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Introduction

A standard principle in public finance (see, e.g., Barro, 1979) is that, for risk averse
households, taxation should be designed so as to smooth out lifetime consumption, aiming
at fiscal certainty over time. Yet, tax uncertainty is recognized, usually under a negative
view, as a feature of many tax systems in and outside the group of OECD countries (see,
e.g., “'Tax Certainty’, IMF/OECD Report for the G20 Finance Ministers, 2017), even when
stemming from policy design and legislation. We study when optimal fiscal policies must
involve fiscal uncertainty, or ‘taxspots’. Taxspot equilibria are competitive equilibria where
uncertainty comes from random tax rates. Consequently, taxspots provide new insights
about the properties of optimal taxes.

We focus on Ramsey problems, where a benevolent planner chooses the income tax rates
on capital and labor that maximize household welfare, taking into account the households’
optimizing behavior, the government budget constraint, and feasibility. We show that for
many economies optimal taxes involve taxspots. From a mathematical point of view, the
reason is simple: the ‘incentive constraints’ reflecting optimal behavior of households need
not be concave, implying that the planner’s value function need not be concave. For Ramsey
problems, concavity of the incentive constraints depends on the curvature of the marginal
utility, itself a function of the third-order derivatives of utility. If the lack of concavity of the
incentive constraints is larger than the concavity of the utility function, then uncertain tax
rates can Pareto improve. From an economic point of view, if households are prudent, then
adding uncertainty to disposable income increases investment or the labor supply. With
sufficient prudence, risk averse households are more than compensated for the additional
consumption uncertainty by an increased expected consumption.

We consider the neoclassical growth model with perfectly competitive markets and
representative households. First, we study economies with complete financial markets,
where the planner can issue taxspot contingent bonds. We show that taxspots can be Pareto
improving. Since financial markets are complete, households can fully insure themselves
against taxspots, but they will not at equilibrium, because the cost of full insurance is too
high. Moreover, we show that market completeness implies that taxspots need not involve
more than two episodes of random tax rates. Consequently, there is a finite date after which
there is no more tax uncertainty.

We then study economies with no financial markets, where the planner cannot issue
bonds and the primary deficit has to be zero. Optimal taxation in these economies has
been studied by Benhabib and Rustichini (1997), Phelan and Stacchetti (2001), and Straub
and Werning (2020), among others. We show that taxspots can be Pareto improving

and recurrent, i.e., there is no finite date after which there is no more tax uncertainty.



Recurrent taxspots break the serial correlation between government expenditures and taxes.
In contrast, a common belief is that optimal taxes smooth consumption, labor income taxes
are essentially constant over the business cycle, and capital income taxes adjust only to
innovations in exogenous shocks (see, e.g., Chari et al., 1994).

Finally, in the appendices we show how to change utility functions to ensure that
equilibria are unchanged and the sufficient conditions for existence of taxspots are satisfied.
Moreover, we provide a new turnpike theorem for the neoclassical growth model which we

use to produce examples of economies with taxspots.

Related literature: The first study to highlight that tax uncertainty can be Pareto improving
is Stiglitz (1982), where there are two dates and neither capital accumulation nor market
completeness versus incompleteness is considered. Households face the same tax rates ex-
ante but not ex-post, leading to horizontal inequality. Our taxspots make all households face
the same tax rates ex-post, and do not violate horizontal equity.

Bizer and Judd (1989) study the dynamic consequences of random taxes in a neoclassical
growth model with incomplete markets and exogenous randomness in taxes. They find that
the welfare loss associated with random taxes can be limited.

Hagedorn (2010) considers complete markets economies without capital and with money
in the utility function. Two-period cycles are found to be welfare improving in economies
with no uncertainty and constant government expenditures. Our sufficient condition for
taxspots to be Pareto improving resembles and extends their condition for cycles.

In their recursive formulation of Ramsey problems, Marcet and Marimon (2019)
acknowledge the nonconcavity of incentive constraints. In related work on recursive
formulations by Pavoni et al. (2018) as well as Cole and Kubler (2012) the technical issues
arising from the nonconcavity are addressed by convexifying incentive constraints using a
public randomization device. Yet no condition is given for Pareto improving lotteries.

Our general observation that uncertain policy can be Pareto improving naturally applies
to models with more frictions than we consider. The frictions can come from the planner’s
inability to commit, as in Benhabib and Rustichini (1997) and Phelan and Stacchetti (2001),
from political considerations as in Acemoglu et al. (2011), or from technology, as is the case
for trade being organized through bilateral matching resulting in a sequence of incentive
constraints. In fact, Phelan and Stacchetti (2001) allow for uncertainty to convexify an
equilibrium correspondence. We conjecture that taxspots arising because of prudence are a
robust feature of optimal fiscal policy even in the presence of additional constraints imposed
on the planner.

We connect the planner’s problem with taxspots to competitive equilibria with ‘extrinsic’

uncertainty, as in Shell and Wright (1993) and related literature on sunspots and lotteries in



static economies — see Rogerson (1988) and Garratt et al. (2002), where nonconvexities
come from indivisibilities, and Kehoe et al. (2002), where they come from informational
problems. In Goenka and Prechac (2006) it is found that, for economies with two dates
and incomplete markets, in the presence of prudence sunspots can make some consumers
better off, but others worse off. We dub equilibria with uncertain fiscal policy ’taxspots’
because they depend on extrinsic uncertainty. For taxspots, how equilibria depend on the
extrinsic uncertainty is chosen by the planner. However, in one interpretation of fiscal
policies (Ljungqvist and Sargent 2018, p. 1041) they are "a description of a system of
public expectations to which the government conforms," connecting taxspots and sunspots.
Our taxspots are implementable by making fiscal policy depend on ’sentiments’ or higher-
order beliefs circulating in the market, following the interpretation given in Angeletos and
La’O (2020) and related literature.

The paper is organized as follows. Section 1 introduces the basic model. Section 2
presents the mathematical structure common to Ramsey problems and giving rise to random
improvements and optimally uncertain taxes. Sections 3 and 4 focus on the cases of
complete and totally incomplete financial markets, respectively. Appendix A contains some
of the proofs. Appendix B presents an ancillary perturbation argument, and Appendix C
details the construction of an example of economy where the Ramsey solution converges to

a steady state.

1 Optimal linear taxation

Ramsey taxation problems are usually characterized by a fixed sequence of government
expenditures that must be financed by linear taxes on the income. We examine the
simplest case of a production economy with a representative household with preferences
over consumption and leisure and a representative firm transforming capital and labor into a
consumption good. Moreover, in line with a large part of the literature, we assume that the
government can commit to a tax plan.

More precisely, a discrete time infinite horizon economy faces an uncertain and
exogenous sequence of government expenditures and productivity shocks (g;,a;);>0 =
(6;):>0 with 6, € ®, where O is finite. A history (or date-event) is 6" = (6y,...,6;) and
mg: € [0,1] its probability. Unless stated otherwise all processes are adapted to the tree
generated by (6;);>0.

There is a continuum of identical households. The representative household has an initial
stock of capital ko, one unit of time at every date and preferences represented by expected



discounted utility over consumption and leisure (¢;,x;);>0,

IEO Zﬁtu(ct,x,),

t>0

where [E, is the expectation at date ¢, u is the instant utility function and 8 € (0,1) is the
discount factor. The representative firm has a constant returns to scale production function
fa,(+) transforming capital and labor (k;,1—x;) into output subject to a productivity shock.
Without loss of generality we assume that capital depreciates completely.

Utility and production functions satisfy the following assumptions:

A1 u: Ryx[0,1] - R U —eo is continuous, thrice continuously differentiable on
R4 x(0,1) with u.(0,x) = uy(c,0) = oo, Du(c,x) € R2, and v D?u(c,x)v < 0 for
all vectors v # 0.

A2 f,: Ri — R, is continuous, twice continuously differentiable on Ri , with
Df,(k,1-x) € R2,, and vID*f,(k,1-x)v < O for v-Df,(k,1—-x) = 0 with
v # 0. Moreover, f,(0,1—x) = f,(k,0) = 0 and lim; o fux(k,1—x) > B >
limy e fak (K, 1—x).

Markets are perfectly competitive. We consider two polar cases regarding financial markets:
complete financial markets, and totally incomplete markets with no assets except capital.

Given initial government debt bg, the government chooses tax rates on capital and
labor 7, = (tF, Tf)tzo and —in case of complete financial markets— state-contingent bonds
(br+1)i>0- As usual in the literature, we assume that the initial capital tax rate is fixed,
at zero, to avoid the trivial front loading of government expenditures via nondistortionary
capital taxes on k.

The price at date t = 0 for the good at date ¢ is p;, and in the good at date ¢ the return
on capital is r; and the wage is w;. In case of complete markets, the price of bonds is
dr+1 = g6, Pr+1 /p: in the absence of arbitrage.

Feasibility states that consumption, investment and government expenditures must be
less than output

ik +g < fa, (ke 1=x1).

The sequential household budget constraint at date ¢ is

Pr+1

Dt

Ct +kt+1 ‘I—E[ b[+1 S (1—le)r[k[ + (1—Tf)W[(1—.X[) ‘l‘b[

In addition, the household has to satisfy the transversality conditions on capital, and on
bonds —in case of complete financial markets. The sequential government budget constraint

at date ¢ is
Pt+1

t

g[+bt S Ttkr,kt—k’tfwt(l—x,)—l—E,

Dt 1.



An equilibrium at (®,7) and by, ko is prices (py,r,wr)r>0, consumption, leisure, capital
and bonds (c¢;,x¢,ki+1,bi+1)>0, and taxes (7;);>0 such that: markets clear; households
maximize expected utility subject to its budget constraints and transversality conditions;
firms maximize profits; and, the government satisfies its budget constraints. Initial capital
ko and initial debt by, and expenditures (g;),>0 are assumed compatible with equilibrium
existence. An equilibrium is interior provided (c;,x;,k;11) € Ry x(0,1) xR for every
t>0.
The first-order conditions and the transversality conditions for the household are

;

uy(crxy) = uc(ct,x,)(l—rf)wt
Et”C(CH-l7xt+1)(1_7tk+1)rt+l = uc(crxr)
tlgg EoB'uc(cr,xi)kir1 = 0
lim EOBt”c(Cz+17xz+1)bz+1 = 0.
[ o

The first-order conditions for the firm are

{ ry = fa,k(kt,l—xt)
wi = fao(ki,1—=x;).

A Ramsey Problem consists in finding taxes and bonds that maximize the households’

expected utility over all possible taxes and bonds for which equilibria exist.

2 Pareto improving lotteries: A general framework

To study the emergence of taxspots, we offer an abstract formulation of the Ramsey Problem
which will highlight its common mathematical structure across financial markets variations

and beyond, and its main properties.

