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ABSTRACT 

BRISTOW, AL, FOWKES, AS, BONSALL, PW, MAY, AD (1994). The optimisation of 
integrated urban transport strategies: tests using PLUTO. ITS Working Paper 424, Institute for 
Transport Studies, University of Leeds, Leeds. 

This working paper reports work indertaken on an EPSRC study, the optimisation of integrated 
urban transport strategies. It is the f ist  in a series of papers each reporting work using a different 
transport model. This paper is concerned with work using PLUTO, a transport model based on 
a hypothetical city, which can provide model runs quickly and cheaply. 

PLUTO was used to experiment widely, examining paths towards an optimum when considering 
discrete policy variables, continuous policy variables and hybrids where several policy variables 
may be combined to form a strategy. 

Our search for a method by which to reach an optimum solution uses regression analysis of 
carefully specified sets of model runs. We find that the use of statistical modelling techniques 
is extremely useful in pointing the way to an optimum, using only a limited number of model 
runs. However, care is necessary to ensure that the regression models are interpreted correctly. 



THE OPTIMISATION OF INTEGRATED URBAN TRANSPORT STRATEGIES: 
TESTS USING PLUTO 

1. INTRODUCTION 

1.1 Objectives 

This working paper describes work based on the PLUTO urban transport model (Bonsall; 1992; 
1994), carried out during an EPSRC study on the optimisation of integrated urban transport 
strategies. An objective of this study was to identify methods by which an 'optimum' solution 
(however defined) could be arrived at using as few runs of the transport model as ~ossible. 

The modelling work described in this paper bas two objectives 

(i) to produce a regression model to predict the optimum run within PLUTO given a limited 
range of policy options 

(ii) to identify a process by which the runs necessary to produce a predictive regression model 
to identify the optimum, may be specified. 

PLUTO was an extremely useful tool for the main developmental stage of our study because of 
the rapidity with which new runs may be completed. A run of PLUTO including setting input 
values, running the model for each of ten years, running the evaluation package and recording 
results, takes approximately 20 to 30 minutes. A similar process using one of the strategic 
transport models available to us occupies approximately three hours. PLUTO was therefore used 
to develop our approach, which was then tested on the 'real' strategic transport models of 
Edinburgh and London. The results of the testing process using the Edinburgh model are reported 
in Bristow et al, 1994. 

The variable which we seek to optirnise is Net Present Value W V ) ,  being the most 
comprehensive single variable available in that it includes those costs and benefits which can be 
valued. The behaviour of other variables of interest, eg the number of personal injury accidents 
and environmental impacts is discussed in relation to NPV. 

This report is divided into seven sections, each reporting a specific phase of the work. Section 
2 examines the issue of discrete infrastructure projects, and describes a process by which the 
optimum combination may be identified. Section 3 examines- the question of cordon pricing, 
where we are dealing with a continuous variable in the cordon charge and a discrete variable in 
the choice of cordon boundary from six possible options. Section 4 examines bus fares and 
service levels, looking at the peak and the off-peak. Section 5 examines a complex problem 
where cordon price and boundary, bus fares and bus service levels are all allowed to vary. In 
section 6 we consider adding a further complication in the form of infrastructure investment, and 
the behaviour of other dependent variables. General conclusions are drawn in section 7. 

1.2 PLUTO 

The PLUTO urban transport model is based on a hypothetical and symmetrical city 'Plutopia', 
Figure 1.1 shows the main road network and concentric zones. PLUTO was originally designed 
as an educational tool, running for one year at a time, allowing those using it to make annual 
policy adjustments. It contains a wide range of policy options, road infrastructure projects, 



parking capacity and charging, bus service levels and fares, bus lanes, traffic calming, road safety 
education, cordon charging, etc. 

One of our first requirements was to create a batch version of PLUTO; this runs for 10 years to 
show the long term policy impacts. It was also necessary to devise an evaluation package to 
calculate the Net Present Value of any policy combination tried. Once these tasks were completed 
we were able to begin our transport strategy tests. 

Figure 1.1: A Sketch Map of the City of "Plutopia" 

Link 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Inner ring road 
Outer ring road 

Capacity 
(pcu per hour) 

2500 
2300 
2200 
2200 
2500 
2500 
2900 
3000 
2400 
2400 
2600 

Speed 
(Average peak period 

car speed, year 10 do-minimum) 

7 
6 
6 
4 
8 
9 
13 
15 
22 
22 
14 



2. Road Investment Projects 

PLUTO was set up to allow investment in up to ten road infrastructure projects detailed in Table 
2.1. Each scheme is a discrete entity, it is either implemented or not, there are no continuous 
variables, and a priori we do not know how the projects will interact with each other, except that, 
as projects 4 and 5 both affect link 4 and projects 8 and 10 both affect the inner ring road, they 
will to a large extent be alternatives. We have followed two main approaches to identify the 
PLUTO model runs that will produce the best regression model; a systematic approach outlined 
in section 2.1 and an intuitive approach discussed in section 2.2. 

Table 2.1: Road investment projects available 

2.1 A Systematic Approach 

Project 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

This approach begins as follows: 

(i) Each of the 10 projects should be tested alone, to establish the NPV of the scheme with 
no interactions (see Table 2.2). 

Cost (Em) 

20 
15 
15 
10 
16 
8 
2 
15 
12 
22 

(ii) One additional run should be conducted containing all 10 schemes, to give an extreme 
exitnple of interaction (see Table 2.2). 

Effect 

Increase link 1 capacity to 3000 pcu/hr 
Increase link 2 capacity to 2800 pcu/hr 
Increase link 3 capacity to 3000 p c h  
Increase link 4 capacity to 2400 pcu/hr 
Increase link 4 capacity to 3200 pcu/hr 
Increase link 5 capacity to 3000 pcu/hr 
Increase link 6 capacity to 3000 pcu/hr 
Increase inner ring road capacity to 3000 pcu/hr 
Increase capacity of outer ring road to 3000 pcu/hr 
Increase capacity of inner ring road interchanges 



Table 2.2: NPV from PLUTO runs of single projects and all ten together 

Four of the ten available individual schemes have a positive NPV when implemented in isolation. 
A simple summation of all ten NPVs is £73M, which is higher than the actual NPV of £66.8M 
when all ten are included in a PLUTO run. This is partly due to the presence of alternatives, for 
example, if the obvious alternatives P4 and P8, are excluded the sum is E77.8M, while the NPV 
obtained from a PLUTO run including the remaining eight projects is E96.9M. In this case the 
whole is greater than the sum of the parts, suggesting that there are significant synergetic 
interactions between schemes. We do not rule out any of the ten projects at this stage, as those 
with a poor performance in terms of NPV in isolation may improve in combination. 

Project 

P1 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 
PI0 

P1 to PI0 

(iii) Try every possible pair of projects; for 10 projects this meant 45 combinations. This 
gives the regression model a comprehensive set of data on how any project will interact 
with any other, all other things being equal. 

NPV (EM) 

-19.2 
-10.3 
-19.1 
-9.1 

+16.4 
-0.3 

-15.6 
+4.3 

+88.6 
+37.3 
+66.8 

Once these pairs have been run the PLUTO output can be used to investigate the interaction 
between pairs of projects. In the search for an optimum we are looking for synergy between 
schemes. Therefore, at this stage we are seeking to exclude substitutes and include combinations 
that act as complements. We therefore examined the NPV for each paired test and compared it 
to that of the better of the two individual projects concerned. For example, suppose Project X 
alone has an NPV of 10, while project Y alone has an NPV of -5 and if projects X and Y are 
both implemented the NPV is 12. In this case the incremental value obtained from X + Y as 
opposed to X alone is 2. In this way we can identify projects which perform poorly alone, such 
as Y, yet when combined with another project have a positive impact. Similarly, if the joint NPV 
turns out to be less than one of the individual NPVs we then know that these two projects are 
acting as substitutes. 

Table 2.3, overleaf, shows the results obtained by e d n i n g  each pair of projects in this way. 
The NPV outcome from a PLUTO run of each pair is then compared with the NPV from a 
PLUTO run of the better individual project. The final column in the table gives the difference 
between the two NPVs. Thus, a negative change indicates an incremental disbenefit from the 
pairing, while a positive change (marked with a *) indicates the positive synergy which we seek. 
Table 2.3 (overleaf), shows that there are only twelve positive interactions between projects when 
tested in pairs. 

In Table 2.4, we examine the twelve positive pairs in more detail. 



Table 2.3: Project Pairs - Impacts of Interaction on NPV 

* Indicates those pairs where there is a positive incremental change in NPV 

Project Pairs 

1 & 2  
3 
4 
5 
6 
7 
8 
9 

10 
2 & 3 

4 
5 
6 
7 
8 
9 

10 
3 & 4  

5 
6 
7 
8 
9 

10 
4825 

6 
7 
8 
9 

10 
5 & 6  

7 
8 
9 

10 
6 & 7 

8 
9 

10 
7 & 8  

9 
10 

8 & 9  
8 & 10 
9 & 10 

Paired test 
NPV 

-15.27 
-15.38 
-17.22 

8.25 
-16.27 
-24.86 
-11.88 
76.50 
21.81 

-25.16 
-15.16 
10.39 
-8.13 

-25.71 
-3.74 
80.03 
27.42 

-24.73 
13.85 
-6.35 

-16.25 
-11.84 
79.97 
31.62 
3.22 

-4.53 
2.25 

-7.99 
79.84 
31.87 
24.56 
21.04 
26.98 

102.21 
65.16 
-9.36 
2.86 

88.42 
43.90 
1.36 

95.78 
42.31 
92.62 
19.06 

114.91 

Best Single 
Project NPV 

-10.32 
-19.11 
-9.06 
16.44 
-0.35 

-15.66 
4.31 

88.61 
37.31 

-10.32 
-9.06 
16.44 
-0.35 

-10.32 
4.31 

88.61 
37.31 
-9.06 
16.44 
-0.35 

-15.66 
4.31 

88.61 
37.31 
16.44 
-0.35 
-9.06 
4.31 

88.61 
37.31 
16.44 
16.44 
16.44 
88.61 
37.31 
-0.35 
4.31 

88.61 
37.31 
4.31 

88.61 
37.31 
88.61 
37.31 
88.61 

ANPV 

-4.93 
-3.73 
-8.22 
-8.19 

-14.93 
-9.22 

-16.19 
-12.11 
-15.5 
-15.39 
-6.1 
-6.05 
-7.78 

-15.39 
-8.05 
-8.58 
-9.89 

-15.67 
-2.59 
-6.0 
-0.59 

-16.15 
-8.64 
-5.69 

-13.22 
-4.18 

+11.31 * 
-12.3 
-8.77 
+0.56 * 
+8.12 * 
+4.6 * 

+10.54 * 
+13.6 * 
+27.85 * 

-9.01 
-1.51 
-0.19 
+6.59 * 
-2.95 
+7.17 * 
+5.0 * 
+4.01 * 
-18.25 
+26.3 * 



Table 2.4: Positive Interactions between two projects 

Five of the positive interactions are between projects where both have a positive NPV, that is 
projects 5, 8, 9 and 10. When two projects, each of which has a positive NPV are combined, we 
would not be surprised that their combined NPV is greater than that of the better single project. 
This is then the expected outcome. While projects 8 and 10 also both have positive NPVs they 
are strong substitutes so a positive interaction is neither found, nor expected. 

