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Given a semigroup S, for each Green’s relation K ∈ {L, R, J ,

H} on S, the K-height of S, denoted by HK(S), is the height 
of the poset of K-classes of S. More precisely, if there is a 
finite bound on the sizes of chains of K-classes of S, then 
HK(S) is defined as the maximum size of such a chain; 
otherwise, we say that S has infinite K-height. We discuss the 
relationships between these four K-heights. The main results 
concern the class of stable semigroups, which includes all finite 
semigroups. In particular, we prove that a stable semigroup 
has finite L-height if and only if it has finite R-height if and 
only if it has finite J -height. In fact, for a stable semigroup S, 
if HL(S) = n then HR(S) ≤ 2n − 1 and HJ (S) ≤ 2n − 1, and 
we exhibit a family of examples to prove that these bounds 
are sharp. Furthermore, we prove that if 2 ≤ HL(S) < ∞ and 
2 ≤ HR(S) < ∞, then HJ (S) ≤ HL(S) +HR(S) −2. We also 
show that for each n ∈ N there exists a semigroup S such 
that HL(S) = HR(S) = 2n + n − 3 and HJ (S) = 2n+1 − 4. 
By way of contrast, we prove that for a regular semigroup 
the L-, R- and H-heights coincide with each other, and are 
greater or equal to the J -height. Moreover, in a stable, regular 
semigroup the L-, R-, H- and J -heights are all equal.
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1. Introduction

Green’s relations, five equivalence relations based on mutual divisibility, are arguably 

the most important tools for analysing the structure of semigroups. For four of these 

relations, namely L, R, J and H, there is a natural associated poset and thus a height 

parameter. Specifically, Green’s preorders ≤L, ≤R, ≤J and ≤H are defined as follows:

• a ≤L b if and only if there exists s ∈ S1 such that a = sb;

• a ≤R b if and only if there exists s ∈ S1 such that a = bs;

• a ≤J b if and only if there exist s, t ∈ S1 such that a = sbt;

• a ≤H b if and only if there exist s, t ∈ S1 such that a = sb = bt.

(Throughout this paper, S1 stands for the monoid obtained from S by adjoining an 

identity 1 /∈ S.) Observe that ≤H = ≤L ∩ ≤R, ≤L ⊆ ≤J and ≤R ⊆ ≤J . Now, letting K

stand for any of L, R, J and H, Green’s relation K is defined by

a K b ⇔ a ≤K b and b ≤K a.

The preorder ≤K induces a partial order on the set of K-classes:

Ka ≤ Kb ⇔ a ≤K b (where Ks is the K-class of s ∈ S).

Definition 1.1. The K-height of S, denoted by HK(S), is defined as follows. If there 

is a finite bound on the sizes of chains of K-classes of S, then HK(S) is defined as 

the minimum such bound; otherwise, we say that S has infinite K-height and write 

HK(S) = ∞.

The L-, R- and J -heights were first explicitly defined and studied in [8], in the context 

of finite transformation semigroups. However, these parameters play an implicit role in 

the Rhodes expansion of a semigroup, a powerful tool in complexity theory, and in 

variants of this construction; see [2] [7, Chapter XII]. Moreover, for K ∈ {L, R, J , H}, 

having finite K-height is clearly stronger than satisfying the minimal condition on K-

classes. The minimal conditions on L-classes, R-classes and J -classes, denoted by ML, 

MR and MJ , as well as the related conditions M∗
L and M∗

R, have played an important 

role in the development of the structure theory of semigroups; see [5, Section 6.6] [9, p. 

23-29] [11] [13].

The article [12] investigates the relationship between the R-heights of semigroups and 

their bi-ideals (which include left-, right- and two-sided ideals). In particular, it is shown 

that the property of having finite R-height is inherited by bi-ideals. Of course, the results 

of that paper have obvious duals in terms of L-heights. In the final section of [12] there 

is a brief discussion about the relationships between the L-, R-, J - and H-heights. This 

is the subject of the present article.



M. Brookes, C. Miller / Journal of Algebra 659 (2024) 109–131 111

In the following section we provide some preliminary definitions and results regarding 

minimality in the posets of L-, R-, J - and H-classes. In Section 3 we consider the notion 

of stability and its relationship to the K-heights, and in Section 4 we discuss semigroups 

with K-heights equal to 1 or 2. In order to prove the main results of the paper, in 

Section 5 we develop some machinery concerning quotients and ideal extensions. The 

main results, contained in Section 6, include the following, where S is a semigroup.

• If HL(S) = n < ∞, then S is stable if and only if HR(S) < ∞, in which case 

⌈log2(n + 1)⌉ ≤ HR(S) ≤ 2n − 1.

• If S is stable, then HL(S) is finite if only if HJ (S) is finite. Moreover, if HL(S) =

n < ∞ then n ≤ HJ (S) ≤ 2n − 1.

• For every n ∈ N and m ∈ {n, . . . , 2n − 1}, there exists a semigroup T such that 

HL(T ) = n and HR(T ) = HJ (T ) = |T | = m.

• If 2 ≤ HL(S) < ∞ and 2 ≤ HR(S) < ∞ then, with min
(

HL(S), HR(S)
)

= n, we 

have

max
(

HL(S), HR(S)
)

≤ HJ (S) ≤ min(2n − 1, HL(S) + HR(S) − 2).

Finally, in Section 7 we consider the relationships between the K-heights for semisimple 

semigroups and, in particular, for regular semigroups.

2. Preliminaries

Throughout, S denotes an arbitrary semigroup, and K stands for any of Green’s 

relations L, R, J and H. Recall that each of Green’s relations is an equivalence relation. 

Furthermore, L is a right congruence, and R is a left congruence (a left/right congruence

on S is an equivalence relation on S that is preserved under left/right multiplication).

For two elements a, b ∈ S, we write a <K b if a ≤K b but a and b are not K-related. 

We define a K-chain in S to be a sequence of elements of S that is strictly decreasing 

under the preorder ≤K. Note that S has finite K-height if and only if there is a finite 

bound on the lengths of K-chains in S. Thus, S may have infinite K-height even if all its 

chains of K-classes are finite.

Notice that a semigroup with finite K-height has minimal and maximal K-classes. 

A semigroup can have at most one minimal J -class; if this J -class exists, it is called 

the minimal ideal. On the other hand, a semigroup may possess multiple minimal L/R-

classes (also known as minimal left/right ideals). If a semigroup has minimal L/R-classes, 

then it has a minimal ideal, which is equal to the union of all the minimal L/R-classes 

[3, Theorem 2.1].

A semigroup is left/right simple if it has a single L/R-class, and simple if it has a 

single J -class. Note that a semigroup is simple if and only if it has J -height 1. Cer-

tainly left/right simple semigroups are simple. It turns out that minimal L/R-classes 

are left/right simple subsemigroups [3, Theorem 2.4], and minimal ideals are simple sub-
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semigroups [3, Theorem 1.1]. A completely simple semigroup is a simple semigroup that 

possesses both minimal L-classes and minimal R-classes.

From the preceding discussion, we immediately deduce the following lemma.

Lemma 2.1. For K ∈ {L, R, J }, if HK(S) is finite then S has a minimal ideal, which is 

the union of the minimal K-classes of S.

In fact, the statement of Lemma 2.1 also holds for K = H, as a consequence of the 

following stronger result.

Lemma 2.2. A semigroup has minimal H-classes if and only if it has a completely sim-

ple minimal ideal (which is the union of all the minimal H-classes). Consequently, a 

semigroup with finite H-height has a completely simple minimal ideal.

