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Abstract: There is solid theoretical and observational motivation behind the idea of scale-
invariance as a fundamental symmetry of Nature. We consider a recently proposed classically
scale-invariant inĆationary model, quadratic in curvature and featuring a scalar Ąeld non-
minimally coupled to gravity. We go beyond earlier analytical studies, which showed that
the model predicts inĆationary observables in qualitative agreement with data, by solving
the full two-Ąeld dynamics of the system Ů this allows us to corroborate previous analytical
Ąndings and set robust constraints on the modelŠs parameters using the latest Cosmic
Microwave Background (CMB) data from Planck and BICEP/Keck. We demonstrate that
scale-invariance constrains the two-Ąeld trajectory such that the effective dynamics are that
of a single Ąeld, resulting in vanishing entropy perturbations and protecting the model from
destabilization effects. We derive tight upper limits on the non-minimal coupling strength,
excluding conformal coupling at high signiĄcance. By explicitly sampling over them, we
demonstrate an overall insensitivity to initial conditions. We argue that the model predicts

a minimal level of primordial tensor modes set by r ≳ 0.003, well within the reach of next-
generation CMB experiments. These will therefore provide a litmus test of scale-invariant
inĆation, and we comment on the possibility of distinguishing the model from Starobinsky
and α-attractor inĆation. Overall, we argue that scale-invariant inĆation is in excellent
health, and possesses features which make it an interesting benchmark for tests of inĆation
from future CMB data.
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1 Introduction

Cosmic inĆation, a postulated stage of quasi-de Sitter expansion in the extremely early
Universe [1Ű7], can now basically be considered an integral part of the standard cosmological
model, despite the lack of direct, empirical evidence for the inĆationary stage. The inĆationary
paradigm remains in very good health (despite a few potential foundational problems [8Ű22]),
and is in excellent agreement with a variety of cosmological probes [23Ű81], while a substantial
improvement in the determination of inĆationary parameters, and the detection of the
Şsmoking gunŤ signature of inĆationary gravitational waves (GWs), is among the key goals
of various upcoming surveys [82Ű91]. While on the observational side the health of the
inĆationary paradigm endures [92], on the theory side the situation is arguably less simple.
Precision measurements of the Cosmic Microwave Background (CMB) have in fact long
ruled out some of the simplest (minimally coupled) single-Ąeld monomial models, whose
predictions for the amplitude of inĆationary tensor modes exceed by far current constraints
on the tensor-to-scalar ratio r, once the tilt of the scalar power spectrum ns is Ąxed within
the observationally allowed range [93]. This impasse has triggered various new lines of
investigation partially shifting the focus from a particle-like origin for inĆation to quantum
effects in the gravitational sector and in vacuum: one intriguing line of research in this
direction embraces the idea of (global) scale-invariance as a fundamental symmetry of Nature.

The idea of scale-invariance (or scale symmetry) has a long and rich history, and has
been discussed in a variety of theoretical contexts. At the classical level, scale symmetry
demands the absence of explicit, fundamental scales in the action: this restricts the only
allowed operators in 3 + 1 dimensions to be dimension-4 ones (we will be more explicit
later), signiĄcantly increasing the predictivity of the theory. Nevertheless, explicit mass scales
typically emerge due to the running of couplings. At the quantum level (see e.g. refs. [94Ű98]),

Ű 1 Ű
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scale symmetry requires the quantum effective action to not contain any intrinsic dimensionful
parameter. Quantum scale symmetry has been proposed as a new theoretical guiding principle
for UV-complete theories going beyond renormalizability [99]. While theories displaying
fundamental scale-invariance are naturally renormalizable, they further admit a scale-free
formulation of the effective action (i.e. the dependence on the renormalization scale k can
always be absorbed into a deĄnition of scaling Ąelds). As a consequence, all the relevant
parameters of the theory (encoding deviations from the exact scaling solution) vanish,
endowing the theory itself with an extremely high predictive power [99].

If scale-invariance as a fundamental (either classical or quantum) symmetry of Nature
enjoys strong theoretical motivation, equally strong motivation for the idea exists from the
phenomenological and observational perspectives, both in the Ąelds of particle physics and
cosmology. On the particle side, an interesting motivation for scale-invariance is related to
the naturalness problem which, at its heart, is connected to divergent quantum corrections
to parameters associated to super-renormalizable (mass dimension < 4) Lagrangian terms,
such as the vacuum energy and the Higgs mass [100]. This might be seen as an indication
that, barring other protection mechanisms, Nature may (for want of a better term) prefer
dimension-4 operators: in this case, no explicit mass scale appears at the classical level.
On the cosmological side the inferred spectral index ns, combined with the observed small
amount of anisotropies and stringent limits on inĆationary tensor modes [93], appears to
require models with unusually Ćat potentials, often even for super-Planckian Ąeld values.
This raises the question of how the Ćatness of the potential is preserved against radiative
corrections (once more barring protection mechanisms). These features can more easily be
accommodated if only dimension-4 terms, thereby controlled by dimensionless couplings, are
allowed by Nature. The above phenomenological considerations, coupled with the earlier
theoretical ones, lend strong support to the idea of scale-invariance being a good candidate
symmetry for a fundamental theory of Nature, which should not contain explicit mass or
length scales: with no claims as to completeness, ideas along this direction have been explored
in various works, see e.g. refs. [101Ű135].

Returning to inĆation, the fact that scale-invariance may play an important role can be
better appreciated by inspecting the reasons behind the success of the Starobinsky model [2],
currently among the models which best Ąt the data, and whose predictions in the ns-r plane are
considered by many to be a key experimental target. Starobinsky inĆation relies on a modiĄca-
tion of the vacuum Einstein-Hilbert action, obtained by adding a term proportional to R2, i.e.
quadratic in the Ricci scalar. The model can be recast as a scalar-tensor theory, through a con-
formal transformation of the metric from the Jordan Frame (JF) to the Einstein Frame (EF):
this results in a scalar potential which is extremely Ćat at large Ąeld values, in turn explaining
the excellent agreement with cosmological observations.1 The origin of such a Ćatness is rooted
in the R2 term appearing in the JF action, and dominating the dynamics during inĆation
by virtue of its large (dimensionless) coefficient. The Starobinsky model is a particular case

1Similar considerations can be extended to Starobinsky-like inflationary models, which rely on a scalar

field φ non-minimally coupled to the Ricci scalar, via a coupling of the form −1/2f(φ)R [136–170]. Particular

choices of this non-minimal coupling can be understood as an unavoidable requirement for the renormalization

of the stress-energy tensor of Standard Model fields when quantized in a gravitational background. The best

known model in this class is of course Higgs inflation [171–173].

Ű 2 Ű
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of f(R) model motivated by quantum corrections to gravity [174Ű176]. One can attempt to
deĄne the functional form of f(R) that best accommodates inĆationary observables consistent
with data, via reconstruction techniques based on the measured spectral indices: the results
of such an exercise clearly indicate a preference for a quadratic term in the Ricci scalar [177]
(see also refs. [178Ű187]). The fundamental reason why the Starobinsky model and models
close thereto perform extremely well is, in essence, scale-invariance. Being R2 a dimension-4
term, its coefficient is dimensionless and the quadratic part of the action is therefore invariant
under Weyl rescaling ḡµν(x) = gµν(ℓx) for positive constants ℓ. As a consequence, when the
curvature is large the quadratic term dominates and drives inĆation away from an unstable
de Sitter Ąxed point. At sufficiently late times the standard Einstein-Hilbert term linear in R
overcomes the quadratic term, (approximate) scale-invariance is broken, and inĆation ends.