4 + 7  
4 + 10 
5 + 6  
5 + 7  
5 + 8 
5 + 9  

5 + 10 
6 + 10 
7 + 9  

7 + 10 
8 + 9  

9 + 10 

Six show a project that is negative alone, namely projects 4,6 or 7, having a positive impact on 
an already positive project. Two of these may be explained easily in that projects 4 and 10 affect 
the inner ring road, while projects 5 and 6 affect adjacent links. We might therefore expect some 
cumulative benefit. The remainder cannot be simply explained, and would not have been obvious 
a priori, illustrating the importance of a comprehensive test of pairs. 

With projects 4 + 7 two negative projects interact to produce a positive result. Although this may 
appear odd at first, it can be seen above that projects 4 and 7 interact positively with other 
projects so it is not unlikely that they should interact positively with each other. 

Individual NPVs: 

(iv) Use the information from the pairs to determine any tests of 3 project runs; if all relevant 
pairs show a positive interaction then the triple should be tested. 

Both 
positive 

J 
J 
J 

J 
J 

eg, 4 + 7, 4 + 10 & 7 + 10 are all positive 

therefore select 4 + 7 + 10 

One 
positive 

J 
J 
J 

J 
J 
J 

The triple project combinations selected in this way are:- 

Neither 
positive 

J 



This rule yields seven threeway tests.The reason we only select these triples is that once two 
projects are shown to be substitutes we are no longer interested in putting them together with 
other projects. Higher combinations eg, quadruples should also he tested, if they can be 
constructed from positive pairs, in this case there were none. 

In summary 

(i) Test each project individually - 10 runs 
(ii) Test all projects together - 1 run 
(iii) Test every pair of projects - 45 runs 
(iv) Test any higher combination, eg triples, that contain only positive pairs - 7 runs 

Thus, a systematic approach, applied to this particular set of ten infrastructure projects requires 
a total of 63 runs. 

At this stage the data is used to construct the first statistical model. The GLIM package (Royal 
Statistical Society, 1992) was used for the statistical modelling as it is interactive and quick. 

Interaction terms can be specified for any combinationpf projects and tested for significance. The 
best model identified using this data is a linear regression on a set of dummy variables. It 
includes eight single projects, ten two-project interaction terms and one three-project interaction 
term, giving nineteen variables in all. Variables were omitted if the absolute size of their 
coefficient estimates were below four as this indicates a very small contribution to NPV. Standard 
errors on each were also used to guide model construction, with highly insignificant variables 
being discarded. The results are discussed in more detail later in this section when the two 
approaches are compared. 

The variables and their coefficients are given in Equation (1). Further detail, including standard 
errors are given in Appendix 1. 

Variables 
P1 to PI0 dummy variables relating to each of the single projects. 
P810 to P210 dummy variables for interaction between pairs, for example, P810 will be 1 if P8 

and PI0 are both present, zero otherwise. 
P5710 dummy variable - a three way interaction, this is 1 if projects 5 ,7  and 10 are all 

included. 

The next question to he answered is how we move from this equation to a prediction of the 
optimum combination. The first step is to include all projects that have a positive coefficient, 
(ie. P5 + P9 + P10) and then add any interaction terms that include projects 5 ,9  and 10 in pairs, 
checking that any negative interactions do not more than offset the positive effects (in which case 
the lowest value project of those involved would be removed). 



This gives us 

NPV = 23.6 P5 + 89.79 P9 + 41.72 PI0 - 16.36 P910 - 11.22 P59 (2) 

So, although the interaction terms are negative they & not large enough to outweigh the gains 
from having all three projects. There is still a net loss from dropping any one of them. (Note 
that negative interaction terms are to be expected here, as adding two positive projects together 
is unlikely to give an NPV greater than the sum of the two projects run individually). 

The next step is to consider any projects that have a negative coefficient have positive 
interactions with any of the projects already included that outweigh the single project impact. 
This process adds only P7:- 

Thus, the predicted optimum combination is P5 + W + P9 + PI0 solving the equation gives us: 

Predicted NPV = E142.7M above the do-minimum. 

Two projects 6 and 8 were omitted from Equation (1) due to insignificant coefficients. While we 
would not wish to add project 8 as it is a substitute for project 10, project 6 may contribute to our 
optimum. Thus, we have joint optima 

(i) P5+P7+P9+P10 
(ii) P5 + P6 + W + P9 + PI0 

Both are predicted to have the same NPV. Checking both these with PLUTO runs shows P5/P6/ 
P7P9P10 to be the better with an NPV of E133.5M. We have reached the optimum combination 
of infrastructure projects using 65 runs of the PLUTO model. 

2.2 An Intuitive Approach 

This approach aims to reduce the number of model runs, by defining a data set that contains 
examples of 'types' of combination, for example, combinations of projects on the two ring roads, 
on adjacent links and on unconnected links. 

It is possible even with a limited data set to make some allowance for interaction by giving the 
regression model information on the type of link or its location which might be expected to 
influence its interaction. For example, if projects are undertaken on adjacent sections of road we 
might expect the way in which they interact to vary from that where they are not adjacent. What 
follows is an example of an intuitive approach, combinations have been chosen to give some 
variety. 



A data set was constructed to test this approach which included the following: 
10 tests on single projects 
1 test incorporating all 10 projects 
1 test of an adjacent pair on inner links (PI + P2) 
1 test of non-adjacent inner and outer link (P2 + P7) 
1 test of an adjacent link and ring road (F5 + P8) 
1 test of inner and outer ring road (P9 + P10) 
2 tests on substitutelalternative projects affecting in one case the same link (P4 + 

P5) and in the other the same ring road (P8 + P10) 
1 test of three adjacent links (Pl + P2 + P3) 
1 - test of three detached links (PI, P4 + W) 

19 model runs in all 

The independent variables included a dummy variable for each project (PI to P10). We tested 
a number of dummy variables chosen to reflect the specific nature of the chosen data set. These 
were:- 

SUB - 1 if any two projects affect the same road space and may therefore be viewed as 
alternatives. 

ADP - 1 if any two projects affect adjacent areas of road space, eg neighbouring links or 
a link and a ring road. 

NADP - 1 if any two projects affect non adjacent areas of road space. 
RRS - 1 if any pair of projects affects both ring roads 
ADT - 1 if any three projects are adjacent. 
NADT - 1 if any three projects are not adjacent. 

We experimented with these dummy variables and identified a number of problems. In particular, 
any set of projects where ADT = 1 must also contain ADP = 1; the variables are not independent 
(similarly NADP and NADT). Moreover, none of the dummies, with the exception of SUB, 
contributed to the explanatory power of the model. Their standard errors were very high relative 
to the estimated values of the coefficients. 

Our best model is given by Equation 4 (the standard errors may be found in Appendix 1). It 
contains seven single project variables and SUB, giving eight variables in all. 

NPV = -6.63 P1 - 10.31 P2 - 18.09 P3 + 20.19 P5 -12.71 P7 + 82.53 P9 
+ 34.24 PI0 - 18.18 SUB (4) 

To find the optimum, we again add in all positive projects:- 

NPV = 20.19 P5 + 82.53 P9 + 34.24 PI0 

The interaction variable SUB is not relevant to these projects and is negative so no more projects 
are added. SUB has in fact led to the exclusion of P4 and P8 (the alternatives to P5 and P10) 
from the model as they are insignificant in the presence of SUB. 

Predicted NPV = 5137M above the do-minimum. 



The intuitive approach has used only 19 runs so far, a systematic addition might be to add in each 
project in turn, retaining it if NPV increases and removing it if NPV falls. The optimum 
p5/P6/Pl/P9P10) would then be reached in 26 runs, 24 runs if alternatives are excluded. 

2.3 A Non-Modelling Approach 

This approach starts with a run of each project individually, ten runs. The first combination 
includes all projects with a positive NPV 

as P8 and PI0 are alternative treatments, the one with the higher NPV is retained giving 

This combination is the starting point and would be run. To reach an optimum each project 
would be added in turn being retained if NPV increases and rejected if NPV falls. In this way 
the optimum combination (P5/P6/P7/P9m10) would be reached in 16 runs (excluding alternatives). 

2.4 Model Performance 

The next step was to construct a set of PLUTO runs against which the predictive accuracy of the 
two models in equations (1) and (4) could be tested. Table 2.5 shows the set of ten runs that we 
selected, chosen to exhibit variety and to include multiple combinations. We also tested the 
accuracy of the predicted optimum combination for each model. 

Table 2.5: PLUTO Test Set 

Project Combination 

P3 + P4 

P5 + P9 

P6 + P8 

P5 + P9 + PI0 

P2 + P3 + P4 

P2 + P4 + W 

P1 + P2 + P3 + P5 

P1+ P3 + P8 + P9 

P5 + P6 + W + P9 + PI0 

P1 + P3 + P5 + P7 + P9 

NPV (Em) 

-24.7 

102.2 

2.9 

128.9 

-36.5 

-1 1.7 

3.2 

69.6 

133.5 

90.4 

Characteristics 

Negative NPV and negative 
interaction 

Positive NPV and positive 
interaction 

Very little interaction 

'Best' triple 

Adjacent links 

Detached links 

Adjacent links 

Detached links + 2 RRs 

RRs + connecting link rds 

Odd numbered projects 



Table 2.6 contains the predictions of each model compared with the actual NPV. 

Table 2.6: Road project Systematic and Intuitive Regression Models tested against actual NPV 

Figures in parentheses give the difference between the predicted NPV and the actual NPV. 
m e  model parameters are given in Appendix 1.) 

The systematic model produces prediction with a higher degree of accuracy. The intuitive model 
is unable to deal accurately with multi-project combinations. The systematic model is more 
precise, with no predictions giving an error in excess of + 10. The interaction terms play a 
significant role. 