Proof. This lemma is probably well known, but we provide a proof for completeness.

Suppose that S is a semigroup with minimal H-classes, and let J denote the union 

of all the minimal H-classes. For any x ∈ J and s, t ∈ S1, we have x ≥H xsxtx, so that 

x H xsxtx by minimality, which implies that x J sxt. Thus J is the minimal ideal of S, 

and hence J is simple. Moreover, for each x ∈ J we have x H x2, so that, by Green’s 

Theorem [4, Theorem 2.16], the H-class of x is a group. Thus J is a union of groups. 

Hence, by [4, Theorem 4.5], J is completely simple.

Conversely, if S has a completely simple minimal ideal, say J , then J is the union both 

of the minimal L-classes and of the minimal R-classes [3, Theorem 3.2]. Consequently, 

the H-classes of S contained in J are minimal. �

For semigroups with zero, the theory of minimal K-classes becomes trivial, so we 

require the notion of 0-minimality. Suppose that S has a zero element 0. A K-class of 

S is called 0-minimal if {0} is the only K-class below it. The semigroup S is left/right 

0-simple if S2 �= {0} and the L/R-classes of S are {0} and S\{0}. Similarly, S is 0-simple

if S2 �= 0 and the J -classes of S are {0} and S\{0}. A completely 0-simple semigroup is 

a 0-simple semigroup that possesses both 0-minimal L-classes and 0-minimal R-classes.

3. K-heights and stability

We now introduce a crucial notion for this paper, namely stability.

Definition 3.1. A semigroup S is left stable if ≤L ∩ J = L. Dually, S is right stable if 

≤R ∩ J = R. Finally, S is stable if it is both left stable and right stable.

The class of stable semigroups includes all group-bound semigroups (where group-

bound means that every element has some power belonging to a subgroup) [6, Proposition 

7], and hence all finite semigroups. The one Green’s relation that we have hitherto not 
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defined is D = L ∨ R (= L ◦ R = R ◦ L), for which, in general, there is no natural 

associated preorder. However, we have D = J in stable semigroups [6, Corollary 10].

For a simple semigroup, being completely simple is equivalent to being stable [6, 

Proposition 15]. Consequently, minimal ideals of stable semigroups are completely sim-

ple. This fact, together with Lemma 2.1, yields an analogue of Lemma 2.2 for stable 

semigroups.

Lemma 3.2. Let K ∈ {L, R, J }. A stable semigroup has minimal K-classes if and only 

if it has a completely simple minimal ideal (which is the union of all the minimal K-

classes). Consequently, a stable semigroup with finite K-height has a completely simple 

minimal ideal.

It follows immediately from the definition that S is left stable if and only if every 

J -class of S is a union of pairwise incomparable L-classes. In fact, it turns out that S

is left stable if and only if it satisfies the condition M∗
L, that for each J -class J of S the 

set of L-classes contained in J has a minimal element [5, Lemma 6.42]. Clearly, if S has 

finite L-height then it satisfies M∗
L. Thus we have:

Lemma 3.3. If HL(S) (resp. HR(S)) is finite, then S is left (resp. right) stable. Conse-

quently, if both HL(S) and HR(S) are finite, then S is stable.

It turns out that semigroups with finite H-height are also stable. In fact, we have the 

following stronger result.

Lemma 3.4. If HH(S) = n < ∞, then for every a ∈ S the element an belongs to a 

subgroup of S. In particular, S is group-bound (and hence stable).

Proof. Let a ∈ S. Then

a ≥H a2 ≥H · · · ≥H an+1 ≥H · · · .

Since HH(S) = n, there exist i, j ∈ {1, . . . , n + 1} with i < j such that ai H aj . Then, in 

particular ai L aj , so there is s ∈ S1 such that ai = saj . It follows by an easy induction 

argument that an = skak(j−i)+n for all k ∈ N. Thus, we have an = snan(j−i+1) =

snan(j−i−1)a2n, and hence an L a2n. A dual argument proves that an R a2n, and hence 

an H a2n. Thus the H-class of an is a subgroup of S, as required. �

The next result is the first on the main theme of the article: to explore the relationships 

between the four K-heights.

Proposition 3.5. Let S be a semigroup.

(1) Suppose that S is left stable. Then every H-chain of S is an R-chain, and every 

L-chain of S is a J -chain. Consequently, HH(S) ≤ HR(S) and HL(S) ≤ HJ (S).
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(2) Suppose that S is right stable. Then every H-chain of S is an L-chain, and every 

R-chain of S is a J -chain. Consequently, HH(S) ≤ HL(S) and HR(S) ≤ HJ (S).

(3) Suppose that S is stable. Then every H-chain of S is both an L-chain and an R-

chain, and all L-chains and R-chains of S are J -chains. Consequently,

HH(S) ≤ min
(

HL(S), HR(S)
)

and max
(

HL(S), HR(S)
)

≤ HJ (S).

Proof. (1) Consider a, b ∈ S with a <H b. Then a ≤L b and a ≤R b. If a R b, then 

certainly a J b, which implies that a L b, since S is left stable. Then a H b, a contradiction. 

Thus, we must have a <R b. We conclude that every H-chain is an R-chain, and hence 

HH(S) ≤ HR(S).

It follows immediately from the definition of left stability that every L-chain is a 

J -chain, and hence HL(S) ≤ HJ (S).

(2) holds by left-right duality, and (3) follows from (1) and (2). �

Corollary 3.6. For any semigroup S, either HH(S) ≤ min
(

HL(S), HR(S)
)

or HH(S) is 

infinite.

Proof. Suppose that HH(S) is finite. Then S is stable by Lemma 3.3, and hence HH(S) ≤

min
(

HL(S), HR(S)
)

by Proposition 3.5. �

4. Small K-heights

In this section we consider the relationships between the different K-heights where at 

least one of them is equal to 1 or 2.

Recall that HJ (S) = 1 precisely when S is simple. The following result provides 

necessary and sufficient conditions for a semigroup to have L-height 1 or R-height 1 in 

terms of the J -height and one-sided stability.

Proposition 4.1. For a semigroup S, the following hold.

(1) HL(S) = 1 if and only if HJ (S) = 1 and S is left stable.

(2) HR(S) = 1 if and only if HJ (S) = 1 and S is right stable.

Proof. Clearly it suffices to prove (1). If HL(S) = 1, then S, being the union of minimal 

L-classes, is simple, so HJ (S) = 1, and S is left stable by Lemma 3.3. The converse 

follows from Proposition 3.5(1). �

The assumptions of left stability and of right stability are necessary in the respective 

parts of Proposition 4.1. Indeed, there exist semigroups with R-height 1 (and hence J -

height 1) but with infinite L-height (or vice versa). For example, the Baer-Levi semigroup 

BLX on an infinite set X, defined as the set of all injective maps α : X → X with 
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|X\Xα| = |X|, is right simple [5, Theorem 8.2], so has R-height 1. On the other hand, 

we have α ≤L β in BLX if and only if Xα ⊆ Xβ and |Xβ\Xα| = |X| [10, Theorem 8]; 

consequently, BLX has infinite L-height.

We now provide several equivalent characterisations for a semigroup to have both 

L-height 1 and R-height 1.

Proposition 4.2. For a semigroup S, the following are equivalent:

(1) HL(S) = 1 and HR(S) = 1;

(2) HL(S) = 1 and HR(S) is finite;

(3) HL(S) = 1 and S is stable;

(4) HR(S) = 1 and HL(S) is finite;

(5) HR(S) = 1 and S is stable;

(6) HJ (S) = 1 and S is stable;

(7) HH(S) = 1;

(8) S is completely simple.