Driven by the above considerations, it appears reasonable to push these ideas further
and entertain the possibility that before/at the start of inĆation, the Universe starts out in a
scale-invariant state, with the subsequent evolution breaking this symmetry while driving
inĆation. These are the key ideas presented by one of us in ref. [188], which considered
an action containing all relevant scale-invariant terms obtained by combining the Ricci
scalar and a real scalar Ąeld. On a Ćat Friedmann-Lemaître-Robertson-Walker (FLRW)
background metric, the equations of motion show that the solution interpolates between two
de Sitter spaces, one being an attractor and the other a saddle point. During the transition
between the two regimes, the scalar Ąeld stabilizes around a non-zero value which can be
associated to a mass scale, and ultimately identiĄed with the Planck mass. In this picture
inĆation is then accompanied by a spontaneous/dynamical breaking of scale-invariance and
the emergence of a mass scale not present in the original action. Subsequent works have
established analytically that the spectral indices predicted by this model fall well within
current experimental constraints [189Ű191], even when one-loop quantum corrections are
considered [192]. Scale-invariance and inĆation have also been studied in other papers. For
instance, refs. [193, 194] point out how the dynamics in a two-Ąeld scale-invariant theory in
the EF is basically driven by only one Ąeld, precisely as a consequence of scale-invariance. In
turn, this guarantees the (desirable) absence of isocurvature perturbations. For other works
on the role of scale-invariance in inĆation, we refer the reader for instance to refs. [195Ű220].2

The earlier works of refs. [189Ű192] have analytically conĄrmed that inĆation in a scale-
invariant Universe as discussed in ref. [188] is a viable model for the origin of structure as
far as inĆationary observables are concerned. At the same time, much work remains to be
done on various fronts, including but not limited to:

1. corroborating the earlier analytical results by numerically solving the complete Ąeld
equations throughout the entire period of inĆation Ů this can be challenging because,
at least on paper (as is clear once one moves to the EF), this is a two-Ąeld model;

2. determining the exact constraints set by current cosmological data on the modelŠs
parameters, since the comparison to observational data performed in earlier works is
somewhat qualitative, aimed at identifying viable benchmark points in parameter space;

2Complementary aspects on black holes and other compact objects in scale-invariant theories of gravity

were recently studied in refs. [221–230].
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3. an analysis along the above lines should ideally also sample on the initial conditions for
the dynamical degrees of freedom, in order to investigate whether inĆation can occur
for generic (or, conversely, Ąne-tuned) values thereof;

4. similarly, rather than considering priors on observables (such as ns and r), it would be
interesting to consider priors on the fundamental model parameters;

5. assessing the predicted level of isocurvature perturbations, eventually corroborating the
results of refs. [193, 194];

6. computing the predicted level of non-Gaussianity;

7. Ąnally, exploring the extent to which the model can be distinguished from competing
models, in particular Starobinsky inĆation, is in order.

The goal of the present work is precisely that of addressing the above points, in order to
further cement the observational viability of scale-invariant inĆation. Most of the above
points, but especially 1Ű4, are tackled thanks to the numerical method recently developed by
two of us in ref. [231], speciĄcally designed to study generic multi-Ąeld inĆationary models
whose Ąeld space metric is potentially non-trivial. Our code solves the full numerical dynamics
of the model and calculates precise predictions for various observable quantities beyond ns

and r, while allowing us to efficiently explore the impact of initial conditions. Moreover, it
is interfaced with Boltzmann solvers and a Monte Carlo sampler which allows us to easily
compare the modelŠs predictions against current CMB observations (for which an efficient
analytical Ů compressed Ů likelihood is used), thereby setting precise constraints on the
modelŠs parameters as per points 2. and 3. above. Ultimately, our results corroborate the
validity of scale-invariant inĆation, and pave the way for further tests of the potentially
important role of scale-invariance in cosmology.

The rest of this paper is then organized as follows. In section 2 we review the basic
features of the scale-invariant model of inĆation we consider. Various analytical aspects of
the model, most of which will be useful for the later analysis, are presented in section 3: in
particular, in section 3.1 we introduce the methodology and prove that entropy perturbations
vanish due to scale symmetry, whereas in section 3.2 we compute all the relevant quantities
useful for the later numerical implementation, and in section 3.3 we compute the level of local
non-Gaussianity predicted by the model. The results of our numerical analysis are discussed in
section 4, with section 4.1 devoted to reviewing the numerical method, section 4.2 to discussing
the constraints we obtain, and section 4.3 to comparing our observational predictions against
those of other benchmark models. We close in section 5 by drawing concluding remarks.

2 Scale-invariant inflation

Following ref. [188], we consider the following classically scale-invariant action which, in
the Jordan frame (hence the subscript J), features a scalar Ąeld ϕ non-minimally coupled

Ű 4 Ű
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to gravity, and is given by:3

SJ =

∫

d4x
√−g



α

36
R2 +

ξ

6
ϕ2R− 1

2
∂µϕ∂

µϕ− λ

4
ϕ4


, (2.1)

where α, ξ, and λ are arbitrary dimensionless constants to be constrained through the analysis
we will carry out in this work. We note that the JF action is the on-shell equivalent of:

SJ =

∫

d4x
√−g



αψ2

18
+
ξϕ2

6



R− αψ4

36
− 1

2
∂µϕ∂

µϕ− λ

4
ϕ4

]

. (2.2)

The reason is that the equation of motion for the auxiliary Ąeld ψ Ąxes ψ2 = R. Consequently,
the results obtained by Ferreira et al. in ref. [194] for a scale-invariant model with two scalar
Ąelds non-minimally coupled to gravity also apply (on-shell) here, see also ref. [193] for a
very important earlier work in the context of a scale-invariant Higgs-dilaton model.4 By
means of the following Weyl transformation:

g̃µν = e2ω(x)gµν , (2.3)

where we have deĄned

ω ≡ 1

2
ln

2

M2



αψ2

18
+
ξϕ2

6



, (2.4)

one can move to the Einstein frame after introducing the Ąeld f = Me−ω. The action can
then be written in compact form:

SE =

∫

d4x
√−g



M2

2
R− 1

2
GIJg

µν∂µϕ
I∂νϕ

J − V (ϕI)

]

, (2.5)

where

ϕI ≡


ϕ

f



, GIJ ≡


e2b(f) 0

0 6e−2b(f)



, (2.6)

and b(f) is deĄned as:

b(f) ≡ ln



f

M



. (2.7)

3This action is in principle not the most general action quadratic in curvature invariants [232, 233], as it

lacks a term quadratic in the Weyl tensor. The reason we have not included this is that we work in a FLRW

background, which is conformally flat, and whose Weyl tensor therefore vanishes. Consequently, at the classical

level, including or not a term squared in the Weyl tensor will not change our results. While this is true at the

unperturbed level, even at the classical level the situation can be very different once perturbations around the

classical background are introduced (see e.g. ref. [234] for a recent study). However, an investigation of this

point goes well beyond the scope of our work.
4We emphasize that scale-invariance is a key feature of both our model and the Higgs-dilaton model [208, 235].

Indeed, such a feature is evident in the effective single-field dynamics. Moreover, in the Higgs-dilaton model,

the non-minimal coupling to the dilaton field is consistent with zero — as the analysis of ref. [235] shows,

cosmological observations set a stringent upper limit on the non-minimal coupling of order ∼ 10−3, comparable

to the bound we will obtain on ξ later on in our analysis — thereby recovering Starobinsky’s results. However,

a consistent comparison with ref. [235] is somewhat challenging, given that the model in question also accounts

for a dark energy phase which, given its connection to the inflationary phase, imposes additional constraints

on the spectral indices which are not present in our case.
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The potential in the Einstein frame appearing in eq. (2.5) is then given by:

V (ϕI) = V (ϕ, f) = −3ξϕ2f2

2α
+

Ωϕ4f4

4αM4
+

9M4

4α
, (2.8)

where Ω has been deĄned as follows:

Ω ≡ αλ+ ξ2 . (2.9)

In eq. (2.8), M is an arbitrary parameter with mass dimension 1. As emphasized in ref. [188],
M is a redundant parameter of the theory Ů in fact, variation of the action with respect
to M leads to an equation which is manifestly vanishing on-shell. Upon inspecting eq. (2.5)
it is natural to identify M with Mp, and we will adopt this identiĄcation from now on. We
stress that the appearance of the parameter M has nothing to do with the breaking of
scale-invariance, which is preserved in the EF. For this reason, we can evaluate the Noether
current associated to scale symmetry, Kµ, given by (see also ref. [193]):

Kµ ≡ ∂µK , K ≡
M2

p

2



ϕ2

M2
p

+
6M2

p

f2



, (2.10)

which is covariantly conserved along the equations of motion, i.e. ∇µK
µ = 0. The explicit

solution to the conservation equation takes the following form:

K = c1 + c2

∫

dt

a3(t)
. (2.11)

This shows that K quickly approaches a constant value, thereby spontaneously breaking scale
symmetry. Then, the motion in the (ϕ, f−1) plane is constrained to lie along an ellipse, as
shown in Ągure 1 (see also the discussion in refs. [193, 194]). Without loss of generality, we
can set c1 = M2

p . Then, along the elliptic orbit, f can always be expressed in terms of ϕ as:

f =

√
6M2

p
√

2M2
p − ϕ2

. (2.12)

It is well known that models of multi-Ąeld inĆation can display a simpliĄed behavior when a
symmetry is at play, as a result of the conserved Noether current: it is the case for Higgs
inĆation, where the SU(2) gauge symmetry manifests as an SO(4) symmetry in Ąelds space
(see e.g. ref. [236]), but also for the Higgs-dilaton model of inĆation (as well as dark energy,
see e.g. refs. [208, 235]) and scale-invariant generalizations thereof (see e.g. ref. [212]).