Test Strategy 

P3 + P4 

P5 + P9 

P6 + P8 

P5 +P9 +PI0  

P2 + P3 + P4 

P2 + P4 + W 

P l + P 2 + P 3 + P 5  

P1 + P3 + P8 + P9 

P5 + P6 + W + P9 + PI0 

P1 + P 3 + P 5 + P 7 + P 9  

Total Absolute deviation 
Average Deviation 
Model Runs used 
Number of variables 

Systematic Model 

Predicted NPV 

-20.4 
(+4.3) 
102.2 
(0) 
0 

(-2.9) 
127.6 
(-1.3) 
-28.7 
(+7.8) 
-19.8 
(-8.1) 

0.1 
(-3.1) 
74.3 

(+4.7) 
142.7 
(+9.2) 
86.0 
(-4.4) 

45.8 
4.6 

63 
19 

Actual NPV 

-24.7 

102.2 

2.9 

128.9 

-36.5 

-11.7 

3.2 

69.6 

133.5 

90.4 

Intuitive Model 

Predicted NPV 

-18.1 
(+6.6) 
102.7 
(+0.5) 
0 

(-2.9) 
137 
(+8.1) 
-28.4 
(+8.1) 
-23.0 

(-11.3) 
-14.8 

(-18) 
57.8 

(-11.8) 
124.2 
(-9.3) 
65.3 

(-25.1) 

101.7 
10.2 
19 
8 



2.5 Predicting the OPTIMUM 

Now let us consider which model brings us closest to an optimum. 

Table 2.7: Infrastructure tests - model outcomes 

It is possible to reach the optimum in just 16 runs using a reasonably logical approach. An 
extension of the intuitive method will reach it in 24 runs. 

Approach 

Systematic 

Intuitive 

No model 

The advantage of the systematic model is that it considers the interaction between projects, and 
this means; 
- that strong substitutes will never be included together 
- that positive interactions (complements) are identified, so that even if they have a negative 

NPV in isolation, they can be included in the optimum. 

However, if there is a limited range of infrastructure or if this is largely determined in advance 
due to capital constraints or political decisions (as may well be the case in local decision making) 
then it may be that there are very few infrastructure combinations to be tested. If there is a large 
range of projects, expert guidance may be necessary at an early stage in order to avoid an 
excessive number of model runs. 

Model 

(i) P5 + P7 + P9 + P10 
(ii) P5 + P6 + P7 + P9 + PI0 

P5 + P9 + PI0 

P5 + P6 + P7 + P9 + PI0 

2.6 Conclusions on Infrastructure Projects 

(i) The presence of a number of non-mutually exclusive infrastructure projects poses 
problems for modelling, because many of the interactions are unknown a priori. 

Number of 
model runs 

65 

19 

16 

(ii) It therefore appeared advisable to take a systematic approach to the construction of 
the data set, although this is expensive in terms of model (in this case PLUTO) runs. 

(iii) Our attempt at an intuitive approach gave a poor statistical model, but with so many 
PLUTO runs 'in hand' over the systematic approach it was easily possible to search 
around the initial optimum solution using further PLUTO runs. In this way, the 
true optimum may be reached with fewer'PLUT0 runs than with the systematic 
approach. 

Predicted 
Optimum (Em) 

142.7 
142.7 

137.0 - 

(iv) It is possible with a non-modelling logical approach to reach an optimum in only 16 
runs in this case. 

Actual 
Optimum (Em) 

131.9 
133.5 

12.9 

133.5 



(v) In the presence of more information, for example on political or capital constraints, 
it might be possible to reduce the number of projects considered at an earlier stage. 

(vi) The use of regression modelling for discrete projects only is not very efficient, when 
compared with professional judgement for identifying optimal infrastructure 
programmes. 

3. CORDON PRICING 

PLUTO was set up to allow six possible zone boundaries for cordon charging, these are shown 
in Figure 1 .l. 

3.1 General Data Set 

Ow initial regression modelling was undertaken using a large data set of 45 runs. These were 
undertaken in an attempt to identify an optimum based on expectations of how PLUTO would 
respond and testing around 'good' price and cordon combinations. 

The zone boundaries ranging from 1 to 6 and fees ranging from E l  to £10, give us one continuous 
variable (Fee) and one discrete variable (cordon location). Ow data set included the independent 
variables Fee, which is the fee charged, and six dummy variables, zone 1 to zone 6, to indicate 
the zone boundary that is in existence in each case. Only one of these dummies will be active 
in each case, since multiple cordons were not considered. The information in the fee and zone 
variables was then combined:- 

Fee x Zone 1 = FZ1 

Fee x Zone 6 = FZ6 

We now have six variables, each of which defines a fee to be charged at a specific zone 
boundary. We then squared these variables in order to try a quadratic form. 

The regression model arrived at is detailed in Section 1 of Appendix 2, and listed below 

NF'V = +13.87 FZ1 + 23.45 FZ2 + 36.24 FZ3 + 45.77 FZ4 + 30.32 FZ5 +30 FZ6 - 2.49 EZIZ (5) 
-2.96 FZZZ - 5.3 FZ3' - 5.86 FZ@ - 2.77 FZ5' - 2.57 FZ6' 

This model can be used to estimate the fee for each zone that the model predicts will produce the 
optimum NPV. The calculations are shown in Section 1 of Appendix 2. The model predictions 
for an optimum are summarised in Table 3.1. Table 3.1 requires some clarification. Column A 
contains the fee that the regression model predicts to be the best for that zone. Column B 
contains the NPV that the regression model predicts for each zone if the fees are those in column 
A. Column C contains the NPVs obtained from PLUTO runs when using the fees in column A. 



Column D shows the difference between the predicted NPV and the actual NPV at column A fee 
levels. Column E shows the fee levels that we have found to perform best through trial and error, 
and a large number of PLUTO runs. Column F shows the difference between the predicted best 
fee level and the actual best fee level. Column G shows the NPVs obtained using our best 
estimate of the optimal fees (column E). Finally, column H, shows the difference in column NPV 
from using the fees predicted in our model (column A) rather than the 'best' fees (column E). 
Column H identifies the potential 'loss' in NPV from the misspecification of the optimum by our 
model. 

Table 3.1: Cordon Pricing - Initial Model Predictions 

The model performs well and appears to bring us towards the best solution (a fee of £3.60 in zone 
4). Any problems appear to he related to the nature of the data set. As the original PLUTO runs 
were undertaken with the aim of finding the best NPV, there are a large number of runs in the 
data with an NPV around £85M to £89M which may explain the very similar NPV predictions 
for zones 4, 5 and 6. Similarly a lack of data at higher fee levels (eg above £5.00) may be 
causing problems. A large data set will not necessarily be useful if it contains insufficient variety. 

3.2 Systematic Approach 

Zone 

1 
2 
3 
4 
5 
6 

Our next task was to attempt to produce a 'good' model given a limited number of PLUTO runs. 
As we already had a great deal of data and a good idea of the model form it was difficult to go 
hack to a state of innocence of the NPV output. One solution was to ask an 'expert' what he 
thought the best fee would he, as he was very familiar with PLUTO and its hehaviour but not 
with the NPV figures. This gives us a 'blind' expert test. The expert recommended that the best 
result would occur with a cordon in zone 3 and with a fee of about £1.50. We took this advice 
and, in addition, ran tests with fees at half and double this value in order to try to identify a 
quadratic relationship. 

C 
Actual 

NPV for 
A 

22.3 
40.9 
59.6 
86.8 
81.0 
73.9 

The expert also thought that the optimum level of fee would rise as we moved the cordon 
outward. The expert's estimate of £1.50 enabled us to produce the following 18 test matrix 

A 
Predicted 
Optimum 

fee 

2.80 
4.00 
3.40 
3.90 
5.50 
5.90 

B 
Predicted 
NPV for 

A 

19.3 
46.3 
61.9 
89.1 
89.2 
89.4 

D 
Error in 

NPV 
prediction 

(C-B) 

+3.0 
-5.4 
-2.3 
-2.3 
-8.2 

-15.2 

E - 

Actual 
'Best' 
Fee 

3.00 
3.50 
3.50 
3.60 
5.00 
4.00 

F 
Error in 
Actual 

fee 

+0.2 
-0.5 
+0.1 
-0.3 
-0.5 
-1.9 

G 
Actual 
NPV 
for E 

26.6 
51.1 
65.5 
88.3 
87.2 
80.7 

a H 
Under- 

achievement 
of NPV 
(G-C) 

+4.3 
+10.2 
+5.9 
+1.5 
+6.2 
+6.8 



Table 3.2: Initial 'Expert' Matrix 

This inital matrix is not guaranteed to enclose the optimum and in order to test for this we 
developed an approach of testing around the expert prediction to see if we have enclosed an 
optimum - if not we would need different values and we have only used three tests to discover 
this rather than the eighteen implicit in the matrix. The three tests centred on £ 1.50 in zone 3 of 
0.75, 1.50 & 3.00 are the first to be run and used to locate the curve: if it is rising or falling over 
all three points then a further test would be run (double top value if rising, half the lowest value 
if falling). Then having produced a curve use the maximum point as the middle value for the next 
zone. This is expressed as a formal rule in Appendix 3. 

This rule may be made more efficient by testing to one side of the initial value; if the result is 
a higher NPV continue in that direction and do not test the other side. If the result is a lower 
NPV then test the other side. 

We started with Zone 3 at £ 1.50 which yields an NPV of £41.5M. The next test we tried was 
to double the fee to £3.00, which yields an NPV of £61.5M. Our rule now states that as the NPV 
is still rising we should double the fee again, to £6.00 for our third test, the test of £0.75 is now 
unnecessary. In this way the following set of results is obtained for zone 3. 

Zone 3 Fee = £ 1.50 =z NPV = 41.5M 
3.00 => NPV = 61.5M 
6.00 => NPV = 26.3M 

We can now progress to the next zone taking £3.00 as our initial value (because NPV is highest 
at £3.00 in the previous zone). In zone 4, 

Zone 4 Fee = £3.00 => NPV = 585.1M 
£6.00 => NPV = £76.7M 
£1.50 => NPV = E57.8M 

The NPV figures for zone 4 are uniformly higher. £ 1.50 gives the lowest NPV in zone 4 while 
in zone 3 it is £6.00. This suggests that the initial premise that the optimal fee increases as the 
boundary zone moves out, is indeed the case. It therefore seems sensible to use this information 
in deciding the fees to test in the remaining zones (this is a slightly more flexible approach than 
that outlined in Appendix 3). For zone 5 we increase the level of the mid-fee to be tested by 
£1.00, thus giving a range of £2, £4 and £8 on the doublinglhalving rule. 