Proof. Let K ∈ {L, R, J , H}. If HK(S) = 1 then S, being the union of minimal K-

classes, is simple. Also, by Lemmas 3.3 and 3.4, each of (1), (2), (4) and (7) implies that 

S is stable. Thus, if any of (1)-(7) holds, then S is simple and stable, and hence S is 

completely simple by [6, Proposition 15].

Conversely, if S is completely simple, then S is stable and HK(S) = 1 for each K ∈

{L, R, J , H}. �

An immediate consequence of Proposition 4.2 is that for a stable semigroup S,

HL(S) = 1 ⇔ HR(S) = 1 ⇔ HJ (S) = 1 ⇔ HH(S) = 1 ⇔ S is completely simple.

We now turn to the situation where one of the K-heights is 2.

Proposition 4.3. If S is a semigroup such that HL(S) = 2 or HR(S) = 2, then 

HJ (S) ∈ {2, 3}.

Proof. By symmetry, it suffices to consider the case that HL(S) = 2. By Lemma 2.1, S

has a minimal ideal, say J , which is the union of all the minimal L-classes of S. Since 

HL(S) = 2, the elements in S\J are all maximal under the L-order, and in particular 

the L-classes contained in S\J are incomparable.

As HL(S) is finite, S is left stable by Lemma 3.3, and hence HJ (S) ≥ 2 by Proposi-

tion 3.5(1). Now suppose for a contradiction that HJ (S) ≥ 4. Then there exists a J -chain 

(a, b, c, d) in S where d ∈ J (and hence a, b, c ∈ S\J). Thus, there are s, t, u, v ∈ S1 such 

that b = sat and c = ubv. We claim that v ∈ S (i.e. that v �= 1). Indeed, if v = 1, then 

b ≥L c, which implies that b L c (since the L-classes in S\J are incomparable), but then 
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b J c, a contradiction. Now, we have v, c ∈ S\J with v ≥L c, so v L c (as HL(S) = 2). 

Thus, there exists x ∈ S1 such that v = cx. Therefore, we have

c = ubv = ubcx = ububvx = ubusatvx.

Thus busa ≥J c, so that busa ∈ S\J and hence a L busa. Then a J busa ≤J b, so a ≤J b. 

But this contradicts the assumption that a >J b. Thus HJ (S) ≤ 3, as required. �

For stable semigroups with L-height 2, we obtain a far stronger statement than that 

of Proposition 4.3.

Proposition 4.4. Let S be a semigroup. If S is stable and HL(S) = 2, then HH(S) = 2

and HR(S) = HJ (S) ∈ {2, 3}. Moreover, the following are equivalent:

(1) HL(S) = HR(S) = 2;

(2) HJ (S) = HH(S) = 2;

(3) HJ (S) = 2 and S is stable.

Proof. Suppose that S is stable with HL(S) = 2. Then, by Propositions 3.5(3), 4.2 and 

4.3, we have HH(S) = 2 and 2 ≤ HR(S) ≤ HJ (S) ≤ 3. Suppose for a contradiction that 

HR(S) = 2 and HJ (S) = 3. By Lemma 3.2, S has a completely simple minimal ideal, 

say J . Thus, there exists a J -chain (a, b, c) in S where c ∈ J . Now, there exist s, t ∈ S1

such that b = sat. Then, as b /∈ J , we have sa, at /∈ J , and then

a ≥L sa >L csa and a ≥R at >R atc.

Since HL(S) = HR(S) = 2, it follows that a L sa and a R at, so that there exist u, v ∈ S1

such that a = usa = atv. But then we have a = usatv = ubv, contradicting the fact that 

a >J b. Thus HR(S) = HJ (S).

We now prove the equivalence of (1), (2) and (3). If (1) holds, then S is stable by 

Lemma 3.3, and then (2) follows from the first part of this proposition (just proved). 

That (2) implies (3) follows immediately from Lemma 3.4, and we have (3) implies (1) 

by Propositions 3.5(3) and 4.2. �

We conclude this section by exhibiting a pair of examples of semigroups to demonstrate 

that the conditions in Propositions 4.3 and 4.4 are necessary.

Our first example is a semigroup with R-height 3 and infinite J -height. This provides 

a negative answer to [12, Open Problem 5.1], which asks whether there is a general upper 

bound for the J -height of a semigroup in terms of its R-height.

Example 4.5. Let S be any right simple semigroup that is not completely simple 

(such as a Baer-Levi semigroup). Then HR(S) = 1 and S has infinite L-height. Let 

U = S ∪ (S × S) ∪ {0}, and define a multiplication on U , extending that of S, by
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(a, b)c = (a, bc), c(a, b) = (ca, b) and (a, b)(c, d) = (a, b)0 = 0(a, b) = 02 = 0

for all a, b, c, d ∈ S. It is straightforward to show that U is a semigroup under this 

multiplication.

It is easy to show that the poset the R-classes of U is given as follows: {0} is the 

minimum R-class; S is the maximum R-class; the remaining R-classes are the sets {a} ×S

(a ∈ S), and these all lie between {0} and S, and are pairwise incomparable. It follows 

that HR(U) = 3.

It is also straightforward to show that the poset the J -classes of U is given as follows: 

{0} is the minimum J -class; S is the maximum J -class; the remaining J -classes are the 

sets La × S (where a ∈ S, and La denotes the L-class of a in S), and La × S ≤ Lb × S

if and only if La ≤ Lb. Thus, the poset of J -classes of U is isomorphic to the poset of 

L-classes of S with minimum and maximum elements adjoined. Since HL(S) is infinite, 

we conclude that HJ (U) is infinite.

Next, we show that it is possible for a (necessarily stable) semigroup to have H-height 

2 but infinite L-, R- and J -heights. In order to construct an example of such a semigroup, 

we first recall the notion of a Rees quotient. For an ideal I of S, the Rees quotient of S

by I, denoted by S/I, is the semigroup (S\I) ∪ {0}, where 0 /∈ S\I, with multiplication 

given by

a · b =

{

ab if a, b, ab ∈ S\I,

0 otherwise.

Example 4.6. Let X be any infinite set, and let F denote the free semigroup on X, i.e. 

the set of all non-empty words over X. Let I be the set of all words over X in which 

some letter appears at least twice; that is,

I = {w ∈ F : w = uxvxz for some x ∈ X and u, v, z ∈ F 1}.

Then I is an ideal of F . Let S be the Rees quotient F/I. We note that S is J -trivial 

(i.e. J is the equality relation on S). Choose distinct elements xi ∈ X (i ∈ N). Then 

(x1, x1x2, x1x2x3, . . . ) is both an R-chain and a J -chain of S, so that HR(S) and HJ (S)

are infinite. Similarly, HL(S) is infinite. We claim that HH(S) = 2. Indeed, let u, v ∈ S

with u >H v. We need to show that v = 0. Now, we have v = wu = uw′ for some 

w, w′ ∈ S. If w = 0 or w′ = 0, we are done, so assume that w, w′ ∈ F\I. If |w| ≤ |u|, 

then, since wu = uw′, we have u = wz for some z ∈ F 1, and hence v = wwz = 0. If 

|w| > |u|, then w = uz′ for some z′ ∈ F , and hence v = uz′u = 0. Thus, in either case, 

we have v = 0, as required.
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5. Quotients and ideal extensions

In this section we investigate the relationship between the K-heights of a semigroup S

and those of certain quotients of S. Our main purpose here is to establish some critical 

machinery for proving the main results of the paper, appearing in Section 6.

