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Abstract

Accurate forecasting of the UK gross value added (GVA) is fundamental for measuring the growth of the UK 
economy. A common nonstationarity in GVA data, such as the ABML series, is its increase in variance over 
time due to inflation. Transformed or inflation-adjusted series can still be challenging for classical 
stationarity-assuming forecasters. We adopt a different approach that works directly with the GVA series by 
advancing recent forecasting methods for locally stationary time series. Our approach results in more 
accurate and reliable forecasts, and continues to work well even when the ABML series becomes highly 
variable during the COVID pandemic.
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1 Introduction

The literature on forecasting stationary time series has been established for many years. See, for 
example, Gardner (1985) or Box and Jenkins (1970) with easily implemented code readily avail-
able on a variety of platforms. Rather surprisingly, the same cannot be so readily said when it 
comes to forecasting of nonstationary time series. Indeed, it is not uncommon for analysts to fore-
cast time series assuming, but not testing for, second-order stationarity. Yet, as Janeway (2009)
describes, there can be grave consequences for ignoring this nonstationary structure. This article 
seeks to address this by providing practical, implemented forecasting methods for nonstationary 
series.

Our work is motivated by a problem arising from the accurate forecasting of economic time ser-
ies. Specifically we consider the ABML time series, which contains values of the UK gross value 
added (GVA), a major component of the UK gross domestic product (GDP). Both are vitally im-
portant economic statistics, with accurate forecasts being crucial in measuring the size of and 
growth in the UK economy. Our ABML series is recorded quarterly from quarter one 1955 until 
quarter four 2020, consists of T = 264 observations and is plotted in Figure 1. The impact of the 
‘great financial crisis’ of 2008 and the COVID pandemic during 2020 can be clearly seen. The data 
can be acquired from the Office for National Statistics website https://www.ons.gov.uk.
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As with many economic time series, ABML exhibits a clear polynomial-like trend, which is char-
acteristic of an integrated economic time series. Using standard statistical time series procedure, 
e.g. Chatfield (2003), we remove the trend using second-order differences. The second differences 
of our ABML series, including and not including the COVID period (up to Q4 2019), are shown in 
Figure 2, the latter amply demonstrating the dramatic impact of the COVID pandemic.

Both figures strongly suggest that the series is not second-order stationary, in that the variance of 
the series increases markedly over time. Methods from Nason (2013a) show that the correlation 
also changes over time. Much of the increase in variance observed in Figure 1 is probably due to 
inflation. However, we also analysed two different inflation-corrected versions of ABML, one pro-
vided by the UK Office of National Statistics, and both of these reject the null hypothesis of second- 
order stationary, as determined by tests of stationarity in Priestley and Subba Rao (1969) and 
Nason (2013a). Consequently, given that our series is nonstationary and shows no evidence of 
nonlinear behaviour, to attempt forecasting we ought to use methods designed for such series.

The fundamentals of nonstationary forecasting have been considered by several authors, but most-
ly from a theoretical standpoint. See, for example, Whittle (1963), Abdrabbo and Priestley (1967), 
Subba Rao (1973), and Hallin (1986). Dahlhaus (1996) uses a version of Kolmogorov’s formula 
(Brockwell & Davis, 1991, Theorem 5.8.1) for zero-mean locally stationary time series, paralleling 
the Subba Rao (1973) result for the oscillatory process model. Several other methods for nonstation-
ary series forecasting exist, such as the neural network method of Chow and Leung (1996) and 
Mercurio and Spokoiny (2004) or the simple, but effective, time-varying unconditional variance mod-
el of Van Bellegem and von Sachs (2004). Recent developments also include the work of Kley et al. 
(2019), who use local autoregressive approximations to forecast nonstationary series; Ding and Zhou 
(2023), who provide a theoretical contribution using a similar autoregressive approximation for ser-
ies exhibiting both nonstationary and nonlinear characteristics; and finally, Wu and Dette (2022) who 
propose local kernel-based forecasting in the case where data is nonstationary and non-centred.

Fryzlewicz et al. (2003) derived time-varying Yule–Walker equations for the locally stationary 
wavelet (LSW) model of Nason et al. (2000), introducing local Yule–Walker estimators and solv-
ers. The authors carefully established the theoretical properties of their estimators and proposed a 
practical forecasting methodology, which included parameter selection advice. However, as a grid 
search based approach, it can be computationally intensive to implement in practice.

Our aim in this article is to develop a new, readily implemented, automated approach to fore-
casting LSW time series. Here, we assume future observations can be modelled in terms of present 

Year

A
B

M
L

 (
£

 m
ill

io
n

)

1960 1970 1980 1990 2000 2010 2020

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0

Figure 1. The ABML time series.
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and recent past values and adopt the stance of Fryzlewicz et al. (2003), thus restricting our atten-
tion to predictors that are linear functions of the data and seeking to minimize their associated 
mean square prediction error. We use the recently proposed local partial autocorrelation 
(Killick et al., 2020) to dynamically select the number of past time series observations to use in 
forecasting (denoted by p below), rather than relying on the grid-type search proposed by 
Fryzlewicz et al. (2003). Our approach is both computationally simpler, has minimal tuning pa-
rameters, and provides much improved forecasting results, which we demonstrate on both simu-
lated and real data.

Section 2 details the LSW forecasting framework from Fryzlewicz et al. (2003). Section 3 intro-
duces our improvement, uses of the local partial autocorrelation function to estimate the local 
structure required for forecasting. Section 4 demonstrates this improved performance on a range 
of simulated stationary and nonstationary time series. Such a simulation study is required as al-
though we strongly suspect our ABML gross value added series is nonstationary, we cannot be ab-
solutely sure. Hence, we need at least some validation of our new methodology on both stationary 
and nonstationary series. Section 5 provides our forecasting results on the ABML economic data 
series. Section 6 provides further discussion and concludes.