Random improvements

A Ramsey Problem can be represented as an optimization problem of the form:

max U(z)
€2

®;(z) > Oforeveryiel (P)
S.t

W¥i(z) > Oforevery jelJ.

where Z is an open subset of a Banach space and U, (®;)cr, (¥))es € €*(Z,R), where I and

J are countable index sets and U is concave. In our applications, U is equal to the expected
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discounted utility of consumption and leisure, the ®;’s include the feasibility functions and
the W;’s represent (some of) the incentive constraints (e.g., budgets or first order conditions).

A random improvement over z is (Azy, Azp, ) such that z+Az, € Z for h € {1,2},
ue(0,1),and

pU(z4+Az1) +(1-p)U(z+Lz2) > U(z)
®;(z+Azy) > 0 forevery i and both i
>

pYi(z+A0z1) + (1—p)¥Wj(z+ Azp) 0 for every j.

We assume that a solution to problem (P) exists, and focus on sufficient conditions for
existence of random improvements over a solution to (P). The main idea to obtain a random
improvement is twofold: construct a ’policy change’ Az € Z which is *U-improving’, ’®-
feasible’ and *W-unfeasible’; and, ensure that a curvature condition ensuring the policy
change is more likely than opposite policy change. Hereafter, we write Az(?) = (Az, A7)
forany Az € Z. ! Let

3 = {Az €Z|DU(Z")Az> 0, DP;(z*) Az = 0 for every i and supD¥j(z") Az < 0}
JjeJ

be the set of "U-improving’, *®-feasible’ and *W-unfeasible’ policy changes.

Lemma 1 Suppose z* is a solution to problem (P) and assume that there is Nz € 3 such
that:

* (DDi(z"))icpu is onto for H={icI|Vy € [-1,1]: ®i(z"+yAz) = Di(z") }.

D2, (* 2) 2 * (2)
cipf DEEET DUE)ATT (C)
jel  D¥j(z*)Az DU (z¥) Az

Then a random improvement (Azy, Azp, ) over z* exists with (Az1,Azp) and (Az,—Az)
approximately collinear and L > 1/2.

'For a twice continuously differentiable function I": Z — R and for Az € Z and Az?) = (Az, Az), we write
DI'(z) for the (Fréchet) derivative of I at z (the continuous linear functional), D°I'(z) for the derivative of DI"
at z (the bilinear continuous map), and DI'(z) Az is the value of the continuous linear functional when applied
to Az, and similarly D*T'(z) Az(?) is the value of D?*T(z) applied to Az(2). When the gradient or Hessian exists,
we write DI'(z) - Az and Az- D?T(z) - Az, respectively, where - is the inner product in the respective space.
Further,

1
[(z+Az) = I'(z) +DI'(z) Az + > DT () A% +o(| 227))),

via Taylor approximation, so

UD(z+A2) + (1-p)D(z=A2) ~T(z) = (2x—1)DI(2)Az+ % D'T()A7% +o(| A7)



Since DU (z*)Az > 0 > D¥;(z*)Az and D*U(z*)Az(?) < 0, Condition (C) implies
Dz‘l’j(z*)Az(z) > 0. Therefore, Condition (C) implies that in direction Az locally the ¥;’s
are more convex than U is concave. Condition (C) is not at odds with the ‘P;’s being quasi-
concave or with the second-order conditions, which restrict curvatures only on the space
tangent to the constraint functions.

We note that the surjectivity condition on D®(z*) used in Lemma 1 is not more
demanding than regularity of z*,% itself sufficient to obtain necessity of the Kuhn-Tucker
conditions, and often assumed in applications as Slater conditions may not be available
because the problem may not be convex. Interesting conditions yielding regularity of
a solution, and summable Kuhn-Tucker multipliers, will be provided when the model is
specialized, below.

With regularity and summable multipliers (A;);c; and (¢t;) jes, the following sufficient

second-order condition characterizes solutions to Problem (P) as local maximizers,

DU () AP + Y LD ®i(z*) A2 + Y oD W(2) Az < 0
i j

for all Az # 0 with D®;(z*) Az = 0 for every i and D¥;(z*) Az = 0 for every j.

Ramsey Problems have the common feature that the functions ¥; depends on marginal
utilities, often derived from U. Thus, our curvature conditions in Theorem 1 relate to the
second- and third-order derivatives of utilities — it is here prudence is going to come into
play. Further, whether there is a *®-feasible’ Az with the property DU (z*) Az > 0 crucially
relates to taxes, as we show below.

The case where there is a unique W—function turns out to be of particular interest,
because it is easier to give lotteries a policy interpretation coherent with other market
restrictions.

Optimal lotteries transience and recurrence

When the conditions for Lemma 1 hold, lotteries can be optimal. Let A(Z) be the set
of (Borel) probability measures over Z —once lotteries are considered, there is no reason
to restrict attention to two-point lotteries. Associated to problem (P) we construct the
optimization problem which involves lotteries over z, that is,

max E,U(z
o B (2)
®;(z) > Oforeveryiel (L-P)
S.t
Ey¥j(z) > Oforevery jeJ.

2A point z € Z is regular if (D®;c(z), D je;(z)) is onto R x R/,
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Again, for the time being we assume that a solution * to problem (L-P) exists, and instead
focus on a particular property of its solutions.

In our settings the set Z has a time dimension. Indeed, there is an open subset of a
Euclidean space A such that Z = [[,>0Z; where Z; is the set of controls or functions from
@' to A. A probability distribution g over Z can be written as a sequence of conditional
probability distribution y; on Z;. Let ® = (6",7/~!) be a history of states up to date ¢ and
controls up to date r—1 with ®® = 6, and let (Z)r>0 be the filtration generated by the
histories @’. Hence, in problem (L-P) the planner chooses (i );>0: at every date r > 0 for
every history of states 6’ and all histories controls z~!, z is distributed according to the
probability distribution y, (®").

Randomizations (L );>o are transient provided that there is T such that y, is a Dirac
measure for every t > T, and recurrent provided for every T there ¢t > T such that 1 is not a
Dirac measure. We say that p is transient (recurrent) if (L ),>0 is transient (recurrent). Let
supp it denote the support of . The next lemma states sufficient conditions that rule out

recurrent randomizations.

Lemma 2 Suppose J is finite. Let U* be a solution to Problem (L-P). Assume supp L* is
product compact and (U, (®;);,(¥j);) are product continuous on supp u*. Then there is a
transient solution W** to Problem (L-P) with no more than |J|+1 conditional randomizations

on any given path.

A usual concern for the use of lotteries in allocation problems is their possible
decentralization (a theme explored in other, static, contexts by, e.g., Shell and Wright (1993),
Kehoe et al. (2002), and related literature): the question is whether the randomizations from
lotteries u; can occur in markets via a coordination device (a ’taxspot’). Further, averaging
out the W constraints via 4 may require additional policy tools to transfer purchasing power
across the lottery realizations, and may be unattainable. Whether or not additional tools are
needed depends on the details of the policy change Az and of the underlying economy, thus
we will examine this second issue in the sections below. Instead, here we settle the first
issue, of the optimal lottery representation via taxspot states.

Let s = (s1);>0 be a process with serially uncorrelated values s; uniformly distributed in
S=10,1], all > 0, and 2 = (%,),>0 be a process adapted to the filtration (.% ), generated
by all histories @' = (6',s"), and with values % (6',s") € A.

Lemma 3 Let u* be a solution to Problem (L-P) with supp U* product compact. Then,
EupU(z) = Ev:U(2), and By« ¥ j(z) = By ¥(2) for everyj,

for some (Borel) probability measure V* on processes 2 = (%;);>0.

9



The proof of Lemma 3 uses standard measure-theoretic tools (in particular, Kuratowski’s
Isomorphism Theorem for Borel sets, and Skorokhod’s Representation Theorem; see, e.g.,
Parthasarathy, 1967, Ch. 3) to map lottery distributions i, over z; into random variables over
(S,%(S),Leb), where H(S) is the Borel sigma-algebra and Leb the Lebesgue measure, and
is therefore omitted. We now go back to the two variants we have introduced above, and see
how the theorems apply.

3 Taxspots with complete markets

Here, using market completeness and the transversality conditions, the equilibrium
sequential budget constraints can be equivalently compressed into a single intertemporal
constraint, eliminating portfolios. As standard, the Ramsey Problem can then be expressed

in primal, relaxed form, after substitution of the equilibrium first order conditions, as

max EOZﬁ’u(c,,x,)

(ct:Xeke11)r=0 >0

filkey,1=x¢) — ¢ — k1 — g > 0 fort >0,
Eo Y. B [ue(cr,xi)cr — ueler,x) (1-x)] (RRP)
S.t. = > uc(co,%0) (fagk (ko, 1—x0)ko+bo)

lim Eq B'uc(cr,x)ksr1 = 0.

\ [—o0

The last inequality in Problem (RRP) is the intertemporal incentive constraint, coming from
the intertemporal budget constraint and first-order conditions of the household. The weak
inequality implies that, over the lifetime, the household can spend more than its after-tax
income.

The controls are 7, = (¢;,X;,k;11). Interest rate r, and wage rate w, can then be derived
from the first-order conditions of the firm. The tax rates can be found from the first-order
conditions of the household. The ex-ante capital tax at date t for date t+1 and the labor tax
at date ¢ are

o 1o uc(Cr, %)
o+ BEI Mc(CtH 7xt+1)fatk<kt+17 l_xt+1)
(1)
o = Mc(Ctaxt)fa,K(ktyl—xt)—Mx(Ct,xt)
t =

ue(Cryxe) fa o (key 1—=¢)
As shown by Zhu (1992), the capital tax at every date is determined only up to a martingale
transformation at every date 7, making ’Z’tk 1 the relevant capital tax rate.
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In line with the literature, to make the taxation problem interesting we assume that
the present value of government assets is not sufficient to finance future government
expenditures at solutions to Problem (RRP) without the incentive constraint. Let Z be the

solution to Problem (RRP) without the incentive constraint, and y; be defined by

) uc(co,x0)co — x(co,x0) (1—x0) — uc(co,X0) fagk (ko, 1 —x0)ko forz =0
Yi(2r) =

uc(cryxp)er — ux(cryx) (1—x) fort >0
with the derivatives with respect to (c;,x;) denoted (W, Wy ), and D?y; its Hessian.

Lemma 4 Suppose that

Eo Y B'uc(ér,%)gi+uc(éo,%0)bo > 0.

t>0

If 7% is a solution to Problem (RRP), then the incentive constraint is satisfied with equality.
If v > 0 for some history, then the resource constraint is satisfied with equality at that
history.

Since Wy = uy+tuyecr—uypg(1—x;) for ¢ > 0, separability of u implies y; > 0 so
feasibility is satisfied with equality at every date.

Theorem 1 Suppose 7* is an interior solution to Problem (RRP). Assume there is a date
7 > 0 and history 6" with 7tgi > 0 such that at least one of the following two conditions is
satisfied:

e The labor tax rate is positive and Condition (C) is satisfied for \z' with

(f3(6),~1,0) for (1,6) = (7,")

0 otherwise.

