 2. Marginalized 2D and 1D posterior distributions for the super-ΛCDMþ Neff .
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Table IV and Fig. 3 (super-ΛCDMþ Neff þmeff
ν;sterile),

Table V and Fig. 4 (super-ΛCDMþ Σmν), Table VI and

Fig. 5 (super-ΛCDMþ Neff þ Σmν), and Table VII with

Fig. 6 (super-ΛCDMþ Neff þ Σmν þmeff
ν;sterile). First of all, it

should be stressed that, as pointed out in [16,17], theBAOand

lensing datasets have to be taken cum grano salis,
1
as

theoretical prediction for the super-ΛCDM model is still

under development. However, using an agnostic approach,

we include both in our exploration of the parameter spaces.

On the other hand, supernovae data in the Pantheon mea-

surements are not affected by the primordial NG and can be

safely included in our discussion. The label Planckþ all

refers to the combination of all the datasets (“all” means

“lensingþ BAOþ Pantheon”). We present the results quot-

ing lower bounds at 95%CLand constraints at 68%CL, if not

otherwise stated. For the sake of simplicitywe refer tomeff
ν;sterile

as meff .

A. Superparameters

In presenting the constraints on A0, we should bear in

mind that A0 ¼ 0 corresponds to the standard ΛCDM

scenario with no contribution from NG at large scale.

Therefore, any deviation of A0 from its null value will go in

favor of super-ΛCDM.

Before exploring the neutrino sector, we note that the

polarization did not change much the constraints obtained

in [16]. In fact, with only TTþ τ prior (with the Planck

2015 release), A0 ¼ −0.15þ0.14
−0.13 at 95% CL [16] which

increases when combined with distance ladderH0 and SNe

Ia Pantheon leading to A0 ¼ −0.21þ0.12
−0.13 at 95% CL [16]. In

our case, for Planck, we obtain A0 ¼ −0.12� 0.10 and for

Planckþ Pantheon, A0 ¼ −0.118þ0.095
−0.092 , both at 95% CL.

Despite the absolute value being lower than the previous

analysis [16], it is better constrained. On the other hand, if

we allow the possibility of different relativistic species in

the Universe, by allowingNeff to vary, the mean value shifts

toward 0. For example, with Planck only, we have A0 ¼
−0.109þ0.095

−0.098 at 95% CL. The highest absolute value is

obtained when we promote as free parameters not only Neff

but alsomeff and Σmν. In particular, for Planck only, we get

A0 ¼ −0.16� 0.11 at 95% CL. Interestingly enough,

combinations of Planck data with lensing or BAO leads

to the least solid evidence for NG. For example, Planckþ
lensing predicts the most compatible value with zero for A0,

leading to A0 ¼ −0.040þ0.055
−0.060 at 95% CL with Neff as free

parameter (i.e., for the scenario super-ΛCDMþ Neff). The

latter result hints that NG are negligible at less than 2σ.

Nonetheless, apart from the lensing combination, our

predictions for a negative nonzero A0 lies within ∼2.5σ.

The lensing dataset affects greatly the Planckþ all combi-

nation, and, therefore, A0 is shifted toward zero, thus

increasing the compatibility with ΛCDM with respect to

other datasets.

In super-ΛCDM, A0 negatively correlates with the

primordial amplitude As and there is a hint of correlation

with Ωch
2, as can be seen in the triangular plot in Fig. 1.

When considering extensions to the neutrino sector, the

degeneracy with As persists (and is even more pronounced,

e.g., see Fig. 6), while the correlation withΩch
2 weakens or

it is completely absent (see, for example, Fig. 2).

Concerning the second superparameter ϵ, it has to be

underlined that the usual trispectrum for multifield infla-

tionary model is recovered for ϵ ¼ 0. That is, we impose a

cutoff at 0 as indicated in Table I. In our analysis, we did

not find corroborating evidence for a nonzero value of ϵ.