Zone 5 Fee = £4.00 NPV = £85.3 
£2.00 NF'V = £65.6 
£8.00 NPV = £60.6 



These figures suggest that we could reduce the spread of fees tested in zone 6. 

Zone 6 Fee = £4.00 NPV = £80.7 
£3.00 NPV = £75.8 
£7.00 NPV = £68.0 

The figures so far suggest that the optimum boundary in terms of NPV occurs in Zone 4 or Zone 
5, in which case we would not need to test fees in zones 2 and 1. However, there may be other 
reasons for selecting a boundary round zone 1 or 2, so we can continue testing in order to 
determine the optimum fee. We expect the optimum fee to be lower in these zones given the 
patterns so far, so we will use the zone 3 values again, reducing the upper fee by £1.00. 

Zone 2 Fee = £3.00 NF'V = £47.8 
£1.50 NPV = £29.9 
£5.00 NPV = £40.7 

£1.50 still gives a very low value so try increasing it for zone 1 

Zone 1 Fee = £3.00 NPV = 26.6 
£2.00 NPV = 16.8 
£5.00 NPV = 19.1 

We have adapted ow original 18 point matrix in order to ensure that the range of fees tested for 
each cordon envelop the optimum. The data set gives the regression model three observations per 
zone. 

The new model is as follows:- 

NPV = 13.82 FZ1 + 26.2 FZ2 + 36.3 FZ3 + 45.1 F2.4 + 37.3 FZ5 + 35.6 FZ6 - 1.98 FZ12 (6) 
- 3.6 FZZ2 - 5.3 FZ3' - 5.4 ~ 2 . 4 ~  - 3.7 FZS2 - 3.7 FZ6' 

The calculations for optimum fee and NPV are given in section 2 Appendix 2. 

The results from the new model are shown in Table 3.3 (the columns are exactly equivalent to 
those in Table 3.1). 

Table 3.3: Cordon Pricing - New Model Predictions 

A 
Predicted 
Optimum 

fee 

3.50 
3.60 
3.40 
4.20 
5.00 
4.80 

B 
Predicted 
NPV for 

A 

24.1 
50.2 
62.1 
97.1 
94.0 
85.5 

D 
Error in 

NPV 
prediction 

(C-B) 

-4.5 
-0.3 
-2.5 
-8.8 
-6.8 
-5.6 

C 
Actual 

NPV for 
A 

19.6 
49.9 
59.6 
88.3 
87.2 
79.9 

G 
Actual 
NPV 
for E 

26.6 
51.1 
65.5 
88.3 
87.2 
80.7 

E 
Actual 
best 
Fee 

3.00 
3.50 
3.50 
3.60 
5.00 
4.00 

H 
Under- 

achievement 
of NW 
(G-C) 

+7.0 
+1.2 
+5.9 

0 
0 

+0.8 

F 
Error in 

Actual fee 
@/A) 

-0.50 
-0.10 
c0.10 
-0.60 

0 
-0.8 



This model based on only 18 runs provides an optimum fee, which in all zones except zone 1 
brings us closer to an optimum NPV than the original model which was based on 45 runs. Note 
that because of the flatness of the model in zone 4, fees of 3.6 and 4.2 both yield NPVs of 
&88.3M, the highest we could find. 

Thus, even in a model with just three data points per zone, the predicted 'optimum' fee and the 
related NPV correspond very closely to the 'best' outcome obtained by running a large number 
of PLUTO tests. It would, therefore, appear that three model runs, provided two of them fairly 
closely bound the true optimum, will be adequate to provide a reasonable estimate of the optimum 
fee for any one zone, although some fine tuning may then be necessary, testing points around 
what appears to be the 'best' outcome. The slightly higher deviance in the outer zones is largely 
due to the actual curve being fairly flat on top forming a plateau. Yet the predicted optimum 
fares are extremely close to the 'best' values found through experimentation with PLUTO runs. 

3.3 Conclusions on Cordon Pricing 

(i) For a continuous variable such as fee it is possible to construct a good regression 
model, assuming a quadratic form, with just three model (PLUTO) runs per zone, 
provided that these enclose the optimum and bound it fairly closely. 

(ii) A large data set of model runs will not necessarly generate a useful regression model 
if it contains insufficient variation. 

(iii) The required model (PLUTO) runs may be specified using a formal rule (Appendix 
3) or a slightly more flexible adaptation of it as used here. As was noted in the 
previous section, further work is required on determining how much flexibility 
should be allowed when supposedly using formal rules, in order to get the most cost- 
effective result. 



4. BUS FARES AND SERVICE LEVELS 

4.1 Models Tested 

PLUTO allows us to set bus fares in the peak and off-peak separately. They consist of a fixed 
charge per boarding and a distance related charge. It is possible to introduce a flat fare by setting 
the distance related charge to zero. Bus service levels are determined in PLUTO by a model of 
the behaviour of profit maximising bus operating companies responding to market conditions and, 
in the batch version of PLUTO we were using, it was not possible to set precise service levels 
exogenously. We were however able to specify that additional buses should be added to the peak 
andlor off-peak, fleets and this gave us some influence over service levels. 

We already had to hand a very large data set of 94 PLUTO runs where fares andlor service levels 
were the only items to he varied. The variables were specified in the data input as:- 

PS - 
OPS - 
PF - 
DPF - 
OPF - 
DOPF - 
PKF - 
OPKF - 

number of buses per link per hour in the peak 
number of buses per link per hour in the off-peak 
average fare paid in the peak 
dummy, 1 if the peak fare is flat 
average fare paid in the off-peak 
dummy, 1 if the off-peak fare is flat 
average peak bus fare, converted to a factor with eight levels 
average off-peak fare, converted to a factor with seven levels 

Initially we tried a quadratic by creating variables PFS (peak fare squared) and OPFS (off-peak 
fare squared). We also squared the service level variables giving PSS and OPSS. This model 
was not successful. 

We next converted the fare levels to factors and used them in the model as an alternative to the 
continuous variables previously tied. This was far more successful. The model is shown below, 
further detail is given in Appendix 4. 

NPV = -97.75 - 4.27 PKF2 + 27.44 PKF3 + 44.71 PKF4 + 50.2 PKF5 + 55.03 PKF6 (7) 
+ 62.53 PKF7 + 55.16 PKF8 + 17.57 OPKF2 + 8.81 OPKF3 + 3.6 OPKF4 
- 34.73 OPKF5 - 41.41 OPKF6 - 334.9 OPKF7 - 0.08 OPSS + 8.5 OPS 

The only variables to contribute to the model in addition to the fare factors are the off-peak 
service level and the off-peak service level squared. It is illuminating to graph the relationship 
between fare level and NPV, see Figure 4.1. The graph suggests that the peak fare may well 
exhibit a roughly quadratic relationship with NPV, but the vast majority of our observations are 
to the left of the optimum. The off-peak fare plot, clearly suggests trying some lower fares 
between 10 pence and zero. 



Figure 4.1: Conhibution of Different Fare Levels to NPV 
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Taking the model at face value the best peak fare found is PKE7 (78p) and the best off-peak fare 
found is OPKF2 (lop) although as lower fares have not been tested, it is possible that a fare of 
less than lop may yield a higher NPV. The optimal off-peak service level can be calculated as 
approximately 53 buses per link per hour. Nothing is said about the peak service level. The 
predicted NPV is 

i.e. an increase of £208M over the do-minimum. This is largely accounted for by the 
improvement in off-peak service levels. 

The model is telling us that although we can obtain a reasonable result from a large data set we 
happen to have to hand, a better result is likely to he obtained through the use of a data set where 
the model (PLUTO) runs have been designed with a view to providing GLIM with suitable 
information. In this case a large number of the runs are to the left of the peak fare optimum, 
while we have not enclosed the off-peak optimum. 

4.2 Conclusions on Bus Fares and service Levels 

(i) The regression model suggests a high peawoff-peak fare differential. 

(ii) There is a case for experimenting with off-peak fares of less than 10 pence. 

(iii) The model also suggests that increasing the off-peak service level from 11 up to an 
average of 53 buses per hour per link will have a very large positive impact on NPV. 



(iv) Regarding flat fares we found mixed evidence and they did not appear in our 
preferred model. 

(v) Working in average fares has not proved sensible. Instead of peak and off-peak 
fares, each with a dummy to indicate if they are flat fares, we now feel that it would 
be better to work with the parameters that PLUTO actually sets, namely the fured 
and variable parts of the fare, each for peak and off-peak. Similarly we have had 
difficulty in controlling PLUTO bus service levels, since these are not determined 
explicitly by parameters, but can merely be influenced, with other influences as 
patronage and road speed changes playing .their part. 



5. CORDON PRICING, BUS FARES AND SERVICE LEVELS 

5.1 Initial Tests 

The next step was again to return to the original problem of identifying an optimum with a 
minimum number of model runs. The tests reported here widened the scope of the problem by 
allowing policy in three areas to vary at once, namely, cordon pricing, bus fares and bus service 
levels. This gives us the option of change in any one of the following variables: 

Cordon Pricing - FEE - Fee charged to cross the cordon in the 
peak 

Z1 to 26 - Zone boundary for cordon charge 
Bus Fare - PFF - Peak fare, fixed element 

PFV - Peak fare, variable element 
OFF - Off-peak fare, fixed element 
OFV - Off-peak fare, variable element 

Bus Service - APB - Additional vehicles in the peak 
AOB - Additional vehicle in the off-peak 

The exact specification of the input variables will be, in part, dependent on the strategic transport 
model used. In this case, using PLUTO, we have some constraints on the ways in which bus 
service levels may be specified by the policy maker. PLUTO automatically adjusts bus service 
levels, as other policy variables are altered, in order to maintain a certain load factor. Moreover, 
policy changes to service levels are expressed in terms of additional vehicles in the peak and/or 
off-peak. Thus, it is very difficult to impose a specific change in the level of service provided. 
After some experimentation a decision was taken to allow PLUTO to set the peak service level 
in response to changes in demand; the option of adding vehicles in the off-peak was retained. 

For the first experiment an 18 test matrix was devised, designed to provide the minimum number 
of runs that would permit the construction of the first regression model. The intention was to use 
the results of this initial regression model in order to suggest further PLUTO runs that would both 
add to the regression data set and move us towards an optimum. The original 18 test matrix is 
shown in Table 5.1. 