Dz (6") = {

o The ex-ante capital tax rate is positive and Condition (C) is satisfied for /\z* with
(—=1,0,1)  for(1,6") = (7,6

AZi(0") = (fi.,(67,0),0,0) for (1,6") = (i+1,(87,0)) for some 6 € ®

0 otherwise.

Then there is a random improvement over z*.

11



Proof: The theorem is established as an application of Lemma 1 to (RRP) with I = U;>(®’
and J = {1}, where U, (®g:)g:c; and W are identified as:

( U(x) = Eo Y Bulcr,x)

t>0

Bo(2) = fulke(01),1=x,(6")) — cu(8) — ks (67) — g for every 6"

¥(z) = Eo) B'wilz)

\ t>0

The differential (D®g:(z*))qr is onto, because the differential (D Pg:(z*))g: is minus the
identity. Clearly,

DU*AZ' = —BTr(80)[u(87) £(87)—u’,(67)] Axt

£,8) >0

DUAZ = Br(8) [ BRs iy, (67, 6r11) i, (87, 0r1)] — (8] A

k(87 >0.

For both Az’s, by construction, D®* Az = 0. Since Condition (C) is assumed to be satisfied
at these Az’s, it is D¥Y* Az # 0. Since z* is optimal for (RRP), it is D¥* Az < 0. Thus,
Az € 3. O

Figure 1 below illustrates the theorem in case the labor tax is positive, 7 > 0.

A

“(ft (km l_xt) —ki41 _ghxt)

x! = x —Ax; and ¥* = X'+ Ax,

]E“qt.xt < x;k

Xt

Y

Theorem 1 shows that there are random improvements with the following effects on
average: consumption and labor supply increase at date 7 in case of a positive labor tax;
investment increases at date 7, and consumption increases at date 741 in case of a positive
ex-ante capital tax. The increases in averages more than compensate for the increase
in consumption-leisure volatility. However, the result depends on Condition (C) being
satisfied.

12



The assumption in Lemma 4 ensuring that at any solution to Problem (RRP) the
incentive constraint holds as equality also implies that taxes are positive at some date-event.
When taxes are positive the incentive constraint prevents the planner from increasing the
labor supply or the capital investment further. However, lotteries can help because their
uncertainty increases labor supply or capital investment without violating the incentive
constraint.

As already mentioned, D>¥* Az® must be positive for Condition (C) to be satisfied.
Some tedious but straightforward calculations show that

([ DWH(AND = BT (20 gt g (15D (f7)

cct cect [ cext

AUl i~ (1=x3)] f

CC)CZ t cxxt

—2[u

cxt

+ 2uF Aut -ci—ut ~(1—x;f)]

xxt xxct l Xxxt

D*P* (NP = ﬁfﬂ,[Zu —+u

cct cect l CC}Cl(l x )

By B[220 T e GGt Moo (1474 )] (i )2] :
Arguments in functions are dropped: consumption and leisure in utility; capital and labor
in production; and histories in probability, consumption, leisure, and capital. Obviously,
Condition (C) cannot be satisfied for quadratic separable utility because u... = 0 and
D*¥*(Az)®) < 0. However, if u,..7 s positive and large, then Condition (C) can be satisfied.
Indeed, u, - > 0 is also necessary when the instantaneous utility is separable.

As Rothschild and Stiglitz (1971) and Kimball (1990) pointed out, a positive third-order
derivative u..; represents prudence, and leads to precautionary savings and labor supply.
Our analysis shows that, in the presence of sufficient prudence, the positive effects of

additional uncertainty can more than compensate for its negative effects.
Condition (C) holds if and only if

D*¥(z*) Az?) - D*U(z*)A\z?)
D¥(z*) Az DU (z*) Az

Therefore, other things equal, Condition (C) is always more likely to hold the higher

the initial tax, since for the specified policies DU (z*)/A\z is equal to the tax. Further,
| D¥(z*)A\z | is equal to ﬁ’nt( - — fu ;) for Az!, and to [5’71"[ :— BEw: | fi. ] for
AzZF. Now vy, is proportional to uy(1+1/nF), where nf is the Frlsch labor elasticity,
while y,, is proportional to u. (0, — 1), where o, is the consumption relative risk aversion
(hereafter, RRA) coefficient. Then, Condition (C) is also more likely to hold when o, is
greater than one; and when the labor tax is positive, the larger .

Whether Condition (C) holds is an empirical matter once it has been shown that it can
be satisfied theoretically. It turns out that under regularity, if Condition (C) does not hold,
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then u...; can be increased without changing anything else at the solution z*. Consequently,
as we now show, Condition (C) is not vacuous.

First, to consider changes in u... we need a notion of convergence for utility functions.
We say that a sequence of utility functions (u,),cn converges to u if it does so in the Whitney
€-topology: there is a compact subset such that u, and u are identical outside that compact
set for every n, and (u,,Du,,D?u,) converges uniformly to (u,Du,D?u). Obviously, if
(44 )nen converges to u, then there is a N € N such that n > N implies u, is differentially
strongly monotonic and strictly concave. Second, changes at a point z; (67) must not affect
other points of the solution z*. Point z; (67) is locally isolated provided there is € > 0 such
that either [|z;(6")—z; (67)|| > € or ||z/(6")—z(67)|| = O for every (¢,6"). Thus, at a locally
isolated point, u... can be increased without changing z*. It turns out that, if a second order

condition is satisfied at u, z* remains a solution even after the perturbation.

Theorem 2 Let 7* be an interior and regular solution to Problem (RRP). Suppose the
sufficient second-order condition holds at 7* and z;f(éf ) is locally isolated with T} f{(6 >0
or T
Z* is a solution to Problem (RRP) at u,, and Condition (C) is satisfied by some /\z € 3.

(67) > 0 for some 8" with 7z > 0. Then there is (uy)nen converging to u such that

For homothetic utilities, the perturbed utility in Theorem 2 can always be made %°-
arbitrarily close. In finite economies, regular locally isolated solutions to (RRP) are
easily shown to be generic in utility via standard repeated applications of the Parametric
Transversality Theorem. Infinite horizon economies with solutions to (RRP) with locally
isolated points, and positive taxes, exist. In Appendix C we prove the following result,
which constructs a robust example of an economy satisfying the assumptions.

Suppose productivity is constant and u(c,x) = u(c)+v(x) is separable with RRA o,
greater than one and u(0) = —oo. Then, for small but positive g, solutions to (RRP)
are regular, and converge to a unique interior globally stable steady state with 7*¢ > 0.
Therefore, all of the assumptions of Theorem 2 hold, and up to a utility perturbation
Condition (C) is satisfied by some Az € 3. By Lemma 1 there is a random improvement
over z*. Hence, at the very least the utility perturbation method allows us to claim that the

set of economies where u.. is large enough, and Condition (C) holds, is non-vacuous.

Consider the lottery version of the relaxed Ramsey problem, where the functions ® and ¥
are defined as in Problem (RRP):

ma E,U
ueAé) nUG)
®,(z) > 0 foreveryt >0 (L-RRP)
S.t
E,¥(z) > 0.



To ensure existence of solutions is not an issue, we need two additional assumptions.
According to Assumption (A.2) there is ¢,k > 0 such that consumption and capital are
bounded from above by (¢,k).

A.3 There exists Z € X, :(0,6)x(0,1)x(0,k) with e > Eo Y, B|y;(2)| > ¥(Z) > 0 and
U(Z) > —oco.

A.4 There exists € > 0 such that for every (¢,60') such that ¢; < € or x; < € implies there
is Az such that Dy;(z;) - Az > 0 for some Az, with z+Az € (0,8)x(0,1)x(0,k),
D¢, - (0,Az) =0, and Du; (z;) - Azy > &.

These two assumptions in addition to the two assumption already made ensure problem (L-
RRP) has a solution u* with compact support and (¢;,x;,k4+1) € R4 x(0,1) xR, with
W*-probability one.®> As we require market clearing for every realization of uncertainty
and not ’on average’, there is only one function ¥ over which randomizations take place
— the intertemporal incentive constraint function. Using Lemma 2 we conclude that for
all solutions to Problem (L-RRP) there are equivalent solutions for which randomizations
disappear after some date 7 > 0.

Proposition 1 Let u* be a solution to Problem (L-RRP). Then there is a solution u** for

which randomizations are transient with WW*-probability one.

For deterministic economies Proposition 1 combined with Condition (C) has strong
implications for the long-run tax on capital. Indeed, suppose Condition (C) is satisfied
at a steady state (¢,%,k). Then Proposition 1 implies that there exists a solution to
Problem L-RRP which randomizes over three paths (c;,x;,k;41):en, With the property that
| (cry %z, k1) —(C,%,k)|| > € for every t > T, for some 7 € N and some € > 0. Consequently,
convergence to steady states does not imply that the long-run tax on capital is zero.

We now come to the issue of decentralization of the optimal lottery solving (L-RRP).
Let (s;);>0 be a process of serially uncorrelated shocks with values uniformly distributed

on S = [0,1]. Processes (¢, %, kir1,brs1,pr, Wi, 71, %) -, are now adapted to the filtration

>
(#)r>0 generated by histories & = (6',s'). The li(_)l(;sehold and government budgets,
and feasibility, do not change, but now they must be satisfied at each &' = (6',s"),
and there are bonds for every contingency 6,1,s:+1. Let (v;);>0 be the distributions of
(6,,)2,,1%,“,13,“, Pr. Wy, #, %) conditional on the realization of &', 6, ie., the taxspot
distribution. We say that the taxspot distribution is trivial if v; is a Dirac measure for all

t>0.

3 A proof is available from the authors upon request.
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An equilibrium with taxspots is a process (&,)2,,1%,“,Bt+1,ﬁt,w,,?,,%,)120 of
consumption, leisure, capital, bond holdings, prices, wages, interest rates and taxes,
adapted to (ﬁ,)tzo and such that: markets clear; (6,,)@,1%,“,13,“),20 maximizes utility
subject to sequential budgets and transversality conditions; firms maximize profits; and, the
government satisfies its budget constraints.

An equilibrium with taxspots process decentralizes a U over Z if the corresponding

taxspot distribution process (V;);>¢ satisfies

vi({(ér, %,k 1) € BY) = w({(ci,x,ki11) € BY)

for every ¢ and Borel set B C R.

For fixed u* solving (L-RRP), we derive the decentralizing equilibrium with taxspots
using Lemma 3 and the maps (1) defining taxes as functions of consumption, leisure and
capital. The rest of the argument consists in backing up prices and bond holdings in a

straightforward manner due to market completeness.

Proposition 2 If u* is a lottery solving problem (L-RRP), then there exists an equilibrium

with taxspots process (6;,)?t,kt+1 ybii 1, P, Wy, Ty, ’ft)[>0 decentralizing ™.

Hence, when Theorem 2 (thus, Lemma 1) holds for problem (RRP) (a nonvacuous
situation, as we showed), no solution to (L-RRP) can be a Dirac measure so there are
nontrivial taxspots at equilibrium. While markets are complete, and households can buy
insurance to hedge against taxspots, the planner implicitly chooses the bond supply so that
full taxspot insurance is not priced at fair odds, and households optimally choose to hold
some taxspot risk.