2 Review of locally stationary wavelet time series forecasting

We begin by reviewing the locally stationary wavelet (LSW) model (Nason et al., 2000) and its 
associated forecasting framework (Fryzlewicz et al., 2003). The LSW approach for modelling non-
stationary time series has been used in many fields, from climatology (Fryzlewicz, 2003) and ocean 
engineering (Killick et al., 2013) to biology (Hargreaves et al., 2019), medicine (Embleton et al., 
2022a; Nason & Stevens, 2015) and finance (Fryzlewicz, 2005).

2.1 The locally stationary wavelet model

The LSW model (Fryzlewicz, 2003; Nason et al., 2000) encompasses sequences of doubly indexed 
stochastic processes {Xt,T}t=0,...,T−1, T = 2J

≥ 1, having the following representation in the mean- 
square sense

Xt,T =

􏽘

J

j=1

􏽘

k

w j,k;Tψ j,k(t)ξ j,k, (1) 

where ξ j,k is a random orthonormal increment sequence and the {ψ j,k(t)} j,k form a discrete non- 

decimated family of wavelets based on a mother wavelet, ψ(t), of compact support. The quantities 
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Figure 2. The second differences of the ABML time series (a) with and (b) without the COVID pandemic period.
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in (1) are assumed to observe a number of key properties. Most notably E(ξ j,k) = 0 for all j, k, and 

hence E(Xt,T) = 0 for all t, T, together with an assumption that Cov ξ j,k, ξℓ,m
( 􏼁

= δ j,ℓδk,m, where δi,j 

is the Kronecker delta. In addition, Nason et al. (2000) also introduces a number of conditions to 
ensure the amplitudes {w j,k;T}k vary slowly within each level, thereby controlling the degree of lo-

cal stationarity of the process. Relevant to our setting here, amplitude-based assumptions are sub-
sequently revisited by Fryzlewicz and Nason (2006) in order to allow for jumps, an assumption 
also useful in the LSW changepoint literature (Killick et al., 2013; Nam et al., 2015).

Within the LSW framework the evolutionary wavelet spectrum (EWS), defined as Sj(z) = 

|Wj(z)|2, at each scale j = 1, . . . , J and rescaled time z = k/T ∈ (0, 1), plays an analogous role 
to that of spectrum in the stationary time series setting. The EWS quantifies the process power dis-
tribution over time and scale, and is connected to a localized autocovariance function defined for 
each (rescaled) time z and lag τ ∈ Z as follows

c(z, τ) =

􏽘

∞

j=1

Sj(z)Ψj(τ). (2) 

The {Ψj(τ)}j is a family of compactly supported autocorrelation wavelets, see Nason et al. (2000).
Spectral estimation is usually carried out by means of the raw wavelet periodogram, defined as 

I j,k;T = |d j,k;T|
2, where d j,k;T =

􏽐T
t=0 Xt,Tψ j,k(t) are the empirical nondecimated wavelet coeffi-

cients. For notational simplicity, we shall refer to the raw periodogram as I j,k.
An asymptotically unbiased estimator of the EWS is provided by the (corrected) empirical wave-

let spectrum

L̂(z) = A−1I(z), (3) 

for all z ∈ (0, 1), where I(z) := (I j,[zT])
J
j=1 is the raw wavelet periodogram vector and A is a J × J 

symmetric matrix with entries A j,ℓ =
􏽐

τ Ψj(τ)Ψℓ(τ). As in the stationary setting, the wavelet perio-

dogram is not a consistent estimator of the wavelet spectrum (Nason et al., 2000). One way to 
overcome this is to smooth the raw wavelet periodogram as a function of (rescaled) time within 

each scale j, and then to apply the correction by A−1 as in (3).
Once a well-behaved spectral estimator, L̂, has been obtained, equation (2) can be used to obtain 

a local autocovariance estimator ĉ(z, τ), e.g. in the notation above ĉ(z, τ) =
􏽐J

j=1 L̂j(z)Ψj(τ).
The LSW framework has proved to be useful across a variety of tasks when compared to com-

petitor methods, e.g. for dimension reduction (Knight et al., 2024), classification (Fryzlewicz & 
Ombao, 2009; Krzemieniewska et al., 2014), clustering (Hargreaves et al., 2018), testing for sta-
tionarity (Nason, 2013a), spectral equality (Hargreaves et al., 2019) and replicate-effect 
(Embleton et al., 2022b), changepoint detection (Nam et al., 2015) and testing for white noise 
and aliasing (Eckley & Nason, 2018). We focus here on forecasting nonstationary time series, 
and in particular on the work of Fryzlewicz et al. (2003).

2.2 Forecasting within the LSW framework

2.2.1 Existing work

Given observations X0,T, . . . , Xt−1,T of a zero-mean locally stationary wavelet process, the meth-
od of Fryzlewicz et al. (2003) (FVBvS algorithm henceforth) proposes to predict the next observa-
tion Xt,T by taking a linear combination of the most recent p observations

X̂t,T =

􏽘

t−1

s=t−p

bt−1−s,TXs,T. (4) 

Here, the predictor coefficients b = (b0,T, . . . , bp−1,T) are chosen to minimize the mean square pre-

diction error (MSPE). This is similar to the typical forecasting approach in the stationary context, 
except the weights b depend on time. Intuitively, the reason for not using the whole series when 
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predicting the next observation lies in the nonstationary character of the process: the beginning of 
the series might have a different structure to the end and hence may not be useful for forecasting.

Fryzlewicz et al. (2003) showed that MSPE(X̂t,T , Xt,T) = E(X̂t,T − Xt,T)2 can be approximated 
by bTBtb, where Bt is a (p + 1) × (p + 1) matrix whose (m, n)th entry is given by 
(Bt)m,n =

􏽐J
j=1 S j(

n+m
2T )Ψ j(m − n) = c( m+n

2T , m − n). The weights b can then be obtained by solving 
the ‘generalized’ set of Yule–Walker equations

􏽘

t−1

s=t−p

bt−1−s,T c
n + s

2T
, s − n

􏼐 􏼑

= c
n + t

2T
, t − n

􏼐 􏼑

, ∀n = t − p, . . . , t − 1, (5) 

which can then be extended to h-steps-ahead prediction. These weights may be estimated by plug-
ging in a good estimator of the local autocovariance function, with the forecast quality obviously 
highly reliant on the quality of these estimators.