Table 5.1: Formal 18 Test Matrix for Bus Service and Fare Levels and Cordon Pricing tests 

(i) CE1 to CE6 are based on 'expert' advice on fees for the six zones. When setting these 
values it is possible to take account of advice as to whether fees should rise, fall or remain 
constant as the boundary moves out from the centre. If no expert advice is available, 
guidance might be sought from previous studies, or a random pattern used. 

(ii) PFE and PVE are values derived from expert advice or do-minimum values for the peak 
fixed and variable fare elements respectively. They are used for both peak and off-peak 
fares. 

(iii) BP is a proportion of the number of buses currently used in the peak. When using 
PLUTO we adjust the off-peak only. 

Run 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

The next task was to specify the starting values for each variable. We used a combination of 
common sense constraints and limited expert guidance. 

Cordon Price and Zone (CEl to CE62- Earlier in the work advice from an 'expert' was that a 
'good' fee would be around £1.50, and that it was likely to increase as the boundary moved out. 
Our starting value for the cordon fee was therefore set at £1.50 to allow us to test around it. At 
this stage we had no firm guidance as to the best location for a zone boundary so we tested six 
possibilities, forming concentric rings around the central area. This appeared to be a reasonable 
starting point as no UK city has a cordon charge as yet, knowledge is bound to be limited. As 
the boundary moves out, the fee increases in steps of 50 pence, in order to ensure that a wide 
range of values is tested. 

Run 
Code 

LM 
LO 
LP 
LQ 
LS 
LT 
LU 
LV 
LW 
LX 
LY 
LZ 
KQ 
KR 
KS 
KT 
KU 
KV 

Cordon Pncing 

Zone 

Z1 
22 
23 
24 
25 
26 
Z1 
22 
23 
ZA 
25 
26 
Z1 
22 
23 
24 
25 
26 

Fee 

0.4 CEl 
0.4 CE2 
0.4 CE3 
0.4 CE4 
0.4 CE5 
0.4 CE6 

CE1 
CE2 
CE3 
CE4 
CE5 
CE6 
2CE1 
2CE2 
2CE3 
2CE4 
2CE5 
2CE6 

Peak Bus Fares 

Fixed 

2PFE 
PEE 
3PFE 

0.6PFE 
PFE 
2PFE 
PEE 
3PEE 
PFE 
2PFE 
2PFE 

0 
2PFE 

0 
9PFE 
5PFE 

0.6PPE 
0 

Additional 
off-peak 
vehicles 

0.6BP 
2BP 
BP 
BP 

0.6BP 
2BP 

0.3BP 
3BP 
BP 
BP 

0.3BP 
3BP 

0 
5BP 
BP 
BP 
0 

5BP 

Variable 

2PVE 
0.6PVE 

PVE 
0.6PVE 

PVE 
0.6PVE 
PVE 
3PVE 

0.3PVE 
0.6PVE 
0.3PVE 
5PVE 
PVE 
PVE 
3PVE 
5PVE 

0.3PVE 
0.3PVE 

Off-peak Bus fares 

Fixed 

PEE 
0.6PFE 
0.6PFE 
0.6PFE 

0 
2PFE 
PFE 
PFE 

0.6PFE 
2PFE 
2PFE 

0 
0.6PFE 

0 
0 

5PFE 
0.6PFE 

0 

Vanable 

PVE 
0.3PVE 
0.3PVE 
0.6PVE 
0.3PVE 
0.6PVE 

PVE 
PVE 

0 
0 
0 

5PVE 
0 

0.6PVE 
2PVE 
5PVE 

0.3PVE 
0 



Bus Fares CPFE, PVE) - Bus fares in the PLUTO do-minimum run are frozen at the commercial 
levels prevailing in year 1; that is PFP = 40p, PVF = lop, OFF = 20p and O W  = 5p. By year 
10 in the do-minimum a small amount of subsidy is being paid. A common sense constraint was 
to keep fares at or below the peak commercial fare level, as justification of a higher fare level 
would be problematic. However, we do have some tests of higher fare levels to ensure sufficient 
variation and to avoid missing the possibility of a successful high fare strategy. It was also seen 
to be sensible to constrain the off-peak fare to be equal to or lower than the peak fare, to reflect 
the different price elasticities. With these const~aints in mind our starting values are PFE = 20p 
and PVE = 5p, which also happen to be the level of off-peak fares in the do-minimum run. 

Bus Service Levels (BP) - The constraint here, again a common sense one, was that we did not 
wish to test service levels below commercial levels. It was intended to add additional off-peak 
vehicles. Our original unit here is 10% of the peak vehicle requirement (312) rounded to the 
nearest 10 to give BP = 30. 

Table 5.2 shows the test matrix values and the NPV resulting when each strategy was run using 
PLUTO. 

Table 5.2: Cordon Pricing, Bus Fares and Service levels the 18 test mahix values (all prices in 
pence) 

* All values of 2 pence have been rounded up from 1.5 pence. 

This data was then used to construct a linear regression model. Test 16 has a very large, negative 
NPV, a result of the combination of very high bus fares with a high cordon charge. We found 
it impossible to produce a viable regression model with this run included. We omitted it on two 
grounds, firstly, that the NPV was beyond our range of interest, secondly, the distorting effect it 
had on the statistical model. 

Run 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Run 
Code 

LM 
LO 
LP 
LQ 
LS 
LT 
LU 
LV 
LW 
LX 
LY 
LZ 
KQ 
KR 
KS 
KT 
KU 
KV 

Cordon 
hicing Additional 

Off pk buses 

18 
60 
30 
30 
18 
60 
9 
90 
30 
30 
9 
90 
o 

150 
30 
30 
0 

150 

Peak Bus Fare 

Zone 

1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 

NPV 
(W 

12.02 
125.12 
120.25 
102.14 
97.55 
64.81 
-2.85 

125.01 
136.55 
142.67 
102.86 

-172.98 
85.02 

185.14 
-62.99 

-571.03 
46.89 
18.54 

Fixed 

40 
20 
60 
12 
20 
40 
20 
60 
20 
40 
40 
0 
40 
0 

180 
100 
12 
0 

Off Peak Bus Fare 

Fee 

60 
80 
100 
120 
140 
160 
150 
200 
250 
300 
350 
400 
300 
400 
500 
600 
700 
800 

Variable 

10 
3 
10 
3 
5 
3 
5 
15 
2 * 
3 
2 
25 
5 
5 
15 
25 
2 
2 

Fixed 

20 
12 
12 
12 
0 
40 
20 
20 
12 
40 
40 
0 
12 
0 
0 

100 
12 
0 

Variable 

5 
2 
2 
3 
2 
3 
5 
5 
0 
0 
0 
25 
o 
3 
10 
25 
2 
0 



The data set was limited to 17 observations, which constrained the number and combinations of 
variables that we were able to test within the regression model. However, at this stage we are 
looking to the regression model for guidance on additional PLUTO runs rather than a definitive 
answer. The best outcome was obtained using the model listed below in Table 5.3. It should be 
remembered that only one cordon charge boundary will be operating at any one time; so only one 
of FZ1 to FZ6 will be relevant. 

Table 5.3: Initial GLIM Model (8) using combined data (17 observations) 

R2 = 99.5 
* Z1 to 26 are a series of dummy variables, 1 for each zone, taking the value if the boundary is 
in that zone, zero otherwise 

We used this model to aid in specifying six further PLUTO runs. Table 5.4 shows the levels of 
the input variables and the NPV obtained from the runs. The fees to be charged in each zone 
were derived directly from the model by differentiation (except in the case of zone 2 when the 
coefficient is negative). Guidance on the other variables is more difficult to extract, but a higher 
level of off-peak service is indicated. A high peak fare, above commercial levels, is also 
suggested, as is a lower off-peak fare. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

S.E. 

731.0 
43.48 
70.61 
62.67 
74.74 
67.71 
61.37 
1.976 
1.363 
2.582 

29.63 
13.73 
0.01423 
0.04204 

Estimate 

-510.3 
40.22 

-19.66 
35.23 
52.32 
45.97 
29.05 
1.906 
2.084 

-7.290 
8.886 

18.69 
-0.06409 
-0.006596 

Parameter 

1 
EZ1 " 
E X  
FZ5 
FZ6 
APF 
AOF 
FEES 

PS 
0s 

AOFS 
ApFS 

Variable Name 

Constant 

} Fee x Zone* 

Average Peak Fare 
Average Off-peak Fare 
Fee squared 
Peak service level 
Off-peak service level 
AOF - squared 
.bxw - squared 



Table 5.4: An additional six PLUTO runs (values in pence) 

As can be seen from the NPVs, we are heading in the right direction. This data was added to the 
data set and the regression model rerun. Table 5.5 sliows the best performing regression model 
obtained. 

Code 

KZ 
JA 
JB 
JC 
JD 
JE 

Table 5.5: Combined data regression model (9) 23 observations 

Deviance 1084.2 (original deviance 234218) R2 = 99.5 

Output 

NPV 
(EM) 

154.96 
238.06 
222.13 
277.39 
189.53 
240.19 

Inputs 

Although we were able to experiment with a larger range of variables that we thought would 
contribute to the model, eg changing FEES into six zone specific variables, adding a term linking 
the relative levels of peak and off-peak fares, these were not successful. The interaction variables 
were insignificant, as were four of the six fee squared variables. Moreover, the six fee squared 
variables, by reducing the degrees of freedom, made the model as a whole less reliable. The only 
new variable tried that performed well was the squared form of the additional off-peak vehicles 
variable. 

Estimate 

-37.21 
1.517 
1.033 

-0.008649 
-0.06408 
38.91 
47.27 
57.29 
72.01 
58.94 
66.46 
-7.064 
1.605 
-0.005148 

Zone 

1 
2 
3 
4 
5 
6 

S.E. 

16.16 
0.2410 
0.53 11 
0.001172 
0.005851 
6.546 
7.172 
6.855 
6.622 
6.818 
8.874 
0.9602 
0.2158 
0.0009432 

Parameter 

1 
APF 
AOF 
APFS 
AOFS 
FZ1 
FZ2 
FZ3 
FZ4 
FZ5 
FZ6 

FEES 
AOP 
AOPS 

Peak Fare 
Variable 

20 
10 
0 
10 
15 
20 

Variable Name 

Constant 
Average Peak Fare 
Ave off-peak Fare 
Ave Peak Fare Squared 
Ave Off-peak Fare Squared } " "ne for each 

Fee squared 
Additional Off-peak vehicles 
AOP squared 

Fee 

300 
300 
250 
370 
330 
200 

Peak Fare 
Fixed 

80 
40 
40 
20 
60 
20 

Off Peak 
Fare Fixed 

0 
10 
15 
0 
10 
20 

Off Peak 
Fare Variable 

5 
0 
0 
2 
5 
0 

Additional 
O/P Vehicles 

200 
120 
100 
250 
60 
120 



This model, far from perfect though it is, was then used to predict an optimum PLUTO run (JG). 
The calculations are shown in Appendix 5. The PLUTO run suggested by regression model (9) 
is shown together with the "best" PLUTO run from the input data set, in Table 5.6. 