If D2, is negative definite for all (¢t,x), as in the separable quadratic case, there are no
taxspots. Moreover, if the process (6;),>0 has first-order Markovian transition, optimal fiscal
policy is a function of solely of the current state 6;. This is the well-known *Markovian’
aspect of optimal taxation — see, e.g., Ljundqvist and Sargent (2018). However, if instead
Condition (C) is satisfied (e.g., by Azl or AzZK), D? y; is positive definite and optimal taxes
are random and not deterministic functions of the current state. Hence, the optimal fiscal
policy creates randomness which conflicts with the presumed smoothing role of taxes. In
other words, the serial correlation properties of taxes and of government expenditures (or of
productivity shocks) are different.

Combining Propositions 1 and 2, every optimal lottery is payoff equivalent to a taxspot
equilibrium where tax uncertainty disappears in finite time. Taxspot uncertainty, represented
by a nontrivial (v;});>¢ with finite support, need not have more than two taxspots episodes.
Therefore, at the optimal taxspot equilibrium at most finitely many taxspot-contingent bonds

are needed to decentralize the optimal lottery.
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4 Taxspots with no bonds

The absence of bonds makes the reduction of household and government sequential budget
constraints to a single intertemporal constraint impossible. Therefore, the primal relaxed
Ramsey Problem takes the form

max Eo Zﬁtu(ct,xt)

(cr X ket1)>0 >0
( Sfilky,1—=x;) —c; —kyr1— g > 0 foreveryt >0

uyx(co,Xo)
ue(co,%o)
BE, [uc(claxt)(Cl+kt+1)_ux(claxt)(l_xl)]

—ue(ci—1,X%—1)k; > 0 forevery (¢,0") with ¢t > 1
lim Eo B uc(cr,x)ker1 = 0.

\ [—oo

co+ky — (1—x0) — fro(ko, 1 —x0)ko — bo > 0

(RRP-I)
S.t.

There is an incentive constraint for every history, resulting in additional restrictions on the
decentralization of Pareto improving random taxes, as we will explain below.

We first present sufficient conditions to ensure an ancillary technical property, i.e., that
any solution to Problem (RRP-I) solves the Ramsey primal problem with all constraints as
equalities. It turns out that merely ruling out the unconstrained optimum Z as a solution to
(RRP-]) is not sufficient to ensure equality for the constraints. We obtain equality under

more stringent, but common parametric restrictions.

Lemma 5 Suppose u is separable with 6, > 1 and g; > 0 with E,_1 g; > 0 for every t. Then
every constraint is satisfied with equality at all solutions to Problem (RRP-I).

Separable utility case with o, > 1 and g; > 0 will feature prominently in the analysis below
as a special and relevant case.

Throughout, we require that solutions to (RRP-I) are regular. Below we will construct
economies where regularity holds.

To show existence of a random improvement upon solutions to problem (RRP-I), we
apply Lemma 1. Key to the existence of decentralizable random improvements is the
construction of policy changes that are Pareto improving but are *W-unfeasible’ at a single
date. If such policy changes also satisfy Condition (C), then we can apply Lemma 1 to
claim the optimality of randomizations. To this end, for every date-event 6’ consider the
3(1+|@®|)-dimensional vector (z;(0"),(z:+1(6",0))gco), and when we omit reference to 6’
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we write (z;,7;+1). For every t > 0, let l[/,f be defined by

lljtf(zl‘7zl+l) =

BE; [uc(ciy1,%r11) (o1 +keg2) — ux(crir, Xep1) (1=Xe11)] — ue(cr, X0 ) kg1,

with derivative Dy = (D l;/,f ‘s Dll/lf ++1) and Hessian D? /. We further define v/ 1 (z03bo, ko)

as the incentive (or budget) constraint at date # = 0. Next, let
¢z(Zz—172t) = fz(kt, 1—xt) —cr— ki1 — &+

and consider ¢; = (¢, ¢r41) and W, = (W,_1, W, W41 ) as functions of (¢;, Xz, kiy 1, Crat,Xis1)s
keeping the other controls fixed. Then at a date-event 6", vectors (D¢, D) form a 3+2|0|-
dimensional square matrix.

Hereafter, we let 3; to be the set 3 for ¥ = l,l/ff and © = ((¢)r>0, (l//,f),#) SO every

incentive constraint except the one at date 7 is treated as a feasibility constraint.

Theorem 3 Let z* be an interior and regular solution to Problem (RRP-1) of an economy
for which leisure is a differentiable strictly normal good, and g; > 0 with IE;_1 g; > 0 for
every t. Suppose there is (f,07) with T > 0 and 7z > 0 such that (D (z*), DW;(z*)) has full

rank and at one of the following two conditions is satisfied:
(€) The labor tax rate is positive.
(k) The labor tax rate is zero and the ex-ante capital tax rate is positive.

Then there exists Nz € 37_1. If Az satisfies Condition (C), then a random improvement over

7* exists.

Theorem 3 finds "W-unfeasible’ Pareto improving policy changes Az which violate a
household budget in the corresponding competitive equilibrium, yielding a government
deficit. This is not surprising, since z* is optimal in Problem (RRP-I). Crucially for
decentralization, there is a budget deficit at a single date-event. Indeed, the lottery can

be chosen such that

BEy ¢ [ue(cri1,Xer1)(Cri1 +kiv2) — tx(Crrrs Xe1) (1=2041)] — ue(cr, % )11 =0
at all r > 0. It is easily checked that if T;g,ff* +k177t:k£1 > 0, then either B, 7x; < x; or

By g1 Xm0 <7 41 Or Eyikip < k%, .. Otherwise the general effects of the considered policy

i+l
changes are ambiguous.
Theorem 3 does not cover economies where labor is subsidized at every date-event, i.e.,

74 < 0 for every (t,0") with # > 0. However, much of the literature focuses on economies

18



with solutions converging to steady states with positive labor taxes, a case covered by the
theorem.

Theorem 3 requires that Condition (C) be satisfied by the Pareto improving W-unfeasible
policy changes Az. This holds provided the curvature of l//f* f | in the direction of the Pareto
improving change is sufficiently large. If Ac; # 0, then it is the case provided u,_ ; > 0 is
sufficiently large. Hence, as for complete markets, random taxes improve on non-random

taxes provided prudence is sufficiently large.

*

As in the previous section, we can make u, - > 0 sufficiently large to ensure Condition
(C) is satisfied some Az € 3;_; without changing the equilibrium, provided the solution to

Problem (RRP-I) contains locally isolated points.

Theorem 4 Let 7* be an interior and regular solution to Problem (RRP-I) satisfying the
sufficient second-order condition of an economy for which leisure is a differentiable strictly
normal good and g; > 0 with E,_ g, > 0 for every t. Suppose there is (T, 95) with t > 0 and
Ttgi > 0 such that:

. Z;f(ét~ ) is a locally isolated point.

. Tf*f(éf) > 0or ‘L’f‘g(éf) =0 and T

k (07) > 0.

o (D@:(z"),DVi(z*)) has full rank.

Then there is (up),en converging to u such that 7* is a solution to Problem (RRP-I) at uy,
and Condition (C) is satisfied by some /\z7 € 37_1.

The conditions stated in Theorem 4 are not vacuous for economies where solutions to
Problem (RRP-I) converge to a steady state. As an example, consider the deterministic
economy we constructed in Section 3 with positive government expenditures g > 0, and
separable utility with RRA greater than one for every . A straightforward extension of the
argument in Appendix C shows that the economy has a regular solution to Problem (RRP-1),
and a unique interior, globally stable steady state for g sufficiently small. Combining
feasibility and the incentive constraint, steady states for Problem (RRP-I) are solutions to

the following equation:

e = Uy (x) . 1
f(k’ : ) 8 uc(f(k7 1_x)_g_k) (1 ) " B k7

where f; = 1/B, and f; > u,/u.. Hence, at the steady state for Problem (RRP-I) capital

taxes are zero and labor taxes are positive.

Under separability, a second-order derivatives utility perturbation of u,, at the steady
state ensures both that (D@, (z*), DV (z*)) has full rank and Ac; # 0, for every ¢ sufficiently
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large. Therefore, since Tt*é > 0 for all large ¢, and convergence to a steady state also implies
optimal paths contain locally isolated points for ¢ large, the conditions of Theorem 4 are
satisfied.* We conclude that there is a random improvement over z*.

For deterministic economies with positive government expenditures g > 0 recurrence is
possible in the absence of bonds. Indeed, Lemma 2 does not apply, because in Problem
(L-RRP-I) the number of constraints over which there can be lotteries is infinite. At steady
states capital taxes are zero, so labor taxes must be positive. If all solutions to Problem
(RRP-I) converge to steady states, Theorem 4 can be used to show that, modulo a utility
perturbation, the curvature and ancillary regularity conditions needed for Condition (C) to be
satisfied can be met by some Az € 3, all large enough 7. Then there are taxspots according
to Lemma 1. These taxspots must be recurrent because if they were transient, then there

would be convergence to steady states and the argument can be repeated.

Proposition 3 Let u* be a solution to Problem (L-RRP-I) for a deterministic economy with
g > 0. Suppose there are finitely many steady states and all solutions to Problem (RRP-I)
converge to a steady state. Then there is (uy),cn converging to u such that the corresponding

solutions (W, )nen to Problem (L-RRP-I) are recurrent.

Proposition 3 implies that either all solutions to Problem RRP-I converge to steady
states, and then taxspots are recurrent, or the dynamics are complex. This is in contrast
to Chamley (1986), where optimal tax equilibria lead to convergence to a steady state, and

to consumption smoothing.

In light of Theorem 4, we introduce the following relaxed optimal random taxation

problem,
max  Euo Y Blu(c,x)
neriz) " tga o
( ﬁ(kt,l—xt)—ct—k[+1—gt Z OforeverytZO
uy(co,x
C0+k1_M(l_xo)_ka(kO,l_xO)kO_bO >0

uc(co,x0) (L-RRP-I)

s.t. Ep 1 Bluc(cr,x)(er + ke 1) —ux(cr,x) (1-x;)]
—uc(c;—1,%-1)k; > 0 forevery (t—1,0"1) with ¢ >0

lim Eq B uc(c;,x )kso1 = 0.

\ [—o©

Relative to (L-P), we have put restrictions on the randomizations: we are focusing on
lotteries over processes z = (z;);>0 that are not averaging the household or government)

f xf
. . vl vl ~
*The rank condition here provided: f};  u},[1+ 05K, (1 —fZW)} # fr w;tf,t+1'
xt—1.,t 0t Tet—1.,t
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budget at any date. Existence of a solution is guaranteed with the assumptions already
made.

An equilibrium with taxspots can be defined as for the case of complete markets.
Importantly, feasibility and the sequential budgets are satisfied at every history and no bonds
are introduced. An equilibrium with taxspots decentralizing the lottery * solving Problem
(L-RRP-I) can be constructed using Lemma 3.