3 Theoretical aspects

We present the main analytical results concerning theoretical aspects of the model, which will
later be useful in the numerical analysis. We begin in section 3.1, where we introduce the
methodology adopted and prove that entropy perturbations vanish due to scale symmetry.
In section 3.2, we deĄne auxiliary Ąelds which simplify the analysis and compute all relevant
quantities required for the later numerical implementation (see section 4). In section 3.3, we
quantify the level of local non-Gaussianity predicted in the squeezed limit.

Ű 6 Ű
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Figure 1. Analytical equation of the ellipse in eq. (2.10) with c1 = M2

p (grey curve), and trajectory of
the Ąelds obtained numerically by solving the background equations (red curve). The arrow indicates
the direction of motion. Numerical integration is carried out until the end of inĆation.

3.1 Vanishing entropy perturbations

As originally proposed in refs. [237, 238] (see also ref. [239]), to facilitate the interpretation
of the evolution of cosmological perturbations, as well as their interrelation, we introduce
an orthonormal basis in Ąeld space wherein various quantities dependent on the Ąelds are
decomposed into so-called adiabatic and entropy components. Considering the 2D Ąeld space
deĄned in eq. (2.6), the unit vectors deĄning this basis are:

uI
σ ≡ 1

√

e2bϕ̇2 + 6e−2bḟ2



ϕ̇, ḟ


, uI
s ≡ 1

√

e2bϕ̇2 + 6e−2bḟ2



−
√

6e−2bḟ,
e2b

√
6
ϕ̇



, (3.1)

where uI
σ is tangent to the background trajectory and uI

s is orthogonal to it by construction.
It is indeed easy to show that:

uI
σuσJ + uI

susJ = δI
J , (3.2)

and therefore

σ̇2 ≡ e2bϕ̇2 + 6e−2bḟ2 , (3.3)

where the adiabatic Ąeld σ is deĄned via:

dσ = eb cos θdϕ+
√

6e−b sin θdf . (3.4)

We refer to the two orthonormal unit vectors uσ and us as deĄning the adiabatic and entropy
components respectively.

Following refs. [240, 241], we Ąnd it convenient to introduce the notation:

uI
σ =



e−b cos θ,
eb

√
6

sin θ



, uI
s =



−e−b sin θ,
eb

√
6

cos θ



, (3.5)

Ű 7 Ű
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where θ is the rotation angle with respect to the tangent of the background trajectory.
Within this formalism, adiabatic and entropy perturbations, which we denote by δs and
δσ, are deĄned as:

δs = usIδϕ
I , δσ = uσIδϕ

I . (3.6)

In particular, we can evaluate entropy perturbations imposing the constraint given by
eq. (2.12):

δs =
√

6e−b cos θδf − eb sin θδϕ =



12e−bM2
pϕ

(2M2
p − ϕ2)3/2

cos θ − eb sin θ

]

δϕ = 0 , (3.7)

where the last equality can easily be obtained by employing the explicit expressions for sin θ

and cos θ and further writing ḟ = (∂f/∂ϕ)ϕ̇. This therefore proves that entropy perturbations
vanish in our model, as a consequence of the constraint given by eq. (2.12). This, in turn,
follows from conservation of the Noether current associated to scale symmetry. Therefore,
the absence of entropy perturbations is ultimately a consequence of scale-invariance. As a
side note, this result rules out any concern about a tachyonic mass of entropy perturbations.
This fact is known to plague several multi-Ąeld inĆationary models with hyperbolic geometry,
as discussed in ref. [242], and eventually leads to inĆation ending prematurely. In this regard,
scale-invariance protects from any form of geometrical destabilization. At the same time, the
formalism we have adopted is safe from the apparent destabilization effects investigated by
Cicoli et al. in ref. [243]. The authors stress the importance of properly deĄning the entropy
variable before claiming the presence of growing isocurvature perturbations. In light of the
result obtained in eq. (3.7), the decomposition in tangent and normal perturbations with
respect to the inĆationary trajectory adopted here is free from ambiguities.

3.2 Field redefinition and observable predictions

In what follows we show that our model can be treated in the same vein as single-Ąeld
inĆation, given that its dynamical content can be shifted to one Ąeld out of the two, with the
other one behaving effectively as a spectator Ąeld. To do so, we further exploit the constraint
in eq. (2.10) by deĄning the new Ąelds ρ and χ (see e.g. ref. [189]):

ρ =
√

6Mp arcsinh



ϕf√
6M2

p



, (3.8)

χ =
Mp

2
ln



ϕ2

2M2
p

+
3M2

p

f2



. (3.9)

The EF action in the (ϕ, f) representation given in eq. (2.5) can then be written in the (ρ, χ)

representation in the following compact form:

SE =

∫

d4x
√−g



M2
p

2
R− 1

2
GIJg

µν∂µϕ
I∂νϕ

J − V (ϕI)

]

, (3.10)

where:

ϕI ≡


ρ

χ



, GIJ ≡


1 0

0 e2b(ρ)



, (3.11)
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and b(ρ) is deĄned as:

b(ρ) =
1

2
ln



6 cosh2



ρ√
6Mp

]

. (3.12)

The potential in this Ąeld representation depends exclusively on ρ, and takes the form:5

V (ϕI) = V (ρ) =
9M4

p

4α



1 − 4ξ sinh2



ρ√
6Mp



+ 4Ω sinh4



ρ√
6Mp

]

. (3.13)

At the background level, the homogeneous Klein-Gordon equations for the two Ąelds are:

ρ̈+ 3Hρ̇+ V,ρ = b,ρ e
2b(ρ)χ̇2 , (3.14)

χ̈+ 3Hχ̇+ 2b,ρ χ̇ρ̇ = 0 . (3.15)

The Einstein equations determining the evolution of the scale factor are:

H2 =
1

3M2
p



ρ̇2

2
+ e2b(ρ) χ̇

2

2
+ V (ρ)



, (3.16)

Ḣ = − 1

2M2
p



ρ̇2 + e2b(ρ)χ̇2


. (3.17)

From the above equations it is clear that χ plays the role of the Goldstone boson of the theory:
when scale symmetry is spontaneously broken, K approaches a constant and consequently so
does χ. The relevant degree of freedom for the inĆationary dynamics is then ρ, consistently
with the fact that V (ϕI) = V (ρ). Indeed, considering the slow-roll approximation, from
eq. (3.15) it is easy to see that the dynamics are the ones of single-Ąeld inĆation.

The above results translate into having θ ≈ 0 once eqs. (3.1), (3.5) for the new Ąeld
representation are employed. If we introduce the convenient notation V,s = uI

sV,I , the
contribution of the entropy Ąeld given via:

θ̇ = −V,s

σ̇
− b,ρ σ̇ sin θ , (3.18)

is therefore identically zero, implying that the background trajectory is Ćat. Perturbations
along the orthogonal direction are not coupled through the potential either (since V,s = 0).
As a consequence, the entire dynamics of the system are controlled by the tangent Ąeld σ

which, in the slow-roll approximation, is governed by the relation:6

σ̈

Hσ̇
≃ ϵ− V,ρρ

3H2
. (3.19)

5The potential takes the form of a Mexican hat, whose minimum however is non-vanishing. As a result,

at the stable fixed point, there is in principle a residual cosmological constant. In ref. [188] it was shown

that a specific combination of the couplings can lead to the R2 and φ4 terms exactly canceling this residual

cosmological constant, at the price of the resulting spectral indices not agreeing with observations: for

observationally allowed values of the parameters, as per our later analysis, the residual cosmological constant

would be very large, and a cancellation mechanism would therefore be required. A potential mechanism in this

sense was studied in ref. [215], and invokes the introduction of a third field, which still respects the underlying

scale symmetry, but at the same time contributes to the inflationary dynamics (i.e. it is not a spectator field),

thereby affecting the model’s observational predictions. It would be interesting to study such an extension

using the same method adopted in this paper, and we leave this very interesting study to follow-up work.
6Here and in what follows, the symbol ≃ indicates that we are within the slow-roll approximation.
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Moreover, the primordial scalar power spectrum at horizon crossing reads:

Pζ(k) ≃ H2

8π2 ϵ

∣

∣

∣

∣

k=k∗

, (3.20)

and following ref. [241] we can therefore obtain the spectral parameters (at the scale k = k∗).
In particular, we Ąnd that the spectral index is given by:

ns ≃ −6ϵ+
2V,ρρ

3H2
, (3.21)

whereas the running of the spectral index αs ≡ dns/d ln k takes the form:

αs ≃ −24ϵ2 + 16ϵ
V,ρρ

3H2
+ 2

√
2ϵ cos θ

V,ρρρ

3H2
. (3.22)

For completeness, even though it is not used in the later numerical analysis, we quote the
expression for the running of the running of the scalar spectral index βs ≡ dαs/d ln k:

βs ≃ −192ϵ3 +
64ϵ2V,ρρ

H2
−

32ϵV 2
,ρρ

9H4
+

8
√

2ϵ3/2 cos θV,ρρρ

H2
− 2

√
2ϵ cos θV,ρρV,ρρρ

9H4

+
4ϵ cos2 θV,ρρρρ

3H2
. (3.23)

The transfer matrix formalism [244] allows us to show that the effects of isocurvature modes
on the adiabatic ones are absent on super-horizon scales. Indeed, the transfer functions
which relate the power spectrum at the end of inĆation to the power spectrum at horizon
crossing are given by:

TζS(t∗, t) =

∫ t

t∗

A(t′)H(t′)TSS(t∗, t
′)dt′,

TSS(t∗, t
′) = exp



∫ t′

t∗

B(t′′)H(t′′)dt′′


,

(3.24)

where the time-dependent dimensionless functions A and B are given by [241]:

A = 2ξ1 sin θ ≃ 0 , (3.25)

B = −2ϵ+ ξ1 +
ξ2

1

3
+
ξ2

3
+
V,ρρ

3H2
, (3.26)

with ξ1 ≡
√

2ϵb,ρ and ξ2 ≡ 2ϵb,ρρ. Hence, by means of eq. (3.25) and the fact that θ ≈ 0, we
see that the power spectrum at the end of inĆation does not deviate from the one at horizon
crossing, since the two are related by a factor (1 + T 2

ζS
).

3.3 Non-Gaussianity

Primordial cosmological perturbations are usually expressed in terms of the curvature per-
turbation on uniform energy density hypersurfaces, which reads:

ζ = Φ − H

Ḣ



Φ̇ +HΦ


≃ H



ρ̇δρ+ e2b(ρ)χ̇ δχ

ρ̇2 + e2b(ρ)χ̇2



, (3.27)
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where the second equality is obtained by considering the equations of motion at Ąrst order in
perturbations, and is valid only within the long-wavelength and slow-roll limits. Moreover,
this same quantity evaluated on some Ąnal uniform-density spacetime slice tc can be expressed
in terms of spatial Ćuctuations in e-folding number between an initially Ćat slice (at t = t∗)
and the Ąnal comoving one (at t = tc):

ζ(tc,x) ≃ δN(tc, t∗,x) , (3.28)

allowing us to compute the non-linear evolution of cosmological perturbations on large scales
without the need to solve the full perturbed Ąeld equations. In line with the so-called δN

expansion for the Ąeld perturbation [245, 246], we can write:

δN(tc, t∗,x) = N,I(N,ϕJ
∗ )δϕI

∗(x) +
1

2
N,IJ(ϕK

∗ )δϕI
∗(x)δϕJ

∗ (x) + . . . (3.29)

retaining only terms up to second order. For sufficiently small δϕI
∗(x) ≡ ϕI

∗(x) − ϕI
∗, the two

points ϕI
∗(x) and ϕI

∗ are connected by a unique geodesic that can be parametrized by λ. By
introducing the quantity QI = dϕI/dλ♣λ=0 which resides in the tangent space at ϕI(λ = 0)

and transforms covariantly [247, 248], we can express δϕI in terms of QI as:

δϕI = QI − 1

2!
ΓI

JKQJQK + . . . , (3.30)

from which eq. (3.29) can be recast as follows:

ζ(N,x) = N,I(N,ϕJ
∗ )QI

∗(x) +
1

2
DIDJN(N,ϕK

∗ )QI
∗(x)QJ

∗ (x) + . . . , (3.31)

where once more we have retained only terms up to second order.
We now turn our attention to correlation functions of the curvature perturbation. Moving

to Fourier space, we parametrize the two-point correlation function as:

⟨ζ(k1)ζ(k2)⟩ = (2π)3δ3(k1 + k2)Pζ(k1) = (2π)3δ(k1 + k2)
2π2

k3
1

Pζ(k1) , (3.32)

and similarly for the three-point correlation function:

⟨ζ(k1)ζ(k3)ζ(k3)⟩ = (2π)3δ3(k1 + k2 + k3)Bζ(k1, k2, k3) , (3.33)

where Pζ(k) and Pζ(k) are respectively the power spectrum and reduced power spectrum,
whereas Bζ(k1, k2, k3) is the bispectrum. To quantify the level of non-Gaussianity we introduce
the parameter fNL:

fNL =
5

6

Bζ(k1, k2, k3)

Pζ(k1)Pζ(k2) + c.p.
, (3.34)

where c.p. denotes cyclic permutations of k1, k2 and k3. As a side note, we stress that the δN
formalism is only valid in the squeezed limit of the three-point correlation function. From
eq. (3.31) and following ref. [247], we Ąnd that the power spectrum is given by:

Pζ =



H∗

2π

2

GIJ
∗ N,IN,J =



H∗

2π

2

(N,ρ)2 , (3.35)
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where N ≃
∫

dρ/(Mp

√

2ϵ(ρ)). On the other hand, working within the slow-roll approximation,
we Ąnd that fNL is given by:

fNL =
5

6

GIK
∗ N,KGJL

∗ N,LDIN,J

(GKH
∗ N,HN,K)2

=
5

6

N2
,ρ(N,ρρ − Γρ

ρρN,ρ)

N4
,ρ

=
5

6

N,ρρ

N2
,ρ

≃ 5

3
Mϵ(ρ)

∂

∂ρ

1
√

2ϵ(ρ)
.

(3.36)
The above expression is identical to the one obtained for single-Ąeld inĆation models with
canonical kinetic terms, see e.g. eq. (1.34) of ref. [249]. This result is indeed consistent
with the fact, already stressed earlier, that the inĆationary dynamics within our model are
effectively driven by the Ąeld ρ, whose kinetic term is canonical.

Given the slow-roll suppression of fNL, we expect our model to be in excellent agreement
with current upper limits on the amount of non-Gaussianity. At the same time, it is
meaningful to account for the Ů equally small Ů contribution of non-Gaussianity of the
Ąeld perturbations at horizon crossing. By making use of the Maldacena consistency relation,
which is naturally embedded in the δN formalism [250], we Ąnd [249]:

fNL =
5

12
(1 − ns) . (3.37)

We have explicitly veriĄed that, within the parameter space constrained through the numerical
analysis to be discussed later in section 4, fNL is always well within the upper limits on the
amount of non-Gaussianity obtained from the temperature and polarization CMB bispectra
measured by the Planck satellite. To be more concrete, we consider limits on the amplitude
of the local bispectrum, f local

NL = −0.9 ± 5.1 [251]. We focus on the local template for three
reasons: i) it peaks in the squeezed limit, which is also the limit within which the δN

formalism allows us to compute the amplitude of the bispectrum, ii) it is the one which
can be used to discriminate single-Ąeld from multi-Ąeld inĆation, and iii) its amplitude is
the most tightly constrained among the standard templates considered (local, equilateral,
orthogonal). Then, purely by means of example, for the benchmark point in parameter space
given by ξ = 0.00039, α = 1.87 × 1010, Ω = 1.64 × 10−7, and ρ⋆ = 5.15Mp, with the subscript

⋆ denoting a quantity evaluated at horizon crossing, we have f local
NL = −0.015, well within

the region allowed by present precision cosmological observations.7

4 Cosmological constraints

We are now in the position to test scale-invariant inĆation against precision cosmological
data. We begin in section 4.1 by reviewing the numerical methodology adopted in the
analysis. In section 4.2, we then derive constraints on the modelŠs free parameters from
current observations. Subsequently, in section 4.3 we compare the modelŠs observational
predictions with those of other benchmark scenarios, such as Starobinsky inĆation, and
discuss the implications for forthcoming experiments.

4.1 Methods

Within the theoretical parametrization described in section 3.2, our scale-invariant inĆationary
model reduces to a scenario where two scalar Ąelds coexist in a non-trivial Ąeld space GIJ (ρ, χ).

7Note that constraints on f local
NL from large-scale structure probes are weaker by at least an order of

magnitude, see for instance refs. [252–256].
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In total, we are left with three free parameters: ξ, Ω, and α. Using Monte Carlo (MC)
techniques, we aim to explore the 3D parameter space of the model to compare its theoretical
predictions against observational data. To do so, we strictly follow the methodology introduced
by some of us in ref. [231], employing a sampling algorithm able to explore a large volume
of parameter space and identify a sub-region where the modelŠs predictions agree well with
observations. SpeciĄcally, our algorithm works as follows:

1. At each step of the MC, we randomly select initial conditions for the Ąelds and values
for the three free parameters of the model from the uniform prior ranges reported in
the rightmost column of table 1. This therefore also allows us to explore the impact of
initial conditions for the Ąelds.