Proposition 5.1. Let S be a semigroup and let ρ be a congruence on S.

(1) For each K ∈ {L, R, J } we have HK(S) ≥ HK(S/ρ).

(2) For each K ∈ {L, R, J }, if ≤K ∩ ρ = K ∩ ρ then HK(S) = HK(S/ρ).

(3) If S is left stable and ≤L ∩ ρ ⊆ J , then HL(S) = HL(S/ρ).

(4) If S is right stable and ≤R ∩ ρ ⊆ J , then HR(S) = HR(S/ρ).

Proof. (1) We just consider the case K = J . The proofs for L and R are similar but 

slightly more straightforward.

Let T = S/ρ, and consider a J -chain (b0, . . . , bn) in T . For i ∈ {1, . . . , n}, there exist 

ui, vi ∈ T 1 such that bi = uibi−1vi. If ui ∈ T , choose si ∈ S such that ui = [si]ρ; 

otherwise, let si = 1. Likewise, if vi ∈ T , choose ti ∈ S such that vi = [ti]ρ; otherwise, 

let ti = 1. Now let a0 ∈ S be such that [a0]ρ = b0, and for i ∈ {1, . . . , n} set ai =

si . . . s1a0t1 . . . ti. We then have [ai]ρ = bi, and a0 ≥J a1 ≥J · · · ≥J an in S. We cannot 

have ai−1 J ai (in S), for that would imply that bi−1 J bi in T . Hence, we have a J -chain 

(a0, . . . , an) in S. Thus HJ (S) ≥ HJ (T ).

(2) Again, we just consider the case K = J . By (1) we have HJ (S) ≥ HJ (S/ρ), 

so it remains to prove the reverse inequality. So, consider a, b ∈ S with a >J b. Then 

[a]ρ ≥J [b]ρ in S/ρ. Suppose that [a]ρ J [b]ρ. It then follows that [a]ρ = [sbt]ρ for some 

s, t ∈ S1. But then, since a >J b ≥J sbt, we have (a, sbt) ∈ ≤J ∩ ρ and (a, sbt) �∈ J , 

contradicting the assumption. Thus [a]ρ >J [b]ρ. We conclude that HJ (S) ≤ HJ (S/ρ), 

and hence HJ (S) = HJ (S/ρ), as required.

We may now quickly prove (3); the proof of (4) is dual. Since ≤L ∩ ρ ⊆ J , we have

≤L ∩ ρ = (≤L ∩ ρ) ∩ J = (≤L ∩ J ) ∩ ρ = L ∩ ρ,

where for the final equality we use the assumption that S is left stable. Thus, by (2), we 

have HL(S) = HL(S/ρ). �

It is possible for the H-height of a semigroup S to be less than the H-height of 

a quotient S/ρ of S, even when ≤H ∩ ρ = H ∩ ρ, as demonstrated by the following 

example.

Example 5.2. Consider the semigroup S from Example 4.6. Recall that S is the Rees 

quotient of the free semigroup F on an arbitrary infinite set X by the ideal I of all 

words with multiple appearances of the same letter, and that HH(S) = 2.
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For w ∈ S\{0}, let C(w) denote the set of elements of X appearing in w. We define a 

relation ρ on S by u ρ v if and only if either u = v = 0 or u, v ∈ F\I with C(u) = C(v). 

It is straightforward to prove that ρ is a congruence. In fact, ρ is the smallest congruence 

on S such that the resulting quotient is commutative. Since u <H v if and only if u = 0, 

and [0]ρ = {0}, it follows that ≤H ∩ ρ = H ∩ ρ. It is elementary that, for u, v ∈ F\I, we 

have [u]ρ ≥H [v]ρ if and only if C(u) ⊆ C(v). Thus, choosing distinct xi ∈ X (i ∈ N), 

we have an H-chain ([x1]ρ, [x1x2]ρ, [x1x2x3]ρ, . . . ), and hence S/ρ has infinite H-height.

In the remainder of this section we focus on Rees quotients, which were introduced in 

Section 4. Although we defined Rees quotients without reference to congruences, they do 

in fact arise from congruences. Specifically, for an ideal I of S, the Rees quotient S/I is 

isomorphic to the quotient of S by the Rees congruence ρI = {(a, a) : a ∈ S\I} ∪ (I × I).

Proposition 5.3. Let S be a semigroup and let K ∈ {L, R, J }.

(1) For any ideal I of S, we have HK(S) ≥ HK(S/I).

(2) If S has minimal K-classes, and J is the minimal ideal of S, then HK(S) = HK(S/J).

(3) If S has a completely simple minimal ideal J , then HK(S) = HK(S/J).

Proof. (1) This is an immediate corollary of Proposition 5.1(1).

(2) Recalling that J is the union of the minimal K-classes, it is straightforward to show 

that ≤K ∩ ρJ = K ∩ ρJ . Hence, using Proposition 5.1(2) and the fact that S/ρJ
∼= S/J , 

we have HK(S) = HK(S/J).

(3) This follows from (2), upon recalling that a completely simple minimal ideal is the 

union of all the minimal K-classes. �

For K ∈ {L, R, H, J }, and for an ideal I of S, we define HS
K(I) as follows. If there is 

a finite bound on the sizes of chains of K-classes of S contained in I, then HS
K(I) is the 

minimum such bound; otherwise HS
K(I) = ∞. Observing that [b ∈ I, a ≤K b ⇒ a ∈ I], it 

is clear that any K-chain of S splits into two subchains by restricting to I and to S\I, 

and the latter subchain is a K-chain of S/I to which 0 can be appended. It follows that

HK(S) ≤ HS
K(I) + HK(S/I) − 1. (∗)

For a semigroup S with zero 0, the left socle of S is the union of {0} and all the 

0-minimal L-classes of S. It turns out that the left socle of S is a two-sided ideal of S; 

for a proof of this fact and for more information about the left socle, see [5, Section 6.3].

Theorem 5.4. Let S be a semigroup with zero, and let I be the left socle of S.

(1) HL(S) is finite if and only if HL(S/I) is finite, in which case HL(S) = HL(S/I) +1.

(2) If S is right stable, then HR(S) is finite if and only if HR(S/I) is finite, in which 

case HR(S) ≤ 2HR(S/I) + 1.
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(3) If S is right stable, then HJ (S) is finite if and only if HJ (S/I) is finite, in which 

case

HJ (S) ≤ HR(S/I) + HJ (S/I) + 1 ≤ 2HJ (S/I) + 1.

Proof. We may unambiguously let 0 denote both the zero of S and of S/I.

(1) For any L-chain (a1, . . . , an, 0) in S, we have ai ∈ S\I for each i ∈ {1, . . . , n − 1}

(since ai >L an �= 0), and hence there is an L-chain (a1, . . . , an−1, 0) in S/I. Thus 

HL(S) ≤ HL(S/I) + 1.

Now consider an L-chain (b1, . . . , bn, 0) in S/I. Then bn /∈ I, so, by definition, there 

exists some c ∈ S\{0} with bn >L c. Hence, we have an L-chain (b1, . . . , bn, c, 0) in S. 

Thus HL(S) ≥ HL(S/I) + 1, and hence HL(S) = HL(S/I) + 1.

(2) By Proposition 5.3(1), if HR(S) is finite then so is HR(S/I). Suppose then that 

HR(S/I) is finite. We shall prove that HS
R(I) ≤ HR(S/I) + 2. Then, using (∗), we have

HR(S) ≤ (HR(S/I) + 2) + HR(S/I) − 1 = 2HR(S/I) + 1.