Contrasting the usual approach in LSW estimation discussed in Section 2.1, the FVBvS method 
proposes to obtain an estimate of the wavelet spectrum {Ŝ j(k/T)} j at all rescaled times correspond-
ing to observed times (up to (t − 1)) without smoothing and then to obtain an estimated local au-
tocovariance c̃(k/T, τ) at each time k = t − p, . . . , t − 1 and lags τ. For consistency, Fryzlewicz 
et al. (2003) smooth the estimated local autocovariance by means of a standard kernel smoothing 
method (using a normal or box kernel) with a chosen bandwidth that the authors denote by g. As 
well as providing a consistent estimator for the observed times, smoothing the local autocovar-
iance additionally allows the forward estimation of the local autocovariance at rescaled time 
t/T. This (smoothed) estimated local autocovariance can then be used in the generalized Yule– 
Walker equations (5) and the weights b̂ derived. The forecast X̂t,T =

􏽐t−1
s=t−p b̂t−1−s,TXs,T is then ob-

tained, as well as its associated prediction error. Fryzlewicz et al. (2003) generalized the above 
one-step-ahead prediction to an h-steps ahead.

2.2.2 Criticisms of the FVBvS method

Whilst theoretically tractable, Xie et al. (2009) noticed that the FVBvS algorithm sometimes pro-
duces abnormally large forecasts. They identified the cause to be the occasional near-singularity of 
local covariance matrices and proposed a modification of the algorithm in order to stabilize the 
forecasts. Their proposal constrains the Yule–Walker solution vector b to have unit norm. The au-
thors note that the revised method consistently produces better forecasts for a variety of prediction 
horizons.

A key quantity in calculating the forecast in equation (4) is p: the amount of recent data used for 
prediction. Fryzlewicz et al. (2003) and Xie et al. (2009) used an adaptive grid search method to 
select p, which requires a starting value p0. In their approach, from one time point to the next, p 
can only increase or decrease by one thus sometimes resulting in a slow adaption to the dynamics 
of the evolving series.

FVBvS suggested a procedure, also adopted by Xie et al. (2009), for simultaneously selecting the 
parameters p (the number of most recent observations from the past used to inform the forecast 
X̂t,T) and g (the bandwidth of the smoothing kernel). Briefly, their algorithm starts with some ini-
tial values for parameters p and g, and the pair (p, g) then are updated in an iterative process that 
evaluates their corresponding prediction performance for known data. The underlying idea is that 
the (p, g) pair gets trained over a segment of length m at the end of the series. Fryzlewicz et al. 
(2003) proposed to choose m to be the length of the longest segment at the end of the observed 
series with an apparent stationary behaviour, judged by visual inspection. Having made a choice 
for the parameter m, the FVBvS algorithm can be summarized as follows 

(a) Make an initial choice of parameters, say (p0, g0), and use it to obtain predicted X̂t−m,T by 
means of equation (4) using the previous p0 process observations.

(b) Predict Xt−m,T also by using pairs of parameters around (p0, g0), i.e. (p0 ± 1, g0 ± δ) for some 
fixed constant δ.

(c) The pair that gives ‘closest’ forecasts (in the sense of the minimum relative absolute predic-
tion error) to the observed process is chosen, (p1, g1), say.
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(d) Repeat steps (a)–(c). The updated pair of parameters is then itself updated through predicting 
Xt−m+1,T from the previous p1 observations and, by re-iterating this process, a parameter pair 
(p, g) is obtained for predicting the desired Xt,T .

Hence, despite this ‘automatic’ tuning, the practitioner must decide on the initial parameter pair 
(p0, g0), the training length m and the smoothing kernel (normal or box) used in the FVBvS method. 

3 Automating the locally stationary wavelet forecast

Our proposal departs from the currently adopted practice by automating the forecasting proced-
ure. Instead of the smoothing and forward estimation being undertaken at the level of the local 
autocovariance function, we take advantage of the recent advances in local spectral estimation 
(Nason, 2013a) and propose to perform running mean periodogram smoothing, from which for-
ward estimation followed by correction are straightforward. This avenue affords local autocovar-
iance estimation through equation (2) and yields estimators with desirable properties (Nason, 
2013a). In turn, this approach also removes the need for the initial bandwidth choice (g0) and 
training process since our proposed periodogram smoothing contains an automatic bandwidth se-
lection. In addition, we propose to remove the choice of p0 and segment length m by adopting a 
localized estimator for p in order to determine the (time-dependent) forecasting window. 
Specifically, we use the local partial autocorrelation function (lpacf) proposed by Killick et al. 
(2020), as a measure of the localized conditional correlation structure. Details of this approach 
are provided below and throughout the article we shall refer to the proposed method for 
FORecasting Localized Autocorrelation Processes under the acronym FORLAP.

3.1 Proposed lpacf-based forecasting

Intuitively, the choice of p amounts to establishing the length of a (sub)interval over which the pro-
cess displays stationary behaviour, so that data over this interval can feasibly contribute to the linear 
prediction. This is evocative of the stationary autoregressive setting where the unknown dependence 
order p is chosen via the partial autocorrelation function, q, using the theoretical property p = 

min {τ : q(τ) = 0} − 1 (Tsay, 2002, p. 36). Of course, in practice, estimates q̂(τ) are computed and, 
as these will never be exactly zero, their associated confidence intervals can be used to obtain an es-
timator p̂ (see e.g. Theorem 8.1.2 from Brockwell & Davis, 1991). This method of selecting the 
number of past observations to feed into prediction is widely used, even when the assumed under-
lying process is not autoregressive. In contrast, on a backdrop of model choice, Kley et al. (2017)
propose to choose the order of time-varying autoregressive processes by means of the MSPE.

Our proposal is to use a similar approach in which a localized version of p (and its estimate) is 
used to inform the length of the forecasting window. In our approach, we adopt the recently pro-
posed local partial autocorrelation function (lpacf) of Killick et al. (2020), as well as a correspond-
ing estimator. We next define their lpacf, q(z, τ) at rescaled time z and lag τ, before demonstrating 
how we can apply it to nonstationary forecasting.