2. For the particular set of parameter values and initial conditions Ąxed at point 1., we
integrate the equations of motion for the Ąelds and track their evolution over the
inĆationary potential. Given the peculiarity of this model, where, depending on the
parameter values, the Ąeld evolution can be characterized by a very prolonged slow-roll
phase eventually leading to eternal inĆation, the integration process is carried out
for a (fairly large) maximum number of e-folds, set to Nmax = 107. Throughout the
integration, we dynamically calculate the slow-roll parameter ϵ until the condition ϵ = 1

is satisĄed. If this condition is not met within Nmax e-folds, the model is classiĄed
as eternal inĆation and rejected. Conversely, if the condition is satisĄed during the
integration, the point at which ϵ = 1 in the parameter trajectory is considered as
potential ending point for inĆation. To conĄrm that the point in question represents
the actual end of inĆation, we conduct a multitude of tests detailed in ref. [231]. Among
other things, we check that i) the Ąelds are not active enough to initiate a second
stage of inĆation, ii) the parameter ϵ remains ϵ ≠ 0 throughout the full evolution, and
iii) inĆation lasts for a total number of e-folds ∆N > 70 to account for the observed
homogeneity and isotropy of the Universe. If the model satisĄes all these conditions, we
move to point 3., else we return to point 1. and select a new point in parameter space.

3. After ensuring that the model satisĄes all the requirements discussed in the previous
point, we reconstruct the full Ąeld dynamics during the entire inĆationary phase,
including how the slow-roll parameters and observables evolve as a function of N . By
doing so, we can obtain the values of all slow-roll parameters at horizon crossing (set to
N⋆ = 55 e-folds before the end of inĆation) including the amplitude of the primordial
power spectrum of scalar perturbations (As), its spectral index (ns), the running of the
spectral index (αs), and the amplitude of tensor perturbations (characterized by the
tensor-to-scalar ratio r ≡ At/As).8 Additionally, our code is able to take into account

8A precise estimate of N⋆ would require an analysis of the reheating stage, which is beyond the scope of

the present work. Nevertheless, we are confident about our choice of fixing N⋆ = 55 in the Einstein frame

given that, as we will discuss below in eq. (4.7), the same relation between ns and r known for Starobinsky’s

model holds true in this model. Stated differently, the spectral indices and the number of e-folds are closely

related by ns ≃ 1 − 2/N⋆ and r ≃ 12/N2
⋆

. For this reason, we do not expect significant deviations from the

preferred value in Starobinsky’s inflation, usually set to N⋆ = 55, with changes of less than one e-fold when the

reheating phase is also accounted for, see ref. [257]. We defer a full study of the reheating phase, expanding

further along the lines of ref. [188], to future work.
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the super-horizon evolution and transfer of entropy between isocurvature and scalar
perturbations by means of the transfer matrix formalism detailed in refs. [231, 241].
As argued on the basis of analytical considerations in section 3.1, scale-invariance
prevents the Ąelds from transferring entropy perturbations. Interestingly, we Ąnd that
the entropy transfer between isocurvature and scalar perturbations is consistent with
zero also at the numerical level, conĄrming the theoretical result. A direct consequence
of this fact is that the observational values for the inĆationary parameters are set
at horizon crossing (just as in single-Ąeld models) and remain unchanged at the end
of inĆation. To state it differently, the power spectrum at the end of inĆation is
equal to the one at horizon crossing, given that TζS = 0 and thus (1 + T 2

ζS
) = 1 [see

eq. (3.24)].

4. We save the model predictions for observable quantities in a chain of points very similar
to the output obtained by typical Markov Chains MC (MCMC) methods. We assign to
each point in the chain a likelihood value obtained from an analytical multi-dimensional
normal distribution:

L ∝ exp



−1

2
(x − µ)T

Σ−1 (x − µ)



, (4.1)

where µ and Σ represent the mean values and covariance matrix for the parameter
vector x ≡ (As, ns, αs, r) obtained from a joint analysis of the Planck 2018 tempera-
ture and polarization (TT, TE, EE) and lensing reconstruction likelihoods [258, 259],
combined with the latest foreground-cleaned CMB B-mode power spectrum likelihood
released by the BICEP/Keck collaboration, based on observations from the BICEP2,
Keck Array, and BICEP3 experiments up to and including the 2018 observation sea-
son [260].9 For further details on the validation of the method, we refer the reader to
ref. [231].

5. We return to point 1. and keep sampling the model parameters.

Using this method, we collect over 7 × 104 points within chains, each weighted by its own
likelihood. This enables us to derive constraints on the free parameters of the model and
study correlations both between the latter, as well as among observable quantities such as
the spectral index and the amplitude of the primordial scalar and tensor power spectra,
which of course are treated as derived parameters. We stress that, despite the similarity,
our sampling method should not be considered an MCMC algorithm (although it is able to
recover the same results obtained using traditional MCMC methods, as discussed in detail
throughout ref. [231]). For instance, the sampling is completely random and there is no
need to specify a proposal density or acceptance ratio (compare this to the widely used
Metropolis-Hastings algorithm), thus the importance weight/multiplicity of each point in the
chain is 1 by construction. For the same reason, there is no in-built notion of convergence (à

9The chains used to determine the mean vector and covariance matrix we adopt have been obtained within

the 9-parameter ΛCDM+ns + αs + βs cosmological model [231]. Note that, in addition to ref. [231], a number

of other earlier works have adopted and validated a similar compressed likelihood approach to constrain

fundamental parameters from inflation-related observables, see e.g. refs. [52, 65, 71, 261, 262].
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la Gelman and Rubin [263]), but the level of convergence is gauged empirically by assessing
the stability of the resulting constraints against the addition of further samples.10

4.2 Parameter constraints

Constraints on the model parameters (including the initial conditions for the Ąelds ρ and χ),
as well as on the inĆationary observables related to the primordial scalar and tensor power
spectra (which are treated as derived parameters) are reported in table 1. For two-tailed
bounds we report 68% conĄdence level (C.L.) intervals, whereas 95% C.L. upper/lower limits
are quoted for parameters whose distributions are not consistent with a ŞdetectionŤ. In
Ągure 2 we instead show 2D joint and 1D marginalized posterior probability distributions for
selected parameters (leaving out the distributions for the initial conditions).

Our Ąrst important Ąnding is that, in spite of our choice of varying the initial conditions
for the Ąelds ρini and χini within the Ćat priors reported in table 1, these two parameters
are entirely unconstrained. This emphasizes the fact that our model is not (or at least only
weakly) sensitive to the choice of initial conditions, which is of course a positive aspect. In
contrast, when focusing on the three free parameters of the model Ů α, ξ, and Ω (note that
we impose a prior which is Ćat in log10 ξ, rather than in ξ itself) Ů we observe that these
are well constrained within the ranges set by our priors, with the bounds (and in particular
the 68% C.L. intervals and/or 95% C.L. upper/lower limits) remaining well away from the
upper and lower limits of the prior ranges. This indicates that the choice of prior ranges
has virtually no effect on our constraints, and that the latter can be attributed to genuine
physical effects of these parameters on observable quantities. To remind the reader about
the meaning of these parameters, we recall that ξ and α control the strength of the ϕ2R

and R2 terms in the Jordan frame action respectively [see eq. (2.1)], whereas Ω/α controls
the strength of the sinh4(ρ) term in the potential within the (ρ, χ) Ąeld representation [see
eq. (3.13)] Ů with α and ξ known, Ω itself is related to λ, which controls the strength of
the quartic term in the Jordan frame action [see eq. (2.1)].

More in detail, the parameter α (controlling the strength of the R2 term) is directly
linked to the amplitude of the inĆationary potential through eq. (3.13). It therefore affects
the amplitudes of the primordial scalar and tensor power spectra. This connection is most
evident if one observes the mutual correlations between α, As, and r in Ągure 2. Given
that data from the Planck satellite has been used to infer As to high accuracy, through its
effect on the amplitude of the acoustic peaks in the temperature and polarization anisotropy
power spectra, constraints on As usually impose stringent requirements on the amplitude of
inĆationary potentials, and therefore serve as calibrators for inĆationary models. This holds
true in our scale-invariant inĆationary model as well, for which matching the amplitude of
the primordial scalar power spectrum As = (2.112 ± 0.033) × 10−9, in excellent agreement
with results in the literature, leads to the constraint α = 1.951+0.076

−0.11 × 1010.