Assume for a contradiction that HS
R(I) > HR(S/I) +2. Then, with n = HR(S/I) +1 (≥

2), there is an R-chain (a0, a1, . . . , an, 0) of S where ai ∈ I for all i ∈ {0, . . . , n}. Let 

si ∈ S be such that ai = ai−1si (1 ≤ i ≤ n). For i ∈ {2, . . . , n}, let ti = s2 . . . si, so that 

ai = a1ti. Note that tn �= 0, as an �= 0.

Suppose first that tn ∈ I, i.e. tn belongs to a 0-minimal L-class of S. Since an =

a1tn ≤L tn, it follows that an L tn. Thus, there exists x ∈ S1 such that tn = xan, and 

hence

tn = xa1tn = xa1xan = xa1xa0s1tn.

It follows that a0 ≥L a1xa0 �= 0. Since a0 ∈ I, we have a0 L a1xa0, which, together with 

a0 >R a1, implies that a0 J a1. But this contradicts the fact that S is right stable.

Now suppose that tn ∈ S\I. Then we have a chain

t2 ≥R t3 ≥R . . . ≥R tn >R 0

in S/I. It cannot be the case that all the inequalities in this chain are strict, for then there 

would be an R-chain of length n in S/I, contradicting the fact that HR(S/I) = n − 1. 

Thus, there exists i ∈ {2, . . . , n − 1} such that ti R ti+1. But then, using the fact that R

is a left congruence on S, we have ai = a1ti R a1ti+1 = ai+1, contradicting the fact that 

(a0, . . . , an, 0) is an R-chain. This completes the proof.

(3) By Proposition 5.3(1), if HJ (S) is finite then so is HJ (S/I). Suppose then that 

HJ (S/I) is finite. By assumption S is right stable, which implies that S/I is right 

stable. Therefore, by Proposition 3.5(2), we have HR(S/I) ≤ HJ (S/I). The second 

inequality in the statement immediately follows. To prove the first inequality, we show 

that HS
J (I) ≤ HR(S/I) + 2, and the inequality then follows from (∗).
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Consider a J -chain (a1, . . . , an, 0) of S where ai ∈ I for all i ∈ {1, . . . , n}. We need to 

show that n ≤ HR(S/I) + 1. For each i ∈ {1, . . . , n − 1}, there exist si, ti ∈ S1 such that 

ai+1 = siaiti, so ai+1 = si . . . s1a1t1 . . . ti. For i ∈ {0, . . . , n − 1}, let bi+1 = si . . . s1a1

and ci+1 = a1t1 . . . ti, interpreting b1 = c1 = a1. Then bi, ci ∈ I\{0}, and we have

b1 ≥L · · · ≥L bn >L 0 and c1 ≥R · · · ≥R cn >R 0.

Since the elements of I\{0} belong to 0-minimal L-classes, it follows that all the bi

are L-related. Now, aiming for a contradiction, suppose that ci R ci+1 for some i ∈

{1, . . . , n − 1}. Then there exist x, y ∈ S1 such that bi = xbi+1 and ci = ci+1y. But then

ai = si−1 . . . s1a1t1 . . . ti−1 = bit1 . . . ti−1 = xbi+1t1 . . . ti−1 = xsi . . . s1a1t1 . . . ti−1

= xsi . . . s1ci = xsi . . . s1ci+1y = xsi . . . s1a1t1 . . . tiy = xai+1y,

contradicting the fact that ai >J ai+1. We conclude that (c1, . . . , cn, 0) is an R-chain 

of S contained in I. We have already established, in the proof of (2), that HS
R(I) ≤

HR(S/I) + 2, so we conclude that n ≤ HR(S/I) + 1, as required. �

We note that one can of course dually define the right socle of a semigroup with zero, 

and Theorem 5.4 has an obvious counterpart in terms of the right socle.

To conclude this section we shall prove that the upper bounds established in parts (2) 

and (3) of Theorem 5.4 are sharp. To this end, we introduce a construction in the form 

of a specific ideal extension of a null semigroup. (A semigroup N is null if it contains an 

element 0 such that N2 = {0}.)

Construction 5.5. Let S be a semigroup with zero z. Let {xs : s ∈ S1} be a set disjoint 

from S in one-to-one correspondence with S1, and let U(S) = S ∪ {xs : s ∈ S1}. Define 

a multiplication on U(S), extending that on S, by

axs = xs, xsa = xsa and xsxt = xz

for all a ∈ S and s, t ∈ S1. It is straightforward to show that U(S) is a semigroup with 

zero xz.

We focus on this construction for the rest of the section. We first prove some elemen-

tary facts about the structure of U(S), and then describe its L- and R-heights in terms 

of those of S.

Lemma 5.6. Let S be a semigroup with zero z, and let U = U(S).

(1) S is a subsemigroup of U , and {xs : s ∈ S1} is a null semigroup and an ideal of U .

(2) The left socle of U is I = {xs : s ∈ S1} ∪ {z}, and U/I ∼= S.

(3) If S is right stable then so is U .
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Proof. (1) This follows immediately from the definition of the multiplication in U .

(2) For each u ∈ I we have U1u = {u, xz}, and hence I is contained in the left socle 

of U . For v /∈ I, we have v ∈ S\{z}, and hence v >L z >L xz in U , so that v is not in 

the left socle of U . Thus I is the left socle of U .

Letting 0 denote the zero of U/I, it is straightforward to see that there is an isomor-

phism U/I → S given by s �→ s (s ∈ S\{z}) and 0 �→ z.

(3) It is easy to show that the relations R and J on U restricted to S coincide with 

the corresponding relations on S. Moreover, {x1} is a singleton J -class of U , and for 

a, b ∈ S we have xa ≤J xb if and only if xa ≤R xb if and only if a ≤R b. Consequently, 

if S is right stable then so is U . �

Proposition 5.7. Let S be a semigroup with zero z, and let U = U(S). Then:

(1) HL(U) is finite if and only if HL(S) is finite, in which case HL(U) = HL(S) + 1.

(2) HR(U) is finite if and only if HR(S) is finite, in which case HR(U) = 2HR(S) + 1.

Proof. (1) This follows from Theorem 5.4(1) and Lemma 5.6(2).

(2) Assume that HR(S) = n ∈ N. Then S is right stable by Lemma 3.3, and hence U

is right stable by Lemma 5.6(3). Hence, by Theorem 5.4(2) and Lemma 5.6(2), we have 

HR(U) ≤ 2n + 1.

Now, there exists an R-chain (a1, . . . , an−1, an = z) in S. Since U\S is an ideal, it 

follows that (a1, . . . , an−1, z) is an R-chain of U , and that z >R zx1 = x1 in U . Write 

xai
= xi+1 for each i ∈ {1, . . . , n}, then x1a1 = x2, and clearly x1 /∈ a1U1, so x1 >R x2. 