Instead, we put lower bounds at 95% CL which are

generally more relaxed than the previous analysis, where

it was found ϵ > −0.320 (for TTþ τ prior) and ϵ > −0.200

when late-time measurements were included [16]. Highest

absolute values are possible when the lensing data are

TABLE IV. Results for super-ΛCDMþ Neff þmeff . The constraints on parameters are at 68% CL, while upper bounds are at 95% CL.

Parameter Planck Planckþ lensing Planckþ BAO Planckþ Pantheon Planckþ all

Ωbh
2 0.02271� 0.00020 0.02260� 0.00018 0.02273� 0.00020 0.02272� 0.00019 0.02263� 0.00016

Ωch
2 0.1186þ0.0037

−0.0031 0.1190þ0.0037
−0.0030 0.1180þ0.0036

−0.0031 0.1182þ0.0038
−0.0032 0.1181þ0.0030

−0.0025

100θMC 1.04089� 0.00037 1.04085� 0.00036 1.04098� 0.00034 1.04095� 0.00036 1.04099� 0.00032

τreio 0.0509� 0.0086 0.0511� 0.0087 0.0514� 0.0085 0.0515� 0.0083 0.0520� 0.0084

logð1010AsÞ 3.191� 0.056 3.097� 0.033 3.187� 0.051 3.193� 0.053 3.104� 0.031

ns 0.954� 0.013 0.9598� 0.0093 0.955� 0.013 0.955� 0.013 0.9608� 0.0089

H0 [km s−1 Mpc−1] 67.97� 0.97 67.81� 0.91 68.33þ0.63
−0.78 68.23þ0.85

−0.97 68.23þ0.57
−0.63

σ8 0.814� 0.036 0.789þ0.028
−0.024

0.824� 0.024 0.821þ0.036
−0.032 0.801þ0.019

−0.017

S8 0.834� 0.029 0.809þ0.023
−0.020

0.836� 0.023 0.836þ0.031
−0.027 0.812þ0.019

−0.017

A0 −0.140� 0.050 −0.056� 0.034 −0.138� 0.046 −0.141� 0.047 −0.063� 0.033

ϵ > −0.290 > −0.544 > −0.279 > −0.281 > −0.481

Neff 3.21þ0.10
−0.14 3.183þ0.089

−0.12 3.176þ0.088
−0.13 3.190þ0.096

−0.14 3.143þ0.066
−0.10

meff [eV] < 0.893 < 0.744 < 0.700 < 0.801 < 0.571

1
From Latin, it translates into “with a pinch of salt” and means

that care is needed.
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FIG. 3. Marginalized 2D and 1D posterior distributions for the ΛCDMþ Neff þmeff .

TABLE V. Results for super-ΛCDM þ Σmν. The constraints on parameters are at 68% CL, while upper bounds are at 95% CL.

Parameter Planck Planckþ lensing Planckþ BAO Planckþ Pantheon Planckþ all

Ωbh
2 0.02254� 0.00018 0.02245� 0.00018 0.02259� 0.00015 0.02259� 0.00017 0.02254� 0.00015

Ωch
2 0.1185� 0.0015 0.1189� 0.0015 0.1182� 0.0013 0.1181� 0.0015 0.1182� 0.0012

100θMC 1.04104� 0.00033 1.04098� 0.00033 1.04111� 0.00030 1.04110� 0.00032 1.04110� 0.00030

τ 0.0509� 0.0085 0.0507� 0.0083 0.0518� 0.0084 0.0520� 0.0085 0.0510� 0.0086

lnð1010AsÞ 3.183� 0.055 3.102� 0.035 3.165� 0.052 3.177� 0.054 3.096þ0.034
−0.038

ns 0.949� 0.012 0.9555� 0.0088 0.952� 0.012 0.952� 0.012 0.9585� 0.0081

H0 [km s−1 Mpc−1] 66.5þ2.0
−1.7 66.4þ1.7

−1.6
67.71� 0.61 67.6þ1.2

−1.0
67.80� 0.57

σ8 0.817þ0.043
−0.036 0.789þ0.033

−0.028
0.835� 0.019 0.836� 0.027 0.812þ0.015

−0.013

S8 0.849� 0.022 0.823� 0.014 0.849� 0.018 0.852� 0.020 0.824� 0.012

A0 −0.137� 0.051 −0.066� 0.037 −0.120� 0.049 −0.130� 0.051 −0.060þ0.042
−0.036

ϵ > −0.302 > −0.514 > −0.340 > −0.334 > −0.545

Σmν [eV] < 0.624 < 0.542 < 0.266 < 0.356 < 0.236
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FIG. 4. Marginalized 2D and 1D posterior distributions for the super-ΛCDMþ Σmν.