Definition 3.1 Let {Xt,T} be a zero-mean locally stationary wavelet process with local 
autocovariance c(z, τ) and spectrum {S j(z)}j that satisfy

􏽘

∞

τ=0

sup
z

|c(z, τ)| < ∞, C1 := ess inf
z,ω

􏽘

j>0

Sj(z)|ψ̂j(ω)|2 > 0, 

where ess inf is the essential infimum and ψ̂j(ω) =
􏽐

s ψ j,0(s) exp(iωs). 

Then, the local partial autocorrelation function (lpacf) at (rescaled) time 
z and lag τ is given by:

q z, τ
( 􏼁

= φ[zT],τ,τ

MSPE X̂(b)
[zT],T, X[zT],T

􏼐 􏼑

MSPE X̂
(f )
[zT]+τ,T , X[zT]+τ,T

􏼐 􏼑

⎧

⎨

⎩

⎫

⎬

⎭

1/2

, (6) 
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where the quantity φ[zT],τ,τ is the last element in the vector φ[zT],τ (of length 

τ) obtained as the solution to the local Yule–Walker equations i.e. 

B[zT]φ[zT],τ = r[zT]. Furthermore, the estimates X̂(b)
[zT],T and X̂

(f )
[zT],T are de-

fined as the forecasting and backcasting predictions; X̂(b)
[zT],T = 

􏽐τ−1
p=1 b(b)

p,TX[zT]+p,T and X̂
(f )
[zT],T =

􏽐τ−1
p=1 b

(f )
τ−1−p,TX[zT]+p,T.

The right hand term under the square root in (6) is a measure of nonstationarity. For a stationary 
process, the square root term equals one and the localized q(z, τ) coincides with the classical partial 
autocorrelation measure q(τ). If there is a degree of nonstationarity within the data, then q(z, τ) 
will be modified by the nonstationarity factor.

Killick et al. (2020) propose two methods for estimating the lpacf. For the purposes of fore-
casting we prefer to use the second, more stable windowed estimator, denoted q̃W(z, τ), which 
has been shown to have an asymptotically normal distribution and practically to work well 
both in simulated and real data settings (Killick et al., 2020). Crucially, this windowed estimator 
allows for the local estimation of the partial autocorrelation at the last observation in the process 
(t − 1), as this is the point around which the prediction is made. Corollary 1 from Killick et al. 
(2020) then allows us to construct (pointwise) confidence bounds for the local partial autocor-
relation function. Recall that choosing p in the stationary setting is akin to estimating the num-
ber of significant lags in the partial autocorrelation function. We mimic this idea and obtain 
the estimate p̂ as the smallest value τ for which the pointwise confidence interval of q̃W(z, τ) at 
rescaled time z = (t − 1)/T contains zero, minus 1. However, we stress that we do not necessarily 
assume that the underlying process is necessarily autoregressive of any order. Future work could 
investigate whether p̂ is a consistent estimator of the true value of p if the underlying process was 
indeed locally autoregressive.

Algorithm 1 details the steps of our proposed forecasting algorithm, FORLAP. Whilst our 
theoretical framework is based on Fryzlewicz et al. (2003), our practical implementation differs 
considerably. Specifically, in addition to (i) using p̂ as an appropriate value of p, we also (ii) 
use the recent locally stationary wavelet covariance from Nason (2013a) and bandwidth estima-
tion as implemented in the AutoBestBW function in the locits R package (Nason, 2013b), and 
(iii) permit the covariance matrix regularization method of Xie et al. (2009) as an option.

Algorithm 1 Proposed FORLAP algorithm for nonstationary time series forecasting.

lpacf-based forecasting algorithm (FORLAP)

Assume we observed {X0,T , . . . , Xt−1,T } with T = 2J. 

(a) Determine p via lpacf estimation: obtain the lpacf estimate q̃W (Killick et al., 2023b) corresponding to time 

(t − 1) and set p̂ to be the smallest non-significant lag in its pointwise confidence interval minus 1.

(b) Spectral estimation: estimate the spectral content of the observed signal by correcting (with the matrix A−1, 

see equation (3)) the running mean smoothed raw periodogram Ĩ j,k = (2s + 1)−1 􏽐k+s
u=k−s I j,u, where the 

bandwidth s is obtained automatically as described in Nason (2013a, 2013b). Note that this procedure also 

embeds forward smoothing of the raw periodogram and thus enables the estimation of Ŝj(k/T) for 

k = 0, . . . , t.

(c) Autocovariance estimation: Estimate the local autocovariance c(z, τ) by means of equation (2) at rescaled 

times z corresponding to observed times up to (t − 1) and lags τ as dictated by the generalized Yule– 

Walker equation (5). Also obtain ĉ(t/T, τ) by making use of the extrapolated spectrum Ŝ j(t/T).

(d) Solve the generalized Yule–Walker equations: obtain the estimated time-dependent weight vectors b̂ by 

solving equations (5) over the most recent p̂ observations, subject to the regularization constraint of Xie 

et al. (2009) if desired.

(e) Forecast Xt,T : by using the linear combination of the last p̂ observations with weights b̂, as described in 

equation (4). Following Fryzlewicz et al. (2003) (equation (4.6)), the (1 − α) prediction interval uses the 

corresponding estimated MSPE: X̂t,T ± Φ−1(1 − α/2) b̂TB̂tb̂
􏼐 􏼑1/2

.

J R Stat Soc Series C: Applied Statistics                                                                                                      7

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jrs
s
s
c
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/jrs

s
s
c
/q

la
e
0
4
3
/7

7
3
9
7
2
8
 b

y
 g

u
e
s
t o

n
 2

8
 A

u
g
u
s
t 2

0
2
4



4 Simulation study

We assess the performance of FORLAP by simulating from a variety of scenarios, including both 
stationary and nonstationary examples, as detailed below (see also Appendix A for their mathem-
atical definition). Our overarching goal is to demonstrate the versatility of our proposed FORLAP 
forecasting technique and its utility in the ‘toolkit’ of any data analyst interested in forecasting. 
Our test set includes locally stationary wavelet processes as well as processes not represented by 
this framework. In so doing, we aim to assess the forecast performance of our approach both 
on realizations of wavelet processes but also a variety of other important model classes.