For each i ∈ {2, . . . , n} there exists ti ∈ S such that ai−1ti = ai, so xiti = xi+1 and 

hence xi ≥R xi+1. Suppose that xi R xi+1. Then xi = xi+1u for some u ∈ U . Since 

xi+1xs = xz for each s ∈ S1, we have u ∈ S. But then ai−1 = aiu, contradicting the fact 

that ai−1 >R ai. Thus xi >R xi+1. We conclude that there is an R-chain

(a1, . . . , an, x1, x2 . . . , xn+1)

in U , so that HR(U) ≥ 2n + 1. Thus HR(U) = 2n + 1. �

We may now quickly deduce that the bounds given in parts (2) and (3) of Theorem 5.4

can be attained. Indeed, take any semigroup S with zero such that HR(S) = HJ (S) < ∞, 

let U = U(S), and let I be the left socle of U . Then S ∼= U/I by Lemma 5.6. Thus, using 

Propositions 5.7(2), 3.5(2) and Theorem 5.4(3), we have

2HJ (U/I) + 1 = 2HR(U/I) + 1 = HR(U) ≤ HJ (U) ≤ 2HJ (U/I) + 1,

implying that HR(U) = HJ (U) = 2HR(U/I) + 1 = 2HJ (U/I) + 1. See Fig. 1 for an 

illustration.
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Fig. 1. Let S = {e, a, z} be the semigroup with multiplication given by e2 = e, ea = a and ae = sz = zs = z

(s ∈ S). (Then S ∼= U({e}).) The poset of L-classes of U(S) is displayed on the left. The poset of R-classes 
of U(S) coincides with the poset of J -classes, and is displayed on the right. These contain, respectively, the 
posets of L-classes of S and of R(= J )-classes of S, which are displayed in red. (For interpretation of the 
colours in the figure, the reader is referred to the web version of this article.)

6. General bounds on K-heights

This section contains the main results of the article. The first main result establishes 

upper and lower bounds on the R-height of a stable semigroup with finite L-height.

Theorem 6.1. Let S be a semigroup. If HL(S) = n < ∞, then S is stable if and only if 

HR(S) < ∞, in which case

⌈log2(n + 1)⌉ ≤ HR(S) ≤ 2n − 1.

Proof. That finite HR(S) (together with finite HL(S)) implies stability is precisely the 

statement of Lemma 3.3. Therefore, it suffices to prove that for a stable semigroup the 

bounds stated for HR(S) hold. We prove that HR(S) ≤ 2n − 1 by induction. A dual 

argument then proves that n = HL(S) ≤ 2m − 1, where m = HR(S), which yields the 

lower bound in the statement.

Suppose then that S is stable. If n = 1, then HR(S) = 1 (= 21 −1) by Proposition 4.2. 

Now take n > 1. By Lemma 3.2, S has a completely simple minimal ideal, say J . By 

Proposition 5.3(3), we may assume that S = S/J ; that is, S has a zero. Let I denote the 

left socle of S. Then HL(S/I) = n − 1 by Theorem 5.4(1). By the inductive hypothesis 

we have HR(S/I) ≤ 2n−1 − 1. Then, using Theorem 5.4(2), we have

HR(S) ≤ 2HR(S/I) + 1 ≤ 2(2n−1 − 1) + 1 = 2n − 1,

completing the proof of the inductive step and hence of the theorem. �

Recall that it is possible for a semigroup to have finite L-height but infinite J -height 

(e.g. the dual of Example 4.5). However, a stable semigroup with finite L-height does
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have finite J -height. In fact, in this case the J -height has the same upper bound as that 

for the R-height (given in Theorem 6.1).

Theorem 6.2. Let S be a stable semigroup. Then HL(S) is finite if only if HJ (S) is 

finite. Moreover, if HL(S) = n < ∞ then

n ≤ HJ (S) ≤ 2n − 1.

Proof. By Proposition 3.5, we have HL(S) ≤ HJ (S). So, it suffices to prove the upper 

bound in the statement. The proof of this is essentially the same as that of Theorem 6.1: 

simply replace R with J , and invoke Theorem 5.4(3) rather than Theorem 5.4(2). �

Using the construction from Section 5, we now show that all the possible R- and 

J -heights according to Theorems 6.1 and 6.2 are in fact attainable. See Table 1 for such 

values when HL(S) = 1, . . . , 8.

Theorem 6.3. Let n ∈ N. For every m ∈ {n, . . . , 2n − 1}, there exists a (necessarily 

J -trivial) semigroup S such that HL(S) = n and HR(S) = HJ (S) = |S| = m.

Proof. We prove the result by induction. Note that a finite semigroup S is J -trivial if 

and only if HJ (S) = |S|. For n = 1 (in which case n = 2n − 1), we take S to be the 

trivial semigroup, which clearly has the desired properties.

Now let n ≥ 2. First consider m ∈ {n, . . . , 2n−1}. By the inductive hypothesis, there 

exists a semigroup S such that HL(S) = n − 1 and HR(S) = HJ (S) = |S| = m − 1. 

Then HL(S1) = n and HR(S1) = HJ (S1) = |S1| = m, as required.

Now consider m ∈ {2n−1 + 1, . . . , 2n − 1}. By the inductive hypothesis, there exists a 

semigroup S such that HL(S) = n −1 and HR(S) = HJ (S) = |S| = 2n−1−1. Being finite 

and J -trivial, the semigroup S has a zero, say z. Let U = U(S). Clearly |U | = 2|S| +1 =

2n − 1. By Proposition 5.7, we have HL(U) = n and HR(U) = HJ (U) = 2n − 1. In fact, 

following the proof of Proposition 5.7, and using the fact that HR(U) = |U |, we may 

write U = {a1, . . . , a2n−1}, where S = {a1, . . . , a2n−1−1(= z)}, such that (a1, . . . , a2n−1)

is an R(= J )-chain of U . By Lemma 5.6, the left socle of U is

(U\S) ∪ {z} = {a2n−1−1, . . . , a2n−1}.

Let I = {am, . . . , a2n−1}. Then I is an ideal of U (since it consists of all elements less 

than or equal to am under the J -order). Let T denote the Rees quotient

U/I = {a1, . . . , am−1, 0},

and observe that S ⊆ T . It is immediate that for K ∈ {L, R, J } and x, y ∈ T\{0}, 

we have x >K y in T if and only if x >K y in U . It follows that HL(T ) = n and 

HR(T ) = HJ (T ) = |T | = m. This completes the proof. �



M. Brookes, C. Miller / Journal of Algebra 659 (2024) 109–131 125

Table 1

For some small natural numbers n, the range of possible values of HR(S) and 
of HJ (S) for a stable semigroup S with HL(S) = n.

HL(S) Possible values for m = HR(S) Possible values for p = HJ (S)

1 m = 1 p = 1
2 m = 2, 3 p = 2, 3
3 2 ≤ m ≤ 7 3 ≤ p ≤ 7
4 3 ≤ m ≤ 15 4 ≤ p ≤ 15
5 3 ≤ m ≤ 31 5 ≤ p ≤ 31
6 3 ≤ m ≤ 63 6 ≤ p ≤ 63
7 3 ≤ m ≤ 127 7 ≤ p ≤ 127
8 4 ≤ m ≤ 255 8 ≤ p ≤ 255

Corollary 6.4. Let n ∈ N. For every m ∈ {⌈log2(n + 1)⌉, . . . , 2n − 1}, there exists a 

semigroup S such that HL(S) = n, HR(S) = m and HJ (S) = |S| = max(m, n).

Proof. If m ≥ n then we apply Theorem 6.3. If m < n (≤ 2m −1), then we apply the dual 

of Theorem 6.3 to obtain a semigroup S such that HR(S) = m and HL(S) = HJ (S) =

|S| = n. �

Recall Proposition 4.2, which provides several equivalent conditions for a semigroup 

S to have HL(S) = HR(S) = 1, and Proposition 4.4, which gives equivalent conditions 

for S to have HL(S) = HR(S) = 2. Our next result is an analogue, describing when the 

L- and R-heights of a semigroup are both finite.