Proposition 4 If u* is a lottery solving problem (L-RRP-1), then there exists an equilibrium

with taxspots process (6,,)?,,kt+1,v®,7 7y, ’?,) />0 decentralizing wr.

Proposition 4 finds a taxspot equilibrium decentralizing the optimal lottery satisfying
feasibility and the budget constraint at every history without bonds, so budget constraints
are satisfied history by history. Under the conditions of Theorem 4, the taxspot equilibrium
must be nontrivial: if u* solves Problem (L-RRP-I), then u* cannot be a Dirac measure so
there are nontrivial taxspots at some date-event.

The reason why budget constraint is satisfied at every date-event is that even if

BE;_1.s, [ue(cryxe) (cotherr)—ux(cr,x ) (1—x,)]

—te(c (), 51 () (@) < 0

at some history @'~! = (8!, s'~1) and for a set of current taxspot states s, with positive

probability, this is consistent with the budget constraint at (6;,s,):

a(0 @) k(@ a) = (1=, @)w(0' ", @) (1—x (&', @)
+<1—Ttk(d\)t_] y d)[))r[(é\)t_] y d)[)kt(d)t_])

=1 must be

for every s, and (6',w'~!), because the Euler equation for capital k; at ®
satisfied v, -average. Since feasibility is satisfied history by history, the government budget
is balanced at every history and taxspot realization: the randomization does not produce any
budget deficit or violation of the household’s budget.

Instead, if in Problem (L-RRP-I) we considered lotteries over Z with constraints of the
form

Ey ‘I/tf(Zz,ZzH) >0

at every ¢, we would need ’taxspot insurance’ bonds to decentralize the optimal lottery.
Allowing the government to organize taxspot insurance can be difficult to justify in the
present setting where we have assumed that financial markets are totally incomplete. Hence,
the absence of taxspot insurance at the optimal equilibrium with taxspots can be seen as a
policy advantage in the case the government is supposed not to have had the ability to issue
bonds.
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Workers and capitalists

Above we have built economies where taxspots occur on labor income taxes. This is not
a necessary feature. For a prominent example where taxspots affect capital tax rates, we
consider the Judd (1985)-inspired variant of a no bond economy with workers and capitalists
studied by Straub and Werning (2020).

There are households owning capital kg and the production technology (’capitalists’),
and those with no capital but who supply labor inelastically (hand-to-mouth workers’).
Assume that productivity is constant, and let g, = g > 0, all 7, and the capitalists’ utility u
be isoelastic with RRA coefficient 6, > 1. Labor can still be taxed or subsidized, but in
a lump-sum fashion. Letting 7; be this transfer, the government budget becomes g+ 7; =
t€rk;. The workers’ consumption is &, and their per-period utility is v(¢;), which is a
twice continuously differentiable, differentially increasing and strictly concave function.
Hereafter, we write f(k;) = f(k;,1). The workers’ budget is & = f(k;) — rik; + T;, the
capitalists’ budget is ¢, +k;+1 = (1 — T¥)r;k;, and market clearing is f(k;) = ¢ +c¢; + k1 +
g:- Assuming here for simplicity that the Ramsey planner cares only about workers” welfare,
the relaxed primal Ramsey problem becomes

max Y B'v(é)

(ct:Ceke1)r=0 t>0

flk)—é—ci—kiy1—gr > 0,620,
S. to ﬁuc(ct)(cz +kt+1) - uc(ct—l)kt >0,1>0,

(RRP-WC)

t]l_)n; Btl/lc (C[)k[+] =0.

where we let T, T(’,‘ be derived from (co, ¢, ,ko) to make the workers” and the government
budgets at t = 0 hold, and r; = fi,. Under the stated assumptions, all solutions to Problem
(RRP-WC) are interior and regular, and constraints are satisfied with equalities. A steady
state is (¢, é,k) = limy o (c;, ¢, ks11). Straub and Werning (2020) show that any solution to
Problem (RRP-WC) converges to a unique steady state with ¢ > 0, ¢ =0, k > 0 and positive
capital tax in the limit.

Hereafter, to ease the notation we write z; = (ct,é;, k1) and z = (z);>0, and keep
denoting as I/Itji | the left-hand side of the incentive inequality, and use ¢, for the feasibility
constraint function. Correspondingly, we let 3/C be the previously introduced set of policy

changes 3; but where functions ¢/, instead of ¢;, are used.

Theorem 5 Let z* be a solution to Problem (RRP-WC). Then there is date t > 0 and a
change Nz € 3; such that Nzy =0 for t' ¢ {141,142}, and Nk;p # 0. There is (uy)nen
converging to u such that z* is a solution to Problem (RRP-WC) at u,, Condition (C) is

satisfied for /\z, and optimal nontrivial taxspots are recurrent.
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Theorem 5 claims the suboptimality of a deterministic fiscal policy in economies %2-
arbitrarily close to those considered by Straub and Werning (2020). As in Section 3, the
intuition for Theorem 5 is that prudence can be exploited to increase the capitalists’ savings
with taxspot uncertainty. As in the previous representative agent economy, when we run the
Pareto improving lottery, and decentralize it via taxspots, we obtain budget-balance at all

lottery realizations.

Conclusions

We have shown that taxspots arise in response to the need to spur the agents’ incentives to
work or to save. The possibility that random taxes are Pareto improving depends on the
comparison between the benefit and the cost of the increased uncertainty, or on the relative
size of the precautionary effect of prudence and of risk aversion.

All taxspots occur without violating horizontal equity. Taxspots can occur also with
complete markets, but essentially vanish in finite time. When there are no financial assets,
taxspots can be recurrent unless the dynamics of optimal taxation are complex, that is,

violate regularity and display some elements of chaotic behavior.

Appendix A: Proofs

Proof of Lemma 1: The requirement

2. [ * (2)
w1 < 1 D7Y(z") Az
2 DY¥(z")Az

implies u¥;(z"+Az)+(1—u)¥;(z*—Az) > ¥j(z*) because DW¥;(z*) Az < 0 and

1
P (7 +Az) + (1-p)¥j(" = Az) —=¥j(z") = (2u—1)DY¥;(z") Az + EDz\Pj(Z*)AZ(Z).

Since DU (z*) Az > 0,
2u—1 > 102U AP

2 DU(z¥*)Az

similarly implies pU (z*+Az)+(1—p)U(2* —Az) > U(Z").

The requirements on 2t —1 can be satisfied if Condition (C) holds, as assumed. Because
D®;(z%)ieq, is onto R!, and D®;(z*) Az = 0, it can immediately be seen that (Az;, Azp) ~
(Az,—Az) can be chosen such that also ®;(z*+Az,) > 0 for h € {1,2} and for all i such
that ®;(z* + Az) # ®;(z*). Then, (Azy,Azp, 1) is a random improvement over z*, and it is

verified that y > 1/2 as wanted. O
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Proof of Lemma 2: First, observe that suppu* C {z € Z: ®;(z) >0, i € I}. Since
Z =[1;.0: Zg:, and Zg: is open in R™, Z is separable in the product topology, and supp u* is
nonempty (see, e.g., Aliprantis and Border (2005), Thm 12.14). Let

E = {(u,;r) eR"M |3z € supp pu*:u=U(z) and rj = ¥;(z) for every j }

Then E itself is compact. Second, let (u*,0) be the point u* = [U(z)du* and 0 =
JW¥;(z)du*. Then, since Z is metrizable, by Theorem 15.10 in Aliprantis and Border (2005)
limy,—seo (U, 1) = (u*,0) for u, = [U(z)dp, and r, = [, ¥j(z) du, where lim,_soo ty, = 1*
in the weak™ topology, and p,, has finite support for every n. Thus (u,,r,) is in the convex
hull of E, coE. Further, since coE is closed because E is closed, it is (#*,0) € co E. Since
E is a subset of RV, by Carathéodory’s Convexity Theorem, all points in coE can be
expressed as the convex combination of at most 2+ |J| points in E. Thus, there is u** with
support on at most 2+|J| points in E corresponding to 2+|J| elements of supp p*.

Then, p** has finite support z;, j = 1,...,|J| +2. Let _# (6'~1) be the set of j that are
consistent with history (8’~!,z/~1), that is,

SO ={j=1.J+2:7 =276}

As
supp p;"(6",27") C{z € Zpr 2 (£ 7',2) = (6"), some j € 7 (67 1)},

and _# (0'"!) is nonincreasing in the history length, there cannot be more than |J|+ 1
randomizations L over processes Z j» and there exists 7 such that W ez, alt>f as

wanted. O

Proof of Lemma 4: Suppose not, and then

Eo Y B'[ucrer — iy (1=x7)] > ol fioko + bol-
t>0
This makes the solution z* to (RRP) equal to Z. As market clearing then holds as equality,

the intertemporal incentive inequality holds only if

Eo Y. B'uc(ér, %) +uc(éo,%0)bo) <0,
>0
a contradiction to the assumption.
Now suppose v > 0 at some date-event 0’ and, by contradiction, that
fa, (k5 (6'=1),1=x7(6")) — ¢} (") — k7, (8") — B, > 0. Consider Az with Ax,(8") > 0, and
Ac,(0") = Nk 1(6") = 0, while Az (6') = 0 at all other date-events 6', and further Az, =

0 at all ¢’ # ¢. Since Wy, > 0, it is D¥* Az > 0, thus the intertemporal incentive equation is
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satisfied, while all other constraints are unchanged, and DU (z*) Az = B (0" ) Ax, (0) >
0, a contradiction to the optimality of z*.

Proof of Theorem 2: Let an interior solution z* to problem (RRP) and 67,7 > 0 be given
where z7 (") is locally isolated and either tax is positive.

By regularity, and Theorem 1 in Luenberger (1969, p. 249), there is a separating
positive continuous linear functional. Moreover, the derivative of the constraint functions
is a bounded linear operator which is matrix representable and upper-diagonal. Thus, by
Rustichini (1998, Theorem 5.5 and its Corollary) the separating functional is representable
by a summable nonnegative multipliers process (it*) +>0 (for feasibility) and by o* > 0 (for
the incentive constraint). Letting (u,,u},) be the derivative of u with respect to ¢;,x;, and

A = B'm' A}, the following first order conditions hold:
ug — A+ oy, = 0
iy WS = 0
A+ BEA  fn = 0.

If ¢ (6") > 0, then immediately from the first two equations a* > 0. If 7 fl(éf ) >0,

consider the first equation in the FOC at (67) and at (67,6), any 6 € ©, respectively. Then,

rearranging terms and dropping the history arguments we obtain
o Wz — BEW G 1 fig 1] = BEaug 1 fig 1 —uiz >0

implying again o* > 0.
Hereafter, we drop reference to 87 whenever possible and illustrate the proof for the case
when T;g > 0, and leave the analogue case of a positive ex-ante capital tax to the reader.
By regularity, Condition (C) is satisfied by some Az € 3 provided

[0 D*W* + D*U*](Az)? >0,

where a* = —DU*Az/DY*Az.