Below, we compare FORLAP to (i) the Fryzlewicz et al. (2003) method (FVBvS), (ii) forecasting 
using time-varying autoregressive processes (TVAR) of order 2 and higher, (iii) the Box–Jenkins 
forecasting procedure (B–J), designed for stationary time series but commonly used by analysts 
even on nonstationary data (see e.g. the report from U.K. Centre for the Measurement of 
Government Activity, 2008), as well as (iv) the often employed exponential smoothing (ES) 
(Hyndman et al., 2008).

The simulations, and real data example in later sections, use the forecast package (Hyndman 
& Khandakar, 2008), tvReg package (Casas & Fernandez-Casal, 2019), and the smooth pack-
age in the R statistical programming language (R Core Team, 2022). Specifically, we use the 
auto.arima function in the former package that automatically chooses and fits an ARIMA mod-
el and in addition its forecast function for forecasting, while time-varying autoregressive forecast-
ing is carried out using the forecast function in the latter package. Our FORLAP algorithm is 
implemented within the forecastLSW package (Killick et al., 2023a), also in R. Forecasts are 
produced using the method described in Section 3 and implemented in the forecast.lpacf 
function, which makes use of the lpacf function estimate q̃W implemented in the lpacf R package 
(Killick et al., 2023b).

In the simulations, we consider one-step-ahead forecasts over the stretch of last 20 observations, 
h = 1, although other horizons can be used. In addition, the methods and associated software im-
plementation work for arbitrary length time series even though some example series below happen 
to be of dyadic length.

Our study presents empirically computed measures for the prediction interval coverage rates and 
accuracy for all forecasting methods. Nominal rates ranging from 40% to 90% in steps of 10% are 
used. The accuracy measure we adopt is the interval score of Gneiting and Raftery (2007) which sim-
ultaneously penalizes wide prediction intervals and lack of coverage. In this setup, lower interval 
scores correspond to better prediction intervals. More specifically, Gneiting and Raftery (2007) de-
fine the interval score for a (1 − α)% prediction interval (l, u) and observed value x to be

Sint
α (l, u; x) = (u − l) + 2α(l − x)1(x < l) + 2α(x − u)1(x > u), (7) 

where 1 is the standard indicator function.
The results in Tables 1, 2, and 3 are based on averages taken over K = 500 runs. Specifically, the 

final columns of each table contain for each method (i) the mean of the prediction coverage ratios 
(MCR) and (ii) the mean interval score (MIS) at the 90% level, both relative to B–J. An MCR value 
greater than one demonstrates that the respective method provides better predictive coverage than 
the classical B–J, while MIS values less than one indicate that the respective method provides better 
prediction intervals, and balance between narrow range and coverage. We note that the tables only 
show results corresponding to the TVAR2 method, but similar results are also obtained when us-
ing higher orders (e.g. order 5), hence these are not reported here.

4.1 Stationary series

Table 1 shows empirical prediction interval coverage rates for three models each with T = 128 and 
standard normal innovations. Model A simulates independent N(0, 1) variates, Model B simulates 
from a stationary AR(1) model with parameter α = 0.7, and Model C simulates from a stationary 
MA(1) model with parameter β = −0.5.

The prediction coverage rates and accuracy for B–J are best across all models, with FORLAP 
and ES almost matching for coverage across all models. The accuracy of FORLAP and ES for 
Models A and C is close to their nominal values (a very similar behaviour to TVAR2). For 
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Model B, ES has better accuracy, but still lower than that of B–J. While all methods do well for 
Model A, FVBvS and TVAR are markedly inferior for Model B, and to a lesser extent for 
FVBvS on Model C.

As we designed this setup specifically to include stationary processes, a priori one would have 
expected B–J to be significantly better as it is designed for stationary series. However, the results 
show that our proposed FORLAP method is competitive even though it is not designed for station-
ary data, while the other nonstationary methods underperform.

4.2 Nonstationary series

Model specification. Tables 2 and 3 show coverage rates for ten nonstationary models, summar-
ized as follows. Models D and E are realizations of TVAR(1) processes of different forms, whilst 
Models F and G are higher-order TVAR processes of orders two and twelve, respectively. Models 
H–J correspond to different time-varying MA processes. Model K is a uniformly modulated white 
noise process (Priestley, 1983, p. 826), whilst Models L and M are locally stationary wavelet proc-
esses. Complete model descriptions can be found in A. In each case the underlying innovations are 
independent zero-mean normally distributed random variables, and all realizations are of length 
T = 128, except for Model L where T = 512, and Model M where T = 350 for variety.

Discussion of simulation results. The FORLAP method provides much better coverage 
(MCR ≥ 1.05) than B–J for five of the models considered (F, H, J, K, M). For the Models D, G, 
I, and L the two methods are broadly comparable. The method accuracy as measured by MIS pro-
vides a broadly similar picture, with FORLAP superior to B–J for five Models F, H, I, J, and K 
(MIS ≤ 0.95), similar calibration for Models G, L, and M (MIS in the range 0.95–1.05) and lower 
for Models D and E (MIS ≥ 1.05).

For Model E, no approach proves particularly competitive. However, this is not altogether sur-
prising as Model E is neither stationary nor, in fact, locally stationary with Lipschitz smoothness 
constraints as it experiences six changes in parameter, α(z), over only T = 128 observations. 
Hence, a stationary forecasting system is clearly not appropriate and estimation by the nonstation-
ary models is likely to be poor, as few observations contribute to any region of local stationarity.