TABLE VI. Results for super-ΛCDM þ Neff þ Σmν. The constraints on parameters are at 68% CL, while upper bounds are at

95% CL.

Parameter Planck Planckþ lensing Planckþ BAO Planckþ Pantheon Planckþ all

Ωbh
2 0.02245� 0.00027 0.02230� 0.00025 0.02252� 0.00021 0.02255� 0.00024 0.02245� 0.00020

Ωch
2 0.1171� 0.0031 0.1167� 0.0031 0.1170� 0.0031 0.1173� 0.0032 0.1166� 0.0030

100θMC 1.04121� 0.00047 1.04125� 0.00047 1.04128� 0.00046 1.04122� 0.00047 1.04131� 0.00046

τ 0.0504� 0.0088 0.0503� 0.0083 0.0517� 0.0086 0.0513� 0.0086 0.0510� 0.0086

lnð1010AsÞ 3.173þ0.061
−0.070 3.087þ0.034

−0.039
3.157� 0.049 3.175� 0.060 3.088þ0.032

−0.038

ns 0.943� 0.017 0.947� 0.013 0.946� 0.015 0.948� 0.016 0.953� 0.011

H0 [km s−1 Mpc−1] 65.8� 2.2 65.3� 2.0 67.3� 1.2 67.2� 1.7 67.2� 1.1

(Table continued)
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TABLE VI. (Continued)

Parameter Planck Planckþ lensing Planckþ BAO Planckþ Pantheon Planckþ all

σ8 0.811þ0.043
−0.038 0.783þ0.031

−0.027
0.833� 0.019 0.834� 0.027 0.809� 0.014

S8 0.848� 0.022 0.822� 0.014 0.848� 0.018 0.852� 0.021 0.822� 0.012

A0 −0.133� 0.056 −0.058þ0.038
−0.033

−0.116� 0.044 −0.132� 0.052 −0.057þ0.039
−0.032

ϵ > −0.367 > −0.591 > −0.355 > −0.342 > −0.587

Neff 2.94� 0.22 2.88� 0.20 2.96� 0.19 2.99� 0.21 2.94� 0.19

Σmν [eV] < 0.637 < 0.526 < 0.254 < 0.365 < 0.225

FIG. 5. Marginalized 2D and 1D posterior distributions for the super-ΛCDMþ Neff þ Σmν.
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included. In fact, for super-ΛCDMþ Neff , we have

relaxed bounds, such as ϵ > −0.692 and ϵ > −0.388 for

Planckþ lensing and Planck þ Pantheon, respectively.

In all triangular plots, it is evident that Planck,

Planckþ Pantheon, and Planckþ BAO exhibit a certain

correlation between ns and ϵ, as we might expect due to

the shift in the spectral index in Eq. (7). Conversely, the

datasets, Planckþ lensing, and Planckþ all display a less

pronounced degeneracy.