The sufficient second order condition for z* to be a local maximizer is

Bia'(a* Dy + DPUF) (A7) P +Eo Y B'lo Dy + D?U[ | (Az)®)

t#T
+Zit*D2¢z*(AZt—1>AZz)(2) <0 ()
t
EOZIBtDlI/t* . AZ; — 0 (3)
t
DO*- Az =0 %)

all Az 0.
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Suppose that Condition (C) fails at all Az € 3. Pick AZ satisfying (3) and (4) and such
that A%y = AZy = 0, while A¢; # 0. This can be done by regularity. Then, D¢;" -
(0,A%) =0, D¢;, | - (A%,0) =0 and 7 > 0 imply, by a* > 0, that Dy - A%y # 0. If
(" D*y + D*U;|(A%)? > 0, then the vector A2 where A% = 0 at all # # 7, and with
+/A\%; as T coordinate would have the two properties: /A% € 3 and Condition (C) satisfied, a
contradiction. Thus,

[a*D?y + DU (M%) <0
for all such vectors AZ;.

Next, using the perturbation of Appendix B, we change Dzl[/t by increasing u’ . by a
term {, > 0, and thereby increasing [o* D?y¥ + D*U;* 1(A2)@), in a neighborhood NZ; @) C
R3 of 2 (6") without upsetting the derivatives at any other z¥(6?), t # 7, by local isolation,
or DU} and D*¢; at any ¢.

As the involved expressions are continuous in {. and monotonically increasing, there
exists {. > 0 large enough so that [a*D? m(CC) + DU - (A2)?) = 0. Then, Condition
(C) is satisfied by A2 with {. = {.+ € any € > 0.

Consider the problem

max I]EOZﬁ’ [0 D>y (&) + DU (A7) + A D*®* (Az)P) s.to (3) and (4).
Z t

This problem is continuous in D>y, (&), that is, in .. Let Az({.) denote its maximizer,
and V(&) its value, which is increasing in ;. as long as it is below zero, and V(0) < 0.

To guarantee that z* is still a solution at a ., we need to make sure that V (&, ) is negative.
Let {* > 0 be the infimum level of & for which V(&) =0

Without loss of generality (Ak (CF), Axi(£F)) # 0 for some 7. Then, if A* is strictly
positive, Q*DZCID*(Az(Cj))(z) < 0 by strict concavity of f, and as a result

Eo Z(,)ﬁ’[a*Dzll/Z(Ci) +DU)(Da ()P > 0. (5)
t>
By continuity, V({* —¢€) < 0 for € > 0 small enough, while (5) still holds. Then, by
regularity we can find A7 close to Az( — €) such that A7 € 3 while Condition (C)
holds and so does the sufficient second order condition.

Suppose instead that A*D2®*(Az(£))® = 0. Then, (5) holds as a weak inequality,
implying that {* > .. Then, V({.) < 0, and by continuity V (&, + &) < 0 for some £ > 0
small enough. Then, AZ € 3 and satisfies Condition (C) at Z_,:C + €&, while the second order
condition is satisfied, concluding the proof. O

Proof of Lemma 5: Suppose that 7 is a solution to (RRP-I). Then, fgtﬁc, = iy and
BE,_1iict frr = fies—1 at every t > 0. Substituting, and using the resource constraint at every

t, the incentive constraint at t — 1 is —BE,_1i.,g; > 0, a contradiction.
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Next, let u be separable and o, > 1. Suppose that at a solution z* to (RRP-I) it is
llltf (z1.,2}) > 0 for some 6!, and 7 > 1.

If fjul > uj; for some 6" = (0'71,6,), then consider a change Az everywhere zero

except for at 67, where Ac; > 0and Ax; = f* , Nkgp = 0. Then, itis DU(z")- Az >0

while no constraint is violated, as Dl//,*f (Az,0) > 0, a contradiction.
If fju;, < uy, for all 6, then

[ﬁEt—luitfl:t - ”ﬁt—l] kt* > ﬁEt—lujtgt > 0.

Thus, consider a change /\z everywhere zero except for at 8/~! and all (6’~',6,), where
Nk = —Aci—1 >0, Ay = fi, Ok, Axp—y = Axy = Akyp = 0. Letting Dl;/tf_zt_1 be the

derivative of y/tf_z with respect to the vector z;_1 it is
*f
Wct 21— lAcf 1+Wxt 21— 1A [V’xt 2,t—1 Wct—2,t—l]Akt >0

because 0,1 > 1 and u is separable. Thus, all constraints are satisfied, while
DU(Z")- Dz =uly_Aciy + BEuly Acy = [BE,—uly fre — ufy_y] Dk > 0,

a contradiction to optimality.
Finally, suppose that at a solution z* itis ¢;(z_,,z;) > 0 for some 6’, and # > 0. Consider
a change /\z which has all coordinates zero except for at 6’, where we denote it simply as
Az;. From Dl//” - Az; = 0, using separability we get
u;tAkt_._] l/l k +1AC;

cct

and from Dl;/t*f 11Dz =0, we get

*f
k' —w
cet™t+1 t—1.,¢t
Axt - ¢ AC[

lI/)ctfl,t

which applied to the utility gradient yields

uANer+ul,Axy = |1 ———(1—0/)) | u:, A

xt 1,t
and given the assumptions the term in brackets is positive, so setting Ac; > 0 gives Ak, >

0, and D¢/, - (Az,0) > 0, a contradiction to optimality. O
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Proof of Theorem 3: Drop the superscript * throughout. Let

U(Z) = E() Zﬁtu(ct,x,)
t
D (z) = ¢(z1(071),2(0"),8)
@l.(2) = W (2(6'),211(6',0)pco) foralls #£7—1, all 671 # 671,
W) = vl (1 (67),2(67",0)6co),
\
Itis
D‘I/zf - D(Zz,zm)%f = (ko1 (Ueer, ext) s —Uers -, cfz,t+1’ ‘V)é,tﬂ’ lVlgﬂrl"”)’
and
‘lfft,z+1 = BTt [Uer41 (1 — Ot 41 (%)) — ttexi+1(1 —x141)],
w){;,t—o—l =Bty (s 41 — s 11 (1 = Xp 1) F thexr 41 (g1 +hi12)],
WI£7[+1 = ﬁﬂt+l,tuct+17
where 7,11, = m(6;41|0"), and 0; = —ucect/ue is the RRA coefficient.

Consider Az = (Az)r>0, wWith Az, = 0 except for at 67 and its (immediate) successors.
Then, the nonzero changes in the ¢, functions occur only at t = 7,7+ 1,7 + 2 (at histories
6',(67,6),(67,60,0') for 6,0" € ®). From D¢;,, - (Azz,1,0) = 0 we obtain Akz,, = 0.
The nonzero changes in functions l//,f occur only for t =7 — 1,7, 4+ 1 (i.e., at histories
6'-1,67,(67,0) for 6 € O®).

The vectors D$ = (D¢, t =7,7+1) and Dl;/f, t =f—1,f,f+1 of derivatives at the
given histories with respect to the variables (Azz, Azzy 1), excluding Ak;y,, form a 3 +
2 | ® | square matrix, which by assumption has full rank. Thus, there exists a nonzero
(Az, Aziyy) € R x R2®! (with Ak, = 0) such that

D¢ - (0, Az, Azzy1,0) =0,
D‘sz—1 -(0,Az) <0,
D‘I/;f' (Azz, Azzyq) =0,
D‘I’;il (Azi1,0) =0,

and by optimality DU (z) Az > 0. We are left to rule out DU (z) Az = 0.

Since z* is a regular interior solution to (RRP-I), then, and using Rustichini (1998),
given the matrix-representable and upper-diagonal form of the derivative of the constraint
functions, the Kuhn-Tucker first order conditions hold for some summable multiplier
process (A,*);>o (for ¢;) and (o;*);>¢ (for /), with A >0and o > 0.
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The tangency condition D@ - (0, Az, Azz1,0) =0 is

Acg = —fuDxp — Dkyyyq,
Acir1(0) = firr1Dkip1 — frrr18x:11(0).

Thus, when restricted to Az as above, DU(z)Az is proportional to Dilzz ; -
(Axz, Okiy1, Axy1(0)gee), where

Ditzriy = (ugq — frer, BEuci 1 fiiv1 — Ueis - BMr1 if(ir1 — frip1Ueis1)s---)-

Similarly, let D be the matrix of derivatives (Dl,tlff yeen ,Dl[/;’;l, ...) applied to Az restricted
to the same tangency conditions, i.e., D is

kf—H (”ccffﬁ - ucxf) ﬁEfW£7f+1fkf+l - (ucf - kf-i—l”ccf) s ll’)gfﬂ — feit1 ‘I/({;;H

0 —ki2Ueei+1 fiit e kf+2(”ccf+1féf+1 - ucxf+1)

where the columns are in the order of the variables Axz, Akzy 1, Axzi1(0)gco, respectively.
Hence, to ensure that DU (z) Az > 0, by the Kuhn-Tucker conditions it suffices to exclude

that
Dipi1+a(0))Dg + Y a(67,0)Dg = 0
60O
for some ot > 0, where D, (Dg)gce are the rows of D.

If (¢), i.e., Tf(éf ) > 0, the first coordinate of the Dii; 7, vector is negative, and under
strict normality u,.; fii — Uei < 0, implying a(67) < 0, a contradiction.

If (k), i.e., ’L'tf (é’~ ) = 0, as the first row and column entry of D is negative by normality,
(X(éf ) = 0. Since in the second column all entries but the first are positive, and since
by 7%,
contingency 6 at7+ 1, a contradiction. Then, Az € 3;_;.

(é’~ ) > 0 the second coordinate of Dil; 7, is positive, it is Ot(éf, 0) < 0 for some

Finally, we observe that the rank condition on (D@;(z*),DJ;(z*)) gives us the rank
condition for D®; foric/ \ H, and from Lemma 1 we conclude that a random improvement
over z* exists. O

Proof of Proposition 3: We want to show that for every ¢ > 0 there exists ¢’ > ¢ such
that w7 is not a Dirac measure over A C R3. If not, suppose u* is such that w,; is Dirac,
all ¢ > ¢, with positive u* probability. Then, u* solves problem (RRP-I) starting at ¢ with
capital k; > 0 given. Let z};,# > 1 be the corresponding continuation solution.
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As for all admissible kg > O there is (c¢*,x*,k*) € Ry x(0,1)xR;4 such that
,132 (cf,x) kiy) = (c5,x",k") for (cf,xf, Kk 1)i>0 solving (RRP-I), the continuation
converges to a steady state. Then, points z;*,,,t’ > t, are locally isolated. Considering the
finitely many incentive and feasibility equations up to ¢, and time and separability of the
utility function, by Carathéodory’s Convexity Theorem there is a finite collection of distinct
points in supp s for t’ <, and we can assume that the z, are also locally isolated from any
of the points in supp p,; for* < z. Through a round of second-order derivatives perturbations
at the steady state, (D@tu (z*), DV (z*)) has full rank for at least one ”'. Since labor taxes are
positive at the steady state, a change Az € 3;#_; as in Theorem 4 then exists, with Ac;» # 0,
satisfying Condition (C). By local isolation, no other point z}; is affected by the perturbation,

%
'

perturbed economy and, by the same token, p* is still a solution. Yet, we get a two-point

and the original sequence z75,t' > ¢, is also a solution to (RRP-I) starting at #, also for the

lottery that Pareto improves over z;,¢' > 1, and then over p*, a contradiction. a

Proof of Theorem 5: Hereafter, we write ¢ for ¢,, and drop the superscript *. Let
K; be the capital-to-consumption ratio. Pick a t > 0 and let Azy =0 for all ' < ¢+ 1, and
Azp =0fort >t+2. Then, /A\z € 3, and only three incentive equations, at dates ¢, r + 1 and
t +2, are affected by Az. If we neglect the incentive equation at ¢, then (Ac,41, Ak;42) and
(Acyi2, Nkiy3) satisfy the incentive equations at dates 7+ 1 and 1+ 2 with (Acy 43, ANkpra) =
0:

B(l—o(1+Kk43)) B ] [Act+2] B [mtﬁz(—GKtHActHJrAk,H) .