Theorem 6.5. For a semigroup S, the following are equivalent:

(1) HL(S) and HR(S) are finite;

(2) HL(S) and HH(S) are finite;

(3) HL(S) is finite and S is stable;

(4) HJ (S) and HH(S) are finite;

(5) HJ (S) is finite and S is stable;

(6) HR(S) and HH(S) are finite;

(7) HR(S) is finite and S is stable;

Proof. If (1) holds, then S is stable by Lemma 3.3, and hence HH(S) is finite by Propo-

sition 3.5(3), so (2) holds. Each of (2) ⇒ (3), (4) ⇒ (5) and (6) ⇒ (7) follows from 

Lemma 3.4. That (3) ⇒ (4) follows from Theorem 6.2 and Proposition 3.5(3), and that 

(5) ⇒ (6) follows from Proposition 3.5(3). Finally, (7) ⇒ (1) follows from Proposi-

tion 3.5(3) and the dual of Theorem 6.1. �

An important aspect of Theorem 6.5 is:

Corollary 6.6. If S is a stable semigroup, then

HL(S) is finite ⇔ HR(S) is finite ⇔ HJ (S) is finite,
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in which case HH(S) is finite.

Recall that for a stable semigroup S we have HL(S) = 1 if and only if HR(S) = 1

if and only if HJ (S) = 1. The next result establishes lower and upper bounds on the 

J -height in terms of finite (but greater than 1) L- and R-heights.

Theorem 6.7. Let S be a semigroup such that 2 ≤ HL(S) < ∞ and 2 ≤ HR(S) < ∞. 

Then, letting min
(

HL(S), HR(S)
)

= n, we have

max
(

HL(S), HR(S)
)

≤ HJ (S) ≤ min(2n − 1, HL(S) + HR(S) − 2).

Proof. By Lemma 3.3, the semigroup S is stable. Thus, by Proposition 3.5(3), the lower 

bound in the statement holds. The inequality HJ (S) ≤ 2n − 1 follows from Theorem 6.2

and its dual (which bounds the J -height in terms of the R-height). It remains to show 

that HJ (S) ≤ HL(S) + HR(S) − 2.

By Lemma 3.2, S has a completely simple minimal ideal, which, by Proposition 5.3(3), 

we may assume is trivial, i.e. S has a zero 0. Consider a J -chain (a1, . . . , an, 0) in S. 

We need to show that n ≤ HL(S) + HR(S) − 3. For each i ∈ {1, . . . , n − 1}, there exist 

si, ti ∈ S1 such that ai+1 = siaiti, so that ai+1 = si . . . s1a1t1 . . . ti. For i ∈ {0, . . . , n −1}, 

let bi+1 = si . . . s1a1 and ci+1 = a1t1 . . . ti, interpreting b1 = c1 = a1. We then have chains

b1 ≥L · · · ≥L bn >L 0 and c1 ≥R · · · ≥R cn >R 0.

Now, for each i ∈ {1, . . . , n − 1}, either bi >L bi+1 or ci >R ci+1. Indeed, if we had 

bi L bi+1 and ci R ci+1 for some i ∈ {1, . . . , n −1}, then, as in the proof of Theorem 5.4(3), 

we would have ai J ai+1, a contradiction. It follows that there exist k, l ≤ n such that 

n ≤ k + l − 1, there is an L-chain (bi1
, . . . , bik

, 0) where 1 = i1 < · · · < ik ≤ n, and 

there is an R-chain (cj1
, . . . , cjl

, 0) where 1 = j1 < · · · < jl ≤ n. We must then have 

k ≤ HL(S) − 1 and l ≤ HR(S) − 1, whence

n ≤ k + l − 1 ≤ HL(S) + HR(S) − 3,

as required. �

It is an open question as to whether the upper bound on HJ (S) given in Theorem 6.7

can be attained for every possible combination of HL(S) and HR(S) (as determined by 

Theorem 6.1 and its dual). However, it is asymptotically sharp:

Theorem 6.8. For each n ∈ N there exists a semigroup Un such that HL(Un) =

HR(Un) = 2n + n − 3 and HJ (Un) = 2n+1 − 4. Moreover, we have

lim
n→∞

HJ (Un)

HL(Un) + HR(Un) − 2
= 1.
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Proof. Recall that a left identity of a semigroup S is an element e ∈ S such that es = s

for all s ∈ S. Right identities are defined dually. Recalling Construction 5.5, observe that 

if e is a left identity of S then it is also a left identity of U(S).

Let n ∈ N. By the above observation and the proof of Theorem 6.3, there exists a 

semigroup S with a left identity e such that HL(S) = n and HR(S) = HJ (S) = |S| =

2n − 1. Dually, there exists a semigroup T with a right identity f such that HR(T ) = n

and HL(T ) = HJ (T ) = |T | = 2n − 1. Let 0S and 0T denote the zeros of S and T , 

respectively, and let I = (S × {0T }) ∪ ({0S} × T ). Clearly I is an ideal of the direct 

product S × T . Now let U (= Un) = (S × T )/I.

Consider a K-chain (u1, . . . , um, 0) in U , where ui = (xi, yi). Then, for each i ∈

{1, . . . , m − 1}, either xi >K xi+1 in S or yi >K yi+1 in T . It follows that there exist 

k, l ≤ m such that m ≤ k+l−1, there is an K-chain (xi1
, . . . , xik

, 0) where 1 = i1 < · · · <

ik ≤ m, and there is an K-chain (yj1
, . . . , yjl

, 0) where 1 = j1 < · · · < jl ≤ m. We must 

then have k ≤ HK(S) −1 and l ≤ HK(T ) −1, whence m ≤ k+l−1 ≤ HK(S) +HK(T ) −3. 

It follows that HK(U) ≤ HK(S) + HK(T ) − 2. Thus, we have HL(U) ≤ 2n + n − 3, 

HR(U) ≤ 2n + n − 3 and HJ (U) ≤ 2n+1 − 4.

Note that, for any K ∈ {L, R, J } and (a, b), (c, d) ∈ U\{0}, if (a, b) K (c, d) then a K c

in S and b K d in T .

Now, let (a1, . . . , an−1, 0S) be a maximal L-chain in S, and let (b1, . . . , b2n−2, 0T ) be 

the maximum L-chain in T . Observe that b1 = f . For i ∈ {1, . . . , n −2} let si ∈ S be such 

that ai+1 = siai, and for j ∈ {1, . . . , 2n −3} let tj ∈ T be such that bj+1 = tjbj . Then, for 

each such i and j, we have (ai+1, f) = (si, f)(ai, f) and (an−1, bj+1) = (e, tj)(an−1, bj). 

It follows that

(a1, f) >L · · · >L (an−1, f) = (an−1, b1) >L · · · >L (an−1, b2n−2) >L 0,

so that HL(U) ≥ 2n + n − 3. Thus HL(U) = 2n + n − 3. Similarly, we have HR(U) =

2n + n − 3.