B. Neutrino parameters

Hints for additional massless particles are described by

the parameter Neff whose standard value is approximately

Neff ≈ 3.044. In our analysis, when we allow Neff to vary,

we see similar constraints as in the simple extension

ΛCDMþNeff [11] for Planck only, which is Neff ¼ 2.92�
0.19 at 68% CL, whereas in super-ΛCDMþ Neff , Neff ¼
2.93� 0.21 at 68% CL. Therefore, Planck alone does not

alter the constraints on Neff . The addition of BAO induces a

preference for smaller values of Neff in the super-ΛCDM

scenario leading to Neff ¼ 3.01� 0.18 (at 68% CL for

ΛCDMþ Neff) and Neff ¼ 2.91� 0.18 (at 68% CL for

super-ΛCDMþ Neff). Thus, the standard value remains

within the 1σ range, but deviation from it of more than 20%

is allowed at 95% CL. In a similar way, when the sum of

neutrino masses Σmν is let free to vary, analogous consid-

eration can be drawn where, for Planck alone, Neff ¼
2.91� 0.19 at 68% CL (for ΛCDMþ Neff þ Σmν) [11]

and Neff ¼ 2.94� 0.22 at 68% CL for the super-ΛCDMþ
Neff þ Σmν model. Conversely, as soon as the possibility of

a sterile neutrino is added to the model instead of Σmν, we

obtain higher values for all datasets, but the standard value

still lies within the 95% CL. Likewise, if we consider all

three neutrino parameters in our model, i.e., for the model

super-ΛCDMþNeffþΣmνþmeff
ν;sterile, we have a preference

for a higher effective number of relativistic species. In fact,

when all the datasets are combined, we obtain Neff ¼
3.150þ0.072

−0.11 at 68% CL (for super-ΛCDMþ Neff þ Σmνþ
meff

ν;sterile) while, for Planck alone, Neff¼3.21þ0.11
−0.15 at

68% CL (for super-ΛCDM þ Neff þ Σmν þ meff
ν;sterile).

Notably, these values are higher than the predictions of

the ΛCDM model. For the same datasets (Planckþ all and

Planck), at 68% CL, we obtain Neff ¼ 3.133þ0.061
−0.099 and

Neff ¼ 3.156þ0.074
−0.12 , respectively.

The possibility of ruling out the inverted mass hierarchy

is far from being reached in this analysis. Nonetheless, it is

worth highlighting that the constraints are considerably

weaker compared to those of the ΛCDM model. It was the

case for Neff, but it is more evident with the sum of neutrino

masses. The reason for the weaker constraints is not only

due to a volume effect, but a genuinely negative correlation

between A0 and Σmν, as we can see in the triangular plots

and in Fig. 7. In other words, given that there is a slight

indication for A0 < 0 coming out from our analysis, this

translates to more room for massive neutrinos. Fixing

A0¼0 could, therefore, bias the constraints on the total

neutrino mass on being too strong. For example, in super-

ΛCDM with Planck only and Planckþ BAO we have

Σmν < 0.624 eV and Σmν < 0.266 eV at 95% CL, respec-

tively, while the ΛCDM predictions are Σmν < 0.257 eV

and Σmν < 0.126 eV at 95% CL. Because of the absence

of noticeable correlation with the possibility of massless

relics (i.e., ΔNeff ≠ 0), when Neff is added to the set, the

constraints remain almost unchanged. If also the sterile

neutrino is included in the picture, the upper bounds are

slightly stronger as, for example, for Planck only we have

Σmν < 0.593 eV at 95% CL. These results preserve the

weaknesses of the constraining power of super-ΛCDM

compared to ΛCDM (as for Planck only we have Σmν <
0.352 eV at 95% CL). Additionally, it is noteworthy that

TABLE VII. Results for super-ΛCDM þ Neff þmeff þ Σmν. The constraints on parameters are at 68% CL, while upper bounds are at

95% CL.

Parameter Planck Planckþ lensing Planckþ BAO Planckþ Pantheon Planckþ all

Ωbh
2 0.02268� 0.00021 0.02255� 0.00019 0.02273� 0.00018 0.02273� 0.00019 0.02263� 0.00017

Ωch
2 0.1186þ0.0038

−0.0032 0.1191þ0.0035
−0.0029 0.1177þ0.0035

−0.0030 0.1180þ0.0038
−0.0032 0.1182þ0.0030

−0.0025

100θMC 1.04083� 0.00038 1.04081� 0.00037 1.04100� 0.00034 1.04094� 0.00036 1.04098� 0.00033