OKi13 -1 Nkyy3 0

where m; = u¢ /uc—1. Thus, Dl//f,r -Az=0all ¢’ #t. The determinant of the matrix on the
Lh.s. of (*)is —(1—0), and for & > 1 the matrix is invertible. Then, let A, | C R* be the
set of (Aciy1, Nkii2) € R? and (Acyy2, Nkiy3) € R?, where (Ac;y1, Aksy2) is arbitrary
and (Ac;y2, Aks43) is uniquely determined as a function of (Ac;y1, Aks42), via (¥).

Straightforward calculations show that ¢ changes only at dates # 4- 1, 742 and t+3, and
A¢y are determined via the feasibility equations at dates 7 + 1, ¢ +2 and ¢ + 3 so that D¢y -
Az=0forall/ > 0. As lim,_,.z; exists, and at this limit k = /(1 — f3), for ¢ large enough
these changes in ¢ are approximately equal to

Nepy = —Acip1 — Dk
1

Aé[+2 = m [fkﬁ(l—G)AktJrz — (1+GK)(—GKAC[+1+A]€[+2)]
1

Aé[+3 = mkaK<—O'KAC[+1+Ak[+2).
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We now prove the following intermediate step. Let

Dv = (0, ...,O,V@[+1,BV@[+2,B2V@t+3,O...).

Auxiliary Claim: Suppose that ¢ > 1, x = B/(1 — B) and fi, > 1/B. Then, there exist
a datet > 0 and a change in A\, such that Dv- A¢ # 0.
Proof: For ¢ > 0 large enough and a change in A\, |, the derivatives of ¢ with respect to

ct+1 and k; 1o are

o » ]
—1 -1

1
ap by | = m(lJrGK)GK m[fkﬁ(l—c)—(l+cx)]
a b 1 1
? ? I _mfk(cx)z mkaK -

The vector (veri1,BVers2,B*vers3) is orthogonal to the two columns in the matrix of
derivatives if and only if

-1 a Vért1 az
-1 b Bvert2 by

Since ¢ > 1 implies a; < 0 and by > 0, the determinant of the 1.h.s. matrix is not zero, so
the matrix is invertible. Since ¢ > 1 implies ay > 0 and b, < 0, the ratios vg1/Bveo and
Bveria/B?veri3 are well defined, and equal to

Varl  __aiby—aby ok

Bverio ar—by I+oxk

Vér42 _ _az—bz _ fk(l-l-GK)GK
Bverts aj—by  (14+0x)> - fif(1-0)

If the vector (ver4 1, Bvers2, B2vers3) is orthogonal to the columns in the matrix at every date
t (large enough), then the two ratios have to be identical, and

(1+ox)?

e = UiornPB(i=0)

Observe that (1+0k)?+B(1—c) > 0. Now f; > 1/ is equivalent to (1—)(1+0k)? <
B (o —1). Clearly, for k = B/(1 — ) the inequality is violated. Consequently, there is ¢ > 0

such that (very1, Bverso, BvaAt+3) is not orthogonal to the columns in the matrix. O

It is now an immediate consequence of the Auxiliary Claim that if >0, i.e., HB>1,
then there is a date r > 0 and a change in A\, such that Dv* - A¢ # 0. Thus, there exists
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Az € 3 such that DU* - Az = Dv*- A¢é > 0, and Dl//:;f Nz=0allt #1, D@5 - Az =0 all
' > 0. By optimality of z*, it cannot be that Dl//t*f -Az > 0. It is immediately checked that
Aciy1 # 0, and Dzl//;if H(Az)(z) is proportional to f[2uccr+1 + teeer+1(Cr+1 + kis2)]. This
proves the statement. O

Appendix B: A perturbation argument

Lemma 6 Forall u € €°(R2,R), (¢,%) € R14x(0,1), &, & € R and € > 0 there exists
(tn)nen € €= (R3,,R) converging to u in the Whitney €>-topology such that

* |c—¢l|,|x—x| > € implies uy(c,x) = u(c,x).
o D"uy,(¢,x) = D"u(¢,X) for every m > 0, except upcec(C,%) = Ueee(C, %)+ and
Unx (€, %) = Uy (€, %) +Ci /.
Proof: Let the bump function y € €= (R, [0, 1]) satisfy
1 for§ e[-1/2,1/2]
#e) = { 0 for& ¢[—1,1].
For (., y,€) € R? and every n > 1 let the function u, € € (R? . ,R) be defined by

up(c,x) = ulc,x)+ x(n\;) % A4y (D) 5—;&%

where A, = c¢— ¢ and A\, = x —x. Then,

(

une(c,x) —uc(c,x) = ny'(nl\;) %AB’-I-X(nA )= CC

Unce(C,x) — uee(c,x) = nzx”(nAc)%Ag—i—n)(’(nAc)CCAg

+x (D) CA
unCCC(Cax) _uccc(cv)C) = n X”I(”A ) Cg A3+n2%”( ) 2CC AZ
+3ny' (nAe) A+ x(nAe)Ee
unx(c,x) —uy(c,x) = ey’ (e, ) & A2+X(SA ) Cx

Unxx (€,X) — Uxe(c,x) = glel(gAx> 24/_)( A)zc +2ex'(eLx) é Ay
n n

‘HC(SAX)%

and the sequence (uy),cn has the properties described in the statement. O

\
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Appendix C

Letz | = (c_1,x_1,ko), at arbitrary ¢_1,x_. Let z(0;z_) € Z C L(RR?) be the solution to
the optimal growth problem for g = 0 = by, of

V(ko) =  max Zﬁtu(c,,x,)
(Cr»xt7kz+l)z20 >0 (G)

s.L. flhke1=x)— ¢, — ke > 0, allz >0,

given initial capital kp. Under our maintained assumptions there exists a unique interior

solution to (G), and the value function V uniquely satisfies the Bellman equation,

V(k) = max  u(c,x)+BV(ksr)

(et k1)
s.t. flhkey1=x) —¢; — k1 < 0.
and V is concave.

We are first going to show the existence of a unique, globally stable steady state.
Then, by our separability and o, assumptions, we show that z(0;z_) as well as all points
uniformly interior satisfying the constraints with equality are regular for problem (RRP),
leading to the solutions to be (sup norm) continuous in g in a neighbourhood of g = 0.
Combining these two observations, for positive but small g the dynamics in (RRP) display
the same behavior as when g = 0. As the stated assumptions imply that the first order
conditions apply, and there must be labor taxes at some date-event, the multiplier o is

positive, and labor taxes are then nonzero at every ¢.

Existence, uniqueness and global stability of the steady state at g =0

In the present subsection we weaken the assumptions on utility to:

o tim LU0 g iy YW

= oo forallw > 0.
%50 s (w(1—x), %) o1y (w(1—x), %) oranw

* MC(C,X)fg(k, 1_x)_ux(cax) =0 lmphes Mcc(cax)ff(ka l_x)_ucx(C,x> <0.

The first assumption is about the marginal rate of substitution between consumption and

leisure. The second assumption implies leisure is a differentiable normal good.

Lemma 7 (Existence and uniqueness of the interior steady state) There is a unique
steady state 7 = (¢,%,k) € Ry x(0,1)xR .

33



Proof: Clearly, (¢,%,k) is a steady state if and only if
flk,1—x)—¢—k = 0

uc(67)z)ff(l_<7 1 _X) - MX(E;)E

ﬁfk(l_c7 1—x

Use the first equation to eliminate ¢ in the second equation. Since there are constant returns

= 0
= 1.

)
)

to scale, there is a unique capital intensity v = k/(1—x) such that the third equation is
satisfied. By substitution, the second equation becomes

uc((f(f, )—v)(1-x),%)

1—
ue((f(7,1)=7)(1—x),x)

By assumption the expression inside the parentheses converges to minus one when x —

ff(‘j? 1) -1 =0.

0, and tends to infinity when x — 1. Hence, by the Intermediate Value Theorem there is
% € (0,1) such that the equation is satisfied. If X is unique, then we set k = v¥ and ¢ =
f(k,1 —x) — k for the unique steady state. We now show uniqueness of .

By the Implicit Function Theorem, B fi(k,1—x) = 1 implies dk/dx = fu/fu. < O
because fy > 0 > fix by constant returns to scale. Constant returns to scale also imply
Sikfoe—fucfee = 0. Moreover, uccfrfo — (Uxe+uex) fr + e < 0 because D?u is negative
definite. Thus, the derivative of the second equation with respect to x at (x,k) with
B fi(k,1—x) = 1 is positive, because uccfr—ue < 0 by assumption and f;, = 1/8 > 1.
Consequently, there is a unique x such that the second equation is satisfied, as wanted. O

Since limy_,q f(k,1—x) = 0 and lim, o uc(c,x) = limy_ouy(c,x) = oo, limy_oV'(k) = .
Let
p(ka k/) = l/l(f(k, l—x(k,k/))—k/,x(k, k/))a

be the return function, where x(k, k') is the twice-differentiable optimal static leisure policy
for (k,k') with f(k,1) —k’ > 0. Strict concavity of utility # and production function f imply
that p is concave. Further, some tedious but straightforward calculations show that

Ue frk det D?u
e footuee fofo—txe fo—tex fot+ubxy

detD?p (k,K') = > 0.
Since p is strictly concave and detD?p (k,k') > 0, D?p(k,k’) is negative definite.

For the next two lemmas we assume the value function V is twice continuously
differentiable. Afterwards we show that the assumption is not needed.

Leth: Ry — R3 . denote the policy correspondence so (&, %,k) € h(k) and (cr,x;, ket1)
is a solution to the Bellman problem at capital k; if and only if (¢;,x,k,11) € H(k;).
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Lemma 8 (Monotonicity of the dynamics) The policy correspondence h is a continuously

differentiable function h = (hc,hx,hk), and the capital dynamics are monotonic with
W (k) > 0 for all k; > 0.