10As a further empirical test of convergence, we verified that by accumulating an increasing number of

points in the chains and marginalizing to find the 1D posterior distributions, the tails corresponding to 5% C.L.

actually contain approximately 5% of the total models. Such a result is exactly what is expected when

marginalizing over the parameter space and allows us to safely conclude that the tails of the distributions

were well-sampled and adequately populated.
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Initial conditions Constraints Uniform prior ranges

ρini/Mp (unconstrained) ρini/Mp ∈ [0.1, 2]

χini/Mp (unconstrained) χini/Mp ∈ [0.1, 10]

Model parameters Constraints Uniform prior ranges

ξ < 0.00142 log10(ξ) ∈ [−5,−1]

α 1.951+0.076
−0.11 × 1010 10−10 × α ∈ [1, 3]

Ω 0.93+0.72
−2.8 × 10−5 Ω ∈ [ξ2, 2ξ2]

Primordial spectra parameters Constraints

As ( 2.112 ± 0.033 ) · 10−9 (derived)

ns 0.9638+0.0015
−0.0010 (derived)

αs < 1.2 × 10−4 (derived)

r > 0.00332 (derived)

Table 1. External priors and observational constraints on the initial conditions of the Ąelds ρ and χ
(Ąrst two rows, with Mp denoting the Planck mass), the model parameters ξ (more precisely log

10
ξ),

α, and Ω (three intermediate rows), and (derived) inĆationary parameters controlling the primordial
scalar and tensor power spectra As, ns, αs, and r (lower four rows). For what concerns observational
constraints, for two-tailed bounds we report 1σ (68% C.L.) intervals, whereas for all other cases we
report 2σ (95% C.L.) upper/lower bounds.

On the other hand, the parameter ξ (controlling the strength of the non-minimal coupling
ϕ2R) signiĄcantly inĆuences both the scalar tilt ns and the amplitude of the primordial tensor
power spectrum through the tensor-to-scalar ratio r. In the left panel of Ągure 3, we observe
that values of ξ ∼ 10−2 lead to a shift towards smaller ns ∼ 0.95, while for ξ ≲ 10−3 we
converge to a Ćat plateau around ns ∼ 0.965, consistent with the Planck results.11 Therefore,
to maintain consistency for what concerns the derived value of ns, excessively high values of
ξ are not viable, as they would force us into a region of parameter space where ns becomes
too small to remain in good agreement with Planck. These considerations translate into the
95% C.L. upper limit ξ < 0.00142. It is interesting to note that these constraints exclude
ξ = 1 at very high signiĄcance. Our choice of the ϕ2R term in eq. (2.1) having a coupling
ξ/6 implies that ξ = 1 is the conformal value for the coupling. Therefore, our results exclude
conformal invariance within this speciĄc model Ů this is not necessarily surprising, given

11There are two important caveats to this statement. In first place, CMB data from the Atacama Cosmology

Telescope are in principle consistent with ns = 1, at the cost of some degree of tension with Planck [264–268].

Next, the quoted value of ns has been inferred within the ΛCDM model. However, models of early-time new

physics invoked to address the Hubble tension [269–273] typically lead to much higher inferred values of ns,

up to ns ≈ 1 (see e.g. refs. [274–283] for concrete examples). The reason is that such an increase in ns can

absorb part of the shifts in the CMB spectrum related to an enhanced early integrated Sachs-Wolfe effect, as

well as additional modifications in the damping tail [274, 281, 284–286]. In light of these caveats, we caution

against drawing too strong conclusions from the value of ns inferred by Planck within ΛCDM [287]. See also

the recent work of ref. [288] where this point was explored in great detail by one of us.
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that conformal invariance is stronger than scale-invariance.12 Moreover, we note that the
allowed values of ξ are much smaller than those required for the non-minimal coupling in
Higgs inĆation [171Ű173], and therefore our model does not suffer from the potential issues
with unitarity violation raised in the context of Higgs inĆation [139, 145, 172, 289, 290]
(although we stress that a direct comparison between the two models is not fair, given that
our scalar is not the Higgs).

When it comes to the parameter Ω, which we recall controls the strength of the sinh4(ρ)

term in the potential within the (ρ, χ) Ąeld representation, or equivalently (once α and ξ are
given) the strength of the quartic term in the JF action, it is essential to clarify the choice of
prior range within which we vary it: Ω ∈ [ξ2, 2ξ2]. This prior is motivated by semi-analytical
arguments which suggest that, for each given value of ξ, in order to prevent eternal inĆation,
Ω must be conĄned to a speciĄc range of values Ω ∈ [ξ2, 1.15ξ2] [190]. Our analysis perfectly
conĄrms this result numerically. In particular, we observe that when Ω deviates from the
above interval, our numerical evolution leading to eternal inĆation occurring. As a result,
we adopt the prior reported in table 1 which, in order to be more conservative, allows more
freedom compared to the tighter range obtained analytically and reported above. That being
said, just as α and ξ, Ω too inĆuences the inĆationary potential and its related observables,
as can be seen in eq. (3.13). This leads to strong correlations with the other parameters
(both the model parameters and the inĆationary observables) as observed in Ągure 2. In
this case, we set a two-tailed constraint Ω = 0.93+0.72

−2.8 × 10−5.

We conclude this subsection with some Ąnal remarks regarding the predictability of our
scale-invariant model and the peculiarity of our methodology. The latter lies in our initial
assumption of a speciĄc model at the beginning of our analysis, differing signiĄcantly from
the conventional approach in the literature. Typically, predictions of inĆationary models are
tested against cosmological data by superimposing theoretical curves (at Ąxed benchmark
values for the fundamental parameters of the model) onto pre-obtained 2D marginalized
probability contours in the ns-r plane. An illustrative example of this widespread approach
can be appreciated in Ągure 8 of the well-known Planck 2018 paper on inĆation [93]. In
contrast, a distinct advantage of our method (adopted, among others, by some of us in
refs. [80, 291]) is that we can derive precise model-dependent predictions for inĆationary
parameters, such as the tensor amplitude r and the running of the spectral index αs. Once a
speciĄc inĆationary model is assumed, the values of these quantities are mostly Ąxed as a
result of consistency relations among different inĆationary parameters.

The above considerations are evident from the correlations in the three-dimensional
parameter space spanned by ns, r, and αs shown in the right panel of Ągure 3. We observe
that, within our model, more negative values of αs are only possible when ns ∼ 0.965 and
r ∼ 0.0036. This region of parameter space corresponds to the regime where the effects of

12It is worth noting that the low-ns tail is more extended than the heavier high-ns tail. This leads to the

somewhat peculiar shapes observed in the contours in figure 2. As discussed in the text and evident from the

same figure, lower values of ns are correlated with higher values of ξ, and the other way around. Therefore,

the heavier high-ns tail reflects the lower edge in log10 ξ prior (which we set at log10 ξ > −5). Of course, the

choice of this edge is somewhat arbitrary since we cannot sample all the way down to ξ = 0 once we choose

to sample log10 ξ. Nevertheless, as stressed above and in the text (see also the empirical convergence test

discussed in footnote 10), our results are robust and converged, albeit not in the usual MCMC sense.
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Figure 2. Triangular plot showing 2D joint and 1D marginalized posterior probability distributions for
a selection of parameters: the (natural logarithm of the) amplitude of primordial scalar perturbations
As, the scalar spectral index ns, the (logarithm of the) coupling parameters ξ, Ω, and α, with ξ

and α controlling the strength of the ϕ2R and R2 terms in the Jordan frame action respectively [see
eq. (2.1)], and Ω/α controlling the strength of the sinh4(ρ) term in the potential within the (ρ, χ) Ąeld
representation [see eq. (3.13)], and the (logarithm of the) tensor-to-scalar ratio r.

the non-minimal coupling ϕ2R controlled by ξ are negligible, and we therefore approach the
regime of Starobinsky inĆation where the R2 term dominates. Conversely, lower values of
ns ≲ 0.96 imply smaller values of r and larger/less negative (thus smaller in absolute value)
values of αs, deviating signiĄcantly from the predictions of Starobinsky inĆation. Notice also
that these correlations are obtained after marginalizing over all the free parameters of the
model (ξ, α, and Ω, as well as initial conditions for the Ąelds). Consequently, they offer a
much more comprehensive overview of the interrelations between inĆationary parameters
within our speciĄc scenario. This allows us to better highlight the predictive power of
scale-invariant inĆation. For instance, we anticipate a non-zero value for the amplitude of
primordial gravitational waves r > 0.00332 and the spectral index running αs < 1.2 × 10−4

(both at 95% C.L.). We would like to stress that these results represent model-dependent
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Figure 3. Left panel: 2D scatter plot in the log
10
ξ-ns plane [with ξ controlling the strength of

the ϕ2R term in the Jordan frame action, see eq. (2.1)] colored by the value of the tensor-to-scalar
ratio. Right panel: 2D scatter plot in the 104αs-ns plane (with αs = dns/d log k the running of the
spectral index) colored by the value of the tensor-to-scalar ratio, for the scale-invariant model studied
in this work. The predictions in the ns-104αs plane are compared to those from Starobinsky inĆation
(contours given by the dotted curves, not colored by r).

predictions which can be tested in light of future CMB experiments [83Ű85, 89, 90] to either
validate or rule out the model. On the other hand, one might wonder whether (and to what
extent) these predictions can help discriminate between this and other competing models.
The next subsection is dedicated to discussing both aspects in detail.