τreio 0.0507� 0.0084 0.0507� 0.0087 0.0514� 0.0088 0.0515� 0.0086 0.0515� 0.0085

logð1010AsÞ 3.210� 0.059 3.117þ0.039
−0.044

3.199� 0.057 3.204� 0.056 3.109� 0.034

ns 0.952� 0.014 0.9583� 0.0099 0.955� 0.013 0.955� 0.014 0.9612� 0.0093

H0 [km s−1 Mpc−1] 66.6þ1.9
−1.7

66.7� 1.5 68.18� 0.73 67.8� 1.2 68.18� 0.67

σ8 0.787� 0.044 0.771� 0.030 0.822� 0.025 0.813� 0.035 0.800þ0.020
−0.018

S8 0.828� 0.029 0.809þ0.022
−0.019

0.835� 0.023 0.834� 0.028 0.812þ0.019
−0.017

A0 −0.156� 0.052 −0.076� 0.041 −0.148� 0.051 −0.151� 0.050 −0.070� 0.034

ϵ > −0.264 > −0.457 > −0.277 > −0.268 > −0.431

Neff 3.21þ0.11
−0.15 3.177þ0.088

−0.13 3.168þ0.083
−0.12 3.188þ0.095

−0.14 3.150þ0.072
−0.11

Σmν [eV] < 0.593 < 0.483 < 0.234 < 0.335 < 0.198

meff [eV] < 0.909 < 0.695 < 0.689 < 0.790 < 0.550
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the constraints on the neutrino mass sum get more relaxed

when the analysis is limited to early Universe physics, in

contrast to scenarios confined to low-redshift cosmology.

For example, in comparison with our result for super-

ΛCDMþ Σmν using only Planck data, in [80] they found

an increase of 21% in the constraints, when lensing, BAO

and type Ia Supernovae data are combined, without relying

on the CMB.

Similar results are obtained for meff. In the scenario

where massive sterile neutrinos are combined with the

standard active neutrinos, we exclude the possibility of

considering these neutrinos as candidates for cold dark

matter particles. To be specific, we apply a cutoff at thermal

masses greater than 10 eV. Again, we obtain weaker

constraints with respect to ΛCDM [11]. For example, in

ΛCDMþ Neff þmeff , Planck alone gives meff < 0.753 eV

at 95% CL, and it increases to meff < 0.893 eV at 95% CL

considering super-ΛCDM. In super-ΛCDM, the upper

bound is stronger when Planck is combined with

Pantheon, i.e., meff < 0.801 eV at 95% CL. If we add

also the sum of neutrino masses, the bound is again

stronger not only for Planckþ Pantheon meff <
0.790 eV at 95% CL, but also for other datasets except

for Planck alone, where the limit relaxes to meff <
0.909 eV at 95% CL. For comparison, Planck alone in

ΛCDMþmeffþNeffþΣmν at 95% CL gives meff<
0.339eV. This is an interesting observation in this context

which dictates that the bounds on the neutrino mass

FIG. 6. Marginalized 2D and 1D posterior distributions for the super-ΛCDM þ Neff þmeff þ Σmν.
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obtained in super-ΛCDM are relaxed compared to the

ΛCDM paradigm.

C. H0 and S8

Concerning the cosmological tensions, we can see that,

adding the superparameter A0, the value of H0 increases a

bit with respect to the ΛCDM cosmology. In ΛCDM we

have H0 ¼ 67.27� 0.60 km s−1 Mpc−1 at 68% CL that

becomes H0 ¼ 68.13� 0.71 km s−1 Mpc−1 at 68% CL in

super-ΛCDM. It is, however, smaller than the one found in

the previous work with CMB temperature data only [16]. A

similar increase with the inclusion of the superparameters is

seen also within the extension of the neutrino phenom-

enology. For instance, with Neff we have H0 ¼ 66.4�
1.4 km s−1Mpc−1 (at 68% CL) for ΛCDMþ Neff that

changes to H0 ¼ 67.3� 1.7 km s−1 Mpc−1 (at 68% CL)

in super-ΛCDMþ Neff . Moving into super-ΛCDM tends

to ease the tension with late-time measurements, which,

however, are still well beyond 3σ.