Table 5.6: 23 data points, combined data, predicted optimum. 

The optimum run suggested by model 9 gives an actual PLUTO outcome which exceeds the 
values obtained in all the input data tests. 

Zone boundary 
Fee 
Peak Fare - Fixed 

- Variable 
Off-peak - Fixed 

Variable 
Additional off-peak vehicles 

NPV (PLUTO Output) 

The two strategies are very similar in many respects, with our "optimum" run setting a higher road 
user fee and peak bus fare. In JG annual income from road user fees exceeds, by £3M in year 
10, the subsidy to the bus company, while in JC the revenue from road user fees is exceeded by 
the subsidy to the bus company by about f i m  in year 10. The policy in JC is running a revenue 
account deficit, while JG manages a slight surplus. 

5.2 Cordon Pricing, Bus Fares and Bus Service Levels - Interim CONCLUSIONS 

Predicted Optimum (JG) 

4 
£5.10 
0.40 
0.12 
0.08 
0.00 

156 

279.2M 

In this section we have tackled an extremely difficult problem and have had considerable success 
in reaching an optimum. 24 model runs were undertaken, with the starting levels for each input 
variable based on a mixture of common sense constraints and limited expert advice. 

Best Output (JC) 

4 
£3.70 
0.20 
0 10 
0.00 
0.02 

250 

277.39M 

(i) We have now shown that our method is able to predict the input levels that will take us 
towards an optimum, while allowing a large number of inputs to vary at once. 

(ii) The problem set in this section is a very difficult one given the number of possible zone 
boundaries and the different elements of the bus fares. 

(iii) If the range of options could be narrowed a little, through further use of expert advice 
(boundary setting), simplification (fares structure) or constraints as to what is or is not 
feasible, the problem would become even more tractable. 



5.3 Revised Tests 

The tests above were carried out rapidly. When we came to consider how one would make 
concrete recommendations as to the method, it was clear that the original model (8) shown in 
Table 5.3 would be difficult to identify following a set procedure as it includes a number of 
insignificant variables. In addition, we had identified a new variable, AOPS (additional vehicles 
in the off-peak, squared) which was very useful in the second model. It was decided to go back 
and test it in the original model, as this would enable us to specify the "optimum" test at this 
stage also, as every input variable would have a quadratic form in the regression model. It was 
also felt that the regression modelling aspect would be more easily specified as a "procedure" to 
be followed if the initial model was tidied up a bit. The new model for the original 17 item data 
set is as follows; 

Table 5.7: Revised regression model (10) for combined data, 17 observations 

Deviance 579.13 (original deviance 132266) RZ = 99.6 

This was the best regression model we could find using this data set. While it is not ideal, it is 
better than the original model shown in table 5.3. The are several points to note, firstly, FZZ, is 
positive although low and with a high standard error, in the original it had a negative coefficient 
and an even higher standard error. Secondly, the constant has been reduced significantly. 
Thirdly, and most importantly, we now have a model that will allow us to make a first estimate 
of the "optimum". If we use differentiation, as before, we come up with suggested values as 
follows; 

Estimate 

-76.94 
1.482 
1.182 
-0.008044 
-0.06679 
56.04 
1.892 
57.17 
73.94 
70.84 
50.26 
-7.989 
2.804 
-0.002961 

92p Average peak fare 
9p Average off-peak fare 
4 Zone 
470p Fee 
473 Additional off-peak vehicles 

Parameter 

APF 
AOF 
APFS 
AOFS 
FZ1 
FZ2 
FZ3 
FZ.4 
FZ5 
FZ6 
FEES 
AOP 
AOPS 

Standard 
Error 

45.11 
0.3643 
0.7027 
0.001714 
0.008033 
16.61 
59.1 1 
10.09 
9.914 
13.22 
30.99 
1.493 
1.185 
0.006363 

Variable Name 

Constant 
Average peak fare 
Average off-peak fare 
APF squared 
AOF squared 
Fee * Zone for each zone 

Fee squared 
Additional off-peak vehicles 
AOP squared 



The AOPS variable is insignificant so there is some doubt over the very large value for additional 
off-peak vehicles. The data set thus far probably does not contain values of AOP high enough 
for the contribution to NPV to start declining or even slowing significantly. It would be our 
recommendation that the squared variables are retained in order to allow initial estimates of the 
optimum values to be made. These values were then substituted into model 10 

NPV = -76.94 + 0.3643(92) + 1.182(9) - 0.008044(92)' - 0.06679(9)' + 73.94(4.7) - 7.989(4.7)' 
+2.804(473) - 0.002961(473)' 

The values were then input into a PLUTO run (JH), which gave an NPV of £231.12M, which is 
significantly higher than the best (KR) obtained in the input data set, see Table 5.8. The 
regression model prediction of E728.59M is quite inaccurate at this stage, however, the model has 
succeeded in guiding us towards a strategy with a higher NPV. 

Table 5.8: Predicted optimum from 17 data points revised model (values in pence) 

Our optimum run succeeds by offering a very good service to off-peak bus users and by speeding 
up peak traffic flows. We have obtained a good result on the 17 point data set. The question 
now is how far we can improve this with additional PLUTO runs. 

Input variable 

Peak fare - fixed 
- variable 

Off-peak fare - fixed 
- variable 

Additional off-peak vehicles 
Zone boundary 
Fee 

NPV 

The GLIM model was used to guide us in setting up further PLUTO runs. Firstly we estimated 
the "best" fee for each zone, again using differentiation. 

Zone 1 £3.50 
Zone 2 £0.10 
Zone 3 £3.60 
Zone 4 £4.70 
Zone 5 £4.50 
Zone 6 £3.20 

"optimum" run 
(MI 

40 
13 
9 
0 

473 
4 

470 

E231.12M 

Best of input 
data set (KR) 

0 
5 
0 
3 

150 
2 

400 

f185.14M 



These fees were then included in a matrix of six additional tests, except where the values are close 
to previous runs already in the data set. We also increased the fee on Zone 2 slightly, as this 
variable is insignificant in the model. Values for other input variables were designed to test 
around the values predicted to perform best by the regression model. Previous PLUTO runs in 
the existing data set were also used to guide the design, in order to avoid replication and ensure 
variation in the data set. The resulting six tests are shown in Table 5.9. 

Table 5.9: An additional six test matrix (all prices in pence) 

The six PLUTO runs above and the "optimal" run were added to the original data set, giving us 
24 observations in total. The regression model was then reestimated. 

Table 5.10: New data set regression model (ll), 24 observations 

Code 

JJ 
JK 
JL 
JI 
JM 
JN 

Fee 

400 
40 

360 
400 
500 
240 

Zone 

1 
2 
3 
4 
5 
6 

Peak 
Fare 
Fixed 

60 
45 
25 
60 
10 
20 

Estimate 

11.02 
22.96 
38.27 
39.39 
47.37 
44.18- 
51.52 
-5.532 
1.259 
0.8808 

-0.007174 
-0.0579 
0.84 

-0.00145 

Standard error 

34.04 
13.04 
15.03 
14.08 
13.16 
13.98 
17.34 
1.843 
0.5188 
1.047 
0.002349 
0.01233 
0.1971 
0.000321 

Parameter 

FZ1 " 
FZ4 
FZ5 
FZ6 

FEES 
AF'F 
AOF 
APFS 
AOFS 
AOP 
AOPS 

Peak 
Fare 

Variable 

5 
10 
10 
5 

20 
15 

Variable Name 

Constant 

Fee * Zone for each 

}-. 
Fee squared 
Average peak fare 
Average off-peak fare 
APF squared 
AOF squared 
Additional peak vehicles 
AOP squared 

Off 
peak 
Fare 
Fixed 

8 
5 
0 
2 
0 
2 

Off peak 
Fare 

Variable 

0 
0 
2 
1 
0 
0 

Additional 
off-peak 
vehicles 

400 
600 
200 
350 
150 
500 

NPV 

EM 

186.61 
91.0 

245.06 
274.07 
266.88 
187.38 



This model is again fairly successful (RZ = 0.976); all the variables have the expected signs, and 
most are significant. This model points us towards zone 6 rather than zone 4, but as they are 
close it might be wise to test both as the standard errors are high. Again we need to estimate the 
optimum input variables that the model is suggesting; 

Fee = 51.52111.064 = 4.656 = £4.70 
APF = 1.25910.014348 = 87.7 = 88p 
AOF = 0.880810.1158 = 7.6 = 8p 
AOP = 0.8410.0029 = 289.6 = 290 

The regression fee for zone 4 was also estimated since its coefficient was clearly not significantly 
worse than that for zone 6, and zone 4 was the predicted optimum zone boundary in model 10. 

Fee = 47.37111.064 = 4.28 = £4.30 

The regression model prediction for NPV using these inputs with the cordon around zone 6 was 
calculated: 

NPV = 11.02 + 51.52(4.7) - 5.532(4.7)' +1.259(88) + 0.8808(8) - 0.007174(88)Z - 0.0579(8)Z 
+0.84(290) - 0.00145(290)2 

The optimum combination of inputs predicted was then tested using PLUTO, for zone 6 (JO) and 
for zone 4 where the regression model predicted an NPV of E292.66M 

Table 5.11: Optimum and the best of the data set. 

Again we have obtained an NPV higher than any in the input data set, using zone 6 as suggested 
by the regression model, however, by also testing zone 4 which had a coefficient only slightly less 
than that of zone 6, we obtain an even higher value for NPV. The regression model prediction 
is considerably more accurate in this model at E311.2M although still 8% higher than the true 
value. 

Variable 

Peak fare - fixed 
- variable 

Off-peak fare - fixed 
- variable 

Additional off-peak vehicles 
Zone boundary 
Fee 

NPV (PLUTO output) 

Optimum 
(Jo) 

39 
13 
8 
0 

290 
6 

470 

E274.67M 

Optimum - 
zone 4 

39 
13 
8 
0 

290 
4 

430 

E288.35M 

Best of the 
data set 

(JM) 

60 
5 
2 
1 

350 
4 

400 

E274.07M 



An additional six model runs have obtained an increase in NPV of approximately E50M. 

A slight problem was experienced with the additional six tests as the outcome fare levels in each 
case were below or equal to the predicted best, value. However, it is not thought that this has 
influenced .the result greatly. 