4.3 Comparison to Starobinsky inflation

As we emphasized in the previous subsection, our observational constraints are derived by
assuming the speciĄc model of scale-invariant inĆation in the analysis and testing its theoretical
predictions against cosmological data, rather than merely superimposing theoretical curves
onto previously obtained 2D marginalized ns-r contours. Consequently, each and every bound
and correlation observed among inĆationary parameters should be considered a prediction
speciĄc to our particular model. A natural question that arises is therefore whether and to
what extent these predictions can be distinguished from other benchmark models, such as
Starobinsky inĆation [2] or its α-attractor extension [292Ű296] (see also refs. [297Ű306]). In
this regard, we note that Starobinsky inĆation itself represents a scale-invariant model when
the R2 term dominates the inĆationary dynamics (as is usually the case). One might therefore
expect some degree of overlap in the predictions of the two models for certain ranges of
parameters. We choose to perform the comparison of our model against Starobinsky inĆation
(and α-attractor inĆation) in light of the quasi-scale-invariant nature of the latter, in addition
to its excellent agreement with current data, and its often being taken as a benchmark when
studying the capabilities of future CMB experiments. However, we stress that a similar
exercise can equally well be performed with other models.
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Figure 4. 2D contours in the ns-r plane for the scale-invariant model studied in this work (red
contours), compared to those of Starobinsky inĆation (green contours) and α-attractors (light blue
contours), obtained in light of observations from the Planck 2018 legacy release and from the
BICEP/Keck collaboration (BICEP2, Keck Array and BICEP3 observations up to 2018) and sampling
procedure described in section 4.1.

To address these questions, in Ągure 4 we compare marginalized contours in the ns-r
plane for our scale-invariant inĆationary model (red contours) against those obtained for
Starobinsky inĆation (green contours) and α-attractor inĆation (light blue contours). In the
latter two cases, the predictions are derived following the methodology outlined in ref. [291]
where, broadly speaking, the universal predictions for the inĆationary parameters:

ns ≃ 1 −
√

r

3α
, (4.2)

with α = 1 corresponding to Starobinsky inĆation, are assumed in the cosmological model,
and constraints are derived from the same dataset analyzed for the scale-invariant inĆationary
model studied here, in order for the comparison to be meaningful. Further details on this
methodology, as well as information on the priors assumed for the different parameters, can
be found in section 3 of ref. [291].

With reference to Ągure 4, although the predictions for the three models overlap within
a fairly large region of parameter space, a number of interesting differences can be noted.
First and foremost, the red contours indicate a positive correlation between the amplitude
of tensor modes and the scalar spectral index in the scale-invariant model of inĆation. In
other words, higher values of r are correlated with higher values of ns. This is not the case in
Starobinsky inĆation, where these two parameters are related by eq. (4.2) with α = 1, thereby
leading to a behavior which is exactly the opposite. This relation clearly imposes a negative
correlation, as higher values of r lead to lower values of ns. Due to the different correlation
between ns and r in the two models, the respective marginalized probability contours are
rotated relative to each other, and a substantial portion of the parameter space falling within
the 68% C.L. region in scale-invariant inĆation would be excluded in Starobinsky inĆation at
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a statistical level (largely) exceeding 95% C.L. (and viceversa). Considering the more general
α-attractor predictions Ů i.e. eq. (4.2) with α free to vary Ů the correlation between ns

and r is basically lost due to marginalization upon the additional parameter α. Given that
when ns is Ąxed, α only affects the amplitude of tensor modes (interpolating vertically along
the ns-r plane between the predictions of Starobinsky inĆation and those of the monomial
∝ ϕ2 model), we are left with a substantial freedom to accommodate different values of r by
appropriately changing α, which reĆects in very broad contours once α is marginalized over.

Summing up, the increased freedom in α-attractor inĆation complicates the discrimination
between the models, given the much broader 2D probability contours obtained in this case.
In contrast, the differences between scale-invariant inĆation and Starobinsky inĆation appear
substantial enough to raise questions about i) the physical nature of the differences, and ii)

conclusions one can draw about these models in light of forthcoming, more precise CMB
observations, both satellite- and ground-based. Our observations are as follows:

1. Regarding the Ąrst point, in the previous subsection we argued that ξ is the parameter
which most prominently affects constraints in the ns-r plane. Taking another look at the
left-side panel of Ągure 3, we highlight once more how the predictions of the Starobinsky
model are, in fact, fully recovered in the limit ξ → 0, when the dynamics are driven
by the R2 term. In the regime of negligible ξ, we converge to the plateau described by
ns ≈ 0.965 and r ≈ 0.037, which corresponds precisely to the region where the red and
green contours in Ągure 4 overlap. In contrast, as the value of ξ becomes sufficiently
high, the shift towards lower values of the spectral index and tensor amplitude forces us
into a region of the ns-r plane inaccessible to Starobinsky inĆation. The same pattern
is also evident from the right panel of Ągure 3, wherein we see that as long as the
contribution of ξ remains negligible (left-most side of the panel), the predictions of
scale-invariant inĆation (colored points) match those of Starobinsky inĆation (dashed
contours) also in the 3D plane spanned by ns, r, and αs.

The fact that the predictions of scale-invariant inĆation reduce to Starobinsky in the
limit ξ → 0 can also be proven through semi-analytical arguments, providing direct
evidence for the robustness of our numerical results. Indeed, let us consider the potential
slow-roll parameters [307], solely a function of the Ąeld ρ:

ϵ(ρ) =
M2

p

2



V,ρ

V

2

, η(ρ) = M2
p

V,ρρ

V
, (4.3)

from which we obtain the spectral indices as:

ns(ρ) ≃ 1 − 6ϵ(ρ) + 2η(ρ) , r ≃ 16ϵ(ρ) . (4.4)

These expressions are easily computed analytically and greatly simpliĄed within the
limit Ω → ξ2, which is motivated by virtue of the above discussion. By further taking
the limit ξ → 0, we obtain:

ns ≃ 1 − 8

3
ξ cosh



√

2

3

ρ

Mp



, (4.5)

r ≃ 64

3
ξ2 sinh2



√

2

3

ρ

Mp



. (4.6)
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The two above equations can be combined to obtain:

ns ≃ 1 − 1

3

√

3r + 64ξ2 ≃ 1 −
√

r

3
, (4.7)

which is precisely the same relation found in Starobinsky inĆation, see e.g. eq. (4.2) with
α = 1. However, as we stressed earlier, as soon as ξ ̸= 0 and therefore the non-minimal
coupling ϕ2R is turned on, the predictions of the two models differ, as is clear from
Ągure 4.

2. Concerning future observations, we anticipate that the upcoming generation of CMB
experiments, including the ground-based Simons Observatory (SO) [84, 85] and CMB-
S4 [83, 89], and the LiteBIRD satellite [90], will signiĄcantly improve our ability
to constrain the tensor amplitude, hopefully leading to a detection of primordial
tensor modes. In some cases, these surveys are expected to reduce the observational
uncertainties in the value of the spectral index as well. Just to quote a few concrete
values, assuming the usual power-law parametrization for primordial spectra, the official
collaboration forecasts suggest that SO should achieve a sensitivity of σ(r) ∼ 0.003

on tensor modes, along with an improvement in the constraining power on the scalar
spectral index of up to σ(ns) ∼ 0.003. On the other hand, CMB-S4 is expected to reach
σ(r) ∼ 0.001Ű0.007 (with marginal dependency on foreground modelling, as discussed
in ref. [89]) and σ(ns) ∼ 0.002. Additionally, LiteBIRD is also anticipated to have a
similar sensitivity of σ(r) ≲ 0.001, although its impact on the scalar spectral index is
expected to be limited (this is not surprising, given that LiteBIRD is targeting the
large angular scale CMB polarization signal).

The sensitivity forecasts anticipated from upcoming experiments quoted above could
provide crucial insights into scale-invariant inĆation. First and foremost, optimistically
assuming that the model provides an accurate description of the inĆationary Universe,
based on the results obtained from current data, we predict the presence of a primordial
gravitational wave background with an amplitude r ≳ 0.003. These values of the
tensor amplitude are sufficiently large to be visible from all the above-mentioned
experiments. For instance, CMB-S4 is expected to detect primordial gravitational
waves with r > 0.003 at a statistical signiĄcance of up to 5σ or larger. In case of lack
of detection, the same experiment should instead set an upper limit r < 0.001 at a
95% C.L.: it is therefore clear that, extrapolating the constraints from current data,
failure to detect r (and therefore primordial tensor modes) by CMB-S4 would strongly
contradict the predictions of scale-invariant inĆation, essentially ruling out the model.
Similar considerations can be drawn for SO and LiteBIRD.