If we let the effective mass of sterile neutrinos free to

vary, we see that A0 increases and H0 increases accord-

ingly, while the S8 values decrease. For example, with

Planck only data the 68% CL constraint on H0 is

H0 ¼ 67.97� 0.97 km s−1Mpc−1. On the other hand, if

we consider the sum of the neutrino masses, due to the

decrease in its expectation values as well as its inverse

proportionality with H0, we obtain a lower value for H0.

For instance, we have H0 ¼ 67.0þ1.2
−0.97 km s−1 Mpc−1 and

H0 ¼ 66.5þ2.0
−1.7 km s−1Mpc−1 both at 68% CL for

Planck only ΛCDMþ Σmν and super-ΛCDMþ Σmν,

respectively. If we promote the effective number of

relativistic species as a parameter of the theory, i.e.,

super-ΛCDMþ Σmν þ Neff , with A0 ¼ −0.133� 0.056,

H0 decreases as much as (with Planck only) H0 ¼ 65.8�
2.2 km s−1Mpc−1 at 68% CL. The latter value is greater

than the one corresponding to A0 ¼ 0 (which at 95% CL is

66.1þ3.5
−3.6 km s−1Mpc−1). When all three neutrino parame-

ters are included in the analysis (i.e., for the scenario super-

ΛCDMþ Neff þ Σmν þmeff
ν;sterile), we get H0¼68.18�

0.73kms−1Mpc−1 at 68% CL for Planckþ BAO and H0¼
67.8�1.2 kms−1Mpc−1 at 68% CL for Planckþ Pantheon.

The corresponding values for the same model with null A0,

at 68% CL, are H0 ¼ 68.0þ0.67
−0.81 km s−1Mpc−1 and H0 ¼

67.53� 0.97 km s−1Mpc−1. Thus, looking at the

estimated values of H0 in super-ΛCDM and its various

extensions where the maximum mean value of H0 is

∼68.33 km s−1Mpc−1 (obtained in super-ΛCDMþ Neff þ
meff

ν;sterile) with uncertainties less than 1 km s−1Mpc−1, one

can conclude that neither super-ΛCDM nor its extensions

are efficient in resolving the H0 tension between

Planck [11] and SH0ES [12]. On the other hand, focusing

on the estimated values of S8 in super-ΛCDM and its

various extensions, we see that, compared to the ΛCDM-

based Planck’s estimation (S8 ¼ 0.834� 0.016) [11], the

values of S8 do not make any dramatic changes except in

the case for Planckþ lensing, for which a mild reduction

in the S8 parameter is observed for super-ΛCDMþ
Neff þmeff

ν;sterile (S8 ¼ 0.809þ0.023
−0.020 at 68% CL) and

super-ΛCDMþ Neff þ Σmν þmeff
ν;sterile (S8 ¼ 0.809þ0.022

−0.019

at 68% CL). However, for other datasets, S8 takes

ΛCDM-like values or even higher. Therefore, it is clear

that easing tension on S8 in these scenarios does not seem
promising at least according to the current level of

sensitivity of the astronomical data, even if for a fair

comparison we should analyze the weak lensing data only

assuming the super-ΛCDM model as well. As no dataset

constrains ϵ in such a way to have stronger bonds for τ,

we have not reported the bounds on τ for every dataset in

the table and in the plots.

D. τNL

In this section, we study how our findings translate into

constraints for τNL and how the results change when we

impose a conservative upper limit on the trispectrum. The

trispectrum’s shape for quasi-single-field inflation sce-

nario occupies the intermediate-shape ground, primarily

due to its dependence on ϵ. Our analysis establishes only a

lower bound on ϵ, resulting in relatively weak constraints

on the amplitude of τNL. Specifically, using only the

Planck likelihood, at 95% CL, we find log τNL ¼ 5.4þ1.3
−1.5

for super-ΛCDM and log τNL ¼ 5.5þ1.2
−1.4 for super-

ΛCDMþmeff þ Σmν þ Neff . These results are illustrated

in Fig. 8.