Now let (c1, . . . , c2n−2, 0S) be the maximum R-chain in S. Letting s′
i ∈ S (1 ≤ i ≤

2n − 3) be such that ci+1 = cis
′
i, we have (ci+1, f) = (ci, f)(s′

i, f). Also, with bj and tj

as above, we have (c2n−2, bj+1) = (e, tj)(c2n−2, bj). It follows that

(c1, f) >J · · · >J (c2n−2, f) = (c2n−2, b1) >J · · · >J (c2n−2, b2n−2) >J 0,

so that HJ (U) ≥ 2(2n − 2) = 2n+1 − 4. Thus HJ (U) = 2n+1 − 4. This completes the 

proof of the first part of the statement. The second part now follows immediately. �

An immediate consequence of Theorem 6.8 is that the upper bound of Theorem 6.7

is sharp in the case that the L- and R-heights are both 3: HL(U2) = HR(U2) = 3 and 

HJ (U2) = 4 (= 3 + 3 − 2). In the proof of Theorem 6.8 for the case n = 2, the semigroup 

S must be isomorphic to U({e}), and T must be anti-isomorphic to U({e}). Writing 

S = {e, x, 0S} and T = {f, y, 0T }, and letting a = (e, f), b = (e, y), c = (x, f) and 
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{a} {c}

{b} {d}

{0}

{a} {b}

{c} {d}

{0}

{a}

{b} {c}

{d}

{0}

{a} {b} {c} {d}

{0}

Fig. 2. For the semigroup U2, the posets of L-classes (left), R-classes (middle left), J -classes (middle right) 
and H-classes (right).

d = (x, y), we have U2 = {a, b, c, d, 0}, and the posets of L-, R-, J - and H-classes of 

U2 are as displayed in Fig. 2. We note that, since HH(U2) = 2, both the inequalities in 

Proposition 3.5(3) can be strict.

7. Semisimple and regular semigroups

A crucial reason for the disparities between certain K-heights of the semigroups of 

Example 4.6 and Theorems 6.3 and 6.8 is the presence of J -classes J such that J2∩J = ∅. 

In this section we shall see that for stable semigroups without such J -classes all the four 

K-heights coincide.

The principal factors of (the J -classes of) a semigroup S are defined as follows. If S

has a minimal J -class (i.e. a minimal ideal), then this J -class is defined to be its own 

principal factor. For any non-minimal J -class J of S, the principal factor of J is the 

Rees quotient of the subsemigroup S1JS1 of S by its ideal S1JS1\J . Observe that this 

principal factor has universe J ∪ {0}, where 0 denotes the zero element.

Recall that the minimal ideal of a semigroup is simple. All other principal factors are 

either 0-simple or null [4, Lemma 2.39]. A semigroup is semisimple if all its principal 

factors are either simple or 0-simple.

Proposition 7.1. Let S be a semisimple semigroup. Then

HJ (S) ≤ min
(

HL(S), HR(S)
)

.

Proof. Consider a J -chain (a0, a1, . . . , an) in S. Let Ji denote the J -class of ai (i ∈

{0, . . . , n}). Since Ji = J2
i = J3

i , and Ji ⊆ S1ai−1S1, there exist xi, yi ∈ Ji and si, ti ∈

S1 such that ai = (xisi)ai−1(tiyi). Put ui = xisi and vi = tiyi. We certainly have 

ui . . . u1a0 ≥L ui+1 . . . u1a0 for each i ∈ {1, . . . , n − 1}. Also, for each i ∈ {1, . . . , n}, we 

have

xi ≥J ui . . . u1a0 ≥J ui . . . u1a0v1 . . . vi = ai,

implying that ui . . . u1a0 ∈ Ji (since xi, ai ∈ Ji). It follows that
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a0 >L u1a0 >L u2u1a0 >L · · · >L un . . . u1a0,

which is an L-chain of length n + 1. We conclude that HL(S) ≥ HJ (S). A similar 

argument using the vi proves that HR(S) ≥ HJ (S). �

Given a semigroup S, there is a natural partial order on the set E = E(S) of idempo-

tents of S given by e ≥ f if and only if ef = fe = f . We denote the height of the poset 

(E, ≤) by HE(S).

It is straightforward to show that, for e, f ∈ E, we have

e ≥L f ⇔ fe = f and e ≥R f ⇔ ef = f,

from which it follows that [e ≥ f ⇔ e ≥H f ] and [e > f ⇔ e >L f and e >R f ]. 

Moreover, we have [e >L f ⇔ e > ef and e ≥L f ]. Indeed, suppose that e >L f . Then 

certainly e ≥L f , and we have (ef)e = e(fe) = ef = e(ef), so e ≥ ef . Since e �≤L f , it 

follows that e �= ef and hence e > ef . Conversely, if e > ef and e ≥L f , then we cannot 

have e L f , for that would imply that e = ef , so we must have e >L f .

From the above discussion we deduce:

Lemma 7.2. Let S be a semigroup, let E denote the set of idempotents of S, and let 

n ∈ N. Then the following are equivalent:

(1) there exists an L-chain of idempotents of length n in S;

(2) there exists an R-chain of idempotents of length n in S;

(3) there exists an H-chain of idempotents of length n in S;

(4) there exists a chain of idempotents of length n in (E, ≤).

Consequently, we have HE(S) ≤ min(HL(S), HR(S), HH(S)).

A semigroup S is said to be regular if for every a ∈ S there exists some b ∈ S such 

that a = aba and b = bab; the element b is called an inverse of a. A semigroup is inverse

if each of its elements has a unique inverse.

A semigroup S is regular (resp. inverse) if and only if every L-class and every R-class 

of S contain at least (resp. exactly) one idempotent [11, Theorem 6]. It follows that for 

any regular semigroup S we have HE(S) ≥ max(HL(S), HR(S). This fact, together with 

Corollary 3.6, Proposition 7.1 and Lemma 7.2, yields:

Proposition 7.3. If S is a regular semigroup, then

HL(S) = HR(S) = HH(S) = HE(S) ≥ HJ (S).

The following example shows that the inequality in Proposition 7.3 can be strict, even 

for inverse semigroups.
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Example 7.4. The bicyclic monoid, denoted by B, is the monoid defined by the presen-

tation 〈a, b | ab = 1〉. The bicyclic monoid is inverse and simple (so HJ (B) = 1), but its 

set E of idempotents forms an infinite chain 1 > ba > b2a2 > · · · [4, Theorem 2.53], so 

HE(B) (= HL(B) = HR(B) = HH(B)) is infinite.

We now collect some equivalent characterisations for a semigroup to be both regular 

and stable, and deduce that for such a semigroup all the K-heights coincide. A semigroup 

is said to be completely semisimple if each of its principal factors is either completely 

simple or completely 0-simple.

Proposition 7.5. For a semigroup S, the following are equivalent:

(1) S is regular and stable;

(2) S is regular and either left stable or right stable;

(3) S is completely semisimple;

(4) S is semisimple and stable;

(5) S is regular and does not contain a copy of the bicyclic monoid.

Moreover, if any (and hence all) of the conditions (1)-(5) hold, then

HL(S) = HR(S) = HH(S) = HE(S) = HJ (S).

Proof. The final part of the statement follows from Propositions 3.5(3) and 7.3, so we 

only need to verify that (1)-(5) are equivalent.

First we remark that (2), (3) and (4) are equivalent by [5, Theorems 6.45 and 6.48], 

and that (1) ⇒ (5) follows from [1, Corollary 2.2].

Next we note that (1) ⇒ (2) is obvious, and that (3) ⇒ (1) follows from the fact that 

completely (0-)simple semigroups are regular and stable. It remains to show that (5) ⇒

(3), so suppose that (5) holds. Then each principal factor of S contains an idempotent 

(since S is regular) but no copy of the bicyclic monoid, so is either completely simple or 

completely 0-simple by [4, Theorem 2.54]. Thus (3) holds, and the proof is complete. �

By Lemma 3.3 and Proposition 7.5, we have:

Corollary 7.6. If S is a regular semigroup with finite J -height, then

HL(S) = HR(S) = HH(S) = HE(S) = HJ (S) ⇐⇒ S is stable.
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