Proof: There is a function h € CK(R++,R1 ) such that (¢;,x;,k1) is a solution to the
Bellman problem if and only if (¢;,x;,k;+1) = h(k:), where existence and continuity follow
by Berge’s Maximum Theorem, and single-valuedness by strict concavity. Inada conditions,
marginal productivity conditions and limy_,oV’(k) = oo imply that for all k&, > O there is
€ € (0,1) such that forif ¢; < &, x; ¢ [e,1—¢€] or k;y| < €, then (¢, x;,k;+1) is not a solution
to the Bellman problem. Thus, and after substitution of material balance in the utility u, the
first-order conditions of the problem are

{ —ue(f ke, V=) =k1, %) fo(ke, 1=x) +ue(f (ke s 1 =) —ky1,%) = 0
—ue(f (key 1=x¢) =kri1,%) + BV (k1) = 0.
The matrix of derivatives of the first-order conditions with respect to (x;, k1) is:
A = < uefro+ueefofo— (uxc+ucx)f£ + iy Ueefr— Uex )
Uee fr — Uxe Uee + ﬁV”

where arguments and dates are dropped for convenience. The determinant of A is |A| > 0
because V" < 0. Therefore, by the Implicit Function Theorem, the derivatives of (x;, k1)

with respect to k; are
' 1 ettee feo + [te fra+(ttee fr—ttex) fi BV
( h ) oMl e[ —(tce fr—ttex) fre + tee fifuel + |D*ul fi
so h¥(k;) > 0 is positive because uc.fy—uex < 0 by assumption. O

Next, we combine the results on uniqueness of the steady state and monotonicity to show

that the steady state is globally stable.

Lemma 9 (Global stability of the steady state) Dynamics are monotone, h*(k) € (k,k)
for all k < k and h*(k) € (k,k) for all k > k.

Proof: By Lemma 8 there is a function #* € ¥'(R, ,R, ) such that k,;; = h*(k;) and
h¥(k;) > 0 for all k; > 0. By Lemma 7 the function /¥ has a unique fixed point /*(k) = k.
Therefore: either h*(k) < k for all k < k or h*(k) > k for all k < k; and, either h*(k) < k for
all k > k or h*(k) > k for all k > k.
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If k, > k, then: k = hk(k) < h*(k,) because h¥' (k) > O for all k > 0; and, h*(k;) < k
because k; 1 < f(ks, 1) and limg_,o fi(k, 1) < B so there is K > 0 such that k > K implies
Fk,1) < k.

If k, < k, then: k = h*(k) > h*(k;) because h¥ (k) > 0 for all k > 0. Suppose h* (k) < k;.
Then V'(k;) < V'(k;+1). By the Envelope Theorem, V'(k;) = uc fi;» and by the first order
conditions V'(k;4+1) = uct/B. Thus, B fi(ki, 1—h*(k;)) < 1. As a result, fi(k;, 1—1(k;)) <
fi(v,1) and fo(k;, 1—h*(k;)) > fo(v,1), and limy,_,o 1 —F*(k;) = 0. On the other hand, the

first-order condition with respect to x; for the maximization problem is:

—tte[ f (e, =R (ke ) =" (ke ) 1 (ke )) fo (ke 1= (K ))
[ f (ke 1 =R (ke ) —h* (ke) 1 (kt)] = 0.

Since limy, e (e, 1Y (k) — (k) () = o, fulle, 1—h¥(ky)) > fi(5,1) implies
limy, oty (f ke, 1=1* (kg ) ) —H* (K ), B (Ky )) = oo, so limy, 0" (k;) = 0. A contradiction is
obtained as limy, o 1—h*(k;) = 0 and limy, 0 #*(k;) = 0 so h*(k;) > k; for all k; < k.

Now let #*0(k) = k and W% = h* o W**~1(k) for every t > 1. Then the sequence
(KX (k))nen converges to the steady state & for all k > 0. O

Lemmas 8 and 9 were obtained using the assumption that the value function is twice
continuously differentiable, but that assumption is not needed. Indeed, consider iteration of

the functions (V,,)en S0
Va1 (k) = maxp(k,k) + BV, (K.

Then (V;,),en converges to V and (h¥),,ci converges to i*. Suppose V, is concave and twice
continuously differentiable so the policy function hﬁ is continuously differentiable with the
property that /% (k) € (k, k) for all k € (0, k) according to Lemma 8. Hence, V,,; | concave and
twice continuously differentiable so the policy function h’,j 41 1s continuously differentiable
with the property that i% . | (k) € (k,k) for all k € (0,k). Consequently, h(k) € [k, k] for all
k € (0,k). However, according to Lemma 7 there is a unique steady state so h*(k) € (k, k|

for all k € (0,k) implying (h*"(k)),en converges to k for all k > 0.

Continuity, and local isolation

The optimum correspondence Z(g;z—1) is nonempty for all small enough g: this comes
from product upper semicontinuity of the utility and product compactness of the domain.
For O C R a neighborhood of zero, let Z : O = L(R?) be the correspondence

E(g) = {z € L(R?) : (®,¥)(z) > Ve
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where (®,¥)(z) > y, corresponds to
¢t(Zt—1 ,Zz;g> >0, Z ﬁ[W(Zz,ZtH) —ucoroko > 0
>0

and y, is the vector with O at its first coordinate, and g otherwise. Let 0= denote the
boundary of the correspondence, where inequalities are exact equalities.

We observe that z(0;z_1) is also a solution to problems (RRP) at g = 0, and that it is in
Z(0). In fact, under our assumptions Z(g;z—1) C dE(g), and we just need to show that JE
is continuous at g = 0. To this end, we say that a point z is uniformly interior if infc; > 0,
infk, 1 > 0and 0 < infx; and supx; < 1. Since the solution z(0;z_) converges to an interior
steady state, it is uniformly interior, and we can restict attention to uniformly interior points

of the domain.

Lemma 10 (Regularity) Under the stated assumptions, the continuous linear map
D(®,¥)(z) is onto at every uniformly interior z € dE(0).

Proof: Hereafter, all functions are evaluated on the Banach space L(R?) of sup-norm
bounded processes with values in R3, and the set of bounded sequences is /... Given the
assumptions that u is separable, a; = 1 and o > 1, all ¢, it is D,y — fiD .y # 0 at all
0'. We can generate the vector (0,...,0,1) via changes Az where only Az is nonzero at
that date event, Ak; 1 = 0, and Ac; = — f;, Ax;. The derivative of the constraint functions
applied to this Az has nonzero coordinates only corresponding to the feasibility constraint

at 6" and the function y at the same date-event, where it is

—Ju 1
Dy Deyyf

with nonzero determinant. Vectors (0,...,0,1,0,...,0), with 1 corresponding to the
feasibility constraint at some 6’ can be generated with changes /\z where only Az is
nonzero at that date event, Ak, 1 = Ax; =0 and A¢; # 0.

Further, since we are computing derivatives for points z uniformly interior, Ey Y, B’u,
exists and is finite, and any indicator function of countable subsets of the nonnegative
integers can be generated in the tangent space of the domain of the feasibility constraint
functions, using Ac; = —1 for every ¢ in the subset, and adjusting the effect on the
intertemporal incentive constraint with the perturbation identified above. Thus, as any other
vector in /. X R is the image of limits of simple functions over indicators of subsets of the
nonnegative integers, they can all be generated in L(R?). We conclude that the derivative of

the constraint functions is onto. O

37



Lemma 11 (Continuity) The solution correspondence is sup-norm continuous at g = 0:
for every € > 0 there exists Ng such that ||z(gn;z2-1) —2(0;z-1)|| < €&, all n > Ng,
forevery z(gn;z—1) € Z(gn;z—1) and g, — 0 as n — .

Proof: To obtain the continuity property, we show that dZ is continuous in g at g = 0, in the
sup-norm topology. We then apply Berge’s Maximum Theorem to obtain the conclusion.

For Lh.c., as by regularity the continuous linear map D(®,¥)(z) is onto, by Liusternik’s
Theorem (see Luenberger 1969, Thm 1, p. 240) there exists B > 0 such that for every
neighborhood Ny of 0 € L(R) and every point y € Ny it is (®,¥)(7) =y forall 7 € N, C
L(R?®) and ||Z —z||., < B||y||. Choose y, = (..., &u,...,0). Then, (®,¥)(z,) = y, and z,, €
0Z(gn), while from ||z, — z|., < B||yn|| We get that z, — z in sup-norm when g, — 0 (and,
thus, ||y,|| = 0 = yo).

Now, for u.h.c., suppose g, — 0, and let z, € dE(g,). Then, ¢ (24 r—1,2n:38n) = 0, and
Y0 B'W(zns2n41) = 0.

If ||z, —z||.. — 0, some z € L(R?), then the coordinates ¢ — 1,7 converge, and since

¢; is continuous (as a finite dimensional map), we have that lim ¢ (z,/—1,20:382) =
¢ (z-1,2;0) = 0, and since Y,~oB'y(.) is product continuous on the domain,
HmY >0 B W (zns, 2ni+1) = L0 B W(z,ze41) = 0. Thus, z € dE(0), as we wanted to show.
The only thing left to prove is that ||z, — z||., — 0.
Since D(®,¥) is onto at all Z'~'(yo), it is ||za—2 ||, < B[y, —yol|,, for z, €
(®,%¥) !(yg,), for all n > Ny. Thus, given € > 0, take n,m > N, > N; such that
max(||yg, = yo||.+ ||[Ven — ¥0||.) < €/2B. Then,

20— zZmllwo < |20 =2 ||+ ||2m — 2 || < B|yen —yol|oo+ [|ven —¥||.. <€

for all n,m > N, and {z,},>y is a Cauchy sequence in the sup norm. Since L(R?) is

complete, z, converges to z € L(R?), in the sup norm. O

As 7:(gn;2-1) is close in the sup-norm to z;(0;z_;) by Lemma 11, by Lemma 10 it is
regular (an open property), and it satisfies the first order conditions for some a*(g,) > 0, as

in Theorem 2. Consider problem

max Zﬁt[u(c,,xt)+a(gn)ll/t(2)]

(crxtkir1)i0 10 (GP)
s.to f(k,,l—x[)—gn—ct—kH_] Z O7 all # ZO

With di(c;, x) = u(cr, ) + 0t(gn) Wi (cr, %) and f(knl —x;) = f(k,1 —x:) — gn, for a(gn)
(i.e., gn) small enough 4, f preserve the properties of u, f at g = 0. Then, problem (GP) is an

instance of problem (G). It is convex, the first order conditions are necessary and sufficient,
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and z;(g,;z—1) solves them. Then, z;(g,;z—1) is a solution to (GP). However, since problem

(GP) is an instance of problem (G), we conclude that for a small enough g > 0, z,(g;z-1)

converges to an interior, globally stable steady state, and points can be found which are

locally isolated.
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