FIG. 7. Marginalized 2D posterior distributions for the super-

ΛCDMþ Σmν.
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Previous studies [34] have established a constraint on

τNL, setting a limit of τNL < 1700 95% CL, which is 2

orders of magnitude smaller than our central value but

consistent with models inside our 95% CL contour. To

check if these bounds apply to our model, we compute the

similarity between the trispectrum shape for our quasi-

single-field inflation (QSFI) in Eq. (2) and the standard

template (ST):

TSTðk1; k2; k3; k4Þ ¼ τNLPζðk1ÞPζðk2ÞPζðk3ÞPζðk4Þ:
ð8Þ

The trispectra are calculated using a grid of k∈ ½10−4; 1�
and fixing the primordial parameters. Specifically, the

similarity corresponds to the value of the cosine:

similarityðϵÞ ¼ TQSFI · TST

kTQSFIkkTSTk
: ð9Þ

It strongly depends on ϵ, as shown in Fig. 9. For ϵ ∼ 0, we

recover a good alignment with the standard form. However,

for values within our lower bounds, we cannot exclude

cases of low similarity, where the constraints are not

relevant.

As qualitatively demonstrated in Fig. 1 in [16], and

confirmed in Fig. 8, when ϵ approaches zero [allowing the

parameter a, as defined in Eq. (4), to approach nearly zero],
the current constraint on τNL can still produce a variance

consistent with our results. Additionally, the triangular

plots show that the constraints on the sum of neutrino

masses are less stringent for smaller ϵ. Therefore, it is

interesting to examine what happens to our conclusion on

the possible bias on Σmν when tight constraints on τNL are

applied.

Motivated by this consideration, we assumed a similarity

of approximately 1, indicating a nearly perfect alignment

with the local shape, making the constraints relevant.

Imposing, therefore, an external prior on τNL < 1700 at

95% CL we have reevaluated our constraints. Studying all

cases where Σmν is a free parameter, we see that, although

the upper bound for Σmν is lower, it is still not as stringent

as in the scenario where NG are not considered. For

example, if we let only Σmν vary, the bound Σmν <
0.617 eV shifts to Σmν < 0.569 eV as we apply the

constraints on the trispectrum. These results can be seen

in Fig. 10 and are listed in Table VIII. We can conclude that

the intriguing possibility of a bias in constraining the total

neutrino mass persists even when we assume a tight prior

on the trispectrum.

We emphasize that a direct and precise analysis of the

trispectrum is beyond the scope of this work. However,

the flexibility in the model permits exploration within the

bounds of a minimal ϵ value. Similarly, constraints on the

trispectrum’s contribution [81,82] to scale-dependent

bias [24] can be bypassed by exploiting the condition

where a approaches zero. Since we have not imposed

strict constraints on ϵ, we plan to address this aspect in

more detail in future work. Finally, it is important to note

that, although existing bounds on nonlocal shapes [83]

exist, they do not directly apply to our specific model

framework.

FIG. 8. τNL is weakly constrained as we set only a lower bound for ϵ. Here, only the Planck dataset has been used.

FIG. 9. Cosine similarity between Eq. (2) and the standard

template. When ϵ ∼ 0 we have a near overlap: The intermediate

shape tends to the local one, where the bounds are applicable.
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V. CONCLUSIONS

From the detection of the CMB to the late-time cosmic

acceleration, modern cosmology has witnessed a massive

revolution in the understanding of its dynamical evolution.

The detection of CMB is undoubtedly one of the pioneering

discoveries in modern cosmology having great impact on

the late-time physics of the Universe. According to the

observational evidences, CMB temperature fluctuations

follow an almost Gaussian pattern as measured by the

power spectrum of the density fluctuations. However,

deviations from the Gaussian structure of the density

fluctuations in the CMB spectrum, known as the primordial

non-Gaussianities, can be potential probe to trace the origin

and formation of structures in the Universe. Additionally,

they can have great impact on the late-time physics,

specifically on the tensions between the cosmological

parameters.