5.4 Conclusions on Bus Fare, Service Level and Cordon Pricing Tests 

(i) It is very useful if a quadratic form can be approximated for each continuous 
variable, as this allows predictions of optimum levels for such variables even where 
the statistical model is far from perfect. 

(ii) The statistical models constructed may be imperfect, but so long as they are the best 
attainable with a given data set, they should point in the direction of the answer. 

(iii) Using only 24 model runs we have attained a high NPV, faced with a large number 
of variables. 

(iv) Moving from 17 to 24 model runs obtained an increase in outturn NPV of 24.7%. 



6. INTRODUCING FURTHER COMPLICATIONS 

6.1 AN ADDITIONAL INDEPENDENT VARIABLE 

So far we have attempted to optimise while allowing the policy to vary on the following: bus 
fares, cordon pricing and bus service levels. At this point we add the option of a predefined 
package of infrastructure investment to the other three policy options. We have already 
undertaken a considerable amount of analysis to discover the best combination of road 
infrastructure projects, see Section 2, and in the previous section we were moving towards an 
optimum based on fares, service levels and cordon pricing. In designing a six test matrix for 
PLUTO, we took our previously defined best combination of infrastructure projects, as our 
infrastructure package, and varied the level of the other variables around what the regression 
models tell us is their optimum level. The resulting matrix is given in Table 6.1 below; 

Table 6.1: 6 Additional PLUTO tests including infrastructure 

This data was then added to the 24 point data set used in Section 5.3, to give us thuty 
observations. The infrastructure package was a dummy variable, 0 = no investment, 1 = projects 
5,6,7,9,10. The regression model was rerun using the same variables as before, as shown in Table 
6.2. 

Extra 
off 

peak 
vehicles 

700 
200 
300 
400 
600 
500 

Code 

JQ 
JR 
JS 
JT 
JU 
JV 

Fee 

500 
600 
300 
450 
550 
700 

Zone 

1 
2 
3 
4 
5 
6 

Infra- 
structure 
package 
included 

YES 
YES 
YES 
YES 
YES 
YES 

Peak 
Fare 
Fixed 

50 
30 
0 

100 
15 
0 

NF'V 
Em 

222.15 
383.21 
380.68 
402.19 
281.12 
270.52 

Peak 
Fare 

Variable 

0 
10 
20 
0 

20 
40 

Off 
peak 
Fare 
Fixed 

10 
6 
0 

20 
3 
0 

Off-peak 
Fare 

Variable 

0 
1 
2 
0 
2 
4 



Table 6.2: Regression model (l2), 30 observation data set 

This is a useful model, giving the expected signs on all the coefficients, and showing the 
beneficial impact of the infrastructure package. The coefficient for the infrastructure package is 
actually higher, though very similar to the NPV obtained from running this investment package 
through PLUTO in isolation, E133.5m (see section 2). 

Differentiation was used to obtain the values for each variable that the model implied would 
enable us to reach an optimum; 

Variable Name 

Constant 
Fee x Zone for 1 each zone 

I 
I 
Fee squared 
Average peak fare 
Average off-peak fare 
APFsquared 
AOF squared 
Additional off-peak vehicles 
AOP squared 
Infrastrncture package 

74p Average peak fare 
0.6p Average off-peak fare (entered as a zero fare) 
5 15p Fee in zone 4 
305 Additional off-peak vehicles 
1 Infrastructure package 

Parameter 

FZ1 
FZ2 

FZ4 
Fz3 

FZ5 
FZ6 
Fees 
APF 
AOF 
APFS 
AOFS 
AOP 
AOPS 
INF 

Estimate 

30.0 
3 1.99 
45.03 
45.31 
50.40 
41.17 
45.55 
-4.896 
1.08 1 
0.05693 

-0.0073 
-0.04435 
0.5589 

-0.00092 
144.3 

Comparing these figures with those for the previous model without the infrastructure package, it 
suggests slightly lower bus fares, a few more off-peak vehicles, and a higher cordon charge, this 
time in zone 4. The marginal nature of most of the changes suggests that the regression model 
is now fairly stable. When these values were input into PLUTO the NPV obtained was 
£295.63M, which is higher than all but one in the data set, suggesting that even with only six runs 
including the infrastructure package, a helpful result can be obtained. 

Standard Error --- 
37.94 
14.17 
16.48 
16.00 
15.03 
15.43 
18.52 
2.080 
0.5686 
1.203 
0.0027 
0.0133 
0.1861 
0.00027 
2.08 

6.2 BEHAVIOUR OF OTHER DEPENDENT VARIABLES 

In this study we have concentrated on optirnisation with NPV as the variable to be maximised, 
as NPV is the most complete measure of the costs and benefits of a particular policy combination. 
Of course some impacts are not - at present - monetised, most particularly environmental impacts 
which are not included in our NPV at all. It might also be an objective to reduce accidents, in 
which case the absolute number becomes a decision variable, regardless of the fact that the cost 
of accidents is incorporated in the NPV measure. 



In this section we consider how environmental impacts and injury accidents vary as we move 
toward an optimum NPV. Here we will use the data set built up in Sections 5 and 6.1 to 
investigate the issue. The environmental index represents various types of air and noise pollution; 
the lower the number the less the pollution. Accidents are shown as total casualty accidents per 
year. Table 6.3 shows the three dependent variables of interest, NPV, accidents and the 
environmental index, together with the policy variables for each run. The data has been ordered 
in relation to NPV, listing the runs with the highest NPV first. It is clear from the table that 
maximising NPV has also led to environmental improvements and a reduction in injury accidents 
relative to less successful runs in terms of NPV. 

The highest NPVs are generally found with low off-peak bus fares, higher off-peak service levels, 
a high cordon charge and with investment in road improvements; the net result is fewer car 
journeys to the centre and hence fewer accidents and reduced pollution.- The environmental 
indicator is well correlated with NPV at least in the context of this particular set of policy 
variables. The accident figure is less well correlated; the lowest level is achieved by a policy of 
very low bus fares 8p in the peak and zero in the off-peak and the highest congestion charge - 
f 8 - tested, set at the boundary furthest from the centre; thus reducing t r d c  flow into the centre. 
Such a policy cannot be expected to maximise NPV as it involves running a large subsidy to the 
bus company, and time or money penalties to car drivers (switchers and stayers). A policy 
involving a severe reduction in traffic could only succeed overall if coordinated with policy 
options, such as land use changes, cycle lanes, pedestrianisation, which we have not examined 
here. 



Table 6.3: NPV, Accidents, Environmental Index and Policy Variables 

NPV (fm) 

402.19 
383.21 
380.68 
281.12 
274.07 
270.52 
266.88 
245.06 
231.12 
222.15 
187.38 
186.61 
185.41 
180.54 
142.67 
136.55 
125.12 
125.01 
120.25 
102.86 
102.14 
97.55 
91.00 
85.02 
64.81 
46.89 
12.02 
2.85 

-62.99 
-172.98 

Environmental 
Index 

47.6 
47.2 
47.6 
47.8 
48.8 
48.1 
48.7 
49.0 
49.0 
49.4 
50.2 
50.1 
49.2 
48.2 
51.0 
50.0 
50.5 
50.9 
51.2 
50.7 
50.8 
50.4 
51.1 
51.2 
51.9 
49.0 
52.6 
52.3 
50.7 
52.3 

Accidents 

1619 
1604 
1581 
1570 
1587 
1632 
1571 
1617 
1584 
1724 
1699 
1795 
1641 
1521 
1722 
1667 
1712 
1782 
1781 
1697 
1730 
1719 
1734 
1885 
1822 
1598 
1938 
1905 
1788 
1827 

Ave Pk Fare (p) 

100 
68 
73 
90 
79 

143 
84 
84 
89 
50 
75 
79 
19 
8 

42 
28 
31 

116 
97 
48 
23 
39 
83 
60 
52 
20 
78 
39 

236 
90 

Ave OIPk Fare @) 

20 
10 
8 

11 
6 

16 
0 
8 
9 

10 
2 
8 

12 
0 

40 
12 
20 
40 
20 
40 
24 
8 
5 

12 
52 
20 
40 
40 
39 
93 

Additional 
Vehicles 

400 
200 
300 
600 
350 
500 
150 
200 
473 
700 
500 
400 
150 
150 
30 
30 
60 
90 
30 
9 

30 
18 

600 
0 

60 
0 

18 
9 

30 
90 

Zone 
Boundary 

4 
2 
3 
5 
4 
6 
5 
3 
4 
1 
6 
1 
2 
6 
4 
3 
2 
2 
3 
5 
4 
5 
2 
1 
6 
5 
1 
1 
3 
6 

Fee @) 

450 
600 
300 
550 
400 
700 
500 
340 
470 
500 
240 
400 
400 
800 
300 
250 
80 

200 
100 
350 
120 
140 
40 

300 
160 
700 
60 

150 
500 
400 

Infrastructure 

1 
1 
1 
1 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 



7. CONCLUSIONS 

7.1 Discrete Policy Variables 

Our work with discrete variables, ie a number of non-mutually exclusive infrastructure projects 
(see Section 2) poses problems for modelling, where many of the interactions are unknown a 
priori. A fully systematic approach to such a problem is expensive in terms of transport model 
runs. While an intuitive approach may be unable to reach the optimum, it requires fewer transport 
model runs, allowing for some testing around the predicted optimum. However, an approach 
based more simply on professional judgement is probably more efficient. 

7.2 Continuous Policy Variables .. 

When investigating a single continuous policy variable, tests as described in Section 3 to identify 
the area of the optimum NPV through the assumption of a roughly quadratic form proved to be 
very effective. 

7.3 Multiple Policy Variables 

When considering a wide range of policy variables the design of the data set should aim to 
include as much variation as possible for each input variable. Although a pure orthogonal design 
would require too many transport model runs, the same principles should guide the design process. 

The main points are:- 

(i) For the initial data set, select the minimum number of runs that gives variation in the 
variables under consideration, and gives sufficient degrees of freedom to test regression 
models with the policy variables (and squared terms for continuous variables) as 
independent variables, 

(ii) use regression models to guide the selection of further transport model runs. 

This process should continue until improvements in NPV become marginal and exactly what 
'marginal' means in the context in which the process is being used should be defined in advance. 

7.4 The Optimisation Process 

Drawing on our experimental work with PLUTO we have developed a general methodology for 
the optimisation process which may be expressed as a six step process with iteration, this is 
summarised in diagrammatic form in Figure 7.1. 