Table 1. Empirical prediction interval coverage rates and accuracy: stationary underlying series

Nominal

40% 50% 60% 70% 80% 90% MCR MIS

B–J 39.3 48.5 58.5 68.6 79.0 89.2

Model A FORLAP 38.8 48.0 58.1 68.2 78.3 88.8 1.00 1.00

N(0, 1) FVBvS 36.7 46.4 55.7 65.4 74.9 86.1 0.97 1.09

TVAR2 39.1 48.4 58.5 68.8 78.9 89.2 1.00 0.99

ES 39.5 49.4 59.4 69.3 79.5 89.7 1.01 1.00

B–J 38.9 48.9 58.2 68.2 78.7 88.9

Model B FORLAP 36.8 46.0 54.9 65.0 75.1 85.5 0.96 1.38

AR(1) FVBvS 25.9 32.5 39.3 46.9 55.4 65.2 0.74 5.22

TVAR2 29.4 37.2 45.3 53.4 62.8 74.7 0.84 1.66

ES 39.7 49.4 59.3 69.0 79.3 89.9 1.01 1.05

B–J 39.2 49.3 59.1 69.1 79.8 89.4

Model C FORLAP 36.7 45.8 56.0 65.9 76.3 87.0 0.97 1.11

MA(1) FVBvS 32.2 41.1 49.6 58.8 68.3 79.3 0.89 1.49

TVAR2 35.9 45.0 54.5 64.7 74.9 86.2 0.96 1.10

ES 40.1 50.2 60.2 70.4 80.7 90.6 1.02 1.09

Note. MCR = mean prediction coverage. MIS = mean interval score. (Superior behaviour relative to B–J when MCR > 1, 
MIS < 1.)
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When compared to the B–J method, the FVBvS method provides much better coverage 
(MCR ≥ 1.05) for three of the models considered (H, J, K); of these, FORLAP outperforms 
FVBvS on Model H (1.17 vs. 1.09) and has lower performance on Models J and K (1.22 vs. 
1.32 and 1.23 vs. 1.35, respectively). The accuracy of the FVBvS prediction intervals is lower 
(MIS ≥ 1.05) than that of B–J for all models except for Models J (superior) and K (the same).

When comparing TVAR coverage rates to those achieved by the B–J baseline, TVAR outper-
forms B–J on Model H and delivers comparable results (MCR values in the range 0.95–1.05) 
on all other models except for underperforming on models D and E. Unlike FVBvS, TVAR 
achieves similar levels of accuracy to B–J (MIS in the range 0.95–1.05) for Models G, I, J, K, L, 
and M, worse accuracy for Models D, E, and better performance for Models F and H.

The forecasting accuracy measure (MIS) consistently indicates that our proposed FORLAP tech-
nique delivers better calibrated prediction intervals than FVBvS on all models, with sizeable per-
formance gaps in favour of FORLAP. This metric indicates that FORLAP and TVAR deliver 
comparably accurate prediction intervals for Models G, L, and M (ratio in the range 0.95– 
1.05), FORLAP is better for Models D (1.08 vs. 1.21), F (0.84 vs. 0.93), I (0.93 vs. 1.01), 
J (0.80 vs. 0.96), and K (0.79 vs. 0.95), and worse for Models E (2.49 vs. 1.92) and H (0.66 vs. 
0.53). According to the coverage rate measure, FORLAP is superior to TVAR on all models, 

Table 2. Models D–H. Empirical prediction interval coverage rates and accuracy: nonstationary underlying series

Nominal

40% 50% 60% 70% 80% 90% MCR MIS

B–J 31.4 39.6 47.8 57.1 67.5 79.1

Model D FORLAP 30.1 37.5 45.5 54.4 64.5 76.3 0.96 1.08

TVAR(1) FVBvS 21.6 27.3 33.3 39.7 47.6 57.7 0.73 3.88

TVAR2 27.6 34.6 42.2 50.1 59.6 71.3 0.90 1.21

ES 29.8 37.8 46.1 54.9 64.9 77.4 0.98 1.13

B–J 25.2 32.2 39.2 47.8 56.8 69.4

Model E FORLAP 19.4 24.6 30.2 36.0 43.1 51.9 0.75 2.49

TVAR(1) FVBvS 22.9 28.5 35.1 41.5 49.1 57.9 0.84 502.36

TVAR2 19.2 24.6 29.8 36.1 44.3 54.3 0.77 1.92

ES 18.6 24.1 30.1 36.9 44.8 56.1 0.80 1.92

B–J 29.8 38.2 46.6 55.4 65.7 77.80

Model F FORLAP 35.4 44.8 53.9 63.9 74.1 84.4 1.09 0.84

TVAR(2) FVBvS 29.5 37.4 46.3 55.0 64.8 76.0 0.98 1.45

TVAR2 29.8 37.8 46.2 55.3 65.4 76.9 0.99 0.93

ES 47.4 58.2 68.8 78.2 86.6 93.6 1.22 0.82

B–J 36.6 45.8 55.5 65.0 75.4 86.1

Model G FORLAP 35.8 44.8 54.3 64.0 74.4 85.4 0.99 1.01

TVAR(12) FVBvS 33.3 41.7 50.2 59.5 69.4 80.5 0.94 1.32

TVAR2 35.10 44.1 52.9 62.8 73.3 84.4 0.98 1.00

ES 37.8 47.3 57.3 67.1 77.5 88.1 1.03 0.96

B–J 27.3 34.7 42.0 50.4 59.1 69.9

Model H FORLAP 33.1 42.4 50.9 60.1 69.4 80.2 1.17 0.66

TVMA(1) FVBvS 30.7 38.9 47.0 55.4 64.7 74.8 1.09 5.53

TVAR2 32.5 42.3 49.8 59.4 71.0 82.6 1.20 0.53

ES 36.5 46.2 55.6 65.1 75.6 85.9 1.25 0.60

Note. MCR = mean prediction coverage. MIS = mean interval score. (Superior behaviour relative to B–J when MCR > 1, 
MIS < 1.)
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except for models E, G, H, I, and L where they deliver similar rates (corresponding to ratios in the 
range 0.95–1.05).

The simulations for Model F are particularly revealing. The underlying model is a TVAR(2) and, 
indeed, the forecasting method based on that (TVAR2) performs somewhat better (MCR 0.99, 
MIS 0.93) than the B–J method. However, it is interesting that our new method, FORLAP, pro-
duces best coverage (1.09) and accuracy (MIS 0.84). Note that the other wavelet-based method, 
FVBvS, has comparable coverage to TVAR2 (0.98) at the price of sacrificing some accuracy 
(MIS 1.45).