In this work, we have presented an interesting way to

study the NG derived from the quasi-single-field infla-

tionary paradigm, which was first presented by Adhikari

and Huterer [16]. It consists in promoting the ΛCDM

model to the super-ΛCDM with the introduction of two

additional parameters: ϵ, which comes from the inflationary

theory, and A0, a noise parameter with zero average that

mimics the NG covariance contribution according to the

supersample signal. With this setup, we modified the

theoretical code CAMB and explored the parameter space

allowing the neutrino sector of the Universe. We have not

found any correlation between NG and Neff or meff, but the

indication for a negative correlation of A0 with Σmν is

signaled. In particular, as our analysis suggests a slight

indication of A0 < 0, this implies greater leeway for

massive neutrinos. We have then assumed that, despite

being in the intermediate shape, there is an alignment with

the local shape with a similarity ∼1. Then, the trispectrum

constraint found in the literature can be applied. We saw

that, albeit being more stringent, we still obtain more

relaxed upper bounds with respect to the case when NG are

not considered. Setting A0 ¼ 0 might consequently skew

the constraints on the total neutrino mass, making them

overly stringent.

Concerning the Hubble constant, we find that, for super-

ΛCDM, H0 mildly increases for all the datasets compared

to the ΛCDM-based Planck’s estimations but not enough to

alleviate it. In addition, a similar observation is found when

the sterile neutrino sector is added to super-ΛCDM, i.e., for

the scenarios super-ΛCDMþ Neff þmeff
ν;sterile and super-

ΛCDMþ Neff þ Σmν þmeff
ν;sterile, in which H0 is found to

TABLE VIII. Constraints on Σmν [eV] at 95% CL for ΛCDM and super-ΛCDM with the τNL prior (þτNL) and without. We can see

that the constraints of neutrino mass, when the similarity is assumed to be nearly one, are still more relaxed than the case where we

neglect NG. These values are obtained using the Planck dataset alone.

Model Super-ΛCDM Super-ΛCDMþ τNL ΛCDM

Σmν < 0.617 eV < 0.569 eV < 0.257 eV

Σmν þ Neff < 0.627 eV < 0.539 eV < 0.305 eV

Σmν þ Neff þmeff < 0.589 eV < 0.478 eV < 0.352 eV

FIG. 10. Constraints on Σmν for the Planck dataset. Comparing the ΛCDM case with super ΛCDM (SΛCDM), including (þτNL) and

not including the prior on the local trispectrum [34], we can see that, despite being tighter (from left to right, 8%, 15%, and 18% more

constraining) when we apply the trispectrum bound, the constraints on the sum of neutrino mass are still more relaxed than the case

for A0 ¼ 0.
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mildly increase for some particular datasets. However, on
the contrary, in other extended scenarios, H0 assumes

similar values to the ΛCDM-based Planck [11]. On the

other hand, the bounds on S8 generally increase in all the

scenarios explored in this work, and, thus, we do not see

any alleviation of the S8 tension in the present neutrino-

based super-ΛCDM scenarios. What is interesting is that A0

is confirmed to be different from 0 at 95% CL for Planck,

Planckþ Pantheon, and also for Planckþ BAO, whereas

the constraints on A0 from Planckþ lensing and Planckþ
all are compatible with 0, suggesting a possible correlation
with the lensing problem in Planck. Finally, with the same

datasets we were able to set only a lower limit to ϵ.

Based on the outcomes of the present article, one can

clearly understand that it will be a pity to avoid the NG

from the current cosmic picture. Even though this new

cosmic setup and its extensions are not very sound in the

context of cosmological tensions, they do offer new bounds

on the neutrinos. According to the existing records, super-

ΛCDM has just landed to the ocean of cosmological

models and it has not received any attention within this

short period of its introduction. We trust that this model and

its extensions should be further investigated with the

upcoming cosmological observations. We are on the way

to report some more analyses in this direction.
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