Figure 7.1 : The optimisation process 
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The steps to be followed: 

1. Define the objective function and select a key indicator for that objective. 
In the work reported here our objective is economic efficiency and the key indicator the 
NPV. We chose to use NPV as our indicator.in the developing and testing process as it 
is an important indicator in many transport appraisals and because clear optima can be 
identified. 

2. Specify the policy measures to be tested. 
This will involve the identification of policies with the potential to contribute to a 
successful strategy. It is also important to define a variable or parameter for each policy 
to enable it to be included in the regression model. 

3. Initial runs of the strategic model. 
Sufficient runs are required to generate an initial regression model. The number of runs 
needed will be dependent on; the number of independent variables and any interaction 
terms between them and; by the need to provide a range of policy options. 

4. Specify and calibrate a regression model. 
The key indicator (step 1) forms the dependent variable, and the policy variables (step 2) 
the independent variables. This is an exploratory stage which should yield information 
on the usefulness of policies and the presence or absence of synergy through interaction 
terms. 

5. Estimate optimal policy. 
Interpret the regression model to estimate the optimal value of the key indicator and the 
set of policy variables required in order to achieve it. 

6.  Run approximation to predicted optimum and additional runs around this. 
The strategic model is used to run a policy test closely approximating the predicted 
optimum found in step five, together with other runs around this optimum. The number 
of such runs, and their closeness to the predicted optimum will depend on the goodness 
of fit of the regression model, particularly as expressed through t statistics and residual 
values. Where the model fits very well, only the predicted optimum plus a couple of 
close by tests need be run. Where the model remains poorly fitting, rather more runs are 
indicated, and spread more widely around the predicted optimum. 

If the value of the key indicator for the policy test specified in step five is higher than 
others in the overall set of tests and close to that estimated by the regression model, it can 
reasonably be accepted as the optimum. If not, all the additional test results are added to 
those from step three, and steps four to six are repeated until a satisfactory optimum is 
reached. 

7.5 General Conclusions 

Our own results suggest that 24 transport model runs may be sufficient to get close to an optimum 
NPV, even for quite complex problems. We conclude that by making use of our method it is 
possible to get closer to an optimum, more quickly than via other approaches. Our approach 
requires considerable skill in interpreting the regression models and in the design of the data set. 
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APPENDIX 1 - ROAD PROJECT MODEL PARAMETERS 

Each variable is a dummy 

Variable 

P1 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 
PI0 
P810 
P910 
PI7 
P27 
P45 
P59 
P47 
P79 
P13 
P210 
P5710 
SUB 

P1 to PI0 indicate single projects, 1 to 10. 

P810 to P210 indicate an interaction term between the pair of projects indicated in the variable 
name. 

P5710 is a three way interaction term between projects 5, 7 and 10. 

Intuitive Model 

Coefficient 

-6.63 
-10.31 
-18.09 

- 
20.19 

- 
-12.71 

- 
82.53 
34.24 

-18.18 

SUB is 1 if any two projects directly affect the same road space. 

(equation 4) 

Standard error 

4.2 
5.2 
5.2 
- 
4.5 
- 
4.2 
- 
5.2 
5.2 

4.2 

Systematic Model 

Coefficient 

-14.03 
-8.30 

-12.42 
-7.99 
23.6 

- 
-5.03 
- 

89.79 
41.72 

-22.48 
-16.36 
-5.61 

-12.19 
-12.20 
-11.22 
13.75 
9.72 

11.25 
-5.81 
10.49 
- 

(equation 1) 

Standard error 

1.5 
1.5 
1.4 
1.5 
1.4 
- 
i .J 
- 
1.5 
1.4 
4.1 
3.0 
4.3 
4.2 
4.4 
2.8 
3.3 
3 .O 
4.5 
4.3 
4.1 
- 



APPENDIX 2 CORDON PRICING 

SECTION 1 - ESTIMATION OF OPTIMUM FEE AND NPV PER ZONE USING THE 
INITIAL MODEL (Equation 5) 

Optimum Fees 

Variable 

FZ1 
FZ2 
FZ3 
Fz.4 
FZ5 
FZ6 
EZ12 
Fzzz 
FZ3z 
Ew 
FZ52 
FZ6' 

Coefficient 

13.87 
23.45 
36.24 
45.77 
3 1.45 
30.32 
-2.49 
-2.96 
-5.30 
-5.86 
-2.77 
-2.57 

Standard error 

4.44 
3.03 
5.56 
3.21 
0.98 
1.61 
1.35 
0.77 
1.59 
0.82 
0.14 
0.19 



SECTION 2 - CORDON PRICING MODEL, SYSTEMATIC DATA SET (Equation 6) 

Model 6 - 18 run data set 

Variable 

FZ1 
FZ2 
FZ3 
FZ4 
FZ5 
FZ6 
FZ12 
FZ2' 
FZ3' 
FZ4' 
FZ5' 
FZ@ 

= =  13.82 - 3.95 FZ, = 0 => FZ, e 13.82 = 3.5 
a m 1  3.95 

:. If FZ1 = 3.5 NPV = (13.82 x 3.5) - 1.98 (3.5') = 24.1 

If FZ2 = 3.6, NPV = (26.2 x 3.6) - 3.6 (3.5') = 50.2 

Coefficient 

13.82 
26.18 
36.30 
45.13 
37.35 
35.58 
-1.976 
-3.597 
-5.344 
-5.398 
-3.734 
-3.702 

If FZ3 = 3.4, NPV = (36.3 x 3.4) - 5.3 (3.4') = 62.1 

If FZ4 = 4.2, NPV = (45.1 x 4.2) - 5.4 (4.2') = 97.1 

S.E. 

2.496 
2.625 
2.181 
2.181 
1.636 
1.744 
0.5725 
0.5926 
0.4032 
0.4032 
0.2268 
0.2867 

If FZ5 = 5.0, NPV = (37.3 x 5) - 3.7 (5') = 94.0 

If FZ6 = 4.8, NPV = (35.6 x 4.8) - 3.7 (4.8') = 85.5 



APPENDIX 3 

RULE FOR TESTING SIMPLE CURVED FUNCTIONS FOR SUCCESSIVE ZONES GIVEN 
STARTING VALUE PROVIDED BY AN EXPERT 

- With Worked Example 

1. Suppose we wish to find the optimunl fee to charge at an optimally placed cordon. 
Suppose that the cordon may be placed around any zone, Z, ... Z, and any fee, f,, can be 
changed in each zone z. Let the objective function by Y, which in practice might be 
NPV. 

First ask an expert for a rough idea, XE, of the fee which is likely to be optimum. 

Secondly, prompt the expert for some the idea of whether this would be expected to get 
higher(H) or lower(L) as we move out from the centre, or neither. 

Start with the innermost zone Z,. Form X* such that X* - x', being < XE if the answer 
to 3 is H, and > X' if the answer to 3 is L. Round numbers will be quite adequate and 
simpler to handle. 

Perform model runs with a cordon around zone Z, and fee X = X and X = 2X*. If 
Y(2X*) > Y g )  then test X = 4X* otherwise test X = Y2X'. This ensures that the optimum 
is enclosed. 

Compare the objective function values found, ie Y(X) for these three X values. If the Y's 
are monotonically increasing we must run Y(4X8), Y(8Xa), Y(16X') etc until one turns 
down. If the are monotonically decreasing, we must run ~(X*18), Y(m16) etc until one 
these turns down. Then go to step 7. 

We now move to the next zone. Form new X* by setting X equal to the fee which 
maximised the objective function(s) in the previous zone (ie at step 6). Then proceed as 
as steps 5 and 6 for this new zone. 

Repeat until all zones have been covered. 

Enter this data into the regression model, where the 'NPV' is Y (the objective function) 
there is no constant term, and the fitted exploratory variables are dummy interactions 

ZONE * FEE 
and ZONE*FEE*FEE 
where ZONE is zerolone depending if the observation is for that zone, and FEE is the X 
value used on that run to get that Y value. 

Determine the optimum fee for each zone, i, as follows 



where p,, is the coefficient of ZONE * FEE for zone i and 0, is the coefficient of ZONE 
* FEE * FEE for zone i. 

11. Calculate the predicted maximum Yi for each zone, i, from the estimated equation, using 
fee level X, 

12. From the Y, values calculated at step 11, choose the highest. This will give the best zone 
for the cordon, as well as indicating roughly the optimal fee to be charged. The estimate 
of objective function Y, say NPV, will only be very approximate, but the choice of zone 
should be reliable and the optimal fee should not be too far out, particularly considering 
that it will need to be rounded before any implementation. 



APPENDIX 4 BUS FARES AND SERVICE LEVELS (Equation 7) 

Dummies for flat fares and peak service level perform poorly and so were excluded. 

* The actual fares attached to the factor levels. In each case level 1 of the factor is a fare of zero. 

Optimal off-peak service level: 

Variable 

Constant 
PKF2 
PKM 
PKF4 
PKFS 
PKF6 
PKm 
PKF8 
OPKP 
OPKF3 
OPKF4 
OPKF5 
OPKF6 
OPKm 
OPSS 
OPS 

= =  8.5 - 0.16 OPS 
aops 

Variable Value * 

18 
39 
50 
57 
70 
78 
90 
10 
15 
18 
30 
39 
79 

Coefficient 

-97.75 
-4.27 
27.44 
44.71 
50.20 
55.03 
62.53 
55.16 
17.57 
8.81 
3.57 

-34.73 
-41.41 

-334.9 
-0.08 
8.51 

therefore OPS = 8.510.16 = 53 roughly 

Standard Error 

16.8 
25.0 
18.8 
22.0 
19.1 
25.0 
18.4 
22.0 
9.5 

10.6 
11.2 
11.6 
9.4 

18.5 
0.004 
0.35 



APPENDIX 5: COMBINED TESTS - OPTIMUM INPUT LEVELS 

Equation (9), predicted inputs:- 

Cordon charge, zone 4 is the optimum location as it has the the highest coefficient and a common 
squared term (FEES) is used. 

72.01 - 5.10 xV = 72.01 - 14.128 FEES = 0 => FZ4 = - - - 
aFZ4 14.128 

Peak Fare 

- -  aNPV - 1.517 - 0.017298 APF = 0 => APF = 
1517 = 88 

aAPF 0.017298 - 

Off-peak Fare 

- =  aNPV 1.033 - 0.12816 AOF = 0 => AOF = 
1.033 

aAOF 
= 8 

0.12816 

Additional off-peak vehicles 

- -  aNPV - 1.605 - 0.010296 AOP = 0 => AOP = 
1.605 =a 

aAOP 0.010296 

Predicted NPV = 
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