That being said, in the optimistic scenario where future experiments will provide a
detection of r, the question of whether a combined inference of ns and r will be sufficient
to discriminate between competing models remains open. On the one hand, we expect
these experiments to signiĄcantly narrow down the region in the ns-r plane where
all inĆationary models should lie compared to what we can currently infer from the
analysis of Planck and BICEP/Keck data. Therefore, given the differences surrounding
the predictions of the different models observed in Ągure 4, one might be tempted
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to conclude that future data can eventually help discriminate between Starobinsky
and scale-invariant inĆation. While this is in part true, it is important to note that
predictions in this plane crucially depend on the value of ξ. Assuming that large
values of ξ are realized in Nature, we note that the differences in ns between these
two models can be at most as large as ∆ns ∼ 0.006 when r ∼ 0.032. Although these
differences could be signiĄcant when compared to the sensitivities to ns mentioned
above, it should be noted that in the more realistic case where ξ approaches small
values, the differences become much smaller for higher values of the amplitude of tensor
modes. In general, even within a very optimistic setup, these differences never exceed
2 − 3 times the forecasted observational uncertainties. In light of these considerations,
it appears quite unlikely that future data can provide conclusive evidence in favor of
one model over the other at high statistical signiĄcance. The situation could change
if, as discussed in footnote 7, an eventual widely agreed upon solution to the Hubble
tension ends up pushing us towards a region in ns parameter space far from the one
currently favored within ΛCDM: in this case, however, a signiĄcant rethinking of the
inĆationary paradigm might be required (see e.g. refs. [308Ű314]). At any rate, we defer
a more complete forecast for the power of upcoming CMB experiments to discriminate
between scale-invariant inĆation and competing models such as Starobinsky inĆation to
future work.

5 Conclusions

There are strong top-down and bottom-up motivations underlying the idea of scale-invariance
as a fundamental symmetry of Nature. On the theoretical side, quantum scale symmetry
is a highly predictive guiding principle, beyond renormalizability, for a quantum theory of
gravity. On the phenomenological side, from both the particle physics and cosmological
perspectives, equally strong motivation for classical scale-invariance exists. In particular,
(quasi-)scale-invariant inĆationary models (such as Starobinsky inĆation) naturally possess
features which allow them to accommodate the observed small amount of anisotropies and
stringent limits on the amplitude of primordial tensor modes. Driven by these considerations,
in the present work we have studied in detail a scale-invariant model of inĆation presented
earlier by one of us [188]: within the model, whose action features terms quadratic in curvature
and a scalar Ąeld non-minimally coupled to gravity, and obviously contains no explicit mass
scale (see eq. (2.1) in the Jordan frame), inĆation takes place during the transition between
two de Sitter regimes, when spontaneous breaking of scale-invariance occurs and a mass scale
ultimately identiĄed with the Planck mass emerges (see also refs. [196, 315]). It is important
to stress that the action given in eq. (2.1) is meant to be considered as exact, rather than
as an effective expansion of a yet unknown theory. In other words, scale-invariance here is
implemented by a non-perturbative theory Ů this is the main difference with respect to
Starobinsky inĆation, where scale-invariance is restored only at large curvature values.

In this work, we go signiĄcantly beyond earlier semi-analytical works, which studied
the modelŠs predictions for the inĆationary parameters ns and r [189Ű191]. Our model
predictions are derived by solving the full numerical dynamics of the system, making use of
a method recently developed by some of us to study generic multi-Ąeld inĆationary models
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with potentially non-trivial Ąeld-space metric [231], and are confronted against the latest
Planck and BICEP/Keck CMB observations to obtain the Ąrst robust constraints on the
free parameters of the model. These are particularly robust given their having been derived
assuming the speciĄc model of scale-invariant inĆation in the analysis, rather than merely
superimposing theoretical curves onto pre-obtained 2D marginalized contours in the ns-r
plane (and, by extension, imposing theory-driven rather than observation-driven priors).

Our main Ąndings can be summarized as follows:

1. we Ąnd a very tight upper limit on the parameter ξ < 0.00142 (at 95% C.L.) controlling
the strength of the non-minimal coupling ϕ2R in the Jordan frame action [see eq. (2.1)],
which excludes the conformal value ξ = 1 at extremely high signiĄcance;

2. for the other two model parameters, α and Ω related respectively to the quadratic in
curvature (R2) and quartic (ϕ4) terms in the Jordan frame action [see eqs. (2.1), (2.4)],
we infer α ∼ 2 × 1010 and Ω ∼ 10−5 Ů in particular, our constraints on ξ, α, and Ω

corroborate the results obtained in earlier semi-analytical works;

3. we numerically conĄrm that, despite the model being on paper a two-Ąeld one, its
dynamics are truly driven by only one Ąeld, as is clear from the discussion in section 3.2,
and as a direct consequence of scale-invariance;

4. we prove that the sensitivity to the initial conditions for the two Ąelds is extremely
limited Ů when explicitly sampling over these initial conditions, we have in fact found
them to be unconstrained;

5. we analytically and numerically demonstrate that the model predicts vanishing entropy
perturbations, again a direct consequence of scale-invariance;

6. we semi-analytically compute the predicted level of non-Gaussianity in the squeezed limit,
Ąnding it to be very small [O(0.1) or smaller] and consistent with CMB observations Ů
this conĄrms once more that the model dynamics are effectively single-Ąeld;

7. we illustrate how the modelŠs predictions (we use this term in light of our numerical
approach of assuming the speciĄc model when confronting it against observations, see
above) quantitatively differ from those of Starobinsky inĆation, for what concerns the
directions of the mutual correlations between ns, r, and the running of the spectral index
αs, explaining by means of semi-analytical arguments the origin of these differences;

8. similarly, we predict r ≳ 0.003, which is well within the expected sensitivity of upcoming
CMB experiments Ů conversely, lack of detection of primordial tensor modes at the
level we predict would rule out our scale-invariant inĆationary model;

9. Ąnally, we have qualitatively argued that despite the aforementioned differences with
respect to Starobinsky inĆation, it will be hard for upcoming CMB experiments to
discriminate between the two models at a high signiĄcance level.

The above Ąndings corroborate previous semi-analytical studies, thereby placing the model
and its earlier studies on a more robust footing.
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There are several potentially interesting avenues for follow-up work. On the theoretical
side, the key aspect of the model which remains to be studied is the potential production of
primordial black holes, together with predictions for the associated stochastic background
of gravitational waves, particularly in light of the signal recently detected by pulsar timing
array experiments. A more detailed study of the (p)reheating dynamics is also in order,
as a follow-up of what was done earlier in ref. [188]. Moreover, while we have focused on
a classically scale-invariant action, quantum corrections can spoil scale-invariance, on the
one hand possibly leading to entropy perturbations and therefore an additional avenue of
observational constraints, and on the other hand potentially leading to features which may
facilitate primordial black hole production: these aspects require a dedicated study which
goes well beyond the scope of the present work (and would presumably require including the
square of the Weyl tensor in the action). In addition, when endowed with non-zero spatial
curvature, our model can naturally support a bouncing scenario whose dynamics are yet
to be studied in detail. On the observational side, it would be desirable to go beyond our
semi-qualitative forecast. For instance, a fully-Ćedged forecast would entail the generation of
mock CMB data assuming our speciĄc model, with the instrumental speciĄcations for future
experiments entering instead in the (mock) likelihood. Moreover, a more detailed study of
the primordial three-point correlation function (in particular considering other conĄgurations
beyond the squeezed one) would be very valuable, and would allow for a direct comparison to
bispectrum measurements in the CMB and in galaxy surveys. We leave a detailed exploration
of these and other interesting points to follow-up work.

To sum up, in the present work we have performed the Ąrst robust comparison of scale-
invariant inĆation against current precision cosmological observations from the CMB, at
least for what concerns the use of multi-Ąeld dynamics to numerically follow the evolution
of the two Ąelds in scale-invariant scenarios. Our Ąndings conĄrm that the model is in
extremely good health, and indicate that upcoming CMB observations (such as SO, CMB-S4,
or LiteBIRD) will rule it out if values of the tensor-to-scalar ratio r ≳ 0.003 are excluded Ů in
this sense, considering also its strong theoretical motivation, we feel that this model provides
another interesting benchmark for tests of inĆation from future CMB experiments. Our work
further reinforces the potential key role of scale-invariance as being the symmetry underlying
the inĆationary paradigm, while also being an important theoretical guiding principle.
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