In the TVAR2 setting, the real competitor for FORLAP turns out to be ES, which produces com-
parable results in terms of coverage and accuracy rates (corresponding ratios in the range 0.95– 
1.05) to FORLAP for all models, except for ES obtaining superior results on Model H and 
FORLAP on Models J and K, where ES performs closer to the B–J benchmark.

The coverage rates are also reasonably stable for all methods. The standard deviation of cover-
age rates for each model and coverage level is roughly between 7% and 19%, with the majority 
around 12%. This is true for all models except for the ‘pathological’ Model E, which ranges 
from about 12% to 23%, which is not surprising given the difficulty of forecasting data from 
this model.

Table 3. Models I–M. Empirical prediction interval coverage rates and accuracy: nonstationary underlying series

Nominal

40% 50% 60% 70% 80% 90% MCR MIS

B–J 33.1 41.9 50.7 60.2 70.6 82.3

Model I FORLAP 33.2 41.7 50.4 59.9 70.2 82.1 1.00 0.93

TVMA(1) FVBvS 28.9 36.2 43.8 52.0 61.4 73.0 0.89 1.66

TVAR2 30.8 38.5 46.9 55.8 65.9 78.1 0.95 1.01

ES 34.1 42.8 51.6 61.4 72.0 83.9 1.02 0.96

B–J 22.2 28.2 34.7 41.5 49.7 60.6

Model J FORLAP 28.0 35.3 42.9 51.6 60.9 73.0 1.22 0.80

TVMA(2) FVBvS 31.4 39.4 48.0 56.9 67.0 78.2 1.32 0.88

TVAR2 22.0 28.2 34.5 42.0 50.7 61.7 1.03 0.96

ES 22.6 29.1 35.4 43.0 51.6 62.9 1.05 0.96

B–J 20.6 26.0 31.9 38.9 47.3 58.3

Model K FORLAP 26.3 33.4 40.5 48.7 58.2 70.4 1.23 0.79

TVWN FVBvS 29.8 37.9 46.3 55.4 65.6 77.0 1.35 1.00

TVAR2 21.0 26.8 32.9 39.8 48.4 59.2 1.02 0.95

ES 21.3 27.0 33.2 40.1 48.8 59.7 1.03 0.96

B–J 41.6 51.4 61.1 71.2 81.5 91.0

Model L FORLAP 41.9 52.3 62.5 72.6 82.4 91.7 1.01 1.05

LSW-P3 FVBvS 31.3 39.1 47.0 56.0 65.9 77.4 0.85 4.03

TVAR2 41.5 51.0 61.1 71.2 81.2 91.0 1.00 1.02

ES 43.3 53.8 64.4 74.7 84.5 93.4 1.03 1.02

B–J 34.2 42.7 51.7 60.2 70.6 82.4

Model M FORLAP 36.8 45.8 55.5 65.1 75.1 85.4 1.05 1.02

LSW-P4 FVBvS 33.7 42.1 50.9 59.7 69.7 80.8 0.99 2.24

TVAR2 31.8 40.0 48.6 57.9 67.6 79.3 0.97 1.02

ES 37.2 47.1 56.5 66.0 76.4 86.8 1.06 0.95

Note. MCR = mean prediction coverage. MIS = mean interval score. (Superior behaviour relative to B–J when MCR > 1, 
MIS < 1.)
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In addition to the simulations described above, we repeated our simulations on these models 
with t4-distributed innovations scaled to have unit variance for B–J, FORLAP and FVBvS. With 
the heavier-tailed innovations the relative performance of B–J compared to FORLAP forecasting 
changes negligibly: the largest MCR change is 0.05 and 70% of the changes are less than 0.02.

Overall, one could conclude that, for zero-mean locally stationary series, the FORLAP method 
is much better than the B–J method in two-thirds of cases and about the same in the remaining 
one-third, and provides an improvement over all of the other nonstationary-based methods across 
the majority of our models.

5 Forecasting the UK national accounts time series

We now return to consider the ABML series that helped motivate this work in Section 1. The B–J 
method is sometimes used to forecast the ABML series, see U.K. Centre for the Measurement of 
Government Activity (2008) for example. Table 4 shows that FORLAP seriously outperforms 
the B–J methodology for forecasting the second differences of ABML series at one-step ahead. 
Here, the input data are provided to both methods up to t = T − n and T − n + 1 is forecast and 
the percentages are average success rates over n = T − 51, . . . , T − 1.

Figure 3 compares FORLAP against B–J forecasting for ABML in a similar way to Table 4 except 
for the last 20 time points. The good performance of FORLAP relative to B–J can be discerned, e.g. 
particularly Q1 and Q4 of 2020, but the sheer size of the movements during the pandemic obscures 
what the forecasts are doing earlier in the plot. So, Figure 4 shows a similar plot except the vertical 
axis is plotted on a signed square-root transformed scale to de-emphasize the COVID period. Here, it 
is clear that FORLAP succeeds 16 times out of 20 (80%), whereas B–J succeeds 13 times (65%), 
although some point estimates for B–J perform better than the point estimates for FORLAP.

After extensive experiments with the ABML data it seems that Haar wavelets perform best. Also, 
FORLAP’s advantage persists over high step-ahead forecasts (e.g. h = 2, 3), but diminishes and be-
comes worse the further into the future. This is perhaps not surprising, due to the quite strong non-
stationarity and B–J, in this case, still providing some degree of ‘catch all’ forecast accuracy.

6 Discussion

We have demonstrated how the recently proposed local partial autocorrelation function intro-
duced in Killick et al. (2020) can be used to select the p parameter, i.e. how much recent data 
are relevant, in the locally stationary forecasting method of Fryzlewicz et al. (2003). Our subse-
quent modified forecasting method, FORLAP, outperforms not only the original Fryzlewicz 
et al. (2003) approach but also the method based on direct time-varying autoregressive estimation 
and the B–J method, on the majority of our simulated examples and on the practical data 
application.

On average, FORLAP takes about 0.15 s for a T = 256 length data set, 0.26 s for T = 512, 0.52 
for T = 1,024, and 1.28 s for T = 2,048. On average, FORLAP is about 10 to 20 times slower than 
the basic forecasting found in the forecast package.

A bootstrap test might provide an alternative to using asymptotic-based confidence intervals to 
select p̂. One could view p as a kind of local autoregressive model order, even if the underlying 
process was not autoregressive, and attempt to develop a theory of how well p̂ estimates it if 
the underlying process was autoregressive, but this is beyond the scope of the current work. 
Additionally, the simulation results in Section 4 provide good examples of the phenomenon 

Table 4. Percentage of times that the B–J and the FORLAP methods’ 95% one-step ahead forecast prediction 

intervals contain the truth over the last 50 time points

ABML series

Method With COVID Without COVID

Box–Jenkins 66 72

FORLAP 90 90
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highlighted by Kley et al. (2017), where the best predictor of a nonstationary time series might be a 
stationary predictor, and vice versa, e.g. Model E in Table 2. Finally, the predictive interval cover-
age, and our use of the least-squares loss function are not necessarily the only, or the best, methods 
for assessing predictive performance and problem-specific/problem-tailored measures are of value. 
For a more detailed discussion, see Gneiting (2011), for example.
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Figure 3. Forecast results for one-step ahead forecasting of the final twenty observations of the ABML series 

including the COVID period. Green diamond = True value of series. Black = Box--Jenkins. Red = FORLAP. Solid 

circle indicates point forecast and double-headed arrows indicate 95% prediction intervals.
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Figure 4. Forecast results for one-step ahead forecasting of the final twenty observations of the ABML series 

including the COVID period plotted on a signed square root scale. Green diamond = True value of series. 

Black = Box--Jenkins. Red = FORLAP. Solid circle indicates point forecast and double-headed arrows indicate 95% 

prediction intervals.
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For the ABML time series, it is fascinating to see how well FORLAP does against B–J even dur-
ing periods of significant change, as, for example, during the COVID pandemic. We can only put 
this down to the flexible modelling and forecasting afforded by a method that explicitly acknowl-
edges the nonstationary nature of the time series. Part of FORLAP’s success is that it can position 
its forecast intervals better, but it can respond much quicker to variance changes and this can be 
seen in the forecast intervals shown in Figures 3 and 4.

Further research is also necessary to properly develop a mature understanding of the proposed 
forecasting methodology, particularly on comparisons with other methods for forecasting of non-
stationary series (where code is not freely available), on different types of series, and at forecast 
horizons other than h = 1. Additionally, while the focus of this work is channelled on short- 
memory locally stationary processes, further extensions to processes that exhibit features such 
as long-memory or nonlinearity would form interesting avenues for future development.
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Appendix. Simulation study models for nonstationary series

Model D corresponds to the time-varying autoregressive TVAR(1) model Xt = αtXt−1 + Zt for 
t = 1, . . . , 128 and αt = α(t/T) where α(z) = 1.8z − 0.9 for z ∈ (0, 1).

Model E corresponds to the TVAR(1) model with the same specification as for Model D except 
that

α(z) =

5.6z − 0.9 for z ∈ (0, 1/8),
4.8z − 0.8 for z ∈ (1/8, 2/8),
3.2z − 0.4 for z ∈ (2/8, 3/8),
0.8 for z ∈ (3/8, 5/8),
−2.4z + 2.6 for z ∈ (5/8, 6/8),
−7.2z + 5.4 for z ∈ (6/8, 7/8),
−1.6z + 0.5 for z ∈ (7/8, 1).

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Model F corresponds to the TVAR(2) model Xt = α1,tXt−1 + α2,tXt−2 + Zt with αi,t = αi(t/T) for 
i = 1, 2 and α1(z) = α2(z) = 1.6z − 1.1 for z ∈ (0, 1).

Model G corresponds to the TVAR(12) model Xt = α1,tXt−1 + α2,tXt−2 + α12,tXt−12 + Zt, where 
αi,t = αi(t/T) for i = 1, 2, 12 and α1(z) = α2(z) = 0.7z − 0.4 and α12(z) = 0.3z for z ∈ (0, 1).

Model H corresponds to the TVMA(1) model Xt = Zt + βtZt−1, where βt = β(t/T), where β(z) = 

1 for z ∈ (0, 0.9) and β(z) = −1 for z ∈ (0.9, 1).
Model I corresponds to the TVMA(1) model as in Model H but with β(z) = 2z − 1 for z ∈ (0, 1).
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Model J corresponds to the TVMA(2) model Xt = Zt + β1,tZt−1 + β2,tZt−2 with βi,t = βi(t/T) for 
i = 1, 2, where β1(z) = 2z − 1 and β2(z) = 9z − 0.8 for z ∈ (0, 1).

Model K corresponds to uniformly modulated white noise, see Priestley (1983, page 826), 
where Xt = σ2

t Zt, where σ2
t = σ2(t/T), where σ2(z) = (9z + 1)3/2 for z ∈ (0, 1). Note, this model 

might be a good fit for the ABML time series from Section 1.
Model L is a locally stationary wavelet (LSW) process from Nason et al. (2000) with spectrum 

P3 from Nason (2013a) defined by Sj(z) = 0 for j > 2, S1(z) =
1
4 − (z −

1
2 )2, and S2(z) = S1(z +

1
2 ) for 

z ∈ (0, 1), assuming periodic boundaries for spectrum construction only.
Model M is a LSW process from Nason et al. (2000) with spectrum P4 from Nason (2013a)

defined by Sj(z) = 0 for j = 2, j > 4 and S1(z) = exp{−4(z −
1
4 )2}, S3(z) = S1(z −

1
4 ), and 

S4(z) = S1(z +
1
4 ), for z ∈ (0, 1), assuming periodic boundaries for spectrum construction only. 

The process, Xt, is computed for t = 1, . . . , 512 and the first T = 350 values are returned.
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